WO2013013493A1 - 模拟移动床吸附分离方法和设备 - Google Patents

模拟移动床吸附分离方法和设备 Download PDF

Info

Publication number
WO2013013493A1
WO2013013493A1 PCT/CN2012/000956 CN2012000956W WO2013013493A1 WO 2013013493 A1 WO2013013493 A1 WO 2013013493A1 CN 2012000956 W CN2012000956 W CN 2012000956W WO 2013013493 A1 WO2013013493 A1 WO 2013013493A1
Authority
WO
WIPO (PCT)
Prior art keywords
bed
liquid
adsorption
beds
simulated moving
Prior art date
Application number
PCT/CN2012/000956
Other languages
English (en)
French (fr)
Inventor
王德华
郁灼
王辉国
马剑锋
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US14/234,807 priority Critical patent/US9926243B2/en
Priority to IN537CHN2014 priority patent/IN2014CN00537A/en
Priority to KR1020137034559A priority patent/KR101828899B1/ko
Priority to JP2014521912A priority patent/JP6109168B2/ja
Publication of WO2013013493A1 publication Critical patent/WO2013013493A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1828Simulated moving beds characterized by process features
    • B01D15/1835Flushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique

Definitions

  • the present invention is an adsorption separation method and apparatus for isomers, and more particularly, a method and apparatus for separation and purification of hydrocarbons by simulated moving bed adsorption.
  • Adsorption separation is very effective for separation between isomers with very small difference in boiling points or separation between different components having different structural characteristics.
  • separation of normal paraffins from other structural hydrocarbons For separation of diphenylene with other carbon octa areomers, separation of normal paraffins from other structural hydrocarbons.
  • the simulated moving bed adsorption separation process achieves countercurrent contact between the liquid and solid phases, which improves the separation efficiency.
  • a simulated moving bed adsorption separation apparatus and method and its use for the separation of diphenylbenzene and the separation of m-nonylbenzene are described in U.S. Patent No. 2,985,589, U.S. Patent No. 3, 036, s, U.S. Pat. Douglas M. Ruthven summarizes the principles, development history, experimental and model studies, and industrial processes of continuous countercurrent adsorption separation processes in Chemical Engineering Science (1989, v44(5): 1011-1038 >.
  • a plurality of materials share the transfer line to and from the adsorption tower, and for the pipeline entering and leaving the bed of the adsorption tower, the raffinate (R), the raw material (F), and the extract (E) are sequentially passed. And desorbent (D).
  • R raffinate
  • F raw material
  • E extract
  • D desorbent
  • USP 3201491 discloses a method for improving the purity of a continuous adsorption separation product, and proposes a situation in which the residual raw material is contaminated with the extract:
  • a flushing stream is input upstream of the raw material inlet, which contains a distinction between the feed and the feed.
  • the amount of fluid does not exceed the volume of fluid flowing from the feed inlet to the fluid distributor outlet. Said rush
  • the wash fluid is a desorbent-rich material that is produced downstream from the desorbent inlet, a material that is rich in adsorbent components from the distal end of the desorption zone, a desorbent, or an additional component that can be separated from the feed.
  • USP 5,750,820 discloses a multistage flush adsorption separation process for separating a product of interest from a multicomponent feedstock comprising introducing the feedstock into an adsorptive separation apparatus through at least one fluid flow line, using at least one initial rinse medium Sufficient amount to flush equipment having at least one fluid flow line, the medium being withdrawn from the first source, containing at least one component of the desired product having an initial concentration, such that the retained material is subjected to the at least one initial medium Flushing from the apparatus; flushing the at least one fluid flow line with a final rinse medium in a quantity sufficient to withdraw at least one final concentration of the desired product component from the second source, ultimately The concentration is higher than the initial concentration such that the initial medium in the retention line is flushed into the apparatus by the final medium; the product is taken from the apparatus, the first source being different from the second source, and at least One of the two is separated from the adsorptive separation device.
  • USP 5,972,224 discloses a method and apparatus for improving the purity of a simulated moving bed product comprising a series of beds containing solid or adsorbent in at least one adsorption column (A ij A n ) with fluid between the adsorbent beds
  • Distribution tray ( ⁇ , ⁇ ) each distribution tray is divided into a number of blocks ( ⁇ 1 () , ⁇ ⁇ , ⁇ 12 ), each distribution plate (Pi) includes at least one distribution chamber with an opening through, in the distribution room There are 3 ⁇ 4 channels in the vicinity of the opening.
  • the distribution chamber is connected to one pipeline. The other end of the pipeline is outside the adsorption tower. During the cycle T, the materials enter and exit the distribution chambers of different trays.
  • the process is characterized by a suitable flow rate, a portion of the fluid being continuously circulated through a bypass line connecting the distribution chambers of the different distribution trays, the composition of the rinsing liquid being similar to the composition of the circulating fluid.
  • the purpose is to avoid interference with the separation process caused by the difference between the externally introduced flushing material and the material composition in the adsorption tower.
  • this solution also causes a problem that a material does not pass through the adsorption chamber, which is equivalent to the presence of a channel in the adsorption bed, which is disadvantageous for the adsorption separation process.
  • USP 6004518 discloses a high purity simulated moving bed adsorption separation apparatus comprising a series of separate adsorbent chambers packed with adsorbents, a series of fluid transfer lines connected to the adsorption chamber for introducing feedstock, desorbent and extracting extract, Rinse the liquid.
  • a series of valves are used to control fluid flow through the fluid transfer line and the adsorption chamber, a separate set of valves is coupled to each of the adsorption chambers, and the valves are characterized by two ports that control the entry of the feedstock into a particular adsorption chamber to this particular a fluid transfer line in which the adsorption chamber communicates with the upstream adsorption chamber, and fluid flowing out of the upstream adsorption chamber can flow through the valve and through the pipeline into a specific adsorption chamber, the flush valve
  • the residual material in the door and pipeline, but each adsorbent bed is required to be independent, and the circulating fluid entering the next bed from the previous bed passes through the pipeline and the valve.
  • the method for adsorbing and separating isomers in a simulated moving bed comprises adsorbing and separating a raw material containing an isomer by a simulated moving bed, wherein the simulated moving bed contains a plurality of adsorption beds, each of which A grid is arranged between the adsorbent beds, and each of the grids is provided with a material inlet and outlet pipeline of the bed, and the materials entering and leaving the simulated moving bed include at least an adsorbing raw material, a desorbing agent, an extracting liquid and a raffinate, wherein the extracting liquid is rich
  • the extract is used as a rinsing liquid, and is injected into any one of the first or second bed upstream of the raw material injection position and the second to fourth beds downstream of the extraction liquid production position.
  • the method of the invention controls the inlet and outlet materials of the simulated moving adsorption bed by using multiple valves, and selects the extraction liquid as the rinsing liquid to be washed twice, and the two rinsing processes are all in the purification zone, and the injection position of the rinsing liquid is once in the upstream of the raw material injection bed.
  • Two beds, the other one of the second to fourth beds downstream of the withdrawal point, and the bed is washed before the extraction is taken out, thereby ensuring the purity of the target product by adsorption and separation, and
  • the prior art has a higher yield or a higher throughput.
  • Figure 1 is a schematic view showing the structure of an adsorbent bed in a simulated moving bed used in the method of the present invention.
  • 2 is a schematic view of the injection position of the rinsing liquid of the method of the present invention.
  • Fig. 3 is a graph showing the concentration distribution of various materials in the liquid phase in the adsorption tower when adsorbing and separating diphenylbenzene. detailed description
  • the extract is used as an adsorbent bed rinse and is injected into two different locations of the adsorbent bed. Since the composition of the rinsing solution injected into the bed is similar to that of the line after the rinsing liquid is injected, the effect of the injected rinsing liquid on the composition of the injected bed is minimized, so that the adsorption efficiency can be effectively improved.
  • the simulated moving adsorption bed used in the adsorption separation of the method of the invention comprises one or more adsorption towers, each adsorption tower being separated by a grid into a plurality of adsorption beds, the functions of the grid being: materials from the previous bed Redistribute to the next bed, mix the externally introduced material with the material from the previous bed, and draw a part of the material from the previous bed. Attached to the tower.
  • the grid allows liquid to pass through and intercepts the adsorbent particles from escaping the adsorbent bed, and the upper and lower surfaces thereof are typically wire braided mesh, metal sintered mesh or Johnson Screen.
  • the material introduced from the outside to a bed, and the material from the upper bed to the adsorption column are introduced into and taken out of the adsorbent bed through a line connected to the bed grid.
  • the material entering and leaving the adsorption tower includes at least a raw material (F), a desorbent (D), an extract (E), and a raffinate (R).
  • the raw material is a mixture of at least two or more components containing the objective product adsorbed and separated and purified, the adsorption selectivity of each component in the raw material on the adsorbent is different, and the adsorbent has higher adsorption selectivity to the target product, and the adsorbent has a higher adsorption selectivity for the target product.
  • the desorbent should have a large difference from the boiling point of the raw material, which can be separated from the components in the raw material by the fine decanter.
  • the extract product is enriched in the extract and contains a part of the desorbent; the raffinate contains a smaller amount of the target product, and the less the content, the higher the efficiency of the adsorption separation, and the main component of the raffinate is the desorbent and the raw material. Other components than the intended product.
  • the extract and the raffinate are separately separated and used in a rectification column for recycling.
  • the flow direction of the material in the adsorption tower is divided into a desorption zone, a purification zone, an adsorption zone and an isolation zone.
  • the adsorbent bed between the desorbent injection and the extraction liquid extraction is a desorption zone
  • the adsorbent bed between the extraction liquid extraction and the raw material injection is a purification zone
  • the adsorption between the raw material injection and the raffinate recovery The agent bed is an adsorption zone
  • the adsorbent bed between the raffinate recovery and the desorbent injection constitutes an isolation zone.
  • the number of simulated moving beds is 6 to 30, preferably 12 24 .
  • a total of 24 beds are used in the two adsorption towers, including 4 to 6 beds in the desorption zone, 8 to 10 beds in the purification zone, 6 to 8 beds in the adsorption zone, and 2 to 3 beds in the isolation zone.
  • the injection rinsing liquid according to the present invention is the upstream and downstream of a material in and out position relative to the bed in the adsorption tower in the inlet and outlet position of the material, and is downstream of the material flow direction in the adsorption tower, and is upstream.
  • the flushing liquid is injected into a bed downstream of the withdrawal point of the extracting liquid, that is, the flushing liquid is injected into the next bed of the bed along the flow direction of the material in the extracting liquid extraction position.
  • the present invention uses the inlet and outlet materials of each bed in the adsorption tower to be distributed to the adsorbent bed by using an inlet and outlet line and a grid.
  • the pipelines of the layers are connected, and the materials entering and leaving the same bed are separately controlled by the parallelly arranged switch valves.
  • the on-off valves provided in each adsorption bed should be as close as possible to the adsorption tower, so that the volume of the connection pipeline is reduced to a smaller extent.
  • the adsorption tower has n strands of inlet and outlet materials and m adsorption beds, there are nxm switching valves. At a certain moment, each of the incoming and outgoing materials is connected to different beds, and n switching valves are in an open state, and the remaining switching valves are in a closed state, each time a specific time, that is, one step At the time of entry, the position of each material entering and leaving the material is moved down one adsorption bed.
  • the order of the materials flowing along the adsorption tower to each of the influent materials is desorbent (D), extract (E), raw material (F) and raffinate (R), and the material circulation in the adsorption tower constitutes a closed loop that is connected end to end.
  • the order of the incoming and outgoing materials is the raffinate (R), the raw material (F), the extract (E) and the desorbent (D), and the intervals between the in and out of each material are different, depending on the adjacent
  • the number of adsorption beds in the feed interval is different, that is, the number of steps between two adjacent inlet and outlet materials in the same adsorbent bed is equal to the number of beds separated by two adjacent inlet and outlet materials corresponding to the adsorption tower.
  • the interval is 5 steps. After the time, the extract was taken up in the adsorbent bed.
  • the method of the present invention flushes the pipeline by injecting the extract liquid from two different positions in the purification zone, so that the material remaining in the bed line after the flushing is close to the composition of the material to be passed through the pipeline, and the material that is flushed into the bed is flushed.
  • the composition is similar to the composition of the material in the injected bed to minimize the impact of the flushing on the adsorption separation process.
  • the injection position of the two flushing materials of the present invention is close to the raw material injection point, the first or second bed upstream of the raw material injection bed, and the other is close to the extraction liquid extraction point, and the second to fourth beds downstream of the extraction liquid production position. Any of the layers in the layer is used to rinse the residual material to avoid contamination of the extract to be withdrawn.
  • the volume of the flushing liquid injected in the first or second bed upstream of the raw material injection bed is 1.0 to 2.5 in a total amount of the pipeline from the flushing liquid control valve to the adsorbing bed grid. Multiple, preferably 1.2 to 2.0 times.
  • the material remaining in the pipeline is flushed according to the flushing amount, and the material entering the adsorption tower is a mixture of the raw material and the extracting liquid, and the average composition thereof is similar to the liquid phase material composition in the adsorption tower at the position of the flushing liquid bed.
  • the volume of the rinsing liquid injected into any one of the 2nd to 4th beds downstream of the pumping liquid extraction position is volume injected in one step time from the rinsing liquid control
  • the total volume of the pipeline is 0.5 to 1.5 times, preferably 0.6 to 1.0 times. Flushing the pipeline at the above-mentioned flushing liquid injection position, the material in the adsorption tower is the extracting liquid which is slightly contaminated by the residual raw material, and the flushing liquid composition which is flushed according to the flushing amount and the selected flushing liquid are injected into the liquid phase material in the adsorption tower.
  • the composition is similar.
  • the method of the present invention preferably injects a desorbent rinse bed in the first or second bed upstream of the draw line.
  • the adsorption separation process of the present invention is a liquid phase separation process, and the adsorption separation operation temperature is 20 ⁇ 300 ° (:, preferably 100 ⁇ 180 ° C, the operating pressure can keep the system in the whole liquid phase, preferably 0.8 ⁇ 1.2 MPa, When the p-diphenylbenzene is adsorbed and separated, the preferred operating pressure is 0.6 to 1 cliff Pa.
  • the isomers adsorbed and separated by the method of the present invention are preferably diphenylbenzene and ethylbenzene, and the objective product for adsorption separation is preferably p-nonylbenzene or m-nonylbenzene.
  • the invention provides a device for simulating moving bed adsorption separation of isomers, comprising a simulated moving bed and a material inlet and outlet pipeline, wherein the simulated moving bed comprises a plurality of adsorption bed layers, and each adsorption bed layer is provided a grid, each grid is provided with a material inlet and outlet pipeline of the bed, and two flushing liquid pipelines are arranged side by side on the inlet and outlet pipelines between each adsorbent bed layer, and each pipeline is provided with an on-off valve to extract the liquid
  • the rinsing liquid of one rinsing liquid line is injected into the first or second bed upstream of the bed, and the rinsing liquid of the other rinsing liquid line is injected into any one of the 2nd to 4th beds downstream of the extracting and withdrawing position.
  • Bed for the rinsing liquid, the rinsing liquid of one rinsing liquid line is injected into the first or second bed upstream of the bed
  • an inlet and outlet line is arranged on the grid of each adsorbent bed, and a plurality of parallel on-off valves are arranged on the pipeline to control the ingress and egress of each material of the adsorbent bed.
  • the number of on-off valves installed in the inlet and outlet lines of each adsorbent bed is 6-7, that is, 6-7 kinds of materials enter and exit each adsorbent bed.
  • three flushing lines are provided, two of which use the extract as the flushing liquid and one of which uses the desorbent as the flushing liquid, and the injection position is a bed upstream of the extracting liquid extraction position.
  • FIG. 1 is a schematic view showing the structure of a single adsorbent bed in a simulated moving adsorption bed used in the method of the present invention.
  • the grid 39 is placed on the adsorption bed 38, and each bed is provided with two flushing, flushing A and flushing B, with six inlet and outlet materials, and each material pipeline is connected to the grid 39 through an inlet and outlet pipeline 31.
  • the six incoming and outgoing materials are connected by six separate pipelines to the inlet and outlet lines 31, and each inlet and outlet control valve is provided.
  • the desorbent control valve 32 controls the injection of the desorbent
  • the extraction liquid control valve 33 controls the extraction of the extraction liquid
  • the rinse liquid A control valve 34 controls the injection of the rinse liquid A
  • the injection position is close to the extraction position of the extraction liquid
  • the flushing is performed.
  • the liquid A is the pumping liquid
  • the flushing liquid B control valve 35 controls the injection of the flushing liquid B.
  • the injection position is close to the material injection position
  • the material control valve 36 controls the injection of the raw material
  • the raffinate control unit 37 controls the extraction of the raffinate.
  • the material circulation in the adsorption tower constitutes a closed loop that is connected end to end.
  • the circulation pump supplies power to the material circulation.
  • the flow rate of the circulation pump is controlled according to the flow rate required in the area where it is located.
  • the number of circulating pumps is less than or equal to the number of adsorption towers.
  • a flushing pump may be arranged between the total liquid extraction line and the main flushing line to circulate the extracted liquid back to the system as a flushing liquid; or a flushing pump may be arranged after the extracting liquid buffer tank to recycle the extracted liquid back to the system as a flushing liquid.
  • Two flushing sets the flow meter and flow regulating valve to control the flow of flushing fluid A and B.
  • the control method for the feed and exit of a certain adsorbent bed is as follows: It is assumed that at some point the desorbent begins to enter the bed through the line 31 connected to the upper grid of the bed, at which time the bed is located in the desorption zone; After a step time t, the desorbent ceases to pass into line 31 connected to the upper grid of the bed and instead passes into line 41 which is connected to the upper grid of the next bed and enters the next bed. There is no material in and out of the original bed, which is located in the isolation zone. Since there are three beds in the isolation zone, it takes three steps. At 4xt, the raffinate starts to leave the bed through the line 41 connected to the grille below the bed.
  • the bed enters the adsorption zone; after 6 steps, at 10xt, the feed begins to enter the bed through line 31 connected to the upper grid of the bed, at which point the bed is still in the adsorption zone.
  • the rinsing liquid B enters the bed, and the bed enters the purification zone.
  • the rinsing liquid A injected into the two beds below the extract begins to be injected.
  • the line 31 connected to the grid above the bed enters the bed, and the bed is still in the purification zone.
  • the extract begins to pass through the grid below the bed.
  • the connected line 41 leaves the bed, at which point the bed is in the desorption zone; after a further 4 step times, at 24xt, the desorbent again begins to enter through the line 31 connected to the upper grid of the bed. This bed, Complete a complete loop.
  • Figure 3 shows the distribution of liquid material composition in a 24-bed simulated moving bed.
  • the desorbent is p-diethylbenzene. (PDEB).
  • the purity of the product is required to be at least 99.5% by mass, and more preferably 99.7% by mass or more.
  • the desorbent is preferably selected from the group consisting of p-diethylbenzene (PDEB), and the adsorbent is preferably strontium or/and potassium exchanged faujasite.
  • PDEB p-diethylbenzene
  • a total of 24 beds are used in the two adsorption towers, including 4 to 6 beds in the desorption zone, 8 to 10 beds in the purification zone, 6 to 8 beds in the adsorption zone, and 2 to 3 beds in the isolation zone.
  • the purity of the product is required to be at least 99.5% by mass, and more preferably 99.7% by mass or more.
  • the desorbent is preferably decene, and the adsorbent is preferably an alkali metal ion exchanged faujasite.
  • the method of the invention can also be used for the separation of diphenylbenzene from other carbon octa areomers, the separation of m-xylene and other carbon octa areomers, the separation of ethylbenzene from other carbon octa areomers, Separation of alkanes from other structural hydrocarbons, separation of normal paraffins and monodecyl branched alkanes from other structural hydrocarbons, separation of alkenes from alkanes.
  • Example 1 The invention is further illustrated by the following examples, but the invention is not limited thereto.
  • Example 1 The invention is further illustrated by the following examples, but the invention is not limited thereto.
  • the p-diphenylbenzene is adsorbed and separated by the method of the present invention.
  • Adsorption separation of para-xylene using simulated moving bed The simulated moving bed has 24 adsorption beds, including 5 beds in the desorption zone, 9 beds in the purification zone, 7 beds in the adsorption zone, and 3 beds in the isolation zone.
  • One step time is 80 seconds, the operating temperature is 177 ° C, and the operating pressure is 0.88 MPa.
  • the adsorbent adopts RAX-2000A type adsorbent produced by Sinopec Catalyst Co., Ltd., and its main component is X-type molecular sieve of cesium ion exchange.
  • a separate on-off valve is provided for each entry and exit of the material to each bed, a first flush (d) is set, and the first bed is injected upstream of the extraction liquid production point to form a desorbent, the second rinse solution
  • (A) is the extract, injected in the second bed downstream of the extraction point, the third rinse
  • (B) is the extract, which is injected in the first bed upstream of the raw material injection point.
  • the volume of the line through which the rinse liquid passes is 0.75% of the volume of the single adsorbent bed, and the desorbent used is p-diethylbenzene.
  • the adsorbent bed For each adsorbent bed, according to the flow direction of the material, the adsorbent bed is first rinsed with the third flushing liquid, and then rinsed with the second flushing liquid.
  • the volume of the extracting liquid used for the second and third flushing is different.
  • Composition of adsorbed and separated raw materials, second and third rinsing liquids injected into the bed See Table 1 for the composition of the adsorbent bed when flushing with different amounts of flushing fluid.
  • the volume of the third flushing liquid B is 1.2 times and 1.7 times of the total volume of the pipeline (referred to as the total volume of the single bed pipeline), and the composition of the material entering the adsorption bed is first and second upstream of the raw material injection point.
  • the composition of the bed material is not much different, but the material composition of the third bed upstream of the material injection point is very different. Therefore, the third rinsing liquid B should be injected in the first or second bed upstream of the raw material injection point, and should not be injected in the third layer upstream of the raw material injection point.
  • the composition of the material rinsing liquid A entering the adsorption bed is similar to that of the second to fourth beds downstream of the extraction liquid extraction point, and is extracted with the extract liquid.
  • the material composition of the first or fifth bed downstream is a large difference. Therefore, the second flushing liquid A should be injected in the second to fourth beds downstream of the extraction liquid extraction point, and should not be injected in the first or fifth bed downstream of the extraction liquid production point.
  • Adsorption separation of p-terephthalic acid from mixed diphenylbenzene using a simulated moving bed The simulated moving bed has 24 adsorbent beds, including 5 beds in the desorption zone, 9 beds in the purification zone, and 7 beds in the adsorption zone. There are 3 beds in the isolation zone, one step time is 85 seconds.
  • the operating temperature is 177 ° C
  • the operating pressure is 0.88 MPa
  • the composition of the mixed diphenylbenzene raw materials is shown in Table 1.
  • the adsorbent was the same as in Example 1.
  • a separate on-off valve is provided for each entry and exit of the material to each bed, a first flush (Ci) is set, and the first bed is injected upstream of the withdrawal point to form a desorbent, the second rinse (A For the extract, the third bed is injected downstream of the extraction point, and the third rinse (B) is the extract, which is injected into the first bed upstream of the feed point.
  • a first flush Ci
  • the second rinse A
  • the third bed is injected downstream of the extraction point
  • the third rinse (B) is the extract, which is injected into the first bed upstream of the feed point.
  • the volume of the rinse liquid passing through is 0.75% of the volume of the single adsorbent bed
  • the desorbent used is p-diethylbenzene.
  • the amount of flushing fluid used for each flush is expressed as a percentage of the volume of the flushing fluid through the pipeline (the same below), and in the case of ensuring the purity of the diphenylbenzene is about 99.7 mass%,
  • the rate and the amount of each flushing liquid in one step time are shown in Table 2.
  • the p-diphenylbenzene was adsorbed and separated from the mixed diphenylbenzene by a simulated moving bed according to the method of Example 2, except that the amount of the rinse liquid used per rinse was different.
  • the yield of p-xylene and the amount of each flushing liquid in one step time are shown in Table 2.
  • the diterpene benzene was adsorbed and separated from the mixed diphenylbenzene by a simulated moving bed according to the method of Example 2, except that the amount of the rinse liquid used per rinse was different.
  • the flushing fluid passes through a line volume that is 1.5% of the volume of a single adsorbent bed.
  • the yield of diphenylbenzene and the amount of each flushing liquid in one step time are shown in Table 2. Comparative example 1 ⁇ 3
  • the simulated moving bed has 24 adsorption beds, including 5 beds in the desorption zone, 9 beds in the purification zone, and adsorption zone. 7 beds, 3 beds in the isolation zone, one step time is 85 seconds.
  • the operating temperature was 177 ° C and the operating pressure was 0.88 MPa.
  • Each bed line is connected to all beds by a rotary valve, and a flushing liquid outlet (Hout) is provided, which is taken out from the first bed downstream of the desorbent injection point and pumped to a flushing liquid inlet ( Hin), a second bed upstream of the feed point of the feed; a rinse X consisting of a desorbent is placed and injected into the first bed downstream of the draw collection point. Flush into Hin once and flush out Hout once. For an adsorbent bed, the flushing fluid passes through a line volume that is 1.5% of the volume of a single adsorbent bed.
  • the raw materials used were the raw materials shown in Table 1.
  • the desorbent and adsorbent were the same as in Example 2, and the yield of diphenylbenzene and the amount of each rinse liquid in one step time were ensured when the purity of p-benzoquinone was 99.7 mass%. See Table 2.
  • the yield of p-terphenylbenzene was significantly lower than that of the examples of the present invention, and other conditions were kept the same as in the case of Comparative Example 1, and the adsorption feed flow rate was reduced by 8%, and a higher yield of p-xylene was also obtained, and the results were also listed. In Table 2.
  • the method of the present invention has a higher yield of diphenylbenzene or a higher treatment amount than the comparative example, while ensuring that the purity of the diphenylbenzene is substantially the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种模拟移动床吸附分离同分异构体的方法,包括将含有同分异构体的原料(F)用模拟移动床进行吸附分离,模拟移动床含有多个吸附床层(38),每个吸附床层(38)间设有格栅(39),每个格栅(39)上设有该床层(38)的物料进出管线,进出模拟移动床的物料至少包括吸附原料(F)、解吸剂(D)、抽出液(E)和抽余液(R),其中抽出液(E)中富集目标产品,将抽出液(E)作为冲洗液,分别注入原料注入位置上游第1或2个床层和抽出液采出位置下游第2-4个床层中的任意一个床层。该方法用于Cs芳烃异构体的吸附分离,可在有效提高吸附分离目的产物纯度的同时提高装置的处理量。

Description

模拟移动床吸附分离方法和设备 技术领域
本发明为同分异构体的吸附分离方法和设备, 具体地说, 是利用 模拟移动床吸附分离纯化烃类的方法和设备。
背景技术
吸附分离对于沸点差极小的同分异构体之间的分离或具有不同结 构特征的不同组分之间的分离非常有效。 如用于对二曱苯与其它碳八 芳烃异构体的分离, 正构烷烃与其它结构烃类的分离。
模拟移动床吸附分离过程实现了液固两相的逆流接触, 提高了分 离的效率。 US2985589、 US3201491 、 US3626020、 US3686342、 US3997620、 US4326092等专利中描述了模拟移动床吸附分离设备和方 法及其用于对二曱苯分离、 间二曱苯分离。 Douglas M. Ruthven 在 Chemical Engineering Science ( 1989, v44(5): 1011-1038 > 中对连续逆 流吸附分离过程的原理、 发展历程、 实验和模型研究以及工业过程进 行了总结。
典型的模拟移动床吸附分离过程至少包括两股进料, 原料(F )和 解吸剂 (D ) , 至少两股出料, 抽出液(E ) 和抽余液(R ) , 其中抽 出液中富集目的产品; 各股物料进出吸附塔的位置周期性移动, 沿吸 附塔内物料流向各进出物料的次序为解吸剂 (D ) 、 抽出液(E ) 、 原 料(F )和抽余液(R ) , 吸附塔内物料循环构成一个首尾相接的闭环。 控制物料进出吸附塔的设备可以是旋转阀, 也可以是一系列开关阀。
吸附分离过程中, 有多股物料共用输送管线进出吸附塔, 对于进 出吸附塔某一床层位置的管线而言,会依次通过抽余液( R )、原料( F )、 抽出液(E )和解吸剂 (D ) 。 管线中前一次残余的物料会污染流经该 管线的物料, 对模拟移动床吸附分离过程造成不利的影响, 尤其是当 模拟移动床吸附分离过程用于生产高纯度的产品时, 管线中残留的原 料会污染抽出液, 造成无可挽救的不利影响。
USP3201491公开了一种提高连续吸附分离产品纯度的方法, 对于 残留原料污染抽出液的情况提出: 在模拟移动床吸附分离过程中, 在 原料进口上游输入一股沖洗物流, 其中含有可与进料区分的流体, 数 量不超过从原料进口到流体分布器出口中流动的流体体积。 所述的冲 洗流体为从解吸剂进口下游采出的富含解吸剂的物料、 富含吸附组分 的从解吸区远端采出的物料、 解吸剂或可与进料分离的额外组分。
USP5750820公开了一种多级沖洗吸附分离方法, 为从多组分原料 中分离目的产品的方法, 包括将所述原料通过至少一个流体流通管路 引入吸附分离设备, 用至少一股初始冲洗介质以足够的量沖洗至少有 一个流体流通管路的设备, 该介质从第一个来源抽出、 含有至少一种 具有一个初始浓度的目的产品组分, 这样存留原料就被所述的至少一 种初始介质从所述设备中冲洗; 用一股最终沖洗介质以足够的量冲洗 所述至少有一个流体流通管路, 该介质从第二个来源抽出、 含有至少 一种最终浓度的目的产品组分, 最终浓度高于初始浓度, 这样存留管 路中的初始介质就被最终介质冲洗进入所述设备; 从所述设备中采出 所述产品, 所述第一个来源与第二个来源不同, 并且至少二者中的一 个是与吸附分离设备分离开的。
USP5972224公开了一种改善模拟移动床产品纯度的方法和设备, 所述的设备包括至少一个吸附塔内一系列装有固体或吸附剂的床层 ( A ij An ) , 吸附床层间有流体分布塔盘 (Ρ,· ) , 每层分布塔盘分为 很多块(Ρ1(), Ρπ, Ρ12 ) , 每个分布板块(Pi ) 包括至少一个分布室有 开口可通过, 在分布室开口附近有 ¾ [附塔流体循环的通道, 分布室与 一条管线相连, 管线的另一头在吸附塔外, 在循环周期 T 内, 各物料 进出不同塔盘的分布室。 过程的特点是以合适的流速, 一部分流体持 续循环通过连接不同分布塔盘分布室的旁路管线, 冲洗液的组成与循 环流体的组成相近。 目的在于避免外部引入的冲洗物料与吸附塔内物 料组成差别较大而造成的对分离过程的干扰。 但此方案也会带来问题, 即持续有一股物料不经过吸附室, 这相当于是在吸附床层中存在一股 沟流, 这对于吸附分离过程是不利的。
USP6004518公开了一种高纯度模拟移动床吸附分离设备, 包括一 系列分隔开的装填有吸附剂的吸附室, 一系列流体输送管线连接吸附 室也用于引入原料、 解吸剂和引出抽出液、 抽余液。 一系列阀门用于 控制流体流过流体输送管线和吸附室, 一套独立的阀门与每个吸附室 相连, 并且所述阀门特征为控制原料进入特定吸附室的阀门的两个口 连接到此特定吸附室与其上游吸附室连通的流体输送管线, 上游吸附 室流出来的流体可以流过此阀门及通过管路进入特定吸附室, 冲洗阀 门和管线中残留的原料, 但要求每个吸附剂床层都是独立的, 从上一 床层进入下一床层的循环流体要经过管线和阀门。
发明内容
本发明的目的是提供一种利用模拟移动床从同分异构体混合物中 吸附分离一种高纯度产品的方法及设备, 该方法可在保证吸附分离目 的产物纯度的同时具有更高的收率或更高的处理量。
本发明提供的模拟移动床吸附分离同分异构体的方法, 包括将含 有同分异构体的原料用模拟移动床进行吸附分离, 所述的模拟移动床 含有多个吸附床层, 每个吸附床层间设有格栅, 每个格栅上设有该床 层的物料进出管线, 进出模拟移动床的物料至少包括吸附原料、 解吸 剂、 抽出液和抽余液, 其中抽出液中富集目的产品, 将抽出液作为冲 洗液, 分别注入原料注入位置上游第 1或 2个床层和抽出液采出位置 下游第 2 ~ 4个床层中的任意一个床层。
本发明方法用多阀控制模拟移动吸附床的进出物料, 选择抽出液 作为冲洗液分两次进行沖洗, 两次沖洗均在提纯区, 沖洗液的注入位 置一次在原料注入床层上游第 1或 2个床层, 另一次在抽出液抽出位 置下游第 2 ~ 4个床层中的任意一个床层, 在抽出液抽出前对床层进行 沖洗, 从而保证了吸附分离目的产物的纯度, 同时与现有技术相比具 有更高的收率或更高的处理量。
附图说明
图 1为本发明方法所用模拟移动床内吸附床层的结构示意图。 图 2为本发明方法沖洗液注入位置的示意图。
图 3为吸附分离混和二曱苯时吸附塔内液相各种物料浓度分布图。 具体实施方式
本发明将抽出液作为吸附剂床层沖洗液, 并分两股注入吸附剂床 层的不同位置。 由于冲洗液注入床层的组成与注入冲洗液后管线中的 组成相似, 使注入的冲洗液对注入床层组成的影响降到最小, 因此可 有效提高吸附效率。
本发明方法吸附分离使用的模拟移动吸附床包括一个或多个吸附 塔, 每个吸附塔由格栅分隔为多个吸附床层, 所述格栅的功能是: 将 来自上一床层的物料重新分布到下一床层, 将外部引入的物料与来自 上一床层的物料混合均勾, 将来自上一床层的物料中的一部分引出吸 附塔。 格栅允许液体通过并拦截吸附剂颗粒逸出吸附剂床层, 其上下 表面一般采用金属丝编织网、金属烧结网或约翰逊网(Johnson Screen )。 从外部引入的物料至某一床层, 和从上一床层引出吸附塔的物料都通 过一根与该床层格栅相连的管线进入和引出吸附床层。
进出吸附塔的物料至少包括原料(F )、 解吸剂(D )、抽出液(E ) 和抽余液(R )。 原料为包含吸附分离提纯的目的产品的至少两种或更 多组分的混合物, 原料中各组分在吸附剂上的吸附选择性不同, 吸附 剂对目的产品有更高的吸附选择性, 所用解吸剂与原料沸点应有较大 差异, 可通过精熘与原料中的组分分离。 抽出液中富集目的产品, 同 时含有一部分解吸剂; 抽余液中含有较少量的目的产品, 其含量越少, 吸附分离的效率越高, 抽余液的主要成分为解吸剂和原料中除目的产 物外的其他组分。 抽出液、 抽余液分别用精馏塔将解吸剂分离出来循 环使用。
在吸附塔中沿吸附塔内物料流向分成脱附区、 提纯区、 吸附区和 隔离区。 解吸剂注入和抽出液采出之间的吸附剂床层为脱附区, 抽出 液采出和原料注入之间的吸附剂床层为提纯区, 原料注入和抽余液采 出之间的吸附剂床层为吸附区, 抽余液采出和解吸剂注入之间的吸附 剂床层构成隔离区。 模拟移动床层数为 6 ~ 30个、 优选 12 24个。 通 常采用两个吸附塔共 24个床层, 其中脱附区 4 ~ 6个床层, 提纯区 8 ~ 10个床层, 吸附区 6 ~ 8个床层, 隔离区 2 ~ 3个床层。 本发明所述的 注入冲洗液为某种物料进出位置的上、 下游是相对于吸附塔中该种物 料进出位置的床层而言, 沿吸附塔内物料流动方向为其下游, 相反为 上游。 如冲洗液注入抽出液抽出位置下游一个床层, 即为将冲洗液注 入抽出液抽出位置床层沿物料流动方向的下一个床层。
为将需要沖洗的含有残留物料的吸附床层进出料管线的体积减至 最小, 本发明采用将吸附塔中每个床层的进出物料都用一根进出料管 线与格栅分布到吸附剂床层的管线相连, 进出同一床层的各物料均由 并列设置的开关阀门单独控制, 各吸附床层设置的开关阀应尽量靠近 吸附塔, 从而使连接管线的体积减至更小。
若吸附塔有 n股进出物料, m个吸附床层, 则共有 nxm个开关阀 门。 在某一时刻, 各股进出物料与不同的床层相连有 n个开关阀处于 开通状态, 其余开关阀处于关闭状态, 每间隔特定的时间, 即一个步 进时间, 各股进出物料的位置均下移一个吸附床层。 沿吸附塔内物料 流向各进出物料的次序为解吸剂 (D ) 、 抽出液(E ) 、 原料(F )和抽 余液(R ) , 吸附塔内物料循环构成一个首尾相接的封闭循环。 对于每 个吸附床层, 进出物料的顺序是抽余液(R )、 原料(F )、 抽出液(E ) 和解吸剂 (D ) , 周而复始, 各物料进出的间隔时间不同, 视各相邻进 料间隔的吸附床层数而定, 即同一吸附剂床层两个相邻进出物料相隔 的步进时间数与吸附塔对应的两个相邻进出物料相隔的床层数相等。 如解吸剂注入和抽出液采出之间的吸附剂床层为脱附区, 脱附区的床 层数为 5个, 则对某一吸附床层, 解吸剂注入后, 间隔 5个步进时间 后, 在该吸附床层采出抽出液。
为消除输送物料管线中残留物料对吸附分离过程的影响, 保证分 离出高纯度的目的产品, 需要对已经通过原料即将通过抽出液的管线 进行冲洗, 在产出高纯度产品的同时又要避免冲洗对吸附分离过程的 不利影响。 为此, 本发明方法于提纯区从两个不同位置分别注入抽出 液对管线进行沖洗, 使冲洗后床层管线中存留的物料组成与即将通过 此管线的物料组成接近, 沖洗进入床层的物料组成与所注入床层中的 物料组成相接近, 以使冲洗对吸附分离过程的影响最小。
本发明两次沖洗物料的注入位置一个靠近原料注入点, 于原料注 入床层上游第 1或 2个床层, 另一个靠近抽出液引出点, 在抽出液采 出位置下游第 2 ~ 4个床层中的任意一个床层, 用于冲洗残留原料, 避 免污染将要引出的抽出液。
在原料注入床层上游第 1或 2个床层注入的冲洗液, 在一个步进 时间内的体积注入量为从该冲洗液控制阀到吸附床层格栅所经管线总 体积的 1.0 ~ 2.5倍、 优选 1.2 ~ 2.0倍。 按此冲洗量沖洗管线中存留的 物料, 进吸附塔的物料为原料和抽出液的混合物, 其平均组成与吸附 塔内注入冲洗液床层位置的液相物料组成相近。
在抽出液抽出位置下游第 2 ~ 4个床层中的任意一个床层注入的冲 洗液, 在一个步进时间内的体积注入量为从该沖洗液控制岡 'J吸附床 层格栅所经管线总体积的 0.5 ~ 1.5倍、 优选 0.6 ~ 1.0倍。 在上述冲洗 液注入位置冲洗管线, 到吸附塔内的物料为被残留原料轻微污染的抽 出液, 按所述的冲洗量冲洗得到的沖洗液组成与所选沖洗液注入位置 吸附塔内液相物料组成相近。 本发明方法除在提纯区不同位置注入抽出液作为管线冲洗液外, 优选在抽出液采出线上游第 1或 2个床层注入解吸剂沖洗床层。
本发明所述的吸附分离过程为液相分离过程, 吸附分离操作温度 为 20 ~ 300° (:、 优选 100 ~ 180°C , 操作压力使体系保持全液相即可、 优选 0.8 ~ 1.2MPa, 吸附分离对二曱苯时, 优选的操作压力为 0.6 ~ 1崖 Pa。
应用本发明方法吸附分离的同分异构体优选为二曱苯和乙苯, 吸 附分离的目的产物优选为对二曱苯或间二曱苯。
本发明提供的一种模拟移动床吸附分离同分异构体的设备, 包括 模拟移动床和各物料进出管线, 所述的模拟移动床含有多个吸附床层, 每个吸附床层间设有格栅, 每个格栅上设有该床层的物料进出管线, 在每个吸附床层间的进出料管线上并列设置两条沖洗液管线, 每条管 线上均设置开关阀, 以抽出液为冲洗液, 一条冲洗液管线的冲洗液注 入原料注入床层上游第 1或 2个床层, 另一条沖洗液管线的沖洗液注 入抽出液抽出位置下游第 2 ~ 4个床层中的任意一个床层。
优选在每个吸附床层的格栅上设置一条进出料管线, 并在管线上 设置多个并联的开关阀控制吸附剂床层各物料的进出。 每个吸附剂床 层进出料管线上设置的开关阀数量为 6 ~ 7个, 即有 6 ~ 7种物料进出 每个吸附剂床层。 优选地, 设置三条冲洗管线, 其中两条用抽出液为 冲洗液, 还有一条用解吸剂为沖洗液, 其注入位置为抽出液采出位置 上游一个床层。
下面通过附图说明本发明。
图 1 为本发明方法所用模拟移动吸附床中单个吸附床层的结构示 意图。 其中格栅 39置于吸附床层 38之上, 每个床层设置了两路冲洗, 冲洗 A和冲洗 B , 有六股进出物料, 通过一个进出料管线 31将各物料 管线与格栅 39相连,六股进出物料由六条单独的管线与进出料管线 31 相连, 每条管线上均设一个进出料控制阀。 具体地, 解吸剂控制阀 32 控制解吸剂的注入, 抽出液控制阀 33控制抽出液的采出, 冲洗液 A控 制阀 34控制沖洗液 A的注入, 其注入位置靠近抽出液的抽出位置, 沖 洗液 A为抽出液, 冲洗液 B控制阀 35控制沖洗液 B的注入, 其注入 位置靠近原料注入位置, 原料控制阀 36控制原料的注入, 抽余液控制 岡 37控制抽余液的抽出。 由图 2可知, 模拟移动吸附床有 24个由格栅隔开的吸附床层, 按 图 1每个吸附床层设置六条进出料管线, 24个吸附床层共有 6x24个开 关阀门。 解吸剂注入与抽出液采出之间的脱附区有 5 个吸附床层, 抽 出液采出与原料注入之间的提纯区有 9 个吸附床层, 原料注入与抽余 液采出之间的吸附区有 7 个吸附床层, 抽余液采出与解吸剂注入之间 的隔离区有 3 个吸附床层。 在某一时刻, 各股进出物料与不同的床层 相连的开关阀中有 6 个处于开通状态, 其余处于关闭状态。 每间隔特 定的时间, 即一个步进时间, 各股进出物料的位置均下移一个吸附床 层。 一个步进时间为 45 ~ 200 秒。 吸附塔内物料循环构成一个首尾相 接的闭环, 由循环泵为物料循环提供动力, 循环泵的流量按照其所在 区域需要的流量控制, 循环泵的数量小于等于吸附塔数目。 可以在抽 出液总管线与冲洗液总管线间设置一冲洗泵, 将抽出液循环回系统作 为冲洗液; 也可以在抽出液緩沖罐后设置沖洗泵将抽出液循环回系统 作为冲洗液。 两路沖洗分别设置流量计和流量调节阀, 控制沖洗液 A 和 B的流量。
图 1 中, 对于某个吸附床进出物料的控制方法为: 假定某一时刻 解吸剂开始通过与此床层上方格栅相连的管线 31进入该床层, 此时该 床层位于脱附区; 经过一个步进时间 t后, 解吸剂停止通入与该床层上 方格栅相连的管线 31,改为通入与下一床层上方格栅相连的管线 41进 入下一床层。 原床层无物料进出, 位于隔离区, 因隔离区有三个床层, 需经过三个步进时间, 到 4xt时刻,抽余液开始通过与该床层下方格栅 相连的管线 41离开该床层,该床层进入吸附区; 经过 6个步进时间后, 到 10xt时刻,原料开始通过与该床层上方格栅相连的管线 3 1进入该床 层, 此时该床层仍位于吸附区; 到 l l xt时刻, 沖洗液 B进入该床层, 此时该床层进入提纯区, 经过 6个步进时间后, 到 17xt时刻, 于抽出 液下方 2个床层注入的冲洗液 A开始注入与该床层上方格栅相连的管 线 31而进入该床层,此时该床层仍位于提纯区,经过 3个步进时间后, 到 20xt时刻,抽出液开始通过与此床层下方格栅相连的管线 41离开该 床层, 此时该床层位于脱附区; 再经过 4个步进时间后, 到 24xt时刻, 解吸剂又一次开始通过与该床层上方格栅相连的管线 31进入此床层, 完成一个完整的循环。
图 3给出了一个 24床层模拟移动床中液相物料組成分布图, 是从 包括乙苯(EB )、对二曱苯(PX )、 间二甲苯(MX )和邻二曱苯(OX ) 的碳八芳烃异构体混合物中分离 PX 的过程, 解吸剂为对二乙苯 ( PDEB ) 。
应用本发明从碳八芳烃异构体混合物中分离对二甲苯 (PX ) 时, 产品的纯度要求至少 99.5质量%, 更优选为 99.7质量%以上。 解吸剂 优选选用对二乙苯( PDEB ) ,吸附剂优选为钡或 /和钾交换的八面沸石。 通常采用两个吸附塔共 24个床层,其中脱附区 4~6个床层,提纯区 8〜10 个床层, 吸附区 6~8个床层, 隔离区 2~3个床层。
应用本发明从碳八芳烃异构体混合物中分离间二曱苯(MX ) 时, 产品的纯度要求至少 99.5质量%, 更优选为 99.7质量%以上。 解吸剂 优选采用曱苯, 吸附剂优选为碱金属离子交换的八面沸石。
本发明方法还可用于对二曱苯与其它碳八芳烃异构体的分离、 间 二曱苯与其它碳八芳烃异构体的分离、 乙苯与其它碳八芳烃异构体的 分离、 正构烷烃与其它结构烃类的分离、 正构烷烃及单曱基支链烷烃 与其它结构烃类的分离、 烯烃与烷烃的分离。
下面通过实例进一步说明本发明, 但本发明并不限于此。 实例 1
用本发明方法吸附分离对二曱苯。 使用模拟移动床吸附分离对二 甲苯: 模拟移动床有 24个吸附床层, 其中脱附区 5个床层、 提纯区 9 个床层、 吸附区 7个床层、 隔离区 3个床层, 一个步进时间为 80秒, 操作温度 177°C、 操作压力 0.88MPa。 吸附剂采用中国石化催化剂分公 司生产的 RAX-2000A型吸附剂,主要成分为钡离子交换的 X型分子筛。 为每股进出物料到各床层设置单独的开关阀, 设置第一次冲洗(d ) , 在抽出液采出点上游第一个床层注入, 组成为解吸剂, 第二次冲洗液
( A )为抽出液, 在抽出液采出点下游第二个床层注入, 第三次沖洗液
( B )为抽出液,在原料注入点上游第一个床层注入。对某个吸附床层, 每次注入冲洗液, 冲洗液经过的管线体积为单个吸附床层体积的 0.75%, 所用解吸剂为对二乙苯。
对每个吸附剂床层, 按照物料流动方向, 先用第三次冲洗液冲洗 吸附床层, 再用第二次沖洗液进行沖洗, 第二、 第三次沖洗所用的抽 出液体积不同。 吸附分离原料、 第二、 第三次冲洗液注入床层的组成 和使用不同量的冲洗液进行冲洗时进吸附床层物料组成见表 1。
由表 1数据可知, 第三次沖洗液 B体积为所经管线 (指单一床层 管线总体积) 1.2倍和 1.7倍时, 进入吸附床层物料的组成与原料注入 点上游第一、 第二床层物料的组成差别不大, 而与原料注入点上游第 三床层的物料组成相差很大。 因此, 第三次冲洗液 B宜在原料注入点 上游第一或二床层注入, 不宜在原料注入点上游第三层注入。
另外, 从表 1 最下两行数据可知, 进入吸附床层的物料沖洗液 A 的组成与抽出液采出点下游第 2 ~ 4个床层的物料组成相差不大, 而与 抽出液采出点下游第 1或 5床层的物料组成相差较大。 因此, 第二次 冲洗液 A宜在抽出液采出点下游第 2~4个床层注入, 不宜在抽出液采 出点下游第 1或 5床层注入。 实例 2
使用模拟移动床从混合二曱苯中吸附分离对二曱苯: 模拟移动床 有 24个吸附床层, 其中脱附区 5个床层、 提纯区 9个床层、 吸附区 7 个床层、 隔离区 3个床层, 一个步进时间为 85秒。 操作温度 177°C、 操作压力 0.88MPa,混合二曱苯原料组成见表 1。吸附剂与实例 1相同。
为每股进出物料到各床层设置单独的开关阀, 设置第一次冲洗 ( Ci ) , 在抽出液采出点上游第一个床层注入, 组成为解吸剂, 第二 次沖洗液(A )为抽出液, 在抽出液采出点下游第三个床层注入, 第三 次冲洗液(B )为抽出液, 在原料注入点上游第一个床层注入。 对某个 吸附床层, 每次注入冲洗液, 冲洗液经过的管线体积为单个吸附床层 体积的 0.75%, 所用解吸剂为对二乙苯。
对每个吸附床层, 每次沖洗所用的沖洗液量用冲洗液所经管线体 积的百分比表示 (下同) , 在保证对二曱苯纯度约 99.7质量%的情况 下, 对二曱苯收率及一个步进时间内各冲洗液用量见表 2。 实例 3
按实例 2 的方法使用模拟移动床从混合二曱苯中吸附分离对二曱 苯,不同的是每次冲洗的沖洗液用量不同。在保证对二曱苯纯度约 99.7 质量%的情^下, 对二甲苯收率及一个步进时间内各冲洗液用量见表 2。 实例 4
按实例 2 的方法使用模拟移动床从混合二曱苯中吸附分离对二曱 苯, 不同的是每次沖洗的沖洗液用量不同。 对某个吸附床层, 沖洗液 经过的管线体积为单个吸附床层体积的 1.5%。 在保证对二曱苯纯度约 99.7质量%的情况下,对二曱苯收率及一个步进时间内各冲洗液用量见 表 2。 对比例 1 ~ 3
按目前工业上使用的模拟移动床从混合二曱苯中吸附分离 PX 的 方法操作: 模拟移动床有 24个吸附床层, 其中脱附区 5个床层、 提纯 区 9个床层、 吸附区 7个床层、 隔离区 3个床层, 一个步进时间为 85 秒。 操作温度 177°C、 操作压力 0.88MPa。 用一台旋转阀将各床层管线 连接到所有床层, 设置了一次沖洗液抽出口 (Hout ) , 在解吸剂注入 点下游第一个床层采出, 由泵送到一次沖洗液入口 (Hin ) , 在原料注 入点上游第二个床层; 设置由解吸剂组成的沖洗液 X, 并将其注入到 在抽出液采集点下游的第一床层。 一次沖洗入 Hin和一次冲洗出 Hout 按两次冲洗物料计算。 对某个吸附床层, 冲洗液经过的管线体积为单 个吸附床层体积的 1.5%。 所用原料为表 1所示的原料, 解吸剂和吸附 剂与实例 2相同, 在保证对二曱苯纯度 99.7质量%的情况下, 对二曱 苯收率及一个步进时间内各沖洗液用量见表 2。对二曱苯收率显著低于 本发明的实施例, 保持其他条件与对比例 1 相同, 将吸附进料流量减 小 8%, 也可以获得较高的对二甲苯收率, 结果也列于表 2中。
表 1
Figure imgf000013_0001
表 2
Figure imgf000014_0001
由表 2数据可知, 在保证对二曱苯纯度基本相同的情况下, 本发 明方法较之对比例有较高的对二曱苯收率或更高的处理量。

Claims

权 利 要 求
1、 一种模拟移动床吸附分离同分异构体的方法, 包括将含有同分 异构体的原料用模拟移动床进行吸附分离, 所述的模拟移动床含有多 个吸附床层, 每个吸附床层间设有格栅, 每个格栅上设有该床层的物 料进出管线, 进出模拟移动床的物料至少包括吸附原料、 解吸剂、 抽 出液和抽余液, 其中抽出液中富集目标产品, 其特征在于将抽出液作 为冲洗液, 分别注入原料注入位置上游第 1或 2个床层和抽出液采出 位置下游第 2 ~ 4个床层中的任意一个床层。
2、 按照权利要求 1所述的方法, 其特征在于在抽出液采出位置上 游第 1或 2个床层注入解吸剂冲洗床层的管线。
3、 按照权利要求 1所述的方法, 其特征在于在原料注入床层上游 第 1或 2个床层注入的沖洗液, 在一个步进时间内的体积注入量为从 该冲洗液控制阀到吸附床层格栅所经管线总体积的 1.0 ~ 2.5倍。
4、 按照权利要求 1所述的方法, 其特征在于在抽出液抽出位置下 游第 2 ~ 4个床层中的任意一个床层注入的冲洗液, 在一个步进时间内 的体积注入量为从该冲洗液控制岡到吸附床层格栅所经管线总体积的 0.5 ~ 1.5倍。
5、 按照权利要求 1所述的方法, 其特征在于所述的吸附分离过程 为液相分离过程。
6、 按照权利要求 1所述的方法, 其特征在于在一个步进时间内, 模拟移动床沿物料流向各物料的进出顺序为解吸剂、 抽出液、 原料和 抽余液。
7、 按照权利要求 1所述的方法, 其特征在于所述的模拟移动床含 有多个床层, 分为脱附区、 提纯区、 吸附区和隔离区。
8、 按照权利要求 1所述的方法, 其特征在于吸附分离的同分异构 体为二曱苯和乙苯, 吸附分离的目的产品为对二甲苯或间二甲苯。
9、 按照权利要求 1所述的方法, 其特征在于吸附分离所用的解吸 剂为对 乙苯或曱苯。
10、 一种模拟移动床吸附分离同分异构体的设备, 包括模拟移动 床和各物料进出管线, 所述的模拟移动床含有多个吸附床层, 每个吸 附床层间设有格栅, 每个格栅上设有该床层的物料进出管线, 在每个 吸附床层间的进出料管线上并列设置两条冲洗液管线, 每条管线上均 设置开关阀, 以抽出液为沖洗液, 一条沖洗液管线的沖洗液注入原料 注入床层上游第 1或 2个床层, 另一条冲洗液管线的沖洗液注入抽出 液抽出位置下游第 2 ~ 4个床层中的任意一个床层。
11、 按照权利要求 10所述的设备, 其特征在于在每个吸附床层的 格栅上设置一条进出料管线, 并在管线上设置多个并联的开关阀控制 吸附剂床层各物料的进出。
12、 按照权利要求 10所述的设备, 其特征在于每个吸附剂床层进 出料管线上设置的开关阀数量为 6 ~ 7个。
13、 按照权利要求 10所述的设备, 其特征在于在每个吸附床层设 置一条以解吸剂为冲洗液的管线, 注入位置为抽出液采出位置上一个 床层。
PCT/CN2012/000956 2011-07-28 2012-07-16 模拟移动床吸附分离方法和设备 WO2013013493A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/234,807 US9926243B2 (en) 2011-07-28 2012-07-16 Process and device for separation by simulated moving bed adsorption
IN537CHN2014 IN2014CN00537A (zh) 2011-07-28 2012-07-16
KR1020137034559A KR101828899B1 (ko) 2011-07-28 2012-07-16 모의 이동상 흡착 분리 방법 및 장치
JP2014521912A JP6109168B2 (ja) 2011-07-28 2012-07-16 擬似移動床吸着を用いた分離方法および分離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110213323.5A CN102895800B (zh) 2011-07-28 2011-07-28 模拟移动床吸附分离方法和设备
CN201110213323.5 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013013493A1 true WO2013013493A1 (zh) 2013-01-31

Family

ID=47553743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000956 WO2013013493A1 (zh) 2011-07-28 2012-07-16 模拟移动床吸附分离方法和设备

Country Status (8)

Country Link
US (1) US9926243B2 (zh)
JP (1) JP6109168B2 (zh)
KR (1) KR101828899B1 (zh)
CN (1) CN102895800B (zh)
FR (1) FR2978357B1 (zh)
IN (1) IN2014CN00537A (zh)
TW (1) TWI534135B (zh)
WO (1) WO2013013493A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026129A1 (en) 2020-07-31 2022-02-03 Exxonmobil Chemical Patents Inc. Processes for producing high-octane-number fuel component
CN114160096A (zh) * 2022-02-08 2022-03-11 中海油天津化工研究设计院有限公司 一种分离碳八芳烃中乙苯的吸附剂及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017558B2 (en) * 2011-12-15 2015-04-28 Uop Llc System and process for recovering products using simulated-moving-bed adsorption
CN104513125B (zh) * 2013-09-29 2016-08-24 中国石油化工股份有限公司 一种用液相模拟移动床吸附分离c8芳烃的方法
CN105521623A (zh) * 2014-10-24 2016-04-27 中国石化扬子石油化工有限公司 一种减少吸附塔床层管线体积的模拟移动床吸附分离设备
CN106310712B (zh) * 2015-06-30 2018-06-15 中国石油化工股份有限公司 一种降低吸附分离装置吸附塔与旋转阀间床层管线残余液体影响的方法
CN108017502B (zh) * 2016-10-28 2021-08-06 中国石油化工股份有限公司 模拟移动床吸附分离碳八芳烃中对二甲苯的方法
US10124273B1 (en) * 2017-09-30 2018-11-13 Uop Llc Process for a dual extract flush
KR102047185B1 (ko) * 2018-04-25 2019-11-20 한화토탈 주식회사 유사 이동층 흡착 분리 장치
FR3082755B1 (fr) * 2018-06-20 2022-12-30 Ifp Energies Now Procede et dispositif de separation en lit mobile simule a nombre de lits reduit avec debit de fluide de derivation
US11027221B2 (en) 2018-10-19 2021-06-08 Uop Llc Process for a dual extract flush
KR102023049B1 (ko) 2019-05-24 2019-09-20 한양대학교 산학협력단 2,3-부탄디올 이성질체의 흡착 분리 방법
KR102446964B1 (ko) 2019-08-21 2022-09-26 한양대학교 산학협력단 네오아가로올리고당 혼합물의 흡착 분리 장치 및 분리 방법
CN111603805B (zh) * 2020-06-01 2021-11-02 中国石油化工股份有限公司 吸附分离二甲苯用模拟移动床装置的反冲洗方法
CN115721964A (zh) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 模拟移动床吸附分离系统和从原料中同时分离三种组分的方法
CN115721965A (zh) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 模拟移动床吸附分离装置和从原料中同时分离三种组分的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313015A (en) * 1980-02-07 1982-01-26 Uop Inc. Separation process
CN1106370A (zh) * 1994-10-22 1995-08-09 中国石化扬子石油化工公司 改进的吸附分离生产高纯度对二甲苯的方法
CN1379007A (zh) * 2001-03-29 2002-11-13 法国石油公司 包括两级分离的联产对二甲苯和间二甲苯的方法
CN101293807A (zh) * 2007-04-26 2008-10-29 Ifp公司 包括模拟移动床吸附与结晶的高纯度间二甲苯的生产方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3040777A (en) 1959-04-10 1962-06-26 Universal Oil Prod Co Rotary valve
US3201491A (en) 1962-09-05 1965-08-17 Universal Oil Prod Co Continuous sorption process with emphasis on product purity
US3626020A (en) 1969-03-12 1971-12-07 Universal Oil Prod Co Separation of paraxylene from mixture of c aromatic utilizing crystalline aluminosilicate adsorbent
US3686342A (en) 1970-09-18 1972-08-22 Universal Oil Prod Co Aromatic hydrocarbon separation by adsorption
US3997620A (en) 1975-10-28 1976-12-14 Uop Inc. Process for separating para-xylene
US4326092A (en) 1980-07-17 1982-04-20 Uop Inc. Process for the separation of meta-xylene
DE69406803T2 (de) * 1993-09-15 1998-06-25 Exxon Chemical Patents Inc Adsorptionsseparationsprozess mit mehrstufigem spülen
WO1996012542A1 (fr) 1994-10-22 1996-05-02 Yangzi Petro-Chemical Corp. Sinopec. Procede perfectionne de separation par adsorption a lit mobile simule
US5750820A (en) 1995-09-15 1998-05-12 Wei; Chiu N. Multiple grade flush adsorption separation process
FR2750886B1 (fr) 1996-07-11 1998-09-25 Inst Francais Du Petrole Dispositif de rincage dans une unite d'adsorption en lit mobile simule et son utilisation
FR2751888B1 (fr) 1996-07-31 1998-09-11 Inst Francais Du Petrole Dispositif et procede de rincage en lit mobile simule comportant au moins deux lignes de distribution de fluides
FR2756751B1 (fr) * 1996-12-05 1999-01-08 Inst Francais Du Petrole Dispositif de rincage dans une unite d'adsorption en lit mobile simule comprenant deux lignes de distribution de fluides et son utilisation
US6004518A (en) 1997-12-12 1999-12-21 Uop Llc High-purity simulated moving bed adsorptive separation apparatus
FR2772634B1 (fr) 1997-12-22 2000-02-18 Inst Francais Du Petrole Procede et dispositif d'amelioration de la purete d'un produit en lit mobile simule
US6222088B1 (en) * 1999-09-27 2001-04-24 Uop Llc Monomethyl paraffin adsorptive separation process
US6387256B1 (en) * 2000-07-10 2002-05-14 Waters Investments Limited Chromatography column
TW200643095A (en) 2005-02-28 2006-12-16 Toagosei Co Ltd Active energy ray-curable composition
CN1879928A (zh) * 2006-05-15 2006-12-20 江苏汉邦科技有限公司 基于动态轴向压缩柱技术的模拟移动床色谱装置
FR2925350B1 (fr) * 2007-12-21 2009-12-11 Inst Francais Du Petrole Dispositif perfectionne de separation en lit mobile simule.
SG10201402262QA (en) * 2009-05-29 2014-08-28 Exxonmobil Chem Patents Inc Parex Unit Feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313015A (en) * 1980-02-07 1982-01-26 Uop Inc. Separation process
CN1106370A (zh) * 1994-10-22 1995-08-09 中国石化扬子石油化工公司 改进的吸附分离生产高纯度对二甲苯的方法
CN1379007A (zh) * 2001-03-29 2002-11-13 法国石油公司 包括两级分离的联产对二甲苯和间二甲苯的方法
CN101293807A (zh) * 2007-04-26 2008-10-29 Ifp公司 包括模拟移动床吸附与结晶的高纯度间二甲苯的生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026129A1 (en) 2020-07-31 2022-02-03 Exxonmobil Chemical Patents Inc. Processes for producing high-octane-number fuel component
CN114160096A (zh) * 2022-02-08 2022-03-11 中海油天津化工研究设计院有限公司 一种分离碳八芳烃中乙苯的吸附剂及其制备方法
CN114160096B (zh) * 2022-02-08 2022-05-17 中海油天津化工研究设计院有限公司 一种分离碳八芳烃中乙苯的吸附剂及其制备方法

Also Published As

Publication number Publication date
US9926243B2 (en) 2018-03-27
JP6109168B2 (ja) 2017-04-05
IN2014CN00537A (zh) 2015-04-03
KR101828899B1 (ko) 2018-02-13
FR2978357B1 (fr) 2021-02-26
TW201307281A (zh) 2013-02-16
TWI534135B (zh) 2016-05-21
FR2978357A1 (fr) 2013-02-01
JP2014529341A (ja) 2014-11-06
KR20140044340A (ko) 2014-04-14
CN102895800B (zh) 2016-05-25
US20140155674A1 (en) 2014-06-05
CN102895800A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
TWI534135B (zh) Simulated moving bed adsorption separation method and apparatus
TWI565513B (zh) Control of the number of control valves to reduce the number of simulated moving bed adsorption separation methods and equipment
KR101453147B1 (ko) 파렉스 유닛 공급물
US20130153500A1 (en) System and process for recovering products using simulated-moving-bed adsorption
US9024105B1 (en) System and process for flushing residual fluid from transfer lines in simulated moving bed adsorption
CN104511184B (zh) 一种吸附分离c8芳烃所用模拟移动床的管线冲洗方法
KR101615467B1 (ko) 모사 이동층 흡착을 사용한 생성물을 회수하기 위한 시스템 및 방법
RU2556668C1 (ru) Система и способ извлечения продуктов с использованием адсорбции с псевдодвижущимся слоем
TW201304848A (zh) 自吸附分離清洗流體之產品回收
US20130158335A1 (en) System and process for recovering products using simulated-moving-bed adsorption
US20130153503A1 (en) System and process for recovering products using simulated-moving-bed adsorption
TWI524928B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
TWI496614B (zh) 以模擬移動床吸附法進行產品回收的系統和流程
US20130153502A1 (en) System and process for recovering products using simulated-moving-bed adsorption
WO2013089922A1 (en) System and process for recovering products using simulated-moving-bed adsorption

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034559

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234807

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014521912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817470

Country of ref document: EP

Kind code of ref document: A1