WO2013013357A1 - 两亲高分子及其用途 - Google Patents

两亲高分子及其用途 Download PDF

Info

Publication number
WO2013013357A1
WO2013013357A1 PCT/CN2011/001579 CN2011001579W WO2013013357A1 WO 2013013357 A1 WO2013013357 A1 WO 2013013357A1 CN 2011001579 W CN2011001579 W CN 2011001579W WO 2013013357 A1 WO2013013357 A1 WO 2013013357A1
Authority
WO
WIPO (PCT)
Prior art keywords
amphiphilic polymer
formula
mol
structural unit
integer
Prior art date
Application number
PCT/CN2011/001579
Other languages
English (en)
French (fr)
Inventor
王金本
史学峰
徐晓慧
杨慧
王毅琳
阎海科
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to DK11869802.6T priority Critical patent/DK2738237T3/en
Priority to CA2842704A priority patent/CA2842704C/en
Priority to EA201490337A priority patent/EA025834B1/ru
Priority to ES11869802.6T priority patent/ES2615235T3/es
Priority to EP11869802.6A priority patent/EP2738237B1/en
Priority to US14/235,034 priority patent/US9243095B2/en
Publication of WO2013013357A1 publication Critical patent/WO2013013357A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms

Definitions

  • the invention relates to an amphiphilic polymer and the use thereof, and the amphiphilic polymer is suitable for oil field drilling, cementing, fracturing, crude oil gathering and transportation, sewage treatment, sludge treatment and papermaking, and can be used as an enhanced oil recovery drive.
  • Chemical flooding represented by polymer flooding, is one of the most effective and potential measures to improve oil recovery.
  • the widely used partially hydrolyzed polyacrylamide polymer has a rapid increase in viscosity-increasing ability and thermal stability under high-temperature and high-salt reservoir conditions, and it does not have surface/interface activity itself, and can not effectively start the oil film, and the ability to excavate the remaining oil is limited.
  • the polymer-based binary composite system (polymer/surfactant) and the ternary composite system (polymer/surfactant/base) enhance the emulsion stability of the crude oil production fluid, resulting in oil-water separation and sewage.
  • the difficulty of treatment is increased, and at the same time, under the condition of reservoir, the problem of weakening synergy between components is easily caused, and damage to the reservoir may be caused.
  • the application of composite systems is thus greatly limited.
  • Heavy oil is a general term for unconventional oil, including heavy oil, high viscosity oil, oil sand, natural asphalt, etc., which is called heavy oil, extra heavy oil, asphalt, and the like. More than 70% of the world's approximately 10 trillion barrels of remaining oil resources are heavy oil resources. China's onshore heavy oil and asphalt resources account for more than 20% of total petroleum resources. According to incomplete statistics, heavy oil proven and controlled reserves have reached 1.6 billion tons. Heavy oil resources have become one of China's important strategic succession resources, but mining It is very difficult. Chemical emulsification and viscosity reduction methods have become important mining techniques.
  • the polymer emulsification viscosity reducer generally refers to a high molecular weight surfactant having a relative surface molecular weight of several thousand or more and having a remarkable surface activity, and can be classified into four types according to the ion type: anionic type, cationic type, zwitterionic type and nonionic type.
  • Polymer surfactants have limited ability to reduce surface tension and oil-water interfacial tension, but they have excellent ability to emulsify and disperse heavy oils, with low dosage, high viscosity reduction of heavy oil, low cost and easy process implementation. In addition, the research has gradually attracted attention in recent years.
  • the present invention relates to an amphiphilic polymer having repeating units as described below: structural unit A, high sterically hindered structural unit B, and amphiphilic structure for regulating molecular weight, molecular weight distribution, and charge characteristics Unit C.
  • the structural unit A which modulates the molecular weight, molecular weight distribution and charge characteristics comprises (meth)acrylamide-based monomer units and/or (meth)acrylic monomer units A 2 ;
  • the (meth)acrylamide monomer unit and the (meth)acrylic monomer unit A 2 are included .
  • the molecular weight of the amphiphilic polymer can usually be selected as needed, and the use is relatively between 100 and 20 million.
  • the (meth)acrylamide monomer unit has a structure represented by the following formula (1):
  • 1 is 11 or a methyl group
  • R 2 and R 3 are each independently an alkyl group selected from H and C r C 3
  • R 2 and R 3 are preferably H.
  • the (meth)acrylic monomer unit A 2 is (meth)acrylic acid and/or (meth)acrylic acid salt; and the methacrylic acid salt is preferably sodium methacrylate.
  • the (meth)acrylamide monomer unit A accounts for 70 to 99 mol%, preferably 70 to 90 mol%, more preferably 70 to 80 mol%, based on the total number of repeating units of the entire amphiphilic polymer. .
  • the (methyl;) acrylic monomer unit A 2 accounts for 1 to 30 mol%, preferably 1 to 28 mol%, more preferably 20 to 28 mol%, based on the total number of repeating units of the entire amphiphilic polymer. .
  • the structural unit A which regulates the molecular weight, molecular weight distribution, and charge characteristics has a structure represented by the following formula (2):
  • R 2 and R 3 are each independently selected from H, dC 3 alkyl; R 2 and R 3 are preferably H; selected from H or methyl; Gr is -OH or - 0"Na + ; m and n represent the mole percentage of the structural unit in all repeating units of the entire amphiphilic polymer; m is 70-99 mol%, preferably 70-90 mol%, more preferably 70-80 mol%; It is 1 to 30 mol%, preferably 2 to 28 mol%, more preferably 20 to 28 mol%.
  • Gr is preferably -0"Na + .
  • the high sterically hindered structural unit B contains at least a structure G, which is an annular hydrocarbon structure formed on the basis of two adjacent carbon atoms of the main chain or is selected from the formula (3)
  • the structure indicated, optionally in the structural unit B, contains the formula (4)
  • R6 is selected from the group represented by the following formulas (5) to (6): CY ⁇ Q(CH 2 ) 2 COOCH 2 CH 3
  • a is an integer of 1 to 11; preferably 1 to 7;
  • R 7 is H
  • R 8 is selected from H, -S0 3 H and a salt thereof, -(CH 2 ) 2 CH 3 C1
  • the high sterically hindered structural unit B contains the structure G and the structure shown in the formula (4).
  • the structure G in the above high sterically hindered structural unit B accounts for 0.02-2 mol%, preferably 0.02-1.0 mol%, more preferably 0.05-0.5 mol%, of all repeating units of the entire amphiphilic polymer. .
  • the structure represented by the formula (4) in the above high sterically hindered structural unit B accounts for 0.05 to 5 mol%, preferably 0.1 to 2.5 mol%, more preferably in the total repeating unit of the entire amphiphilic polymer. It is from 0.15 to 0.75 mol%.
  • the high element B has the structure shown in the formula (7):
  • the structure represented by the formula (3) is preferably a structure represented by the formula (3),
  • R 7 and R 8 are as defined in formula (4);
  • X and y respectively represent the mole percentage of the structural unit in all repeating units of the entire amphiphilic polymer;
  • X is 0.02-2 mol%, preferably 0.02-1.0 Mol%, more preferably 0.05-0.5 mol%;
  • y is 0.05-5 mol%, preferably 0.1-2.5 mol%, more preferably 0.15-0.75 mol%.
  • the amphiphilic structural unit C has the structure shown in the formula (8):
  • R 9 is H or methyl, R 1 () is -0- or -NH-; R n is a linear hydrocarbon group, a branched hydrocarbon group, a polyoxyethylene group (PEO), a polyoxypropylene group. a group of a base (PPO), a PEO and PPO block, a monoquaternary ammonium salt, a polyquaternary ammonium salt or a sulfonic acid and a salt thereof.
  • the above-mentioned amphiphilic structural unit C has a molar percentage of 0.05 to 10 mol%, preferably 0.1 to 5.0 mol%, more preferably 0.2 to 1.7 mol%, based on the entire repeating unit of the amphiphilic polymer.
  • the structure consisting of R 1 ( ) and Ru can be selected from
  • g, i, k, and q are each an integer of 1-6, preferably 2-4; h, j are each an integer of 3-21, preferably 3-17; p is an integer of 3-9, preferably 3-5 a is an integer of 1-12, preferably 1-8; ⁇ , ⁇ are each an integer of 0-40, ⁇ is preferably 0-25, ⁇ is preferably 0-15; ⁇ is an integer of 0-21, preferably 0-17; ⁇ is an integer of 4-18, preferably 4-12; ⁇ is an integer of 1 to 21, preferably 1-15; ⁇ , ⁇ are each an integer of 1-30, preferably 1-20; ⁇ , ⁇ are 3-21 respectively An integer, preferably 3-17; ⁇ is an integer from 0 to 9, preferably 0-5; r is an integer from 3 to 21, preferably 3-17; s is an integer from 3 to 9, preferably 3-5; X- is C1—or Br—.
  • R4, m, n are as defined in the formula; R 7 , R 8 , G, x, y are as defined in the formula (7;); R 9 , R 10 , R n are defined as
  • z represents the mole percentage of the structural unit in all the repeating units of the entire amphiphilic polymer, and z is from 0.05 to 10 mol%, preferably from 0.1 to 5.0 mol%, more preferably from 0.2 to 1.7 mol.
  • the invention specifically provides a polymer compound of the following formula:
  • the amphiphilic polymer of the present invention has a molecular weight of from 1,000,000 to 20,000,000; preferably from 3 million to 14 million.
  • amphiphilic polymer of the present invention can be produced by a method known in the art, for example, by structural unit monomers, high space sites which function to adjust molecular weight, molecular weight distribution and charge characteristics.
  • the blocking structural unit monomer and the amphiphilic structural unit monomer are polymerized by an initiator; the polymerization reaction may be a polymerization method well known in the art such as suspension polymerization, emulsion polymerization, solution polymerization, precipitation polymerization, and the like.
  • a typical preparation method is as follows: Dispersing or dissolving the above monomers in a water system by stirring, and initiating polymerization under nitrogen gas to form an amphiphilic polymer.
  • the related art for preparing an amphiphilic polymer in the prior art can be used for the preparation of the amphiphilic polymer of the present invention.
  • the monomers used in the preparation of the amphiphilic polymer can be directly obtained commercially or directly prepared according to the prior art to IJ.
  • the synthesis route of some monomers is described in detail in the specific examples.
  • Example 1 is a graph showing the viscosity-concentration relationship of an amphiphilic polymer prepared in Example 5 of Example 1 of the present invention at 80 ° C in 2 X 10 4 mg/L salinity brine.
  • Example 2 is a graph showing the viscosity-temperature relationship of an amphiphilic polymer prepared in Example 5 of Example 1 of the present invention at a concentration of 1 750 mg/L in 3 X 10 4 mg/mineralized saline.
  • amphiphilic polymer synthesized in this embodiment is represented by the formula (I:
  • the total weight of the total reaction system is added to the reaction vessel at a weight of 1/4 of the total reaction system.
  • the mole percentages m, n, x, y, z of each repeating unit are 75%, 24.5%, and 0.15, respectively. %, 0.15%, 0.2%, they were completely dissolved by stirring, and a pH adjuster was added thereto to adjust the reaction solution to have a pH of about 9, and the oxygen was removed by nitrogen gas for 30 minutes.
  • the initiator was added under nitrogen protection, sealed with nitrogen for 10 min, and then reacted at 25 ° C.
  • the reaction was completed for about 6 h, and the reaction was completed.
  • the obtained product was dried to obtain a powdery amphiphilic polymer.
  • the amphiphilic polymer has a molecular weight of 660 x 10 4 .
  • amphiphilic polymer synthesized in this embodiment is represented by the formula ( ):
  • Measurement example 1 Different concentrations of the amphiphilic polymer solution were prepared using a salinity of 2 X 10 4 mg/L of saline, and the relationship between the solution concentration, the temperature and the solution viscosity was measured. The results are shown in Fig. 1 and Fig. 2.
  • the figure shows that the amphiphilic polymer solutions of Examples 1-5 still have good tackifying ability under high temperature and high salinity conditions.
  • the high steric hindrance unit in the amphiphilic polymer reduces the degree of rotational freedom in the main chain, increases the rigidity of the macromolecular chain, makes the macromolecular chain difficult to distort and tends to stretch, resulting in an increase in macromolecular hydrodynamic radius, and
  • the amphiphilic structural unit forms an association microdomain by intramolecular or intermolecular interaction, which significantly improves the solution viscosity-increasing ability under high temperature and high salt conditions.
  • Test method 25ml of three oilfield electro-de-oil samples were added to a 50ml plugged test tube at a temperature of 25 °C, and 25ml of an aqueous solution of amphiphilic polymers of different concentrations prepared by steaming water was added, and the test tube plug was tightly closed. Use manual mode to shake or place the test tube in the shaker box. Shake it horizontally 80-100 times. The amplitude should be greater than 20cm. After mixing thoroughly, loosen the test tube plug. The viscosity reduction rate of crude oil is calculated according to the following formula:
  • Example 6 Example 10 The results of viscosity reduction test of amphiphilic polymer heavy oil (oil to water ratio 1: 1 , 25 ° C )
  • Table 1 shows that the amphiphilic polymers of Examples 6-10 have a good viscosity reducing effect on the three oil samples. As the concentration of the amphiphilic polymer solution increases, the viscosity reduction rate increases. When the concentration of the solution is the same, the viscosity of the oil sample increases and the corresponding viscosity reduction rate increases. The amphiphilic polymer effectively emulsifies and disperses the crude oil through the synergistic action of the high steric hindrance unit and the amphiphilic structural unit, and the viscosity of the crude oil is remarkably lowered.
  • amphiphilic polymer of the present invention for oil field drilling, cementing, fracturing, crude oil gathering, sewage treatment, sludge treatment and papermaking, or as an enhanced oil recovery agent, heavy oil viscosity reducer, Fracturing fluid, clay stabilizer, sewage treatment agent, paper retention aid or reinforcing agent.
  • the solution When used as an oil displacing agent, the solution still has a significant viscosity-increasing effect under high temperature and high salt conditions, which can improve the recovery rate of crude oil.
  • a heavy oil viscosity reducer by effectively dispersing and emulsifying the heavy oil, the viscosity of the heavy oil is significantly reduced, and the flow resistance of the heavy oil in the formation and the wellbore is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Lubricants (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明提供了一种两亲高分子及其用途。该两亲高分子具有重复结构单元:调节分子量与分子量分布以及荷电特性作用的结构单元、高空间位阻结构单元和两亲结构单元,适用于油田钻井、固井、压裂、原油集输、污水处理、污泥处理和造纸等领域,可用作强化采油驱油剂、稠油降粘剂、压裂液、粘土稳定剂、污水处理剂、造纸用助留助滤剂或补强剂等。

Description

两亲高分子及其用途 技术领域
本发明涉及一种两亲高分子及其用途, 该两亲高分子适用于油田钻井、 固井、 压裂、 原油集输、 污水处理、 污泥处理和造纸等领域, 可用作强化采油驱油剂、 稠 油降粘剂、 压裂液、 粘土稳定剂、 污水处理剂、 造纸用助留助滤剂或补强剂等。 背景技术
以聚合物驱为代表的化学驱是提高原油采收率技术中最有效和具潜力的措施 之一。 随着聚合物驱技术的深入实施, 常规驱油用聚合物体系出现一些问题。 广泛 使用的部分水解聚丙烯酰胺聚合物在高温高盐油藏条件下增粘能力、 热稳定性迅速 降低, 同时其本身不具有表面 /界面活性, 不能有效启动油膜, 挖掘剩余油的能力 有限。 而以聚合物为基础的二元复合体系 (聚合物 /表面活性剂) 和三元复合体系 (聚合物 /表面活性剂 /碱)增强了原油采出液的乳化稳定性, 导致油水分离和污水 处理难度增大, 同时在油藏条件下容易造成组分间协同作用减弱的问题, 并可能对 油藏造成伤害。 复合体系的应用因而受到很大限制。
如何保持高分子溶液的增粘与稳粘性, 进一步延长油田稳产期, 实现"稳油控 水" 的战略目标, 这已经成为众多油田开发的难点和关键。
重油是非常规石油的统称, 包括重质油、 高粘油、 油砂、 天然沥青等, 也就是 所说的稠油、 特超稠油、 沥青等。 在全球大约 10万亿桶剩余石油资源中, 70%以上 是重油资源。 我国陆上重油、 沥青资源约占石油资源总量的 20%以上, 据不完全统 计, 重油探明和控制储量已达 16亿吨, 重油资源已经成为我国重要的战略接替资 源之一, 但开采难度很大。 化学乳化降粘方法已经成为重要的开采技术。
高分子乳化降粘剂通常是指相对分子质量数千以上,具有显著表面活性的高分 子表面活性剂, 按离子类型可分为阴离子型、 阳离子型、 两性离子型和非离子型四 大类。 高分子表面活性剂降低表面张力和油水界面张力的能力有限, 但其具有优良 的乳化和分散稠油的能力, 具有用量少、 稠油降粘率高、 成本较低和工艺实施简便 易行等优点, 近年来其研究逐渐受到关注。
发明公开
本发明以下内容中, 除另有定义外, 相同的可变基团、 分子式 /结构式等均具 有相同的定义。
本发明涉及一种两亲高分子,所述两亲高分子具有如下所述的重复单元: 调节 分子量、 分子量分布以及荷电特性作用的结构单元 A、 高空间位阻结构单元 B和两 亲结构单元 C。
在一个实施例中,所述调节分子量、分子量分布以及荷电特性作用的结构单元 A包括 (甲基)丙烯酰胺类单体单元 和/或 (甲基)丙烯酸类单体单元 A2;优选同时包 括 (甲基)丙烯酰胺类单体单元 和 (甲基)丙烯酸类单体单元 A2。 在本领域中, 两亲 高分子的分子量通常可根据需要进行选择, 使用比较多的是 100-2000万之间。 优选的, 所述 (甲基)丙烯酰胺类单体单元 具有如下式 (1)所示的结构:
Figure imgf000003_0001
式 (1)
式 (1)中, 1^为11或甲基; R2和 R3各自独立的选自 H、 CrC3的烷基; R2和 R3 优选为 H。
优选的, 所述 (甲基)丙烯酸类单体单元 A2为 (甲基)丙烯酸和 /或 (甲基)丙烯酸 盐; 甲基丙烯酸盐优选为甲基丙烯酸钠。
优选的,所述 (甲基)丙烯酰胺类单体单元 A在整个两亲高分子所有重复单元中 所占的摩尔百分数为 70-99mol%, 优选为 70-90mol%, 更优选 70-80mol%。
优选的, 所述 (甲基;)丙烯酸类单体单元 A2在整个两亲高分子所有重复单元中 所占的摩尔百分数为 l-30mol%, 优选 l-28mol%, 更优选 20-28mol%。
在另一个实施例中, 所述调节分子量、 分子量分布以及荷电特性作用的结构 单元 A具有如下式 (2)所示的结构:
Figure imgf000003_0002
式 (2)
其中, 1^为11或甲基; R2和 R3各自独立的选自 H、 d-C3的烷基; R2和 R3优 选为 H; 选自 H或甲基; Gr为 -OH或 -0"Na+; m和 n表示该结构单元在整个两亲 高分子所有重复单元中所占的摩尔百分数; m为 70-99mol%, 优选为 70-90mol%, 更优选 70-80mol% ; n为 l-30mol%, 优选 2-28mol%, 更优选 20-28mol%。
在另一个实施例中, 式 (2)中 - 优选为 H, Gr优选为 -0"Na+
在另一个实施例中,所述高空间位阻结构单元 B至少含有结构 G,所述结构 G 为以主链相邻两个碳原子为基础形成的环状烃结构或选自式 (3)表示的结构,结构单 元 B中任选的含有式 (4)所
Figure imgf000003_0003
式 (3) 式 (4)
式 (3)中, 为11或甲基; 优选为 H; R6选自如下式 (5)-(6)所示的基团: CY^― Q(CH2)2COOCH2CH3
-NH—— C ~ CH2—— Q(CH2)2COOCH2CH3
Figure imgf000004_0001
CH2― Q(CH2)2COOCH2CH3
式 (5) 式 (6)
式 (5)中, a为 1-11的整数; 优选为 1-7;
式 (4)中, R7为 H; R8选自 H、 -S03H及其盐、 -(CH2)2CH3C1、
-CH2N+(CH3)2(CH2 CH3Cr或 -CH2N+(CH3)2(CH2)2N+(CH3)2(CH2)。CH32Cr; ξ、 σ分另 ij 为 1-15的整数, 优选 1-11。
优选的, 所述高空间位阻结构单元 B含有结构 G和式 (4)所示的结构。
在另一个实施例中, 所述以主链相邻两个碳原子为基础形成的环状烃结构选
Figure imgf000004_0002
优选的, 上述高空间位阻结构单元 B中结构 G在整个两亲高分子所有重复单 元中所占的摩尔百分数为 0.02-2mol%,优选 0.02-1.0mol%,更优选为 0.05-0.5mol%。
优选的, 上述高空间位阻结构单元 B中式 (4)所示的结构在整个两亲高分子所 有重复单元中所占的摩尔百分数为 0.05-5mol%, 优选为 0.1-2.5mol%, 更优选为 0.15-0.75mol%。
在另一个实施例中, 所述高 元 B具有式 (7)所示的结构:
Figure imgf000004_0003
式 (7)
式 (7) 所述, 优选为式 (3)所表示的结构、
Figure imgf000004_0004
¾c、
NHCOCH3
Figure imgf000004_0005
R7和 R8的定义如式 (4)所述; X和 y分别表示该结构单元在整个两亲高分子所 有重复单元中所占的摩尔百分数; X为 0.02-2mol%, 优选 0.02-1.0mol%, 更优选为 0.05-0.5mol%; y为 0.05-5mol%, 优选为 0.1-2.5mol%, 更优选为 0.15-0.75mol%。 在另一个实施例中, 所述两亲结构单元 C具有式 (8)所示的结构:
Figure imgf000005_0001
式 (8)
式 (8)中, R9为 H或甲基, R1()为 -0-或 -NH-; Rn为含有直链烃基、 支链烃基、 聚氧乙烯基 (PEO)、 聚氧丙烯基 (PPO)、 PEO与 PPO嵌段、 单季铵盐、 多季铵盐或 磺酸及其盐的基团。
优选的, 上述两亲结构单元 C在整个两亲高分子所有重复单元中所占的摩尔 百分数为 0.05-10mol%, 优选 0.1-5. Omol%, 更优选 0.2-1.7mol%。
在另一个实施例中, R1()与 Ru组成的结构可选自
-0(CH2)gN+(CH3)2(CH2)hCH3X、 - H(CH2)1N+(CH3)2(CH2)JCH3X、
-0(CH2)kN+((CH2)fCH3)pX
-0(CH2)qN+(CH3)2(CH2)aCH(S03H)CH2(EO)p(PO (CH2)sCH3X、
- H(CH2)qN+(CH3)2(CH2)aCH(S03H)CH2(EO)p(PO (CH2)sCH3X、
-0(CH2)qN+(CH3)2(CH2)aCH(COOH)CH2(EO)p(PO)Y(CH2)sCH3X、
- H(CH2)qN+(CH3)2(CH2)aCH(COOH)CH2(EO)p(PO)Y(CH2)sCH3X
-0(CH2)2N+(CH3)2(CH2)eS03 -(OCH(CH2N+(CH3)2(CH2)?CH3Cr)CH2)110(CH2)eCH3 -(OCH(CH2N+((CH2 CH3)3Cr)CH2XO(CH2)KCH3、 -OCH(CH2N+(CH3)2(CH2)rCH3X ))2
-OCH(CH2N+((CH2)sCH3)3X ))2
其中, g、 i、 k、 q分别为 1-6的整数, 优选 2-4; h、 j分别为 3-21的整数, 优 选 3-17; p为 3-9的整数, 优选 3-5 ; a为 1-12的整数, 优选 1-8; β、 γ分别为 0-40 的整数, β优选 0-25, γ优选 0-15 ; δ为 0-21的整数, 优选 0-17; ε为 4-18的整数, 优选 4-12; ζ为 1-21的整数, 优选 1-15 ; η、 ι分别为 1-30的整数, 优选 1-20; θ、 κ分别为 3-21的整数, 优选 3-17; λ为 0-9的整数, 优选 0-5 ; r为 3-21的整数, 优 选 3-17; s为 3-9的整数, 优选 3-5 ; X—为 C1—或 Br―。
在另一个实 :
Figure imgf000005_0002
Figure imgf000005_0003
式 (9) 式 9)中, R4, m, n的定义如式 所述; R7, R8, G, x, y的定义如式 (7;)所述; R9, R10, Rn的定义如上述式 (8)所述, z表示该结构单元在整个两亲高分子所有重 复单元中所占的摩尔百分数, z为 0.05- 10mol%,优选 0.1 -5.0mol%,更优选 0.2- 1.7mol 本发明具体提供了如下式高分子化合物:
Figure imgf000006_0001
(HI)
Figure imgf000007_0001
(VI)
Figure imgf000008_0001
(IX)
Figure imgf000009_0001
(X)
本发明上述两亲高分子的分子量为 100万 -2000万之间; 优选为 300万 -1400 万之间。
分子量 M的测定方法: 使用乌氏粘度计测定特性粘数 [;;], 并将测得的 [;;]代 入下面公式中计算得到;
= 802[^]1 25 本发明所述两亲高分子可采用本技术领域所已知的方法制备,例如: 通过起调 节分子量、 分子量分布以及荷电特性作用的结构单元单体、 高空间位阻结构单元单 体和两亲结构单元单体在引发剂作用下聚合而成; 聚合反应可以为悬浮聚合、 乳液 聚合、 溶液聚合、 沉淀聚合等本领域熟知的聚合方法。
典型的制备方法为: 在水体系中通过搅拌的方式分散或溶解上述各单体,在氮 气保护下引发聚合形成两亲性高分子。 现有技术中制备两亲高分子的相关技术均可 用于本发明的两亲高分子的制备。
制备两亲高分子所采用的单体均可直接商购获得,或依据现有技术直接制备得 至 IJ, 一些单体的合成路线在具体实施例中有详细说明。
附图说明
图 1为本发明实施例 1一实施例 5制得的两亲高分子在 2 X 104mg/L矿化度盐水 中 80°C下的粘浓关系曲线。
图 2为本发明实施例 1一实施例 5制得的两亲高分子在 3 X 104mg/矿化度盐水中 浓度为 1750mg/L时的粘温关系曲线。
实施发明的最佳方式
实施例 1
本实施例合成的两亲高分子如式( I 所示:
Figure imgf000010_0001
本实施例的未高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 78%、 20 % 0.25%、 0.25%、 1%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反 应溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引 发剂, 再通氮气 10 min后封口, 在 22°C下反应, 反应约 5 h反应结束, 反应完全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量 1360x l04
实施例 2
Figure imgf000010_0002
单体^ 的
Figure imgf000010_0003
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 73%、 25 % 0.15%、 0.15%、 1.7%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节 反应溶液, 使其 pH为 8左右, 通氮气 40 min除去其中的氧气。 在氮气保护下加入 引发剂, 再通氮气 10 min后封口,在 25 °C下反应, 反应约 5 h反应结束, 反应完全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 1010x l04
实施例 3
Figure imgf000011_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 再将占总反应体系重量 1/4的 各种单体加入反应釜,各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 24.5%、 0.15%、 0.15%、 0.2%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 lO min后封口, 在 25 °C下反应, 反应约 6 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 660x l04
实施例 4
Figure imgf000011_0002
Figure imgf000012_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23%、 0.05%、 0.5%、 1.45%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 lO min后封口, 在 25 °C下反应, 反应约 6 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 370x l04
实施例 5
Figure imgf000012_0002
(V)
Figure imgf000013_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 78%、 21%、 0.1%、 0.1%、 0.8%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶 液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。在氮气保护下加入引发剂, 再通氮气 lO min后封口, 在 25°C下反应, 反应约 6 h反应结束, 反应完全。 所得产 品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 450x l04
实施例 6
Figure imgf000013_0002
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 73%、 25%、 0.5%、 0.5%、 1%,搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发剂, 再 通氮气 lO min后封口, 在 45°C下反应, 反应约 3 h反应结束, 反应完全。 所得产品 经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 640x l04
实施例 7
本实施例合成的两亲高分子如式 ( )所示:
Figure imgf000014_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23%、 0.25%、 0.5%、 1.25%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 55 °C下反应, 反应约 3 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 107x l04
实施例 8
Figure imgf000014_0002
(環) 本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 70%、 28%、 0.15%、 0.75%、 1.1%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 55 °C下反应, 反应约 3 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 310x l04
实施例 9 本
Figure imgf000015_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜,各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23.5%、 0.5%、 0.2%、 0.8%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶 液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。在氮气保护下加入引发剂, 再通氮气 lO min后封口, 在 50°C下反应, 反应约 2.5 h反应结束, 反应完全。 所得 产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 720x l04
实施例 10
本实
Figure imgf000015_0002
( X) 本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23%、 0.5%、 0.5%、 1%,搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发剂, 再 通氮气 lO min后封口, 在 50°C下反应, 反应约 2 h反应结束, 反应完全。 所得产品 经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 520x l04
测定实施例
测定例 1 使用矿化度 2 X 104mg/L的盐水配制不同浓度的两亲高分子溶液, 测定溶液浓 度、 温度与溶液粘度的关系, 结果见图 1和图 2。
图中表明, 在高温和高矿化度条件下, 实施例 1-5的两亲高分子溶液仍具有良 好的增粘能力。 两亲高分子中的高空间位阻单元减小了主链内旋转自由度、 增加了 大分子链的刚性,使大分子链难于蜷曲而趋向伸展,导致大分子流体力学半径增大, 同时, 两亲结构单元通过分子内或分子间作用形成缔合微区, 显著提高了高温高盐 条件下的溶液增粘能力。
测定例 2
测试方法: 温度为 25 °C下, 将三种油田电脱原油样品 25ml加入 50ml具塞试 管中, 继续加入 25ml以蒸熘水配制的不同浓度两亲高分子的水溶液, 盖紧试管塞 后, 采用手工方式振荡或将试管放置在振荡箱内, 水平振荡 80-100次, 振幅应大于 20cm, 充分混合后, 松动试管塞。 原油降粘率按照下式计算:
降粘率 (%)=画口口口驅翻本謹
原油样品粘度
实施例 6—实施例 10制得的两亲高分子稠油降粘实验结果(油水比 1 : 1, 25 °C )
Figure imgf000016_0001
1200mg/L 330 630 710
63.33 91.49 94.08
400mg/L 470 1800 3600
47.78 75.68 70.00
600mg/L 390 1480 2400
56.67 80.00 80.00 实施例 800mg/L 310 975 1370
9 65.56 86.82 88.58
lOOOmg/L 260 675 1025
71.11 90.88 91.46
1200mg/L 230 580 840
74.44 92.16 93.00
400mg/L 505 1600 3800
43.89 78.38 68.33
600mg/L 425 1150 2350
52.78 84.46 80.42 实施例 800mg/L 350 825 1275
10 61.11 88.85 89.38
lOOOmg/L 315 695 1000
65.00 90.61 91.67
1200mg/L 280 625 825
68.89 91.55 93.13 表 1说明, 实施例 6-10的两亲高分子对于三种油样具有很好的降粘效果。 随 两亲高分子溶液浓度增加, 降粘率增大。 溶液浓度相同时, 油样粘度提高则相应降 粘率增大。两亲高分子通过高空间位阻单元与两亲结构单元的协同作用,有效乳化、 分散原油, 显著降低了原油粘度。
工业应用
本发明的两亲高分子的用途, 其用于油田钻井、 固井、 压裂、 原油集输、 污水 处理、 污泥处理和造纸, 或用作强化采油驱油剂、 稠油降粘剂、 压裂液、 粘土稳定 剂、 污水处理剂、 造纸用助留助滤剂或补强剂等。
特别适用于原油开采领域, 如可用作强化采油聚合物驱油剂和稠油降粘剂。作 为驱油剂使用时, 溶液在高温高盐条件下仍具有显著增粘效果, 能够提高原油采收 率。 作为稠油降粘剂时, 通过有效分散和乳化稠油, 显著降低稠油粘度、 减小稠油 在地层和井筒中流动阻力。

Claims

权利要求
1、 一种两亲高分子, 其特征在于: 具有调节分子量与分子量分布以及荷电特 性作用的结构单元 A、高空间位阻结构单元 B和两亲结构单元 C作为重复结构单元。 所述高空间位阻结构单元 B含有结构 G和式 (4)所示的结构, 其中所述结构 G为以 主链相邻两个碳原子为基础形成的环状烃结 (3)表示的结构:
Figure imgf000018_0001
式 (3)中: 为11或甲基; 优选为 H; R6选自如下式 (5)-(6)所示的基团:
,CH2― 0(CH2)2COOCH2CH3
— NH—— C—— CH2—— 0(CH2)2COOCH2CH3
Figure imgf000018_0002
CH2― 0(CH2)2COOCH2CH3
式 (5) 式 (6)
式 (5)中, a为 1-11的整数。
式 (4)中, R7为 H; R8选自 H、 -S03H及其盐、 -(CH2)2CH2C1、
-CH2N+(CH3)2(CH2 CH3Cr或 -CH2N+(CH3)2(CH2)2N+(CH3)2(CH2)。CH32Cr; ξ、 σ分别 为 1-15的整数。
2、 如权利要求 1所述的两亲高分子, 其特征在于: 所述起调节分子量、 分子 量分布以及荷电特性作用的结构单元 Α包括 (甲基)丙烯酰胺类单体单元 和/或 (甲 基)丙烯酸类单体单元 A2
3、 如权利要求 1所述的两亲高分子, 其特征在于: 所述两亲结构单元 C具有 式 (8)所示的结构:
—— i -,-c ^
¾1 式 (8)
式 (8)中, R9为 H或甲基, R1()为 -0-或 -NH -, Rn为含有直链烃基、 支链烃基、 聚氧乙烯基 (PEO) 、 聚氧丙烯基 (PPO)、 PEO与 PPO嵌段、 单季铵盐、 多季铵盐或 磺酸及其盐的基团。
4、 如权利要求 2所述的两亲高分子, 其特征在于: 以两亲高分子所有重复单 元总数为 100mol%计,所述 (甲基)丙烯酰胺类单体单元 在整个两亲高分子所有重 复单元中所占的摩尔百分数为 70-99mol%; 所述 (甲基)丙烯酸类单体单元 A2在整个 两亲高分子所有重复单元中所占的摩尔百分数为 l-30mol%。
5、 如权利要求 1所述的两亲高分子, 其特征在于: 结构 G在整个两亲高分子 所有重复单元中所占的摩尔百分数为 0.02-2mol%;式 (4)所示的结构在整个两亲高分 子所有重复单元中所占的摩尔百分数为 0.05-5mol%。
6、 如权利要求 3所述的两亲高分子, 其特征在于: 以两亲高分子所有重复单 元总数为 100mol%计, 所述式 (8)表示的结构单元在整个两亲高分子所有重复单元 中所占的摩尔百分数为 0.05-10mol%。
7、 如权利要求 1所述的两亲高分子, 其特征在于: 所述调节分子量、 分子量 分布以及荷电特性作用的结 示的结构:
Figure imgf000019_0001
式 (2)
式 (2)中, 1^为11或甲基; R2和 R3各自独立的选自 H、 d-C3的烷基; R4选自 H或甲基; Gr为 -OH或 -0"Na+; m和 n表示该结构单元在整个两亲高分子中所占的 摩尔百分数; m为 70-99mol%; n为 l-30mol%。
8、 如权利要求 1所述的两亲高分子, 其特征在于: 所述以主链相邻两个碳原 子为基础形成的环状烃结构选自::
Figure imgf000019_0002
9、 如权利要求 1所述的两亲高分子, 其特征在于: 所述高空间位阻结构单元 B具有式 (7)所示的结构:
Figure imgf000019_0003
式 (7)
式 (7)中, G的定义如权利要求 1所述; R7和 的定义如上述式 (4)中所述; X 和 y分别表示该结构单元在整个两亲高分子所有重复单元中所占的摩尔百分数, X 为 0.02-2mol%, y为 0.05-5mol%。
10、 如权利要求 3所述的两亲高分子, 其特征在于: 。与 Rn组成的结构可 选自 -0(CH2)gN+(CH3)2(CH2)hCH3X、 - H(CH2)1N+(CH3)2(CH2)JCH3X、
-0(CH2)kN+((CH2)pCH3)3X
-0(CH2)qN+(CH3)2(CH2)aCH(S03H)CH2(EO)p(PO (CH2)sCH3X、
- H(CH2)qN+(CH3)2(CH2)aCH(S03H)CH2(EO)p(PO (CH2)sCH3X、
-0(CH2)qN+(CH3)2(CH2)aCH(COOH)CH2(EO)p(PO)Y(CH2)sCH3X
- H(CH2)qN+(CH3)2(CH2)aCH(COOH)CH2(EO)p(PO)Y(CH2)sCH3X 、
-0(CH2)2N+(CH3)2(CH2)eS03 -(OCH(CH2N+(CH3)2(CH2)?CH3Cr)CH2)110(CH2)eCH3 -(OCH(CH2N+((CH2 CH3)3Cr)CH2XO(CH2)KCH3、 -OCH(CH2N+(CH3)2(CH2)rCH3X ))2
-OCH(CH2N+((CH2)sCH3)3X ))2
其中, g、 i、 k、 q分别为 1-6的整数; h、 j分别为 3-21的整数; p为 3-9的整 数; a为 1-12的整数; β、 γ分别为 0-40的整数; δ为 0-21的整数; ε为 4-18的整 数; ζ为 1-21的整数; η、 I分别为 1-30的整数; θ、 κ分别为 3-21的整数; λ为 0-9 的整数; r为 3-21的整数; s为 3-9的整数; X—为 C1—或 Br―。
11、如权利要求 1所述的两亲高分子, 其特征在于: 所述两亲高分子具有式 (9) 所示的结构:
Figure imgf000020_0001
式 (9)
式 (9)中, 选自 H或甲基; m和 n表示该结构单元在整个两亲高分子中所占 的摩尔百分数; m为 70-99mol%; n为 l-30mol% ; G、 R7、 R8、 x和 y的定义如上 述式 (7)所述; R9为 H或甲基, R1()为 -0-或 - H-; Rn为含有直链烃基、 支链烃基、 聚氧乙烯基 (PEO) 、 聚氧丙烯基 (PPO)、 PEO与 PPO嵌段、 单季铵盐、 多季铵盐或 磺酸及其盐的基团; z表示该结构单元在整个两亲高分子所有重复单元中所占的摩 尔百分数, z为 0.05-10mol%。
12、 如权利要求 1所述的两亲高分子, 所述高分子是下述式(I MX)化合物:
Figure imgf000021_0001
(HI) 6卜 Ssos/uosId〇AV
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
~fCH2了" HCH2
( X)
13、 如权利要求 1-12任一项所述的两亲高分子, 其特征在于: 分子量为 100 万 -2000万之间。
14、 权利要求 1-13任一项所述的两亲高分子的用途, 其特征在于: 用于油田 钻井、 固井、 压裂、 原油集输、 污水处理、 污泥处理和造纸, 或用作强化采油驱油 剂、稠油降粘剂、压裂液、粘土稳定剂、污水处理剂、造纸用助留助滤剂或补强剂。
PCT/CN2011/001579 2011-07-26 2011-09-16 两亲高分子及其用途 WO2013013357A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK11869802.6T DK2738237T3 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and its use
CA2842704A CA2842704C (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use thereof
EA201490337A EA025834B1 (ru) 2011-07-26 2011-09-16 Амфифильная макромолекула и ее применение
ES11869802.6T ES2615235T3 (es) 2011-07-26 2011-09-16 Macromolécula anfifílica y su uso
EP11869802.6A EP2738237B1 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use thereof
US14/235,034 US9243095B2 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110210362XA CN102432749B (zh) 2011-07-26 2011-07-26 两亲高分子及其用途
CN201110210362.X 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013013357A1 true WO2013013357A1 (zh) 2013-01-31

Family

ID=45981131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001579 WO2013013357A1 (zh) 2011-07-26 2011-09-16 两亲高分子及其用途

Country Status (9)

Country Link
US (1) US9243095B2 (zh)
EP (1) EP2738237B1 (zh)
CN (1) CN102432749B (zh)
CA (1) CA2842704C (zh)
DK (1) DK2738237T3 (zh)
EA (1) EA025834B1 (zh)
ES (1) ES2615235T3 (zh)
MY (1) MY166451A (zh)
WO (1) WO2013013357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243095B2 (en) 2011-07-26 2016-01-26 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104371061B (zh) 2013-08-14 2016-08-17 中国石油化工股份有限公司 一种阳离子聚合物及其在堵漏剂中的应用
WO2016058960A1 (en) 2014-10-15 2016-04-21 Snf Sas Chemically enhanced oil recovery method using viscosity-increasing polymeric compounds
RU2700418C2 (ru) * 2017-07-11 2019-09-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Способ получения амфифильных статистических сополимеров
CN109992836B (zh) * 2019-03-05 2021-09-28 中国石油化工股份有限公司 适应不同油藏需求的粘弹性颗粒驱油剂高效选择方法
US11274240B2 (en) 2019-07-10 2022-03-15 Halliburton Energy Services, Inc. Cationic formation stabilizers compatible with anionic friction reducing polymers
CN110511329A (zh) * 2019-07-18 2019-11-29 中国石油天然气股份有限公司 一种含芳香基的聚合物型表面活性剂及其制备方法和应用
CN112358862B (zh) * 2020-09-07 2022-08-09 中国石油天然气股份有限公司 一种适用于低流度致密油储层的驱油降粘压裂液
CN114426832A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 一种边底水稠油油藏控水降粘剂的控水降粘方法
CN114456793B (zh) * 2020-10-21 2023-06-20 中国石油化工股份有限公司 一种针对低渗透稠油油藏的自降粘压裂液及其制备方法
CN114276488B (zh) * 2022-03-03 2022-06-03 河南博源新材料有限公司 一种长支链多头的阳离子型聚丙烯酰胺及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959432A (en) * 1986-05-19 1990-09-25 Union Carbide Chemicals And Plastics Company Inc. Acid viscosifier compositions
CN101463116A (zh) * 2009-01-12 2009-06-24 成都理工大学 非线型缔合水溶性四元共聚物及其制备方法和用途
US20100093874A1 (en) * 2007-04-05 2010-04-15 Rhodia Operations Copolymer including betaine units and hydrophobic and/or amphiphilic units, method for preparing same and uses thereof
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法
CN101857663A (zh) * 2009-04-09 2010-10-13 北京佛瑞克技术发展有限公司 用于酸压裂温控变粘的聚合物和聚合物交联体的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653584A (en) * 1985-05-30 1987-03-31 The Standard Oil Company Maleimide-modified bioresistant polymers and enhanced oil recovery method employing same
CN1314720C (zh) * 2004-12-13 2007-05-09 大连广汇化学有限公司 高分子量两性高分子的制备方法
CN101284893B (zh) * 2008-06-06 2010-10-27 成都理工大学 梳型两亲水溶性共聚物及其制备方法和用途
CN101492515B (zh) * 2009-01-23 2011-06-15 成都理工大学 丙烯酰胺改性接枝共聚物及其制备方法和用途
CN101570697B (zh) * 2009-06-01 2013-01-02 中国科学院化学研究所 一种原油破乳剂
CN101798503B (zh) * 2010-01-05 2012-07-11 西南石油大学 一种用于提高采收率的聚合物驱油剂及其应用
CN102432749B (zh) 2011-07-26 2013-08-28 北京君伦润众科技有限公司 两亲高分子及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959432A (en) * 1986-05-19 1990-09-25 Union Carbide Chemicals And Plastics Company Inc. Acid viscosifier compositions
US20100093874A1 (en) * 2007-04-05 2010-04-15 Rhodia Operations Copolymer including betaine units and hydrophobic and/or amphiphilic units, method for preparing same and uses thereof
CN101463116A (zh) * 2009-01-12 2009-06-24 成都理工大学 非线型缔合水溶性四元共聚物及其制备方法和用途
CN101857663A (zh) * 2009-04-09 2010-10-13 北京佛瑞克技术发展有限公司 用于酸压裂温控变粘的聚合物和聚合物交联体的制备方法
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243095B2 (en) 2011-07-26 2016-01-26 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and use thereof

Also Published As

Publication number Publication date
EP2738237A1 (en) 2014-06-04
CA2842704C (en) 2016-01-12
DK2738237T3 (en) 2017-03-06
US9243095B2 (en) 2016-01-26
EA025834B1 (ru) 2017-02-28
CA2842704A1 (en) 2013-01-31
EP2738237B1 (en) 2016-12-14
EA201490337A1 (ru) 2014-05-30
CN102432749B (zh) 2013-08-28
CN102432749A (zh) 2012-05-02
EP2738237A4 (en) 2015-08-05
ES2615235T3 (es) 2017-06-06
US20150065672A1 (en) 2015-03-05
MY166451A (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2013013357A1 (zh) 两亲高分子及其用途
WO2013013355A1 (zh) 两亲高分子和用途
CN101463116B (zh) 非线型缔合水溶性四元共聚物及其制备方法和用途
CN101284893B (zh) 梳型两亲水溶性共聚物及其制备方法和用途
EP2738189B1 (en) Amphiphilic macromolecule and use thereof
CN102952531A (zh) 一种海上油田驱油用表面活性剂及其制备方法
WO2013013356A1 (zh) 一种两亲高分子和用途
US20160068743A1 (en) Extraction fluids based on associative polymers and on labile surfactants
BR112019028283A2 (pt) composições de polímero de alta estabilidade com compostos de poli(alquil)acrilato para aplicações de recuperação de óleo intensificadas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2842704

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011869802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011869802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201490337

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 14235034

Country of ref document: US