WO2013013872A1 - Dispositif de mesure optique pour un véhicule - Google Patents

Dispositif de mesure optique pour un véhicule Download PDF

Info

Publication number
WO2013013872A1
WO2013013872A1 PCT/EP2012/060466 EP2012060466W WO2013013872A1 WO 2013013872 A1 WO2013013872 A1 WO 2013013872A1 EP 2012060466 W EP2012060466 W EP 2012060466W WO 2013013872 A1 WO2013013872 A1 WO 2013013872A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
measuring device
optics
contour
optical
Prior art date
Application number
PCT/EP2012/060466
Other languages
German (de)
English (en)
Inventor
Thomas Schuler
Peter Horvath
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Priority to EP12733432.4A priority Critical patent/EP2737334A1/fr
Publication of WO2013013872A1 publication Critical patent/WO2013013872A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to an optical measuring device for a vehicle referred to in the preamble of claim 1 Art.
  • laser scanner for vehicles used for detection of objects or obstacles in a monitoring area are known, determine the time-of Lichtimpulslauf- after which the distance to recognized objects in the monitoring area or obstacles.
  • Such an optical measuring device is usually mounted on the front part, for example on the radiator grille of a vehicle, but can also be attached to the rear part of the vehicle. Due to the intended installation location of the laser scanner in the vehicle, ie integrated directly in the radiator grille on the front part in front of the radiator, the outside area of the laser scanner must be adaptable to the design of the radiator grille without taking up too much space, ie stay relatively flat from the construction.
  • a fisheye lens as used in known cameras, for example, brings no advantage here, since the fisheye lens would project too far.
  • a possible opening angle of the optical measuring device should be as wide as possible in order to be able to scan the largest possible area in front of the vehicle.
  • patent document DE 10 2005 055 572 B4 describes a scanning optical distance sensor.
  • the described distance sensor comprises at least one laser as optical transmitter, at least one detector as optical receiver and a deflection unit, which deflects a generated laser radiation with a first mirror to the scene to be measured, and with a second mirror the backscattered from objects laser pulses on the at least one Detector deflects.
  • an optical sensor device is described, which uses a lens plate, which on its light transmitter or a light receiver facing surface Fresnel
  • the described lens plate is used for coupling out parallel beams from a disk and for coupling parallel beams into a disk.
  • US Pat. No. 7,544,945 B2 describes a lidar system for monitoring the surroundings of a vehicle.
  • the described lidar system comprises at least one transmitting and / or receiving device and an optical system for influencing the beam path of the generated or received radiation.
  • a Fresnel lens in front of a collector can be used to focus parallel beams.
  • the object of the invention is to propose an optical measuring device for a vehicle, which has a window appearance whose outer contour is matched to the outer contour of the installation location without any loss of performance. This object is achieved by an optical measuring ⁇ device for a vehicle with the features of claim 1. Further embodiments of the invention contain ausgestaltende features in advantageous manner, the sub ⁇ claims.
  • the advantage achieved by the invention is that the optical properties of the window optics is adapted to the outer contour of the window optics, which is predetermined by the outer contour of the installation location to the largest possible opening angle of the window optics for transmission radiation and / or receiving radiation to be able to implement and maintain the performance of the optical measuring device.
  • Embodiments of the present invention advantageously a functional adjustment of Novaop ⁇ tik with respect to the design of the installation site and an optimization of the outer contour of the window optics of the optical measuring device, which is designed for example as a laser scanner.
  • the basic idea of the invention is based on the fact that the optical properties of the window optics prescribed by the outer contour for decoupling the transmission radiation or
  • Coupling of the resulting receiving radiation by appropriate measures, such as material selection and / or by specifying an inner window contour, adapted so that the window optics has a maximum opening angle for the transmission radiation and / or receiving radiation given installation conditions.
  • An inventive optical measuring device for a driving ⁇ generating comprises at least one transmitting and / or Empfangseinrich ⁇ tung, a window design with a defined opening angle, which comprises a transmitting window and a receiving window, wherein the transmitting and / or receiving device generates a transmission radiation and the Transmitting window of the window optics radiates in a measurement environment and receives a resulting receive radiation through the receiving window of the window optics from a measurement environment and evaluates.
  • the window look a predetermined outer window contour, which is adapted to an externa ⁇ ßere contour of a mounting location, wherein the optical ⁇ properties of the window optics are adapted to the outer window contour that the window optics a maximum opening angle for the transmitted radiation and / or Receiving radiation has.
  • the optical properties of the window optics can be adjusted by material selection and / or by specifying an inner window contour.
  • the optical window may for example comprise different Abschnit ⁇ te, the materials having different refractive indices.
  • the course of the radiation between the inner and outer contours of the window optics can be changed in such a way that the largest possible opening angle is established and the largest possible area in front of the vehicle can be scanned and monitored.
  • the window optics can be structured in an advantageous manner so that first sections, wel ⁇ che are each made of a material having a first refractive index, are arranged at edge regions of the window system. Further, at least a second portion which is ge ⁇ made of a material having a second refractive index which is lower than the first refractive index is substantially arranged arrival in the central region of the window appearance. As a result, the transmission radiation or reception radiation is refracted more strongly at the edge of the window optics, resulting in a larger opening angle for the window optics.
  • the inner window contour may have a plurality of structural lens sections.
  • the individual structural lens sections may have a planar surface with a predetermined width.
  • the planar surfaces of the individual structured lens sections are aligned at a predeterminable angle to the transmitting and / or receiving device.
  • the longitudinal edges of the planar surfaces of the individual structural lens sections essentially run parallel to each other.
  • the flat surfaces of the individual structural lens portions may be performed with different widths from ⁇ , where structure lens portions are formed at the edge regions of the window optics arranged, the plane surface-surface having a minimum width and wherein the width of the flat surfaces of the individual structural lens sections towards the center of the window optics increases.
  • the inner window contour may have a Fresnel lens structure to effect the targeted deflection of the transmission radiation or reception radiation.
  • the transmitting and / or receiving device operates in the infrared frequency range, wherein the window optical system is permeable only to the infrared frequency range.
  • FIG. 1 is a perspective view of an exemplary embodiment of an optical measuring device according to the invention for a vehicle.
  • Fig. 2 is a plan view of the inventive optical measuring ⁇ apparatus for a vehicle in FIG. 1.
  • FIG. 3 is a schematic sectional view of an inventive optical measuring device for a vehicle with a first embodiment of a window lens.
  • Fig. 4 is a detailed sectional view of the fiction, modern ⁇ optical measuring apparatus for a vehicle in Fig. 3.
  • FIG. 5 shows a detailed representation of the first exemplary embodiment of the window optical system for the optical measuring device according to the invention for a vehicle from FIGS. 3 and 4.
  • Fig. 6 is a schematic sectional view of a fiction, ⁇ contemporary optical measuring device for a vehicle with a second embodiment of a window system.
  • Fig. 7 is a schematic sectional view of an optical measuring device according to the invention for a vehicle with a third embodiment of a window system.
  • an optical measuring device 1, 1 ', 1 "for a vehicle include a sensor unit designed as a laser scanner with a housing.
  • a transmission window ⁇ 10.1 is emitted through the, for example, pulsed laser light, and a reception window are introduced 10.2, is received by the objects in a surveillance area reflected laser light.
  • the transmission window and the reception window 10.1 10.2 are part of a window, optics 10, 10 ', 10 / y that determines the Ab ⁇ beam area of the transmitter radiation 30 and receiving range of the receiving radiation 30 with a defined opening angle ⁇ .
  • an electrical connecting device 3.1 is provided in order to supply the optical measuring device 1, 1 ', 1''with energy and to enable communication with the optical measuring device 1, 1', 1 ''.
  • the transmitting and / or receiving device 20 comprises a non-illustrated te transmitter board, on which, for example, a designed as a pulsed laser optical transmitter is arranged with a transmitting optics, a receiver board on which, for example, an unrepresented as a detector running optical receiver is arranged, and a receiving optics, which is executed in ⁇ example, as a parabolic mirror.
  • the optical transmitter generates pulsed laser beams, which are deflected via the transmitting ⁇ mirror unit and emitted by the transmission window 10.1 in the area to be monitored.
  • the reception window 10.2 receives pulsed laser beams which are reflected in response to the emitted pulsed laser beams from objects or obstacles arranged in the surveillance area.
  • the received laser beams are deflected via the receiving mirror unit and directed from the receiving optics to the optical receiver.
  • the output of the optical receiver is then evaluated to determine the transit time of the laser beams to determine the distance to a detected object in the surveillance area.
  • the window optics 10, 10 ', 10'', a given before ⁇ outer window contour 14 which is adapted to an outer contour of a mounting location, wherein the optical properties of the window, optics 10, 10', 10 '' as the outer window contour 14 adapted that the window optics 10, 10 ', 10''has a maximum opening angle ⁇ for the Sendestrah ⁇ ment 30 and / or receiving radiation 30.
  • Embodiments of the present invention fit the outer contour 14 of the window optics 10, 10 ', 10''so on to the outer contour of the mounting position, that the optical measuring device 1, 1', 1 '' optimally at the intended installation location in the vehicle inte ⁇ can be grated.
  • the optical measuring device 1, 1 ', 1'' in an advantageous manner at the front of the vehicle in front of the radiator, possibly even be integrated directly in the radiator grille.
  • the outer region 14 of the optical measuring device 1, 1 ', 1'' can be adapted to the design of the radiator grille with optimum space utilization and still has the largest possible opening angle ⁇ for the transmission radiation 30 and / or reception radiation 30.
  • the window optics 10, 10 ', 10'' has the task of distributing the light rays in such a way that a maximum opening angle • in the range of 130 ° to 170 ° can be realized while respecting the contour of the installation.
  • the function ⁇ on the window optics 10, 10 ', 10'' is not the bundling of the light beams, but the correct distribution and direction of the light beams.
  • the advantage of the optical measuring device 1, 1 ', 1 "according to the invention with the new window optics 10, 10', 10" is that it can be easily integrated into the installation site contour on the vehicle.
  • the transmitting and / or receiving device 20 operates preferential ⁇ way in the infrared frequency range at a wavelength of 905nm, the window optics 10, 10 ', 10''is permeable only for the infrared frequency range, ie for the human eye is the window optics 10, 10' , 10 '' black.
  • the beams should, in order to avoid reflection losses, be passed directly through the window optics 10, 10 ', 10''. This makes it possible to achieve a greater range of the optical measuring device 1, 1 ', 1''.
  • the transmission power of the optical measuring device 1, 1 ', 1'' is about 70W and the reception sensitivity is at a power of about 100nW.
  • FIGS. 3 to 5 a first embodiment of the window optics 10 will be described for the optical measuring apparatus 1 ⁇ below.
  • the illustrated first exemplary embodiment of the window optical system 10 has a predetermined outer window contour 14, which is adapted to the desired outer contour 5 of the installation location.
  • FIGS. 3 to 5 illustrate the course of the transmitted radiation or receiving beams 30, which in the illustrated exemplary embodiment is influenced by a structure on an inner contour 12 of the window optical system 10. is bathbar.
  • the inner window contour 12 of the window optical system 10 has a predefined structure which has a plurality of structural lens sections 12. 1.
  • the individual structured lens sections 12. 1 have a plane surface with a predetermined width B, which is under a
  • the individual structural lens sections 12.1 are arranged such that a strip with a high refractive index results at the lateral edges of the window optical system 10, which strip decreases in the direction of the center of the window optical system 10.
  • the planar surfaces of the individual structural lens sections 12. 1 are therefore designed to have different widths, wherein structural lens sections 12. 1, whose plane surfaces have a minimum width B, are arranged on the edge regions of the window optical system 10. In the direction of the center of the window optical system 10, the width B of the planar surfaces of the individual structural lens sections 12.1 increases.
  • the longitudinal edges of the planar surfaces of the individual structural lens sections 12.1 are substantially parallel to one another.
  • the window optical system 10 then has a minimum value for the refractive index. This results in flat and, in the middle region, steep decoupling or coupling-in angle at the edges.
  • This structure can be realized, for example, by a microlens structure, different coating or similar measures which perform the same optical function.
  • the window optics 10 ' is the same specified differently bene outer window contour 14 as the first embodiment, which is adapted to the desired outer contour 5 of the installation location.
  • a material is used for first portions 12.2, which has a first refractive index
  • second portions 12.3 a material is used, wel ⁇ ches having a second refractive index which is lower than the first refractive index.
  • a second portion is arranged 12.3 with the lower refractive index in the Wesentli ⁇ chen in a central strip portion of the window optics 10 '.
  • first sections with the higher Bre ⁇ chungsindex join on both sides and each form a lateral edge region of the window 10 '.
  • FIG. 7 shows a third example of the window from ⁇ guide optical system 10 '' for the optical measuring apparatus 1 ⁇ '' will be described below.
  • the window optics 10 ' also' the sliding ⁇ che predetermined outer window contour 14 as the first and second exemplary embodiment, which is adapted to the desired outer contour 5 of the installation location.
  • the inner window Terkontur 12 11 of the window optics 10 analogous to the first embodiment, a predetermined structure, which is designed for ge ⁇ targeted deflection of the transmission radiation or reception radiation as a Fresnel lens structure 12.4.
  • Embodiments of the present invention allow in an advantageous manner a technical function adaptation of the op ⁇ tables measuring device to the predetermined design at the installation site.
  • the geometry of the window optics can be adapted to the design surface at the installation site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un dispositif de mesure optique (1) pour un véhicule, comportant au moins un système d'émission et/ou de réception (20), un élément optique à fenêtres (10) lequel présente un angle d'ouverture (a) défini et lequel comprend une fenêtre d'émission et une fenêtre de réception, le système d'émission et/ou de réception (20) générant un rayonnement d'émission (30) qu'il émet à travers la fenêtre d'émission de l'élément optique à fenêtres (10) dans un environnement de mesure, et recevant un rayonnement résultant (30) à travers la fenêtre de réception de l'élément optique à fenêtres (10) pour l'analyser. Afin de pouvoir fournir un dispositif de mesure optique pour un véhicule pourvu d'un élément optique à fenêtres dont le contour extérieur peut être adapté au contour extérieur du site d'installation sans pertes de performance, l'élément optique à fenêtres (10) présente un contour extérieur de fenêtres (14) prédéfini qui est adapté à un contour extérieur (5) du site d'installation, l'adaptation des propriétés optiques de l'élément optique à fenêtres (10) au contour extérieur de fenêtres (14) étant telle que l'élément optique à fenêtres (10) présente un angle d'ouverture maximal (.) pour le rayonnement d'émission (30) et/ou le rayonnement de réception (30).
PCT/EP2012/060466 2011-07-27 2012-06-04 Dispositif de mesure optique pour un véhicule WO2013013872A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12733432.4A EP2737334A1 (fr) 2011-07-27 2012-06-04 Dispositif de mesure optique pour un véhicule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011108683A DE102011108683A1 (de) 2011-07-27 2011-07-27 Optische Messvorrichtung für ein Fahrzeug
DE102011108683.1 2011-07-27

Publications (1)

Publication Number Publication Date
WO2013013872A1 true WO2013013872A1 (fr) 2013-01-31

Family

ID=46489175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/060466 WO2013013872A1 (fr) 2011-07-27 2012-06-04 Dispositif de mesure optique pour un véhicule

Country Status (3)

Country Link
EP (1) EP2737334A1 (fr)
DE (1) DE102011108683A1 (fr)
WO (1) WO2013013872A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110504A1 (de) * 2014-07-25 2016-01-28 Valeo Schalter Und Sensoren Gmbh Abtastende optoelektronische Messvorrichtung und Verwendung eines Heizleiters einer Abdeckscheibe einer optoelektronischen Messvorrichtung
DE102017101655B4 (de) 2017-01-27 2024-01-25 Bcs Automotive Interface Solutions Gmbh Elektrooptikbaugruppe sowie Verfahren zur Detektion von Umgebungslicht
JP6958383B2 (ja) * 2018-01-24 2021-11-02 株式会社デンソー ライダー装置
DE102018110593A1 (de) * 2018-05-03 2019-11-07 Valeo Schalter Und Sensoren Gmbh Sendeeinheit für eine optische Objekterfassungseinrichtung und entsprechende optische Objekterfassungseinrichtung
DE102019117353A1 (de) * 2019-06-27 2020-12-31 Valeo Schalter Und Sensoren Gmbh Verfahren zur Befestigung wenigstens eines Fensters eines Gehäuses einer elektronischen Vorrichtung, Gehäuse und optische Detektionsvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406906A1 (de) * 1994-03-03 1995-09-07 Docter Optik Wetzlar Gmbh Vorrichtung zur Überwachung von Innenräumen
DE19731754A1 (de) * 1997-07-23 1999-02-04 Spies Martin Dipl Ing Fh Kombination Scheinwerfer Abstandssensor für Fahrzeuge
DE102005055572B4 (de) 2005-11-19 2007-08-02 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Abtastender optischer Abstandssensor
DE102006040348A1 (de) * 2006-08-29 2008-03-06 Robert Bosch Gmbh Fahrerassistenzsystem
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
DE102007036492B4 (de) 2007-08-01 2009-07-30 Trw Automotive Electronics & Components Gmbh & Co. Kg Optische Sensorvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632252B4 (de) * 1996-06-25 2006-03-02 Volkswagen Ag Vorrichtung zum Befestigen einer Sensoreinrichtung
EP1050435B1 (fr) * 1999-05-03 2008-10-08 Volkswagen Aktiengesellschaft Capteur de distance pour un véhicule
JP4121803B2 (ja) * 2002-08-08 2008-07-23 株式会社トプコン 光波距離測定装置
CN1779486A (zh) * 2004-11-19 2006-05-31 南京德朔实业有限公司 激光测距装置
DE102006045549B4 (de) * 2006-09-25 2018-01-25 pmdtechnologies ag Transportmittel mit 3D-Kamera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406906A1 (de) * 1994-03-03 1995-09-07 Docter Optik Wetzlar Gmbh Vorrichtung zur Überwachung von Innenräumen
DE19731754A1 (de) * 1997-07-23 1999-02-04 Spies Martin Dipl Ing Fh Kombination Scheinwerfer Abstandssensor für Fahrzeuge
DE102005055572B4 (de) 2005-11-19 2007-08-02 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Abtastender optischer Abstandssensor
US7544945B2 (en) 2006-02-06 2009-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Vertical cavity surface emitting laser (VCSEL) array laser scanner
DE102006040348A1 (de) * 2006-08-29 2008-03-06 Robert Bosch Gmbh Fahrerassistenzsystem
DE102007036492B4 (de) 2007-08-01 2009-07-30 Trw Automotive Electronics & Components Gmbh & Co. Kg Optische Sensorvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2737334A1

Also Published As

Publication number Publication date
EP2737334A1 (fr) 2014-06-04
DE102011108683A1 (de) 2013-01-31

Similar Documents

Publication Publication Date Title
EP2002281B1 (fr) Dispositif de mesure optique de distances
DE102017124535A1 (de) Sende-Empfangsmodul für einen optoelektronischen Sensor und Verfahren zur Erfassung von Objekten
WO2003002939A1 (fr) Dispositif de mesure optique de distance sur une plage de mesure etendue
DE102013012789A1 (de) Abtastende optoelektronische Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung
EP2786168A1 (fr) Dispositif de mesure optique
DE102012212150B4 (de) Laserradarvorrichtung, die zwischen einem Kennzeichenschild und einemFahrzeugaufbau angeordnet ist
EP2737334A1 (fr) Dispositif de mesure optique pour un véhicule
DE112019000517T5 (de) Lidarvorrichtung, fahrassistenzsystem und fahrzeug
EP2210124B1 (fr) Dispositif de mesure optique d'une distance
DE10051302C5 (de) Laserentfernungsmessgerät für den Nah- und Fernbereich mit speziellem Empfänger
DE102005010905A1 (de) Objekterfassungsvorrichtung für ein Fahrzeug
EP1695109B1 (fr) Dispositif pour mesurer la distance a des objets proches et eloignes
DE102018118653B4 (de) Optoelektronischer Sensor und Verfahren zum Erfassen eines Objekts
EP2833161A1 (fr) Dispositif de mesure optoélectronique pour un véhicule automobile et capteur à balayage associé
EP3491413A1 (fr) Ensemble optique pour système lidar, système lidar et dispositif de travail
EP3519858A1 (fr) Unité de balayage d'un dispositif de réception et d'émission optique d'un dispositif de détection optique d'un véhicule
DE102019205243A1 (de) LIDAR-Sensor zur optischen Erfassung eines Sichtfeldes und Verfahren zur Ansteuerung eines LIDAR-Sensors
DE202017107067U1 (de) Sendemodul zum Aussenden eines Sendelichtbündels
DE102019219825A1 (de) Sendeeinheit und LIDAR-Vorrichtung mit optischem Homogenisierer
DE102017012251A1 (de) Sende-Empfangsmodul für einen optoelektronischen Sensor und Verfahren zur Erfassung von Objekten
WO2018153748A1 (fr) Arrangement de déviation de signal émis pour un dispositif d'émission optique d'un système de détection optique d'un véhicule, dispositif d'émission, système de détection optique et système d'assistance au conducteur
DE102010062616B4 (de) Optischer Entfernungsmesser
EP0312010A2 (fr) Dispositif émetteur et récepteur pour la transmission d'information par rayon lumineux
AT519765B1 (de) Laserscanner und Vorrichtung zur Vermessung einer Umgebung
DE102021200968A1 (de) LiDAR-System sowie Mehrfachpolygonspiegel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012733432

Country of ref document: EP