WO2013013584A1 - 纳米图形化和超宽频电磁特性测量系统 - Google Patents

纳米图形化和超宽频电磁特性测量系统 Download PDF

Info

Publication number
WO2013013584A1
WO2013013584A1 PCT/CN2012/078747 CN2012078747W WO2013013584A1 WO 2013013584 A1 WO2013013584 A1 WO 2013013584A1 CN 2012078747 W CN2012078747 W CN 2012078747W WO 2013013584 A1 WO2013013584 A1 WO 2013013584A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
signal
nano
measuring system
vacuum chamber
Prior art date
Application number
PCT/CN2012/078747
Other languages
English (en)
French (fr)
Inventor
韩秀峰
马勤礼
于国强
刘厚方
余天
周向前
艾金虎
孙晓玉
Original Assignee
中国科学院物理研究所
北京汇德信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所, 北京汇德信科技有限公司 filed Critical 中国科学院物理研究所
Priority to JP2014521921A priority Critical patent/JP5964959B2/ja
Priority to EP12818389.4A priority patent/EP2738607B1/en
Publication of WO2013013584A1 publication Critical patent/WO2013013584A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/315Contactless testing by inductive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the invention relates to a nano material and device detecting device, in particular to a magnetic field application based on an electron beam exposure system/electron beam pattern generating system, high frequency electromagnetic signal generation, introduction, transmission and measurement, and nanopositioning in a wide range Nano-patterned and ultra-wideband electromagnetic characterization system. Background technique
  • nanomaterials and devices have been widely used in many fields including electronics, magnetism, chemistry, and biology. Research on nanomaterials and devices has become one of the core issues in condensed matter physics and modern information technology and industrial production. Since 1988, the rapid development of spintronics has gradually brought information science into an era of extremely high-density magnetic storage (T-bit/inch2) and nanosecond-level fast reading and writing, including nano-magnetic materials, which means Research into nanomaterials and devices is going to be a complete process involving nanoscale microstructure imaging, nanopatterning, and GHz high-frequency operation with integrated measurement and analysis involving magnetic or electric fields.
  • T-bit/inch2 extremely high-density magnetic storage
  • nanosecond-level fast reading and writing including nano-magnetic materials
  • Electron beam l ithography (EBL) system is one of the most important devices for the preparation and observation of integrated nanostructures. It includes scanning electron microscope (SEM) imaging function and electron beam pattern generator, which uses direct focus electron beam directly in the anti-beam. A nanograph is written on the etchant layer. According to the characteristics of small electron beam spot and high energy, the electron beam exposure system can produce nanostructures with a line width of 5-10 nm, which is an ideal method for fabricating nano materials and devices. At present, the world record for the preparation of nanostructures with a minimum line width of less than 5 nm is realized and maintained by the EBL system of Raith, Germany.
  • EBL systems introduce probe arms for electrical signal measurement
  • current EBL systems are not yet compatible with direct observation of nanomaterials and devices with in situ electrical and magnetic signal manipulation and measurement.
  • the bottleneck problem is mainly because: The electrons used for exposure and imaging in the EBL system will deflect under the action of the applied magnetic field or electric field used to measure the sample in situ, thus seriously disturbing and affecting the focusing and scanning of the electron beam.
  • the probe structure is not specially designed, the transmission and measurement of high-frequency signals in the electron beam vacuum system cannot be completed, and high-frequency signal transmission and measurement of the in-situ nano device cannot be realized.
  • the method for testing the high-frequency magnetic and electrical transport properties of nanomaterials and devices is usually to prepare a special electrode structure for transmitting high-frequency signals by EBL exposure combined with multi-turn micro-nano processing.
  • DC or low frequency AC magnetoelectric characteristics test then put in special high frequency test
  • the test system performs measurement of the magnetic high frequency response signal. Due to the difficulty of the patterning process at the nanometer scale, the long preparation cycle, and the complicated processing and measurement process, it not only increases the manufacturing cost, but also greatly prolongs the testing time of nanomaterials and devices. The success rate and yield are also significantly improved. Impact.
  • the current electron beam exposure system integrates a probe arm with nano-scale positioning function, but cannot perform accurate nano-positioning in a wide range of 1 inch or more, only in a small (several micrometer range). The positioning and connection of the probe to the sample is completed.
  • the technical problem to be solved by the present invention is to provide a nano-patterning and ultra-wideband which can realize the patterning and shape observation of array nano materials and devices, and the testing and analysis of ultra-wideband magnetoelectric transport characteristics under in-situ conditions. Electromagnetic characteristic measurement system.
  • the present invention provides a nano-patterning and ultra-wideband electromagnetic characteristic measuring system including a power source, a control device and a measuring device, the control device being connected to the measuring device, the control device and the measuring device The device is respectively connected to the power source, wherein the measuring device comprises an imaging device having a SEM imaging or EBL patterning function, a vacuum chamber, a vacuum system, a sample stage and a magnetic field response characteristic testing device, the vacuum system and the vacuum
  • the cavity connecting, the imaging device, the sample stage and the magnetic field response characteristic testing device are all disposed in the vacuum chamber, and the imaging device and the magnetic field response characteristic testing device are disposed corresponding to the sample stage.
  • the magnetic field response characteristic testing device comprises a bracket and a magnetic field generating device and a magnetic field moving mechanism 353 mounted on the bracket, the magnetic field generating device including a coil and a guide A magnetic pole, the magnetic pole is connected to the magnetic field moving mechanism 353.
  • the magnetically permeable magnetic material is a soft magnetic material tapered structural member, and the soft magnetic material is a NiFe alloy, a silicon steel sheet or a soft ferrite.
  • the magnetic field response characteristic testing device further comprises a magnetic field shielding mechanism mounted on the bracket and disposed corresponding to the sample stage.
  • the above-described nano-patterning and ultra-wideband electromagnetic characteristic measuring system wherein the magnetic field shielding mechanism It is a magnetic field shield or a magnetic field shield.
  • the nanopatterning and ultra-wideband electromagnetic characteristic measuring system described above further includes an electric field response characteristic testing device disposed in the vacuum chamber and disposed above the sample stage.
  • the electric field response characteristic testing device comprises a vertical electric field applying plate and/or a horizontal electric field applying plate and a plate moving mechanism, the vertical electric field applying a plate and/or A horizontal electric field application plate is connected to the plate moving mechanism, respectively.
  • the nano-patterning and ultra-wideband electromagnetic characteristic measuring system described above further comprising a photo response characteristic testing device, the photoresponsive characteristic testing device comprising a light source and a photoresponsive characteristic testing component, wherein the photoresponsive characteristic testing component is disposed in the vacuum Inside the cavity.
  • the optical response characteristic testing component comprises an optical fiber, a fiber optic probe and a movable bracket, and the optical fiber is respectively connected to the light source and the optical fiber probe, the optical fiber A probe is mounted on the movable bracket, the movable bracket being disposed within the vacuum chamber corresponding to the sample stage.
  • the above-mentioned nano-patterning and ultra-wideband electromagnetic characteristic measuring system further includes a broadband signal testing and analyzing device, and the broadband signal testing and analyzing device comprises a signal generating device, a signal transmitting device and a signal analyzing device, and the signal generating device and the device
  • the signal analysis means are respectively connected to the signal transmission means, and the signal transmission means is connected to the vacuum chamber and is provided corresponding to the sample stage.
  • the signal transmission device comprises a high frequency probe arm and/or a low frequency probe arm, a probe arm moving mechanism and a probe, and the high frequency probe arm And/or a low frequency probe arm is coupled to the probe arm moving mechanism, the probe being mounted at a front end of the high frequency probe arm and/or the low frequency probe arm.
  • the probe arm moving mechanism comprises a three-dimensional mechanical moving part and a three-dimensional piezoelectric moving part.
  • the high frequency probe arm includes a first probe arm and a second probe arm
  • the three-dimensional mechanical moving component passes through the bellows and the first probe
  • the needle arms are connected, and the first probe arm and the second probe arm are connected by the three-dimensional piezoelectric moving member.
  • the signal transmission device A probe positioning mechanism is also included, the probe positioning mechanism being mounted at a front end of the high frequency probe arm and/or the low frequency probe arm, the probe positioning mechanism being coupled to the control device.
  • the signal generating device comprises a high frequency network analyzer, a voltage source and a current source, and the high frequency probe arm and/or the low frequency probe arm respectively
  • the high frequency network analyzer, the voltage source, and the current source are connected.
  • the signal analyzing device comprises a spectrum analyzer, the spectrum analyzer and the high-frequency probe arm and/or the low-frequency probe arm and the control respectively Device connection.
  • the vacuum chamber is further provided with a sample stage moving mechanism
  • the sample stage is mounted on the sample stage moving mechanism, and the sample stage moving mechanism and the The control device is connected.
  • Figure 1 is a block diagram showing the structure of the present invention
  • FIG. 2 is a structural block diagram of a measuring device according to an embodiment of the present invention.
  • Figure 3 is a schematic view showing the operation of the image forming apparatus of the present invention.
  • 5A is a schematic view showing the internal structure of a vacuum chamber according to an embodiment of the present invention.
  • FIG. 5B is a schematic structural view of a magnetic field response characteristic testing device according to an embodiment of the present invention (the magnetic field generating device and the magnetic field shielding mechanism are both in a closed state);
  • FIG. 5C is a schematic structural view of a magnetic field response characteristic testing device according to an embodiment of the present invention (the magnetic field generating device and the magnetic field shielding mechanism are both in an open state);
  • FIG. 6A is a schematic structural view of a vertical electric field response characteristic testing device according to an embodiment of the present invention
  • FIG. 6B is a schematic structural diagram of a horizontal electric field response characteristic testing device according to an embodiment of the present invention
  • FIG. 7 is a photoresponsiveness testing device according to an embodiment of the present invention. Schematic;
  • FIG. 8 is a schematic structural view of a high frequency probe arm according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a high frequency probe arm using a conductive sensor according to an embodiment of the present invention.
  • the reference numeral Power supply 2 control unit
  • FIG. 1 is a structural block diagram of the present invention
  • FIG. 2 is a structural block diagram of a measuring apparatus according to an embodiment of the present invention
  • FIG. 3 is a working principle diagram of the imaging apparatus of the present invention.
  • the nano-patterning and ultra-wideband electromagnetic characteristic measuring system of the present invention comprises a power source 1, a control device 2 and a measuring device 3, and the control device 2 is connected to the measuring device 3, the control device 2 and the measuring device 3 Connected to the power source 1 respectively, the measuring device 3 includes an imaging device 31 having an SEM imaging or EBL patterning function, a vacuum chamber 32, a vacuum system 33, a sample stage 34, and a magnetic field response characteristic testing device 35, the vacuum system 33 is connected to the vacuum chamber 32, and the imaging device 31, the sample stage 34 and the magnetic field response characteristic testing device 35 are both disposed in the vacuum chamber 32, the imaging device 31 and the magnetic field response characteristic A test device 35 is provided corresponding to the sample stage 34.
  • the imaging device 31 of the present invention includes an electron gun 311 and a secondary electron detector 312.
  • the principle of the SEM imaging or EBL patterning function is shown in FIG. 3, because the structure and principle of the imaging device are relatively The mature existing technology will not be described here.
  • the above-mentioned imaging device 31 with SEM imaging or EBL patterning function, vacuum chamber 32, vacuum system 33 and sample stage 34 can also directly adopt experimental or industrial grade EBL equipment which has mature technology.
  • the EBL device consists of three basic parts: an electron gun, an electron lens and an electronic deflector and other auxiliary components (beam current measuring device for measuring the size of the exposed electron beam; reflective electron measuring device for observing the alignment of the sample surface) Marking; working platform for placing and moving exposed samples; vacuum system; high voltage power supply; computer graphics generator for converting graphic data into electrical signals that control the deflector).
  • the electron beam exposure system can be classified into a Gaussian beam (or a circular beam) and a deformed beam (or a rectangular beam) according to the shape of the electron beam.
  • the Gaussian beam is named for the Gaussian function of the current distribution in the circular beam spot.
  • the Gaussian beam electron exposure system is a vector scanning exposure system with higher resolution, but its scanning speed is much lower than that of raster scanning. Representative of this is the Raithl50 electron beam exposure system from Raith, Germany, which combines both scanning electron microscopy and electron beam exposure with a minimum beam diameter of 4 nm.
  • Its main features are an electron gun with adjustable energy, electronic energy from 5 keV to 300 keV; a magnetic lens group with electron beam focusing function and a secondary electron detector with SEM imaging function; and electrons with electron beam focusing and deflection Beam direct writing function electron beam control electrode and corresponding software; sample stage with a range of 1 inch or more and a positioning accuracy of 10 nanometers that can be moved in a horizontal two-dimensional direction, the sample stage size is 1 to 12 inches; The vacuum of the cavity of the beam and the sample is better than 10-5 Pa. All of the devices in the present invention are connected by a GPIB line 23, controlled by control software in the control unit 22 of the control device 2, and operated by the control panel 21. Because the structure and function are mature technologies, they will not be described here.
  • FIG. 4 is a schematic structural view of an embodiment of the present invention
  • FIG. 5A is a schematic view showing the internal structure of a vacuum chamber according to an embodiment of the present invention.
  • the magnetic field response characteristic testing device 35 includes a bracket 351 and a magnetic field generating device 352 and a magnetic field moving mechanism 353 mounted on the bracket 351.
  • the magnetic field generating device 352 includes a coil 3521 and a magnetic conductive magnetic pole 3522.
  • the magnetic conductive magnetic pole 3522 is connected to the magnetic field moving mechanism 353.
  • the magnetic conductive magnetic pole 3522 is preferably a soft magnetic material tapered structural member, because it is easy to magnetize and demagnetize, has a high magnetic permeability, and can enhance the magnetic field strength and reduce the residual magnetism.
  • the soft magnetic material is preferably a NiFe alloy, a silicon steel sheet or a soft ferrite.
  • the coil 3521 is preferably a pair of Helmholtz coils 3521. In the present embodiment, the magnetic field is generated by a pair of Helmholtz coils 3521 in the vacuum chamber, and the magnetic field is effectively transmitted to the periphery of the sample stage 34 by the magnetic magnetic poles 3522 made of a soft magnetic material having a tapered structure.
  • the direction and magnitude of the magnetic field are controlled by a DC power supply that can change direction and continuously vary in size.
  • the range can be set as needed, and the magnetic field is maximum.
  • the amplitude is controlled at 500 0e to 5000 0e.
  • the integral Helmholtz coil and the soft magnetic pole are covered by a magnetic field shield, and the shield is made of a ferromagnetic material with high magnetic permeability.
  • the magnet shielding baffle provided at the front end of the magnet shield is closed to achieve an optimal magnetic field shielding effect, thereby effectively avoiding magnetic remanence of the magnetic pole.
  • the effect of stray magnetic fields on the electron beam as shown in Figure 5B.
  • the magnet shield baffle opens and the soft magnetic pole can move out and approach the sample stage 34.
  • the movement of the magnetic poles is controlled by a break-in motor device for continuous and precise adjustment.
  • the Helmholtz coil is wound by a high conductivity conductive filament having a wire diameter of 0.2 to 2 mm, and the number of turns and the diameter of the coil can be determined according to the required magnetic field.
  • the periphery of the coil can be wrapped with a circulating water jacket for cooling.
  • the magnetic pole has a conical structure, and the tip end of the electrode is designed to be concave, so that the magnetic flux density can be increased and a uniform magnetic field can be generated near one end of the sample stage.
  • the soft magnetic material is a material having high magnetic permeability and small remanence characteristics, preferably pure iron and low carbon steel, iron silicon alloy, iron aluminum alloy, iron silicon aluminum alloy, nickel iron alloy, iron cobalt An alloy, a soft ferrite, an amorphous soft magnetic alloy, and an ultrafine crystal soft magnetic alloy having a particle size of about 50 nm.
  • the soft magnetic core magnetic electrode is controlled by a mechanical transmission device controlled by a motor, and can be freely extended and withdrawn, ranging from 10 to 50 cm, and its movement is controlled by corresponding software and programs.
  • the magnetic magnetic pole 3522 can be controlled by a mechanical device (such as a motor or a hydraulic pump) to approach the sample or away from the sample.
  • a mechanical device such as a motor or a hydraulic pump
  • the magnetic head can move and approach the sample stage 34, and the Helmholtz coil
  • the current source provides a current application magnetic field; when a magnetic field is not required or the electron beam is used for direct writing or imaging, the magnetic pole 3522 retreats to a position away from the sample stage 34, and at the same time, the current source for applying the magnetic field is turned off, and at the same time, Electromagnetic shielding measures to ensure that the manipulation of electron beam writing or imaging is not affected.
  • the magnetic field response characteristic testing device 35 further includes a magnetic field shielding mechanism 354 mounted on the holder 351 and disposed corresponding to the sample stage 34 (see Fig. 5Bo Fig. 5C).
  • the magnetic field shielding mechanism 354 is preferably a magnetic field shielding cover or a magnetic field shielding plate.
  • FIG. 6A is a schematic structural diagram of a vertical electric field response characteristic testing device according to an embodiment of the present invention
  • FIG. 6B is a schematic structural diagram of a horizontal electric field response characteristic testing device according to an embodiment of the present invention.
  • the measuring device 3 of the present invention may further include an electric field response characteristic testing device 36 disposed within the vacuum chamber 32 and disposed above the sample stage 34.
  • the electric field response characteristic testing device 36 includes a vertical electric field application plate 361 and/or a horizontal electric field application flat.
  • the plate 362 and a plate moving mechanism (not shown), the vertical electric field applying plate 361 and/or the horizontal electric field applying plate 362 are respectively connected to the plate moving mechanism.
  • the horizontal electric field application plate 362 and/or the vertical electric field application plate 361 respectively introduces an applied electric field in a planar or vertical direction onto the sample stage 34 to test the electric field response characteristics of the nanomaterial and the device.
  • the horizontal electric field application plate 362 and/or the vertical electric field application plate 361 may be a pair of relatively movable metal plate electrodes in the vacuum chamber 32, respectively, or may be disposed in the same shape and size corresponding to the metal conductive sample stage 34.
  • a movable metal plate electrode can generate a horizontal electric field or a vertical electric field by applying a voltage, and the applied voltage can be between 0 and 110 V or 220 V, or a higher voltage (generating a stronger electric field) can be applied according to the test.
  • the voltage can be either a DC voltage or an AC voltage (the generated electric field can be a constant electric field or an alternating electric field).
  • the generated electric field can be a constant electric field or an alternating electric field.
  • Moving and pulling the pair of horizontal electric field application plates 362 or lifting the upper vertical electric field application plate 361 to the edge of the cavity wall of the vacuum chamber 32 away from the sample stage 34 and the vacuum chamber electronics without the need for an applied electric field The central area of the beam work is fine.
  • the sample 4 can be lifted by the vertical lifting small sample stage 342 raised in the middle of the sample stage 34, placed between the two metal electrodes, and then applied by the two metal plate electrodes.
  • In-plane electric field as shown in Figure 6B
  • the vertical electric field is realized by applying a voltage between the metal sample stage 34 and a vertical electric field application plate 361 of a metal plate electrode having the same shape and size and being movable corresponding thereto, and the interval between the two is adjustable ( ⁇ 10 cm).
  • the upper vertical electric field application plate 361 can be vertically lifted and then horizontally moved out of the measurement range of the sample stage 34.
  • the vertical electric field application plate 361 can be sized according to actual needs, usually in the same shape and size as the test sample stage 34 (between 1 and 12 inches), so that the most uniform vertical electric field can be formed.
  • the above vertical electric field application plate 361 can apply a voltage by two methods: one is to apply a voltage (electric field) when the probe is tested in situ; the other is to reduce the electric field distribution of the probe itself.
  • the effect can be to first apply an electric field to the sample, then remove the movable metal plate electrode, and then test the magnetoelectric characteristics of the nanomaterial or device.
  • the latter method is limited to nanomaterials or devices that have a memory effect on the electromagnetic field response.
  • FIG. 7 is a photoresponsive embodiment according to an embodiment of the present invention. Schematic diagram of the structure of the test device.
  • the measuring device 3 of the present invention may further include a photoresponsiveness characteristic testing device 37, which is disposed within the vacuum chamber 32.
  • the optical response characteristic testing device 37 includes a light source 371 and a photo response characteristic testing component 372.
  • the photoresponsiveness characteristic testing component 372 is disposed in the vacuum chamber 32 to transmit light beams (including laser, infrared, and ultraviolet light).
  • the light wave/light field of the equal frequency band is introduced into the vacuum chamber 32 and irradiated on the sample 4 to test the optical response characteristics of the nanomaterial and device under test.
  • the optical response characteristic testing component 372 includes an optical fiber 3721, a fiber optic probe 3722, and a movable bracket 3723.
  • the optical fiber 3721 is connected to the light source 371, and the optical fiber 3721 passes through the cavity of the vacuum cavity 32 through the interface 3724.
  • the wall enters the vacuum chamber 32, and the other end of the optical fiber 3721 is connected to the optical fiber probe 3722, and the light beam is transmitted through the optical fiber 3721 introduced into the vacuum chamber 32.
  • the optical fiber probe 3722 is mounted on the movable bracket 3723.
  • the movable bracket 3723 is disposed in the vacuum chamber 32 corresponding to the sample stage 34.
  • a beam of light generated by a laser or other source is introduced into the vacuum chamber 32 through the optical fiber 3721 and directed to the surface of the sample 4.
  • the wavelength, intensity, monochromaticity and the like of the introduced light may be configured according to different requirements of the optical radiation or the light excitation of the sample 4 to be tested, and different light sources or lasers may be disposed.
  • the optical fiber 3721 and the fiber optic probe 3722 can be removed by the movable bracket 3723 to the vicinity of the cavity wall of the vacuum chamber 32, away from the electron beam (EBL) finger writing and SEM imaging center area, without studying the light irradiation and the light excitation. .
  • EBL electron beam
  • the measuring device 3 of the present invention may further comprise a broadband signal test analyzing device 38 for introducing a broadband signal (0 to 10, 20, 40, 60 or 100 GHz range) into the vacuum chamber 32 and containing the signal Features such as transfer, import and export, and testing and analysis.
  • a broadband signal (0 to 10, 20, 40, 60 or 100 GHz range)
  • the input of signals of different frequency segments can be configured, for example, a radio frequency signal lower than 300 ⁇ z or a high frequency signal higher than 300 ⁇ z up to 100 GHz.
  • the introduction and derivation of the high-frequency signal is realized by including a specially designed movable high-frequency probe arm 3821, and can be applied to the nanostructure or device through the high-frequency probe 3824, thereby completing the application and detection of the high-frequency signal. .
  • the introduction and derivation of the low frequency signal is achieved by the movable low frequency probe arm 3822 and can be applied to the nanostructure and device via the probe 3824 to perform the application and detection of low frequency and DC signals.
  • the broadband signal test and analysis device 38 includes a signal generating device 381, a signal transmitting device 382, and a signal analyzing device 383, and the signal generating device 381 and the signal analyzing device 383 are respectively connected to the signal transmitting device 382, the signal A transfer device 382 is coupled to the vacuum chamber 32 and is disposed corresponding to the sample stage 34.
  • the signal transmission device 382 includes a high frequency probe arm 3821 and/or a low frequency probe arm 3822, a probe arm moving mechanism 3823 and a probe 3824, and the high frequency probe arm 3821 and/or low frequency.
  • Probe arm 3822 and the probe arm moving machine The member 3823 is coupled, and the probe 3824 is mounted at the front end of the high frequency probe arm 3821 and/or the low frequency probe arm 3822.
  • the probe arm moving mechanism 3823 includes a three-dimensional mechanical moving member 38231 and a three-dimensional piezoelectric moving member 38232, and each of the high-frequency probe arm 3821 and/or the low-frequency probe arm 3822 can be separately moved, and the three-dimensional mechanical moving member 38231 can implement the probe.
  • the fast movement of the arm within a certain range, combined with the SEM imaging function in the cavity, enables fast, wide-range positioning. Then, through the three-dimensional piezoelectric moving member 38232, the precise positioning of the 10 nm level can be achieved by combining the SEM imaging function in the cavity.
  • the four probes 3824 can simultaneously input and output probes for high frequency signals as needed, or two high frequency probes and two common probes. When high frequency measurements are not required, the probe 3824 can also be replaced with a conventional probe. High-frequency probes allow high-frequency signals to be directly exported to nanoscale devices, and high-frequency signals can be obtained directly from nanoscale devices. Measurement of low frequency or DC signals can be performed by ordinary probes.
  • the structure of the probe 3824 is specifically set according to the characteristics of the sample 4 tested.
  • the probe for ultra-wide frequency range electromagnetic characteristic measurement has a pinpoint structure of a basic ground-signal-ground (GSG) structure, and the probe pitch spacing can be selected from 50 nm to 100 micrometers.
  • GSG ground-signal-ground
  • FIG. 8 is a schematic structural view of a high frequency probe arm according to an embodiment of the present invention.
  • the high frequency probe arm 3821 includes a first probe arm 38211 and a second probe arm 38212.
  • the three-dimensional mechanical moving component 38231 is connected to the first probe arm 38211 through a bellows 38233.
  • the first probe arm 38211 and the second probe arm 38212 are connected by the three-dimensional piezoelectric moving member 38232.
  • the three-dimensional mechanical moving component 38231 drive enables rapid movement of the sample in the range of 1 to 12 inches, while the three-dimensional piezoelectric moving component 38232 drive enables precise positioning at the nanometer level.
  • the signal transmission device 382 can also include a probe positioning mechanism 3825, the probe positioning mechanism
  • the 3825 is mounted on the high frequency probe arm 3821 and/or the low frequency probe arm 3822, and the probe positioning mechanism 3825 is coupled to the control device 2.
  • the probe positioning mechanism 3825 is preferably a pressure sensor and/or a conductive sensor to control the contact between the probe 3824 and the surface of the sample 4.
  • the pressure sensor detects the contact force between the tip and the sample surface, and does not affect the tip and the sample. Cause damage.
  • the probe arm moving mechanism is controlled by the control device 2 to stop the lower needle to ensure that the sample 4 is not damaged (see FIG. 8); the conductive sensor is used to test the control of the lower needle process of the conductive sample 4 (see FIG. 9).
  • conductive sensors can be used. When the sample contacts the surface, the current generated by the conductive sensor enters the sample from the tip of the needle and forms a loop, which is detected by the voltage to control the contact force between the tip and the sample. By pre-applying a small voltage between the tip of the probe 3824 and the sample 4, when there is a current between them, there is a current display. The tip of the probe 3824 can be considered to have good ohmic contact with the sample 4.
  • the signal generating device 381 includes a high frequency network analyzer 3811, a voltage source 3812, and a current source 3813.
  • the high frequency probe arm 3821 and/or the low frequency probe 3824 arm 3822 are respectively associated with the high frequency network analyzer 3811.
  • the voltage source 3812 and the current source 3813 are connected.
  • the signal analysis device 383 includes a spectrometer that is coupled to the high frequency probe 3824 arm 3821 and/or the low frequency probe 3824 arm 3822 and the control device 2, respectively.
  • the above high-bandwidth signal generation, measurement and analysis can be performed by the high-frequency network analyzer 3811 and the spectrum analyzer (frequency up to 100 GHz, which can be configured according to the user's needs and signals of different frequency bands).
  • the above high-frequency signal can use a commercial high-frequency signal source, usually generated by a quartz crystal oscillator or a semiconductor capacitor-inductor (RLC) oscillator; a spin-ring oscillator based on a nano-ring magnetic tunnel junction can also be selected (for example, the application number is The microwave oscillator disclosed in the Chinese Patent Application No. 200810119751. X and the application No. 200810222965.
  • the frequency can pass a direct current signal or a magnetic field.
  • the characteristics of regulation and control can be used not only in various high-frequency devices such as microwave generators and detectors, wireless communication systems, airborne radar signal generators, computer CPU systems, but also high-frequency signal generation sources in the present invention. Among the devices).
  • the above-mentioned low-frequency and DC signals can be generated, measured and analyzed using high-precision lock-in amplifiers (such as model SR830), nanovoltmeters (such as Keithley 2182A), and current source meters (such as Keithley 2600).
  • the cable can be a coaxial cable with noise suppression.
  • a sample stage moving mechanism 341 is also disposed in the vacuum chamber 32 to achieve a wide range of movement and precise positioning of the sample.
  • the sample stage 34 is mounted on the sample stage moving mechanism 341, and the sample stage moving mechanism 341 is connected to the control unit 2.
  • the sample stage 34 can be configured to vertically lift the small sample stage 342 (see Figure 6B).
  • a larger range of movement of the sample 4 can be achieved by the sample stage moving mechanism 341.
  • the high frequency probe arm 3821 can also achieve a limited range of mechanical movements as well as nanoscale precise movement of the piezoceramic drive.
  • the invention has the functions of micro-nano processing and imaging, electrical transport and magnetoelectric characteristics under the control of electric and magnetic fields, and the detection capability of high-frequency magnetoelectric signals, because of its high functional integration and easy implementation of fast device batch testing. Therefore, it can be widely used in the fields of measurement and research of semiconductors, microelectronics, magnetoelectronics, spintronic materials and their devices, and can also be widely used for batch detection and quality supervision of related electronic products in the information industry.
  • the probe can be positioned under EBL imaging and directly contacted with the nanostructure or device under test.
  • DC and low frequency magnetoelectric transport tests including DC and low frequency magnetoelectric transport tests, high frequency (GHz) signal generation, transmission and testing.
  • the array nanostructures or nanodevices can be efficiently tested, thus having a fast speed and periodicity. Short, high efficiency, and high probability of successful test.
  • This in-situ test is also applicable to batch inspection and quality monitoring of industrial high-frequency semiconductor devices or magneto-electronic devices and products.
  • the nano-patterning and ultra-wideband electromagnetic characteristic measuring system of the invention is based on the EBL system including SEM high-resolution imaging function, and the uniform magnetic field or electric field is effectively guided in the center of the sample stage based on the micro-nano structure imaging and patterning.
  • the broadband electromagnetic signal is introduced and applied to the nanostructure or device with a probe having a nano-scale positioning function, and includes introduction, extraction and test analysis of the broadband electromagnetic signal.
  • the system enables the visualization and morphology of arrayed nanomaterials and devices, as well as the testing and analysis of ultra-wideband magnetoelectric transport characteristics under in-situ conditions.
  • the present invention integrates various functions or comprehensive test functions capable of performing high-frequency magnetic, electrical and optical characteristic testing and research in situ on the basis of the function of the EBL, and can be performed quickly and efficiently. Testing and research of nanomaterials and devices and their array samples have a wide range of applications and market needs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Magnetic Variables (AREA)
  • Electron Beam Exposure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种纳米图形化和超宽频电磁特性测量系统,包括电源(1)、控制装置(2)和测量装置(3),所述控制装置(2)与所述测量装置(3)连接,所述控制装置(2)和所述测量装置(3)分别与所述电源(1)连接,所述测量装置(3)包括具有SEM成像或EBL图形化功能的成像装置(31)、真空腔(32)、真空系统(33)、样品台(34)和磁场响应特性测试装置(35),所述真空系统(33)与所述真空腔(32)连接,所述成像装置(31)、所述样品台(34)及所述磁场响应特性测试装置(35)均设置在所述真空腔(32)内,所述成像装置(31)及所述磁场响应特性测试装置(35)对应于所述样品台(34)设置。该系统可以快速高效地进行纳米材料和器件及其阵列样品的测试与研究,具有广泛的应用领域。

Description

纳米图形化和超宽频电磁特性测量系统
技术领域
本发明涉及一种纳米材料及器件的检测装置,特别是一种基于电子束曝光 系统 /电子束图形发生系统的磁场施加, 高频电磁信号产生、 引入、 传输和测 量以及大范围下的纳米定位的纳米图形化和超宽频电磁特性测量系统。 背景技术
随着纳米加工和检测技术的发展,纳米材料与器件已经广泛应用于包括诸 如电子、 磁学、 化学、 生物等多个领域。 针对纳米材料和器件的研究, 已经成 为凝聚态物理以及现代信息技术和工业生产中的核心问题之一。 1988年以来, 自旋电子学的飞速发展正在逐歩将信息科学带入一个包含纳米磁性材料的极 高密度磁存储 (T-bit/inch2)和纳秒级快速读写的时代, 这意味着对纳米材料 和器件的研究要进入一个包含纳米微观结构成像、纳米图形化以及 GHz高频操 作、 有磁场或电场参与的综合测量与分析的完备过程。
电子束曝光(electron beam l ithography , EBL)系统是目前集成纳米结构 制备和观测的重要设备之一, 包含扫描电子显微镜 (SEM)成像功能和电子束图 形发生器, 即利用聚焦电子束直接在抗蚀剂层上写出纳米图形。根据电子束束 斑小和能量高的特点, 利用电子束曝光系统可以制得 5-10纳米线宽的纳米结 构,是制作纳米材料和器件的理想方法。 目前, 最小线宽小于 5纳米的纳米结 构制备的世界纪录, 是由德国 Raith公司的 EBL系统得以实现并保持至今。尽 管部分 EBL系统引入了电信号测量功能的探针臂, 但是, 目前 EBL系统还无法 实现对纳米材料和器件的直接观测与原位电、 磁信号操控及测量上的相互兼 容。 其瓶颈问题主要是因为: EBL系统中用于曝光和成像的电子, 会在原位测 量样品用的外加磁场或电场的作用下发生偏转,因而会严重干扰和影响电子束 的聚焦与扫描。 另外, 由于探针结构未经过特殊设计, 无法完成高频信号在电 子束真空系统内的传输和测量,因而无法实现原位纳米器件的高频信号传输和 测量。 国内外现阶段, 通常对于纳米材料和器件的高频磁、 电输运特性测试的 方法是,先用 EBL曝光结合多歩微纳米加工制备用于传输高频信号的特殊电极 结构, 并进行初歩直流或者低频交流磁电特性测试, 然后再放入专门的高频测 试系统进行磁电高频响应信号的测量。 由于纳米尺度下的图形化工艺难度大、 制备周期长、 加工和测量过程繁锁等, 不仅增加了制造成本, 也极大延长了纳 米材料和器件的测试时间, 成功率和成品率也受到显著的影响。 除此之外, 目 前的电子束曝光系统虽然集成了具有纳米级定位功能的探针臂, 但无法完成 1 英寸或以上大范围内的精确纳米定位,仅能在较小的(数个微米范围)内完成探 针与样品的定位和连接。 发明公开
本发明所要解决的技术问题是提供一种能够实现阵列式纳米材料和器件 的图形化和形貌观测、以及原位条件下超宽频磁电输运特性的测试及分析的纳 米图形化和超宽频电磁特性测量系统。
为了实现上述目的,本发明提供了一种纳米图形化和超宽频电磁特性测量 系统, 包括电源、 控制装置和测量装置, 所述控制装置与所述测量装置连接, 所述控制装置和所述测量装置分别与所述电源连接, 其中, 所述测量装置包括 具有 SEM成像或 EBL图形化功能的成像装置、 真空腔、真空系统、样品台和磁 场响应特性测试装置, 所述真空系统与所述真空腔连接, 所述成像装置、所述 样品台及所述磁场响应特性测试装置均设置在所述真空腔内,所述成像装置及 所述磁场响应特性测试装置对应于所述样品台设置。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述磁场响应特性 测试装置包括支架及安装在所述支架上的磁场发生装置和磁场移动机构 353, 所述磁场发生装置包括线圈和导磁磁极, 所述导磁磁极与所述磁场移动机构 353连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述导磁磁极为软 磁性材料锥形结构件, 所述软磁性材料为 NiFe合金、 硅钢片或软磁铁氧体。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述线圈为亥姆霍 兹线圈。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述磁场响应特性 测试装置还包括磁场屏蔽机构,所述磁场屏蔽机构安装在所述支架上并对应于 所述样品台设置。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述磁场屏蔽机构 为磁场屏蔽罩或磁场屏蔽板。
上述的纳米图形化和超宽频电磁特性测量系统, 其中, 还包括电场响应特 性测试装置,所述电场响应特性测试装置设置在所述真空腔内并设置在所述样 品台上方。
上所述的纳米图形化和超宽频电磁特性测量系统, 其中,所述电场响应特 性测试装置包括垂直电场施加平板和 /或水平电场施加平板以及平板移动机 构, 所述垂直电场施加平板和 /或水平电场施加平板分别与所述平板移动机构 连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中, 还包括光响应特性 测试装置, 所述光响应特性测试装置包括光源和光响应特性测试部件, 所述光 响应特性测试部件设置在所述真空腔内。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述光响应特性测 试部件包括光纤、光纤探头和可移动支架,所述光纤分别与所述光源及所述光 纤探头连接,所述光纤探头安装在所述可移动支架上,所述可移动支架对应于 所述样品台设置在所述真空腔内。
上述的纳米图形化和超宽频电磁特性测量系统, 其中, 还包括宽频信号测 试分析装置, 所述宽频信号测试分析装置包括信号产生装置、信号传输装置和 信号分析装置,所述信号产生装置及所述信号分析装置分别与所述信号传输装 置连接, 所述信号传输装置与所述真空腔连接并对应于所述样品台设置。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述信号传输装置 包括高频探针臂和 /或低频探针臂、 探针臂移动机构和探针, 所述高频探针臂 和 /或低频探针臂与所述探针臂移动机构连接, 所述探针安装在所述高频探针 臂和 /或低频探针臂的前端。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述探针臂移动机 构包括三维机械移动部件和三维压电移动部件。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述高频探针臂包 括第一探针臂和第二探针臂,所述三维机械移动部件通过波纹管与所述第一探 针臂连接,所述第一探针臂与所述第二探针臂之间通过所述三维压电移动部件 连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述信号传输装置 还包括探针定位机构, 所述探针定位机构安装在所述高频探针臂和 /或低频探 针臂的前端, 所述探针定位机构与所述控制装置连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述信号产生装置 包括高频网络分析仪、 电压源及电流源, 所述高频探针臂和 /或低频探针臂分 别与所述高频网络分析仪、 所述电压源及所述电流源连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述信号分析装置 包括频谱分析仪, 所述频谱分析仪分别与所述高频探针臂和 /或低频探针臂及 所述控制装置连接。
上述的纳米图形化和超宽频电磁特性测量系统, 其中,所述真空腔内还设 置有样品台移动机构,所述样品台安装在所述样品台移动机构上,所述样品台 移动机构与所述控制装置连接。
以下结合附图和具体实施例对本实用新型进行详细描述,但不作为对本实 用新型的限定。 附图简要说明
图 1为本发明的结构框图;
图 2为本发明一实施例测量装置的结构框图;
图 3为本发明的成像装置工作原理图;
图 4为本发明一实施例的结构示意图;
图 5A本发明一实施例的真空腔内部结构示意图;
图 5B为本发明一实施例的磁场响应特性测试装置结构示意图(磁场发生装 置及磁场屏蔽机构均处于关闭状态);
图 5C为本发明一实施例的磁场响应特性测试装置结构示意图(磁场发生装 置及磁场屏蔽机构均处于开启状态);
图 6A为本发明一实施例的垂直电场响应特性测试装置结构示意图; 图 6B为本发明一实施例的水平电场响应特性测试装置结构示意图; 图 7为本发明一实施例的光响应特性测试装置结构示意图;
图 8为本发明一实施例的高频探针臂结构示意图;
图 9为本发明一实施例的高频探针臂使用导电传感器时的结构示意图。 其中, 附图标记 电源 2 控制装置
21 控制面板 22 控制主机
23 通信接口
31 成像装置
311 电子枪
312 二次电子探测器
32 真空腔
Figure imgf000007_0001
34 样品台
341 样品台移动机构
342 垂直升降小样品台
35 磁场响应特性测试装置
351 支架
352 磁场发生装置
3521 线圈
3522 导磁磁极
353 磁场移动机构
354 磁场屏蔽机构
36 电场响应特性测试装置
361 垂直电场施加平板 水平电场施加平 37 光响应特性测试装置
371 光源
372 光响应特性测试部件
3721 光纤
3722 光纤探头
3723 可移动支架
3724 接口
38 宽频信号测试分析装置
381 信号产生装置
3811 高频网络分析仪 3812 电压源
3813 电流源
382 信号传输装置
3821 高频探针臂
38211 第一探针臂
38212 第二探针臂
3822 低频探针臂
3823 探针臂移动机构
38231 三维机械移动部件
38232 三维压电移动部件
38233 波纹管
3824 探针
3825 探针定位机构
383 信号分析装置
4 样品 实现本发明的最佳方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
本发明将测量磁场引入到具有 SEM成像或 EBL图形化功能的的样品台上,实 现对被测纳米材料或器件的磁场响应特性测试。参见图 1、 图 2及图 3, 图 1为本 发明的结构框图, 图 2为本发明一实施例测量装置的结构框图, 图 3为本发明的 成像装置工作原理图。本发明的纳米图形化和超宽频电磁特性测量系统,包括 电源 1、 控制装置 2和测量装置 3, 所述控制装置 2与所述测量装置 3连接, 所述 控制装置 2和所述测量装置 3分别与所述电源 1连接, 所述测量装置 3包括具有 SEM成像或 EBL图形化功能的成像装置 31、 真空腔 32、 真空系统 33、 样品台 34 和磁场响应特性测试装置 35,所述真空系统 33与所述真空腔 32连接,所述成像 装置 31、所述样品台 34及所述磁场响应特性测试装置 35均设置在所述真空腔 32 内, 所述成像装置 31及所述磁场响应特性测试装置 35对应于所述样品台 34设 置。 其中, 本发明的成像装置 31包括电子枪 311和二次电子探测器 312, 其 SEM 成像或 EBL图形化功能的原理如图 3所示,因该成像装置的结构及其原理均为较 成熟的现有技术, 在此不做赘述。上述的具有 SEM成像或 EBL图形化功能的成像 装置 31、真空腔 32、真空系统 33及样品台 34, 也可直接采用目前已经具有成熟 技术的实验或者工业级 EBL设备。 该 EBL设备包括三个基本部分: 电子枪、 电子 透镜和电子偏转器等其它辅助部件 (束流测量装置, 用来测量曝光的电子束流 大小; 反射电子测量装置, 用来观察样品表面的对准标记; 工作平台, 用来放 置和移动曝光样品; 真空系统; 高压电源; 计算机图形发生器, 用来将图形数 据转换为控制偏转器的电信号)。 电子束曝光系统按照电子束的形状可以分为 高斯束 (或圆形束)和变形束 (或矩形束)。其中高斯束因圆形束斑内的电流分布 为高斯函数而得名。高斯束电子曝光系统是一种矢量扫描式曝光系统, 具有较 高的分辨率,但其扫描速度比光栅扫描式低得多。其中具有代表性的是德国的 Raith公司的 Raithl50电子束曝光系统, 它兼有扫描电镜和电子束曝光两种功 能,最小束径为 4纳米。其主要特征是包含能量可调的电子枪,电子能量从 5 keV 到 300 keV; 具有电子束聚焦功能的磁透镜组和 SEM成像功能的二次电子探测 器;具有电子束聚焦和偏转的用于电子束直写功能的电子束控制电极以及相应 的软件; 具有可在水平二维方向任意移动的范围达到 1英寸或者以上、 定位精 度为 10纳米的样品台, 样品台大小为 1至 12英寸; 电子束和样品所在的腔体背 底真空度优于 10-5 Pa。 本发明中所有的设备通过 GPIB线 23相连, 通过控制装 置 2的控制主机 22中的控制软件控制, 通过控制面板 21进行操作。 因其结构及 功用均为较成熟的现有技术, 在此不作赘述。
参见图 4及图 5A, 图 4为本发明一实施例的结构示意图, 图 5A本发明一实施 例的真空腔内部结构示意图。本实施例中,所述磁场响应特性测试装置 35包括 支架 351及安装在所述支架 351上的磁场发生装置 352和磁场移动机构 353,所述 磁场发生装置 352包括线圈 3521和导磁磁极 3522, 所述导磁磁极 3522与所述磁 场移动机构 353连接。其中, 所述导磁磁极 3522优选为软磁性材料锥形结构件, 因为其容易磁化和退磁, 具有很高的磁导率, 可以起到加强磁场强度和降低剩 磁的作用。所述软磁性材料优选为 NiFe合金、硅钢片或软磁铁氧体。所述线圈 3521优选为一对亥姆霍兹线圈 3521。本实施例中, 该磁场由真空腔内的一对亥 姆霍兹线圈 3521产生, 并通过具有锥形结构的软磁性材料制作的导磁磁极 3522,将磁场有效地传递到样品台 34周围。磁场的方向和大小是通过能够改变 方向和连续变化大小的直流电源控制, 其范围为可以根据需要设定,磁场最大 幅值控制在 500 0e到 5000 0e。 整体的亥姆霍兹线圈以及软导磁磁极由磁场屏 蔽罩覆盖, 屏蔽罩采用高磁导率的铁磁材料做成屏蔽罩。另外, 在磁场电流源 关闭和导磁磁极不用的时候,在磁铁屏蔽罩的前端设有的磁铁屏蔽挡板处于关 闭状态, 以达到最佳的磁场屏蔽效果, 进而有效地避免导磁磁极剩磁及杂散磁 场对电子束的影响, 如图 5B。 当测量使用外加磁场时, 磁铁屏蔽挡板打开, 软 导磁磁极可以移动出来并靠近样品台 34。采用歩进电机装置操控导磁磁极的移 动, 以实现连续和精确可调。
所述亥姆霍兹线圈由高电导率的导电丝绕制, 导线直径为 0. 2到 2 mm, 线 圈匝数和直径可以根据需要的磁场来确定。所述线圈外围可以用循环水套包裹 进行冷却。所述磁极具有圆锥形结构, 电极顶端设计成凹面型, 使得在靠近样 品台一端可以将磁力线密度提高并产生均匀的磁场。所述软磁性材料为具有高 磁导率、 小剩磁特性的材料, 优选纯铁和低碳钢、 铁硅系合金、 铁铝系合金、 铁硅铝系合金、 镍铁系合金、 铁钴系合金、 软磁铁氧体、 非晶态软磁合金、 颗 粒尺寸在 50nm左右的超微晶软磁合金。所述软磁芯磁电极由歩进电机控制的机 械传输装置操控, 可以自由的伸进和退出, 范围为 10至 50 cm, 其移动由相应 的软件和程序来控制。
本实施例中, 导磁磁极 3522可由机械装置(例如歩进电机或液压泵)控制 接近样品或远离样品, 在需要外加磁场时, 其磁头可以移动并靠近样品台 34, 同时亥姆霍兹线圈的电流源提供电流施加磁场;不需要磁场或者利用电子束进 行直写或者成像时, 导磁磁极 3522退到远离样品台 34的位置, 同时关闭用于施 加磁场的电流源, 同时, 还可以采取电磁屏蔽措施, 以保证不影响电子束指写 或成像的操控。 所述磁场响应特性测试装置 35还包括磁场屏蔽机构 354, 所述 磁场屏蔽机构 354安装在所述支架 351上并对应于所述样品台 34设置 (参见图 5Bo 图 5C)。本实施例中, 所述磁场屏蔽机构 354优选为磁场屏蔽罩或磁场屏蔽 板。
参见图 6A及图 6B ,图 6A为本发明一实施例的垂直电场响应特性测试装置结 构示意图, 图 6B为本发明一实施例的水平电场响应特性测试装置结构示意图。 本发明的测量装置 3还可包括电场响应特性测试装置 36, 所述电场响应特性测 试装置 36设置在所述真空腔 32内并设置在所述样品台 34上方。本实施例中,所 述电场响应特性测试装置 36包括垂直电场施加平板 361和 /或水平电场施加平 板 362以及平板移动机构(图未示),所述垂直电场施加平板 361和 /或水平电场 施加平板 362分别与所述平板移动机构连接。 所述水平电场施加平板 362和 /或 垂直电场施加平板 361,分别将平面或垂直方向的施加电场引入到样品台 34上, 实现对纳米材料和器件的电场响应特性的测试。 该水平电场施加平板 362和 / 或垂直电场施加平板 361可分别为在真空腔 32内的一对可相对移动的金属平板 电极,或者与金属导电样品台 34相对应的上方设置一个相同形状大小且可移动 的金属平板电极, 通过施加电压可分别产生水平电场或垂直电场, 施加的电压 可在 0至 110V或 220V之间,或者根据测试需要施加更高的电压 (产生更强电场)。 电压可以是直流电压, 也可以是交流电压 (产生的电场可以是稳恒电场, 也可 以是交变电场)。 在不需要外加电场的情况下, 移动和拉开该对水平电场施加 平板 362或提升上部的垂直电场施加平板 361, 使其退至真空腔 32的腔壁边缘, 远离样品台 34和真空腔电子束工作的中心区域即可。为了减小金属样品台对面 内电场分布的影响, 可以利用在样品台 34中间升起的垂直升降小样品台 342托 起样品 4, 置入两个金属电极之间, 再利用两金属平板电极施加面内电场, 如 图 6B所示
通过调节该对水平电场施加平板 362的间距, 或者通过调节顶端可移动的 垂直电场施加平板 361和样品台 34之间的距离, 也可进一歩在恒电压下调节对 纳米材料和器件所施加的电场值的大小。 当然, 也可以在选定两个金属平板电 极之间的距离后, 通过改变外加电压值来调节所施加电场的大小。
所述垂直电场是通过金属样品台 34及与其相对应的正上方一个相同形状 大小且可以移动的金属平板电极垂直电场施加平板 361之间施加电压来实现 的, 两者之间的间距可调(〈10 cm)。 在不需要垂直电场的情况下, 可以将上方 的垂直电场施加平板 361垂直提升再水平移出样品台 34的测量范围。 垂直电场 施加平板 361的尺寸可以根据实际需要进行调整, 通常和测试用样品台 34的形 状及尺寸相同(1-12寸之间), 这样可以形成最均匀的垂直电场。
上述垂直电场施加平板 361可以通过两种方法施加电压: 一种是在探针进 行原位测试的时候, 进行电压(电场)的施加; 另一种方法是, 为了减小探针本 身对电场分布的影响,可以先对样品施加电场、再移走可移动的金属平板电极, 然后再进行纳米材料或器件的磁电特性测试。但后一种方法仅限于对电磁场响 应有记忆效应的纳米材料或器件。参见图 7, 图 7为本发明一实施例的光响应特 性测试装置结构示意图。本发明的测量装置 3还可包括光响应特性测试装置 37, 所述光响应特性测试装置 37设置在所述真空腔 32内。本实施例中, 所述光响应 特性测试装置 37包括光源 371和光响应特性测试部件 372,所述光响应特性测试 部件 372设置在所述真空腔 32内, 可以将光束 (包括激光、红外和紫外等频段的 光波 /光场)引入真空腔 32中并辐照在样品 4上, 实现对被测纳米材料和器件的 光响应特性测试。 其中, 所述光响应特性测试部件 372包括光纤 3721、 光纤探 头 3722和可移动支架 3723, 所述光纤 3721—端与所述光源 371连接, 所述光纤 3721通过接口 3724穿过真空腔 32的腔壁进入真空腔 32,所述光纤 3721的另一端 与所述光纤探头 3722连接,光束是通过导入到真空腔 32内的光纤 3721进行传输 的, 所述光纤探头 3722安装在所述可移动支架 3723上, 所述可移动支架 3723 对应于所述样品台 34设置在所述真空腔 32内。激光或其它光源产生的光束通过 光纤 3721导入到真空腔 32内并引导至样品 4的表面。 其中, 引入光的波长、 强 度和单色性等可以根据待测样品 4的光辐射或光激发的不同需要, 配置不同的 光源或激光器。在不需要研究光辐照和光激发的情况下, 该光纤 3721、光纤探 头 3722可以通过可移动支架 3723移开到真空腔 32的腔壁附近,远离电子束 (EBL) 指写和 SEM成像中心区域。
参见图 4, 本发明的测量装置 3还可包括宽频信号测试分析装置 38, 可将宽 频信号(0至 10、 20、 40、 60或 100 GHz范围)引入真空腔 32中, 并且包含有信号 的传输、 导入导出、 以及测试和分析等功能。 其中, 针对不同信号的需要, 可 以配置不同的频率段的信号的输入, 例如低于 300匪 z的射频信号或者高于 300 匪 z直到 100 GHz的高频信号。 其中, 高频信号的导入和导出通过包含特殊设计 的可移动高频探针臂 3821来实现,并可以通过高频探针 3824施加到纳米结构或 器件上,进而完成高频信号的施加和探测。低频信号的导入和导出通过可移动 低频探针臂 3822来实现, 并可以通过探针 3824施加到纳米结构和器件上,进而 完成低频以及直流信号的施加与探测。所述宽频信号测试分析装置 38包括信号 产生装置 381、 信号传输装置 382和信号分析装置 383, 所述信号产生装置 381 及所述信号分析装置 383分别与所述信号传输装置 382连接,所述信号传输装置 382与所述真空腔 32连接并对应于所述样品台 34设置。 本实施例中, 所述信号 传输装置 382包括高频探针臂 3821和 /或低频探针臂 3822、探针臂移动机构 3823 和探针 3824, 所述高频探针臂 3821和 /或低频探针臂 3822与所述探针臂移动机 构 3823连接, 所述探针 3824安装在所述高频探针臂 3821和 /或低频探针臂 3822 的前端。 所述探针臂移动机构 3823包括三维机械移动部件 38231和三维压电移 动部件 38232, 各高频探针臂 3821和 /或低频探针臂 3822可以单独移动, 三维机 械移动部件 38231可以实现探针臂在一定范围内的快速移动, 结合腔内的 SEM 成像功能可以实现快速、 大范围的定位。 然后通过三维压电移动部件 38232, 结合腔内的 SEM成像功能可以实现 10纳米级的精确定位。 其中四根探针 3824根 据需要可以同时为高频信号输入、输出探针, 也可以为两个高频探针和两个普 通探针。 当不需要进行高频测量时, 探针 3824也可以换为普通的探针。通过高 频探针,可以将高频信号直接导出到纳米级器件中, 并且可以直接从纳米级器 件中获得高频信号。通过普通探针可以进行低频或直流信号的测量。所述探针 3824结构根据所测试的样品 4特性来具体设定。 用于超宽频率范围电磁特性测 量的探针, 其针尖结构为基本的地一信号一地 (GSG)结构, 探针针角间距可以 从 50纳米到 100微米之间进行选择。
参见图 8, 图 8为本发明一实施例的高频探针臂结构示意图。 本实施例中, 所述高频探针臂 3821包括第一探针臂 38211和第二探针臂 38212,所述三维机械 移动部件 38231通过波纹管 38233与所述第一探针臂 38211连接, 所述第一探针 臂 38211与所述第二探针臂 38212之间通过所述三维压电移动部件 38232连接。 所述三维机械移动部件 38231驱动可以实现样品在 1至 12英寸范围内快速的移 动, 而三维压电移动部件 38232驱动可以实现纳米级的精确定位。
所述信号传输装置 382还可包括探针定位机构 3825, 所述探针定位机构
3825安装在所述高频探针臂 3821和 /或低频探针臂 3822上, 所述探针定位机构 3825与所述控制装置 2连接。 本实施例中, 该探针定位机构 3825优选为压力传 感器和 /或导电传感器, 以控制探针 3824和样品 4表面的接触, 压力传感器检测 针尖和样品表面的接触力, 不会对针尖和样品造成损坏。达到预定值以后通过 控制装置 2控制探针臂移动机构停止下针, 以保证样品 4不被损坏 (参见图 8 ) ; 导电传感器用于测试导电样品 4的下针过程的控制 (参见图 9), 对于导电的被 测样品及器件, 并且在样品不会因为通过微弱电流而损坏的情况下, 可以采用 导电传感器。当样品接触表面时, 导电传感器产生的电流会由针尖进入样品并 构成回路, 并通过电压探测出来, 实现控制针尖与样品的接触力。通过在探针 3824的针尖和样品 4之间预加一个微小电压, 当其之间导通即有电流显示时就 可以认为探针 3824的针尖与样品 4已经有良好的欧姆接触。
所述信号产生装置 381包括高频网络分析仪 3811、 电压源 3812及电流源 3813, 所述高频探针臂 3821和 /或低频探针 3824臂 3822分别与所述高频网络分 析仪 3811、 所述电压源 3812及所述电流源 3813连接。
所述信号分析装置 383包括频谱仪, 所述频谱仪分别与所述高频探针 3824 臂 3821和 /或低频探针 3824臂 3822及所述控制装置 2连接。
上述高宽频信号产生、测量以及分析均可以由高频网络分析仪 3811以及频 谱仪完成(频率最高为 100 GHz , 可以根据用户的需求和不同频段的信号来进行 配置)。 上述高频信号可以使用商用的高频信号源, 通常由石英晶振产生或者 半导体电容电感 (RLC)振荡器产生; 也可以选择使用基于纳米环状磁性隧道结 的 自 旋振荡器 (例如 申请号为 " 200810119751. X" 和 申请号为 " 200810222965. X" 的中国发明专利申请所公开的微波振荡器,其高频范围为 500M-20GHz o 由于其器件尺寸小易于集成, 频率可以通过直流电信号或磁场 调控等特点, 不仅可以用于微波发生器和探测器、无线通信系统、机载雷达信 号发生器、 计算机 CPU系统等各类高频器件中, 也可以用于本发明中的高频信 号发生源装置之中)。 上述低频以及直流信号的产生、 测量与分析, 均可以采 用高精度的锁相放大器 (如型号 SR830)、纳伏表 (如吉时利 2182A)以及电流源表 (如吉时利 2600)等完成。 线可以选用具有噪音抑制效果的同轴电缆导线。
所述真空腔 32内还设置有样品台移动机构 341, 以实现样品的大范围移动 与精确定位。 所述样品台 34安装在所述样品台移动机构 341上, 所述样品台移 动机构 341与所述控制装置 2连接。另外,样品台 34也可以配置垂直升降小样品 台 342 (参见图 6B)。 样品 4较大范围的移动通过可以通过样品台移动机构 341 来实现。 同时, 高频探针臂 3821也可以实现有限范围的机械移动以及压电陶瓷 驱动的纳米级精确移动。
本发明具有微纳米加工和成像、电场和磁场调控下的电输运及磁电特性测 试功能、 以及高频磁电信号的检测能力, 由于其功能集成度高, 并且易于实现 快速的器件批量测试, 因此, 可以广泛应用于半导体、 微电子、 磁电子、 自旋 电子学的材料及其器件的测量和研究领域,也可以广泛应用于信息产业中的相 关电子产品的批量检测和质量监督。
本发明能很好地克服现有技术的不足,只需要对所需纳米材料或器件进行 简单或较少歩骤的纳米加工, 就可以在 EBL成像的引导下, 对探针进行定位, 直接与被测纳米结构或器件接触。再利用歩进电机操控测量磁场的磁芯电极或 电场的平板电极, 将磁场或电场均匀施加在观测平台上约一平方英寸 (可根据 需求决定均匀磁场或电场的范围)的中心区域; 然后自动关闭 EBL成像电子束, 切换到原位进行宽频带范围内的磁电特性测试操控系统,包括直流和低频磁电 输运测试, 高频 (GHz)信号的产生、 传输和测试等等。 由于这种测量可以直接 原位选择被测试的样品, 并且探针臂和样品台都可以在大范围内相对进行移 动, 因此可以高效地测试阵列式纳米结构或纳米器件, 因此具有速度快、 周期 短、 效率高、测试成功几率大等优点。这种原位测试同样也适用于工业上高频 半导体器件或磁电子器件及产品的批量检测和质量监控等方面。
当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 工业应用性
本发明的纳米图形化和超宽频电磁特性测量系统,基于包含 SEM高分辨成 像功能的 EBL系统,在微纳米结构成像和图形化的基础上,将均匀磁场或电场 有效地引导在样品台中心区域,并且将宽频电磁信号以具有纳米级定位功能的 探针引入并施加在纳米结构或器件上, 同时包含宽频电磁信号的引入、 引出和 测试分析。该系统能够实现阵列式纳米材料和器件的图形化和形貌观测、 以及 原位条件下超宽频磁电输运特性的测试及分析。
和现有技术相比, 本发明在 EBL的功能基础上,集成了可以在原位进行高 频磁、 电、 光特性测试与研究的多种功能或综合测试的研究功能, 可以快速高 效地进行纳米材料和器件及其阵列样品的测试与研究,具有广泛的应用领域和 市场需求。

Claims

权利要求书
1、 一种纳米图形化和超宽频电磁特性测量系统, 包括电源、 控制装置和 测量装置, 所述控制装置与所述测量装置连接,所述控制装置和所述测量装置 分别与所述电源连接, 其特征在于, 所述测量装置包括具有 SEM成像或 EBL 图形化功能的成像装置、真空腔、真空系统、样品台和磁场响应特性测试装置, 所述真空系统与所述真空腔连接,所述成像装置、所述样品台及所述磁场响应 特性测试装置均设置在所述真空腔内,所述成像装置及所述磁场响应特性测试 装置对应于所述样品台设置。
2、 如权利要求 1所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于,所述磁场响应特性测试装置包括支架及安装在所述支架上的磁场发生装 置、 磁场移动机构和磁场屏蔽机构, 所述磁场发生装置包括线圈和导磁磁极, 所述导磁磁极与所述磁场移动机构连接,所述磁场屏蔽机构安装在所述支架上 并对应于所述样品台设置。
3、 如权利要求 1所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括电场响应特性测试装置, 所述电场响应特性测试装置设置在所述 真空腔内并设置在所述样品台上方。
4、 如权利要求 2所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括电场响应特性测试装置, 所述电场响应特性测试装置设置在所述 真空腔内并设置在所述样品台上方。
5、 如权利要求 4所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 所述电场响应特性测试装置包括垂直电场施加平板和 /或水平电场施加 平板以及平板移动机构, 所述垂直电场施加平板和 /或水平电场施加平板分别 与所述平板移动机构连接。
6、 如权利要求 1所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括光响应特性测试装置,所述光响应特性测试装置包括光源和光响 应特性测试部件, 所述光响应特性测试部件设置在所述真空腔内。
7、 如权利要求 2所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括光响应特性测试装置,所述光响应特性测试装置包括光源和光响 应特性测试部件, 所述光响应特性测试部件设置在所述真空腔内。
8、 如权利要求 3所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括光响应特性测试装置,所述光响应特性测试装置包括光源和光响 应特性测试部件, 所述光响应特性测试部件设置在所述真空腔内。
9、 如权利要求 4所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括光响应特性测试装置,所述光响应特性测试装置包括光源和光响 应特性测试部件, 所述光响应特性测试部件设置在所述真空腔内。
10、如权利要求 5所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括光响应特性测试装置,所述光响应特性测试装置包括光源和光响 应特性测试部件, 所述光响应特性测试部件设置在所述真空腔内。
11、如权利要求 1所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括宽频信号测试分析装置, 所述宽频信号测试分析装置包括信号产 生装置、信号传输装置和信号分析装置, 所述信号产生装置及所述信号分析装 置分别与所述信号传输装置连接,所述信号传输装置与所述真空腔连接并对应 于所述样品台设置。
12、如权利要求 2所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括宽频信号测试分析装置, 所述宽频信号测试分析装置包括信号产 生装置、信号传输装置和信号分析装置, 所述信号产生装置及所述信号分析装 置分别与所述信号传输装置连接,所述信号传输装置与所述真空腔连接并对应 于所述样品台设置。
13、如权利要求 3所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括宽频信号测试分析装置, 所述宽频信号测试分析装置包括信号产 生装置、信号传输装置和信号分析装置, 所述信号产生装置及所述信号分析装 置分别与所述信号传输装置连接,所述信号传输装置与所述真空腔连接并对应 于所述样品台设置。
14、如权利要求 6所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于, 还包括宽频信号测试分析装置, 所述宽频信号测试分析装置包括信号产 生装置、信号传输装置和信号分析装置, 所述信号产生装置及所述信号分析装 置分别与所述信号传输装置连接,所述信号传输装置与所述真空腔连接并对应 于所述样品台设置。
15、 如权利要求 11所述的纳米图形化和超宽频电磁特性测量系统, 其特 征在于, 所述信号传输装置包括高频探针臂和 /或低频探针臂、 探针臂移动机 构和探针, 所述高频探针臂和 /或低频探针臂与所述探针臂移动机构连接, 所 述探针安装在所述高频探针臂和 /或低频探针臂的前端。
16、 如权利要求 14所述的纳米图形化和超宽频电磁特性测量系统, 其特 征在于, 所述信号传输装置包括高频探针臂和 /或低频探针臂、 探针臂移动机 构和探针, 所述高频探针臂和 /或低频探针臂与所述探针臂移动机构连接, 所 述探针安装在所述高频探针臂和 /或低频探针臂的前端。
17、 如权利要求 15所述的纳米图形化和超宽频电磁特性测量系统, 其特 征在于,所述信号传输装置还包括探针定位机构, 所述探针定位机构安装在所 述高频探针臂和 /或低频探针臂的前端, 所述探针定位机构与所述控制装置连 接。
18、 如权利要求 16所述的纳米图形化和超宽频电磁特性测量系统, 其特 征在于,所述信号传输装置还包括探针定位机构, 所述探针定位机构安装在所 述高频探针臂和 /或低频探针臂的前端, 所述探针定位机构与所述控制装置连 接。
19、 如权利要求 15所述的纳米图形化和超宽频电磁特性测量系统, 其特 征在于, 所述信号产生装置包括高频网络分析仪、 电压源及电流源, 所述高频 探针臂和 /或低频探针臂分别与所述高频网络分析仪、 所述电压源及所述电流 源连接。
20、如权利要求 1所述的纳米图形化和超宽频电磁特性测量系统, 其特征 在于,所述真空腔内还设置有样品台移动机构,所述样品台安装在所述样品台 移动机构上, 所述样品台移动机构与所述控制装置连接。
PCT/CN2012/078747 2011-07-26 2012-07-17 纳米图形化和超宽频电磁特性测量系统 WO2013013584A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014521921A JP5964959B2 (ja) 2011-07-26 2012-07-17 ナノパターン化及び超広帯域電磁特性測定システム
EP12818389.4A EP2738607B1 (en) 2011-07-26 2012-07-17 Nanopatterning and ultra-wideband electromagnetic characteristic measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110209908.X 2011-07-26
CN201110209908.XA CN102901471B (zh) 2011-07-26 2011-07-26 纳米图形化和超宽频电磁特性测量系统

Publications (1)

Publication Number Publication Date
WO2013013584A1 true WO2013013584A1 (zh) 2013-01-31

Family

ID=47573838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078747 WO2013013584A1 (zh) 2011-07-26 2012-07-17 纳米图形化和超宽频电磁特性测量系统

Country Status (4)

Country Link
EP (1) EP2738607B1 (zh)
JP (1) JP5964959B2 (zh)
CN (1) CN102901471B (zh)
WO (1) WO2013013584A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731090A (zh) * 2020-12-24 2021-04-30 江西生益科技有限公司 在线测试覆铜板耐压性能的方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375015B (zh) * 2013-08-14 2017-09-19 华东师范大学 一种交流磁电输运测量系统
PL227616B1 (pl) * 2014-09-12 2018-01-31 International Tobacco Machinery Poland Spólka Z Ograniczona Odpowiedzialnoscia Urządzenie pomiarowe i sposób pomiaru prętopodobnych artykułów wielosegmentowych przemysłu tytoniowego
EP3364248A1 (en) * 2017-02-15 2018-08-22 Centre National De La Recherche Scientifique Electron-beam lithography process adapted for a sample comprising at least one fragile nanostructure
WO2018173829A1 (ja) * 2017-03-22 2018-09-27 株式会社ニコン 露光装置、露光方法、及び、デバイス製造方法
US10542906B2 (en) * 2018-04-25 2020-01-28 Spectrohm, Inc. Tomographic systems and methods for determining characteristics of inhomogenous specimens using guided electromagnetic fields
CN111975805A (zh) * 2020-08-31 2020-11-24 哈尔滨工业大学(深圳) 一种驱动磁性微纳米机器人的磁场操控系统
CN114660515A (zh) * 2020-12-22 2022-06-24 财团法人工业技术研究院 磁场结构
CN114454613B (zh) * 2021-12-23 2023-04-21 前微科技(上海)有限公司 磁场开关和磁场开关的操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319733A2 (en) * 1998-02-06 2003-06-18 Richardson Technologies Inc Method and apparatus for deposition of three-dimensional object
US20040061051A1 (en) * 2002-01-09 2004-04-01 Schneiker Conrad W. Devices for guiding and manipulating electron beams
CN2751297Y (zh) * 2003-10-10 2006-01-11 中国科学院物理研究所 扫描电子显微镜使用的探针原位电学特性测量装置
EP1798751A1 (en) * 2005-12-13 2007-06-20 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Protecting aperture for charged particle emitter
CN101441410A (zh) * 2007-11-21 2009-05-27 中国科学院微电子研究所 一种制作纳米级图形的方法
CN101625303A (zh) * 2009-04-14 2010-01-13 苏州纳米技术与纳米仿生研究所 一种真空原子力显微镜及其使用方法
CN202189227U (zh) * 2011-07-26 2012-04-11 中国科学院物理研究所 纳米图形化和超宽频电磁特性测量系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267246A (ja) * 1985-05-21 1986-11-26 Hitachi Ltd 異物検出装置
JPH01105450A (ja) * 1987-10-16 1989-04-21 Hitachi Ltd 磁場印加機構
JPH01312521A (ja) * 1988-06-13 1989-12-18 Nippon Sheet Glass Co Ltd 真空装置用光学系
JPH02199756A (ja) * 1989-01-30 1990-08-08 Hitachi Ltd 走査電子顕微鏡
US4943769A (en) * 1989-03-21 1990-07-24 International Business Machines Corporation Apparatus and method for opens/shorts testing of capacitively coupled networks in substrates using electron beams
JPH05209713A (ja) * 1992-01-31 1993-08-20 Hitachi Constr Mach Co Ltd 走査型トンネル顕微鏡付き走査型電子顕微鏡
JPH0636726A (ja) * 1992-07-14 1994-02-10 Hitachi Ltd 走査形顕微鏡
JP3370365B2 (ja) * 1993-01-12 2003-01-27 セイコーインスツルメンツ株式会社 形状観察装置
JPH09281118A (ja) * 1996-04-08 1997-10-31 Olympus Optical Co Ltd 走査型プローブ顕微鏡
JP2956830B2 (ja) * 1996-11-21 1999-10-04 日本電気株式会社 半導体装置の製造方法
US6426499B1 (en) * 1998-01-30 2002-07-30 Deutsche Telekom Ag Multi-probe test head and process using same
JP2001141776A (ja) * 1999-11-10 2001-05-25 Nec Corp 半導体集積回路の故障診断方法及び装置
US6584413B1 (en) * 2001-06-01 2003-06-24 Sandia Corporation Apparatus and system for multivariate spectral analysis
JP2004150840A (ja) * 2002-10-29 2004-05-27 Hitachi Ltd 半導体集積回路の不良解析装置、システムおよび検出方法
JP4732917B2 (ja) * 2006-02-15 2011-07-27 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡及び欠陥検出装置
JP4795883B2 (ja) * 2006-07-21 2011-10-19 株式会社日立ハイテクノロジーズ パターン検査・計測装置
JP4801573B2 (ja) * 2006-12-11 2011-10-26 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP5077643B2 (ja) * 2007-03-02 2012-11-21 株式会社島津製作所 Tftアレイ検査装置
CN101299024B (zh) * 2008-05-08 2010-09-08 北京大学 基于光纤和纳米操纵器的纳米材料光学表征方法及其系统
US20100079908A1 (en) * 2008-09-29 2010-04-01 Infinitum Solutions, Inc. Determining A Magnetic Sample Characteristic Using A Magnetic Field From A Domain Wall
CN101876691B (zh) * 2009-11-20 2012-11-14 清华大学 多铁性薄膜材料的磁电性能测试系统及其测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1319733A2 (en) * 1998-02-06 2003-06-18 Richardson Technologies Inc Method and apparatus for deposition of three-dimensional object
US20040061051A1 (en) * 2002-01-09 2004-04-01 Schneiker Conrad W. Devices for guiding and manipulating electron beams
CN2751297Y (zh) * 2003-10-10 2006-01-11 中国科学院物理研究所 扫描电子显微镜使用的探针原位电学特性测量装置
EP1798751A1 (en) * 2005-12-13 2007-06-20 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Protecting aperture for charged particle emitter
CN101441410A (zh) * 2007-11-21 2009-05-27 中国科学院微电子研究所 一种制作纳米级图形的方法
CN101625303A (zh) * 2009-04-14 2010-01-13 苏州纳米技术与纳米仿生研究所 一种真空原子力显微镜及其使用方法
CN202189227U (zh) * 2011-07-26 2012-04-11 中国科学院物理研究所 纳米图形化和超宽频电磁特性测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738607A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731090A (zh) * 2020-12-24 2021-04-30 江西生益科技有限公司 在线测试覆铜板耐压性能的方法和装置

Also Published As

Publication number Publication date
CN102901471B (zh) 2015-06-03
EP2738607A4 (en) 2015-04-01
EP2738607A1 (en) 2014-06-04
CN102901471A (zh) 2013-01-30
JP5964959B2 (ja) 2016-08-03
JP2014529839A (ja) 2014-11-13
EP2738607B1 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
WO2013013584A1 (zh) 纳米图形化和超宽频电磁特性测量系统
US9640363B2 (en) Nano-patterned system and magnetic-field applying device thereof
CN202189227U (zh) 纳米图形化和超宽频电磁特性测量系统
CN108844987A (zh) 基于金刚石nv色心自旋磁共振效应的微位移测量系统及方法
TW201918726A (zh) 用於測量磁場強度的設備
US9136089B2 (en) Pattern dimension measuring device, charged particle beam apparatus, and computer program
CN104303256B (zh) 带电粒子涡旋波生成
CN104916516A (zh) 一种可加电、磁场的透射电子显微镜样品杆
JP2005321391A (ja) 誘電体共振器を利用した近接場顕微鏡
CN208125759U (zh) 金刚石纳米全光学磁场传感器、探针及原子力显微镜
CN110880467A (zh) 晶片对准标记、系统及相关方法
US20220108927A1 (en) Wafer registration and overlay measurement systems and related methods
CN108152763A (zh) 直流磁屏蔽效能的测量装置及测量方法
JP4245951B2 (ja) 電気特性評価装置
CN114088979A (zh) 探针校准方法、表面测量方法以及探针控制设备
CN202533709U (zh) 一种纳米图形化系统及其磁场施加装置
CN105807096A (zh) 非线性纳米金属螺旋锥探针
Gong et al. High-brightness plasmon-enhanced nanostructured gold photoemitter
JP2011163999A (ja) 走査型プローブ顕微鏡用高周波磁場発生装置
CN204945318U (zh) 测量硅纳米柱光电特性的装置
Zhang et al. Comparison of sequential light, scanning electron and atomic force examine methods for electron beam lithography generated patterns
CN210953875U (zh) 一种透射电子显微镜使用的载样体
CN110412488B (zh) 一种测量磁力显微镜探针杂散场强度的方法
CN114235037A (zh) 高深宽比纳米间隙多物理场耦合探测平台及探测方法
Xu et al. Enhancing light coupling with plasmonic optical antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818389

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014521921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE