WO2013013356A1 - 一种两亲高分子和用途 - Google Patents

一种两亲高分子和用途 Download PDF

Info

Publication number
WO2013013356A1
WO2013013356A1 PCT/CN2011/001578 CN2011001578W WO2013013356A1 WO 2013013356 A1 WO2013013356 A1 WO 2013013356A1 CN 2011001578 W CN2011001578 W CN 2011001578W WO 2013013356 A1 WO2013013356 A1 WO 2013013356A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
amphiphilic polymer
mol
structural unit
molecular weight
Prior art date
Application number
PCT/CN2011/001578
Other languages
English (en)
French (fr)
Inventor
王金本
史学峰
徐晓慧
韩玉淳
王毅琳
阎海科
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Priority to EP11870061.6A priority Critical patent/EP2738190B1/en
Priority to ES11870061.6T priority patent/ES2641318T3/es
Priority to CA2842705A priority patent/CA2842705C/en
Priority to NO11870061A priority patent/NO2738190T3/no
Priority to EA201490340A priority patent/EA025880B1/ru
Priority to DK11870061.6T priority patent/DK2738190T3/en
Priority to US14/235,035 priority patent/US9260555B2/en
Priority to MYPI2014700166A priority patent/MY173059A/en
Publication of WO2013013356A1 publication Critical patent/WO2013013356A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • C09K8/604Polymeric surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/607Compositions for stimulating production by acting on the underground formation specially adapted for clay formations
    • C09K8/608Polymer compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate

Definitions

  • the invention relates to an amphiphilic polymer and the use thereof, and the amphiphilic polymer is suitable for oil field drilling, cementing, fracturing, crude oil gathering and transportation, sewage treatment, sludge treatment and papermaking, and can be used as an enhanced oil recovery drive.
  • the main function of the tertiary oil recovery polymer is to reduce the fluidity ratio, adjust the water absorption profile, and improve the oil recovery profile by increasing the viscosity of the solution and reducing the water phase permeability of the reservoir.
  • Solution viscosity and viscosity stability are important indicators for measuring the effect of polymer flooding and are a key issue affecting mining results.
  • the comprehensive moisture content of oil fields continues to increase, the difficulty of oilfield exploitation and stable production is increasing, and the requirements for polymers for tertiary oil recovery are also increasing.
  • Heavy oil mining is a common problem worldwide. Heavy oil has the characteristics of high viscosity, colloidal asphaltene or high wax content. The heavy oil concentrates about 70% of sulfur and about 90% of nitrogen in crude oil, and the lighter part of heavy oil accounts for about 70% of the total. The part that can be converted by the current technology, but efficient conversion is still difficult; the heavier part, which accounts for about 20% of the total heavy oil, is difficult to convert directly with the existing technology; the heaviest 10% is the heavy oil residue, rich More than 70% of the metals in heavy oil and more than 40% of the sulfur and nitrogen are not effectively converted into light products. Heavy oil is not easy to flow in the formation, wellbore and oil pipelines.
  • Heavy oil production methods can be mainly divided into injection fluid extraction (such as hot water flooding, steam stimulation, steam flooding, etc.) and stimulation production methods (such as horizontal wells, composite branch wells, electric heating, etc.).
  • Chemical viscosity reducer can effectively disperse and emulsify heavy oil, significantly reduce the viscosity of heavy oil, reduce the flow resistance of heavy oil in the formation and wellbore, which can reduce the energy consumption of mining process, reduce emission pollution, and improve heavy oil recovery. The yield is of great significance.
  • the present invention relates to an amphiphilic polymer having repeating units as described below: structural unit A, high sterically hindered structural unit B, and amphiphilic structure for regulating molecular weight, molecular weight distribution, and charge characteristics Unit C.
  • the structural unit A which modulates the molecular weight, molecular weight distribution and charge characteristics comprises (meth)acrylamide-based monomer units and/or (meth)acrylic monomer units A 2 ;
  • the (meth)acrylamide monomer unit and the (meth)acrylic monomer unit A 2 are included .
  • the molecular weight of the amphiphilic polymer can usually be selected as needed, and the use is relatively between 100 and 20 million.
  • the (meth)acrylamide monomer unit A has a structure represented by the following formula (1):
  • 1 is 11 or a methyl group
  • R 2 and R 3 are each independently an alkyl group selected from H and C r C 3
  • R 2 and R 3 are preferably H.
  • the (meth)acrylic monomer unit A 2 is (meth)acrylic acid and/or (meth)acrylic acid salt; and the methacrylic acid salt is preferably sodium methacrylate.
  • the (meth)acrylamide monomer unit A accounts for 70 to 99 mol%, preferably 70 to 90 mol%, more preferably 72.85 to 78 mol%, of all repeating units of the entire amphiphilic polymer. .
  • the (meth)acrylic monomer unit A 2 accounts for 1 to 30 mol%, preferably 1 to 25 mol%, more preferably 20 to 25 mol%, based on the total number of repeating units of the entire amphiphilic polymer.
  • the structural unit A which functions to adjust the molecular weight, the molecular weight distribution, and the charge characteristic has the formula (2)
  • 1 is 11 or methyl;
  • R 2 and R 3 are each independently selected from the group consisting of H, C r C 3 alkyl; R 2 and R 3 are preferably H; selected from H or methyl;
  • Gr is -OH Or -0"Na + ;
  • m and n represent the mole percentage of the structural unit in all repeating units of the entire amphiphilic polymer;
  • m is 70-99 mol%, preferably 70-90 mol%, more preferably 72.85-78 mol%
  • n is from 1 to 30 mol%, preferably from 1 to 25 mol%; more preferably from 20 to 25 mol%.
  • R r R 3 in formula (2) is preferably H, and Gr is preferably -0"Na + .
  • the high sterically hindered structural unit B contains at least a structure G; the structure G is an annular hydrocarbon structure formed on the basis of two adjacent carbon atoms of the main chain or is selected from the formula (3) The structure represented; the optional unit B contains the formula (4)
  • R6 is selected from the group represented by the following formula (5 (6): CI3 ⁇ 4— 0(CH 2 ) 2 COOCH 2 CH 3
  • a is an integer of 1 to 11; preferably 1 to 7;
  • R 7 is H or methyl
  • R 8 is selected from - HPhOH, -OCH 2 Ph, -OPhOH, -OPhCOOH and salts thereof, -NHC(CH 3 ) 2 CH 2 S0 3 H and salts thereof , -OC(CH 3 ) 2 (CH 2 ) b CH 3 , -NHC(CH 3 ) 2 (CH 2 ) e CH 3 , -OC(CH 3 ) 2 CH 2 C(CH 3 ) 2 (CH 2 ) d CH 3 , - HC(CH 3 ) 2 CH 2 C(CH 3 ) 2 (CH 2 ) e CH 3 ,
  • b and c are each an integer of 0-21, preferably 1-11; d and e are each an integer of 0-17, preferably 1-7; f is an integer of 2-8, preferably 2-4; X—is C1—or Br—.
  • the high sterically hindered structural unit B contains the structure G and the structure shown in the formula (4).
  • the structure G in the above high sterically hindered structural unit B accounts for 0.02 to 2 mol%, preferably 0.02 to 1.0 mol%, more preferably 0.05 to 0.5 mol%, based on the total repeating unit of the entire amphiphilic polymer.
  • the structure represented by the formula (4) in the above high sterically hindered structural unit B accounts for 0.05 to 5 mol%, preferably 0.1 to 2.5 mol%, more preferably in the total repeating unit of the entire amphiphilic polymer. 0.1-1.0mol% o
  • the high B has the structure shown in the formula (7):
  • G is as defined above, and is preferably a structure represented by the formula (3), ; R 7 and R 8 are as defined in the above formula (4;).
  • ⁇ and y respectively represent the mole percentage of the structural unit in all repeating units of the entire amphiphilic polymer;
  • X is 0.02-2 mol%, preferably 0.02-1.0 mol%, r is more preferably 0.05-0.5 mol%;
  • y is 0.05 -5 mol%, preferably 0.1 to 2.5 mol%, more preferably 0.1 to 1.0 mol%.
  • R 9 is H or a methyl group
  • R 10 is -N + (CH 3 ) 2 (CH 2 CH 3 X-, -N + ((CH 2 ).CH 3 ) 3 X- or - N + (CH 3 )((CH 2 ) T CH 3 ) 2 X;
  • is an integer from 3 to 21
  • is an integer from 2 to 9
  • is an integer from 3 to 15, and
  • is 3-17, ⁇ is 2-5, and ⁇ is 3-11.
  • the above-mentioned amphiphilic structural unit C accounts for 0.05 to 10 mol%, preferably 0.1 to 5.0 mol%, more preferably 0.5 to 1.8 mol%, based on the total number of repeating units of the entire amphiphilic polymer.
  • amphiphilic polymer has the structure shown in formula (9):
  • R4, m, n are as defined in the above formula (2); R 7 , R 8 , G, x, y are as defined in the formula (7); R 9 , R 1()
  • the definition is as shown in the formula (8), and z represents the mole percentage of the structural unit in all the repeating units of the entire amphiphilic polymer, and z is 0.05 to 10 mol%, preferably 0.1 to 5.0 mol%, more preferably 0.5 to 1.8. Mol%.
  • the present invention specifically provides the polymer compound represented by the following formulas (I) to (X): ⁇
  • the amphiphilic polymer of the present invention has a molecular weight of from 1,000,000 to 20,000,000; preferably from 4 million to 12 million.
  • amphiphilic polymer of the present invention can be prepared by a method known in the art, for example, by structural unit monomers, high sterically hindered structural unit monomers and two, which function to adjust molecular weight, molecular weight distribution and charge characteristics.
  • the hydrophilic unit monomer is polymerized by an initiator; the polymerization reaction may be a suspension polymerization, an emulsion polymerization, a solution polymerization, a precipitation polymerization, or the like, which is well known in the art.
  • a typical preparation method is as follows: Dispersing or dissolving the above monomers in a water system by stirring, and initiating polymerization under nitrogen gas to form an amphiphilic polymer.
  • the related art for preparing an amphiphilic polymer in the prior art can be used for the preparation of the amphiphilic polymer of the present invention.
  • the monomers used in the preparation of the amphiphilic polymer can be directly obtained commercially or directly prepared according to the prior art to J.
  • the synthesis route of some monomers is described in detail in the specific examples.
  • Fig. 1 is a graph showing the viscosity-concentration relationship of an amphiphilic polymer prepared in Example 1 of the present invention at 85 ° C in a mineralization degree of 3 X 10 4 mg/L.
  • Fig. 2 is a graph showing the viscosity-temperature relationship of the amphiphilic polymer obtained in Example 1 of the present invention in a concentration of 1 750 mg/L in 3 X 10 4 mg/mineralized saline.
  • Example 1 The invention is further illustrated by the following specific examples, but the invention is not limited to the following examples.
  • Example 1 The invention is further illustrated by the following specific examples, but the invention is not limited to the following examples.
  • amphiphilic polymer synthesized in this embodiment is represented by the formula ( ⁇ ):
  • the total weight of the total reaction system is added to the reaction vessel at a weight of 1/4 of the total reaction system.
  • the molar percentages m, n, x, y, z of each repeating unit are 78%, 20%, and 0.2, respectively. %, 1%, and 0.8% were stirred to completely dissolve them, and a pH adjuster was added thereto to adjust the reaction solution to have a pH of about 10, and the oxygen was removed by nitrogen gas for 30 minutes.
  • the initiator was added under nitrogen protection, sealed with nitrogen for 10 min, and then reacted at 25 ° C.
  • the reaction was completed for about 6 h, and the reaction was completed.
  • the obtained product was dried to obtain a powdery amphiphilic polymer. Molecular weight for the amphiphilic polymer 580x l0 4.
  • amphiphilic polymer synthesized in this embodiment is represented by the formula (IX):
  • the figure shows that the amphiphilic polymer solutions of Examples 1-5 still have good tackifying ability under high temperature and high salinity conditions.
  • the high steric hindrance unit in the amphiphilic polymer reduces the degree of rotational freedom in the main chain, increases the rigidity of the macromolecular chain, makes the macromolecular chain difficult to distort and tends to stretch, resulting in an increase in macromolecular hydrodynamic radius, and
  • the amphiphilic structural unit forms an association microdomain by intramolecular or intermolecular interaction, which significantly improves the solution viscosity-increasing ability under high temperature and high salt conditions.
  • Test method 25ml of three oilfield electro-de-oil samples were added to a 50ml plugged test tube at a temperature of 25 °C, and 25ml of an aqueous solution of amphiphilic polymers of different concentrations prepared by steaming water was added, and the test tube plug was tightly closed. Use manual mode to shake or place the test tube in the shaker box. Shake it horizontally 80-100 times. The amplitude should be greater than 20cm. After mixing thoroughly, loosen the test tube plug. The viscosity reduction rate of crude oil is calculated according to the following formula:
  • Table 1 shows that the amphiphilic polymers of Examples 6-10 have good viscosity reducing effects on the three oil samples. As the concentration of the amphiphilic polymer solution increases, the viscosity reduction rate increases. When the concentration of the solution is the same, the viscosity of the oil sample increases and the corresponding viscosity reduction rate increases. The amphiphilic polymer effectively emulsifies and disperses the crude oil through the synergistic action of the high steric hindrance unit and the amphiphilic structural unit, and the viscosity of the crude oil is remarkably lowered.
  • amphiphilic polymer of the present invention for oil field drilling, cementing, fracturing, crude oil gathering, sewage treatment, sludge treatment and papermaking, or as an enhanced oil recovery agent, heavy oil viscosity reducer, Fracturing fluid, clay stabilizer, sewage treatment agent, paper retention aid or reinforcing agent.
  • the solution When used as an oil displacing agent, the solution still has a significant viscosity-increasing effect under high temperature and high salt conditions, which can improve the recovery rate of crude oil.
  • a heavy oil viscosity reducer by effectively dispersing and emulsifying the heavy oil, the viscosity of the heavy oil is significantly reduced, and the flow resistance of the heavy oil in the formation and the wellbore is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Lubricants (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明提供了一种两亲高分子及该高分子的用途。该两亲高分子具有调节分子量与分子量分布以及荷电特性作用的结构单元、高空间位阻结构单元和两亲结构单元,适用于油田钻井、固井、压裂、原油集输、污水处理、污泥处理和造纸等领域,可用作强化采油驱油剂、稠油降粘剂、压裂液、粘土稳定剂、污水处理剂、造纸用助留助滤剂或补强剂等。

Description

一种两亲高分子和用途 技术领域
本发明涉及一种两亲高分子及其用途, 该两亲高分子适用于油田钻井、 固井、 压裂、 原油集输、 污水处理、 污泥处理和造纸等领域, 可用作强化采油驱油剂、 稠 油降粘剂、 压裂液、 粘土稳定剂、 污水处理剂、 造纸用助留助滤剂或补强剂等。 背景技术
三次采油用聚合物的主要作用是通过增加溶液粘度和降低油层水相渗透率来 降低流度比、 调整吸水剖面, 通过提高波及系数来提高原油采收率。 溶液粘度和粘 度稳定性是衡量聚合物驱油效果的重要指标, 是影响开采效果的关键问题。 随着油 田综合含水率不断增加, 油田开采与稳产的难度越来越大, 对三次采油用聚合物的 要求也不断提高。
稠油开采是世界范围内的共同难题。稠油具有粘度大、胶质沥青质或含蜡量高 的特点, 稠油集中了原油中约 70%的硫和约 90%的氮, 稠油中占总量约 70%的较轻部 分, 是采用当前技术可以转化的部分, 但高效转化仍很困难; 占稠油总量大约 20% 的较重部分, 采用现有的技术难以直接转化; 剩下最重的 10%就是稠油残渣, 富集 了稠油中 70%以上的金属和 40%以上的硫、 氮, 不能被有效地转化为轻质产品。 稠 油在地层、 井筒及输油管线中不易流动, 另外由于油水流度比大, 还易造成油井见 水快、 采出液含水率高、 地层易出砂等问题。 稠油开采方法主要可分为注入流体开 采(如热水驱、 蒸汽吞吐、 蒸汽驱等)和增产型开采方式(如水平井、 复合分支井、 电加热等) 。 化学降粘剂对于稠油可进行有效分散、 乳化等作用, 显著降低稠油粘 度、减小稠油在地层和井筒中流动阻力,这对于降低开采过程能耗、减少排放污染、 提高稠油采收率具有重要意义。
发明公开
本发明以下内容中, 除另有定义外, 相同的可变基团、 分子式 /结构式等均具 有相同的定义。 本发明涉及一种两亲高分子,所述两亲高分子具有如下所述的重复单元: 调节 分子量、 分子量分布以及荷电特性作用的结构单元 A、 高空间位阻结构单元 B和两 亲结构单元 C。
在一个实施例中,所述调节分子量、分子量分布以及荷电特性作用的结构单元 A包括 (甲基)丙烯酰胺类单体单元 和/或 (甲基)丙烯酸类单体单元 A2;优选同时包 括 (甲基)丙烯酰胺类单体单元 和 (甲基)丙烯酸类单体单元 A2。 在本领域中, 两亲 高分子的分子量通常可根据需要进行选择, 使用比较多的是 100-2000万之间。
优选的, 所述 (甲基)丙烯酰胺类单体单元 A具有如下式 (1)所示的结构:
Figure imgf000003_0001
式 (1)
式 (1)中, 1^为11或甲基; R2和 R3各自独立的选自 H、 CrC3的烷基; R2和 R3 优选为 H。
优选的,所述 (甲基)丙烯酸类单体单元 A2为 (甲基)丙烯酸和 /或 (甲基)丙烯酸盐; 甲基丙烯酸盐优选为甲基丙烯酸钠。
优选的,所述 (甲基)丙烯酰胺类单体单元 A在整个两亲高分子所有重复单元中 所占的摩尔百分数为 70-99mol%, 优选为 70-90mol%, 更优选 72.85-78mol%。
优选的,所述 (甲基)丙烯酸类单体单元 A2在整个两亲高分子所有重复单元中所 占的摩尔百分数为 l-30mol%, 优选 l-25mol%, 更优选 20-25mol%。
在另一个实施例中,所述起调节分子量、分子量分布以及荷电特性作用的结构 单元 A具有如下式 (2)所示的
Figure imgf000003_0002
其中, 1^为11或甲基; R2和 R3各自独立的选自 H、 CrC3的烷基; R2和 R3优 选为 H; 选自 H或甲基; Gr为 -OH或 -0"Na+; m和 n表示该结构单元在整个两亲 高分子所有重复单元中所占的摩尔百分数; m为 70-99mol%, 优选为 70-90mol%, 更优选 72.85-78mol% ; n为 l-30mol%, 优选 l-25mol% ; 更优选 20-25mol%。
在另一个实施例中, 式 (2)中 RrR3优选为 H, Gr优选为 -0"Na+
在另一个实施例中,所述高空间位阻结构单元 B至少含有结构 G;所述结构 G 为以主链相邻两个碳原子为基础形成的环状烃结构或选自式 (3)表示的结构;结构单 元 B中任选的含有式 (4)所
Figure imgf000003_0003
式 (3) 式 (4)
式 (3)中, 为11或甲基; 优选为 H; R6选自如下式 (5 (6)所示的基团: CI¾— 0(CH2)2COOCH2CH3
— NH― C― CH2― 0(CH2)2COOCH2CH3
Figure imgf000004_0001
0¾― 0(CH2)2COOCH2CH3
式 (5) 式 (6)
式 (5)中, a为 1-11的整数; 优选为 1-7;
式 (4)中, R7为 H或甲基; R8选自- HPhOH、 -OCH2Ph、 -OPhOH、 -OPhCOOH 及其盐、 -NHC(CH3)2CH2S03H及其盐、 -OC(CH3)2(CH2)bCH3、 -NHC(CH3)2(CH2)eCH3、 -OC(CH3)2CH2C(CH3)2(CH2)dCH3、 - HC(CH3)2CH2C(CH3)2(CH2)eCH3
Figure imgf000004_0002
其中, b、 c分别为 0-21的整数, 优选为 1-11 ; d、 e分别为 0-17的整数, 优选 为 1-7; f为 2-8的整数, 优选为 2-4; X—为 C1—或 Br―。
优选的, 所述高空间位阻结构单元 B含有结构 G和式 (4)所示的结构。
在另一个实施例中, 所述以主链相邻两个碳原子为基础形成的环状烃结构选
Figure imgf000004_0003
优选的, 上述高空间位阻结构单元 B中结构 G在整个两亲高分子所有重复单 元中所占的摩尔百分数为 0.02-2mol%, 优选 0.02-1.0mol%, 更优选 0.05-0.5mol%。
优选的, 上述高空间位阻结构单元 B中式 (4)所示的结构在整个两亲高分子所 有重复单元中所占的摩尔百分数为 0.05-5mol%, 优选为 0.1-2.5mol%, 更优选 0.1-1.0mol% o
在另一个实施例中, 所述高 B具有式 (7)所示的结构:
Figure imgf000004_0004
式 (7)
式 (7)中: G的定义如上所述, 优选为式 (3)所表示的结构、
Figure imgf000004_0005
Figure imgf000005_0001
; R7和 R8的定义如上述式 (4;)所述。 χ和 y分别表示该结 构单元在整个两亲高分子所有重复单元中所占的摩尔百分数; X为 0.02-2mol%, 优 选 0.02-1.0mol%, r更优选 0.05-0.5mol%; y为 0.05-5mol%, 优选为 0.1-2.5mol%, 更 优选 0.1-1.0mol%。
在另一个实施例中, 所述两 有式 (8)所示的结构:
Figure imgf000005_0002
式 (8)
式 (8)中, R9为 H或甲基, R10为 -N+(CH3)2(CH2 CH3X—、 -N+((CH2)。CH3)3X—或 -N+(CH3)((CH2)TCH3)2X; ξ为 3-21的整数, σ为 2-9的整数, τ为 3-15的整数, X— 为 C1—或 Br―。 优选地, ξ为 3-17, σ为 2-5, τ为 3-11。
优选的, 上述两亲结构单元 C在整个两亲高分子所有重复单元中所占的摩尔 百分数为 0.05-10mol%, 优选 0.1-5.0mol%, 更优选 0.5-1.8mol%。
在另一个实施例中, 所述两亲高分子具有式 (9)所示的结构:
Figure imgf000005_0003
式 (9)
式 (9)中, R4, m, n的定义如上述式 (2)所述; R7, R8, G, x, y的定义如式 (7) 所述; R9, R1()的定义如式 (8)所述, z表示该结构单元在整个两亲高分子所有重复单 元中所占的摩尔百分数, z为 0.05-10mol%,优选 0.1-5.0mol%,更优选 0.5-1.8mol%。
本发明具体提供了如下式( I )-(X)所示的高分子化合物: Θ
(I)
Figure imgf000006_0001
Figure imgf000006_0002
HI)
Figure imgf000006_0003
Figure imgf000007_0001
VI)
Figure imgf000007_0002
(νπ)
Figure imgf000008_0001
(環)
Figure imgf000008_0002
IX)
Figure imgf000008_0003
(X)
本发明上述两亲高分子的分子量为 100万 -2000万之间; 优选为 400万 -1200 万之间。
分子量 M的测定方法: 使用乌氏粘度计测定特性粘数 [;;], 并将测得的 [;;]代 入下面公式中计算得到;
=802^1' 25 本发明所述两亲高分子可采用本技术领域所已知的方法制备,例如: 通过起调 节分子量、 分子量分布以及荷电特性作用的结构单元单体、 高空间位阻结构单元单 体和两亲结构单元单体在引发剂作用下聚合而成; 聚合反应可以为悬浮聚合、 乳液 聚合、 溶液聚合、 沉淀聚合等本领域熟知的聚合方法。
典型的制备方法为: 在水体系中通过搅拌的方式分散或溶解上述各单体,在氮 气保护下引发聚合形成两亲性高分子。 现有技术中制备两亲高分子的相关技术均可 用于本发明的两亲高分子的制备。
制备两亲高分子所采用的单体均可直接商购获得,或依据现有技术直接制备得 至 |J, 一些单体的合成路线在具体实施例中有详细说明。
附图说明
图 1 本发明实施例 1一实施例 5制得的两亲高分子在 3 X 104mg/L矿化度盐水 中 85°C下的粘浓关系曲线。
图 2 本发明实施例 1一实施例 5制得的两亲高分子在 3 X 104mg/矿化度盐水中 浓度为 1750mg/L时的粘温关系曲线。
实施发明的最佳方式
下面结合具体实施例对本发明作进一步说明, 但本发明并不限于以下实施例。 实施例 1
Figure imgf000009_0001
本实施例的亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23 % 0.15%、 0.65%、 1.2%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节 反应溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入 引发剂, 再通氮气 10 min后封口,在 28°C下反应, 反应约 5 h反应结束, 反应完全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 1160x l04
实施例 2
本实施例合成的两亲高分子如式 ( Π )所示:
Figure imgf000010_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 24 % 0.15%、 0.1%、 0.75%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节 反应溶液, 使其 pH为 8左右, 通氮气 40 min除去其中的氧气。 在氮气保护下加入 引发剂, 再通氮气 10 min后封口, 在 25 °C下反应, 反应约 5.5 h反应结束, 反应完 全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 730x l04。 实施例 3
(HI)
Figure imgf000010_0002
本实施例两未高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 77%、 21%、 0.25%、 0.25 %、 1.5%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 23 °C下反应, 反应约 5 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 720x l04。 实施例 4
Figure imgf000011_0001
Figure imgf000012_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m n x y z依次为 75% 23% 0.05% 0.15% 1.8%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 28°C下反应, 反应约 5 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 460x l04 实施例 5
Figure imgf000012_0002
如下:
Figure imgf000013_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 78%、 20%、 0.2%、 1%、 0.8%,搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶液, 使其 pH为 10左右, 通氮气 30 min除去其中的氧气。在氮气保护下加入引发剂, 再 通氮气 lO min后封口, 在 25°C下反应, 反应约 6 h反应结束, 反应完全。 所得产品 经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 580x l04。 实施例 6
本实
Figure imgf000013_0002
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 73%、 24%、 0.5%、 1%、 1.5%,搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发剂, 再 通氮气 lO min后封口, 在 55°C下反应, 反应约 3 h反应结束, 反应完全。 所得产品 经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 770x l04。 实施例 本实
Figure imgf000014_0001
本实施例两未高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 77%、 22%、 0.25%、 0.25%、 0.5%, 搅拌使它们完全溶解, 并 pH值调节剂调节反应 溶液, 使其 pH为 9左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 55 °C下反应, 反应约 2 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 920x l04。 实施例 8
本实
Figure imgf000014_0002
(環) 本实施例两未高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 72.85%、 25%、 0.15%、 1%、 1%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反 应溶液, 使其 pH为 10左右, 通氮气 30 min除去其中的氧气。在氮气保护下加入引 发剂, 再通氮气 10 min后封口, 在 55 °C下反应, 反应约 3 h反应结束, 反应完全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 430x l04。 实施例 9
本实施例合成的两亲高分子如式 (IX)所示:
Figure imgf000015_0001
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23%、 0.25%、 0.25%、 1.5%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 10 min后封口, 在 50°C下反应, 反应约 2.5 h反应结束, 反应完全。 所得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 690x l04。 实施例 10
本实
Figure imgf000015_0002
本实施例两亲高分子的合成:
先将占总反应体系重量 3/4的水加入反应釜中, 再将占总反应体系重量 1/4的 各种单体加入反应釜, 各重复单元的摩尔百分数 m、 n、 x、 y、 z依次为 75%、 23%、 0.25%、 0.25%、 1.5%, 搅拌使它们完全溶解, 并向其中加入 pH值调节剂调节反应 溶液, 使其 pH为 8左右, 通氮气 30 min除去其中的氧气。 在氮气保护下加入引发 剂, 再通氮气 lO min后封口, 在 50°C下反应, 反应约 4 h反应结束, 反应完全。 所 得产品经过干燥, 得到粉末状两亲高分子。 两亲高分子的分子量为 830x l04。 测定例 1
使用矿化度 3 X 104mg/L的盐水配制不同浓度的两亲高分子溶液, 测定溶液浓 度、 温度与溶液粘度的关系, 结果见图 1和图 2。
图中表明, 在高温和高矿化度条件下, 实施例 1-5的两亲高分子溶液仍具有良 好的增粘能力。 两亲高分子中的高空间位阻单元减小了主链内旋转自由度、 增加了 大分子链的刚性,使大分子链难于蜷曲而趋向伸展,导致大分子流体力学半径增大, 同时, 两亲结构单元通过分子内或分子间作用形成缔合微区, 显著提高了高温高盐 条件下的溶液增粘能力。
测定例 2
测试方法: 温度为 25 °C下, 将三种油田电脱原油样品 25ml加入 50ml具塞试 管中, 继续加入 25ml以蒸熘水配制的不同浓度两亲高分子的水溶液, 盖紧试管塞 后, 采用手工方式振荡或将试管放置在振荡箱内, 水平振荡 80-100次, 振幅应大于 20cm, 充分混合后, 松动试管塞。 原油降粘率按照下式计算:
降粘率 (%)=画口口口驅翻本謹
原油样品粘度 表 1 实施例 6—实施例 10制得的两亲高分子稠油降粘实验结果(油水比 1 : 1, 25 °C )
油水体积比 (1 : 1 ) 降粘率 降粘率 降粘率
油样 1 油样 2 油样 3
试验温度 (25 °C ) ( % ) ( % ) ( % ) 初始粘度 (mPa-s) 1650 ― 5100 ― 16000 ―
400mg/L 730 1750 7100
55.76 65.69 55.63
600mg/L 470 1250 3250
71.52 75.49 79.69 实施例 800mg/L 330 950 1850
6 80.00 81.37 88.44
1000mg/L 295 820 1500
82.12 83.92 90.63
1200mg/L 270 675 1225
83.64 86.76 92.34
400mg/L 780 1800 7700
52.73 64.71 51.88
600mg/L 590 1350 4200
64.24 73.53 73.75 实施例 800mg/L 460 1100 2850
7 72.12 78.43 82.19
lOOOmg/L 340 880 1900
79.39 82.75 88.13
1200mg/L 300 790 1500
81.82 84.51 90.63
400mg/L 820 1475 5650
50.30 71.08 64.69 实施例 8
600mg/L 590 1200 3950
64.24 76.47 75.31 800mg/L 450 850 2600
72.73 83.33 83.75
1000mg/L 375 670 1450
77.27 86.86 90.94
1200mg/L 330 620 1290
80.00 87.84 91.94
400mg/L 780 1450 5800
52.73 71.57 63.75
600mg/L 450 1150 4100
72.73 77.45 74.38 实施例 800mg/L 360 850 2500
9 78.18 83.33 84.38
lOOOmg/L 280 680 1570
83.03 86.67 90.19
1200mg/L 260 620 1390
84.24 87.84 91.31
400mg/L 710 1450 5270
56.97 71.57 67.06
600mg/L 500 1050 3100
69.70 79.41 80.63 实施例 800mg/L 410 830 1890
10 75.15 83.73 88.19
lOOOmg/L 320 675 1200
80.61 86.76 92.50
1200mg/L 270 650 950
83.64 87.25 94.06 表 1说明, 实施例 6-10的两亲高分子对于三种油样具有很好的降粘效果。 随 两亲高分子溶液浓度增加, 降粘率增大。 溶液浓度相同时, 油样粘度提高则相应降 粘率增大。两亲高分子通过高空间位阻单元与两亲结构单元的协同作用,有效乳化、 分散原油, 显著降低了原油粘度。
工业应用
本发明的两亲高分子的用途, 其用于油田钻井、 固井、 压裂、 原油集输、 污水 处理、 污泥处理和造纸, 或用作强化采油驱油剂、 稠油降粘剂、 压裂液、 粘土稳定 剂、 污水处理剂、 造纸用助留助滤剂或补强剂等。
特别适用于原油开采领域, 如可用作强化采油聚合物驱油剂和稠油降粘剂。作 为驱油剂使用时, 溶液在高温高盐条件下仍具有显著增粘效果, 能够提高原油采收 率。 作为稠油降粘剂时, 通过有效分散和乳化稠油, 显著降低稠油粘度、 减小稠油 在地层和井筒中流动阻力。

Claims

权利要求
1、 一种两亲高分子, 其特征在于: 具有调节分子量与分子量分布以及荷电特 性作用的结构单元 A、高空间位阻结构单元 B和两亲结构单元 C作为重复结构单元; 其中所述两亲结构单元 C具有式 8)所示的结构:
Figure imgf000018_0001
式 (8)
式 (8)中, R9为 H或甲基, R10为 -N+(CH3)2(CH2 CH3X—、 -N+((CH2)。CH3)3X—或 -N+(CH3)((CH2)TCH3)2X; ξ为 3-21的整数, σ为 2-9的整数, τ为 3-15的整数, X— 为 C1—或 Br―。
2、 如权利要求 1所述的两亲高分子, 其特征在于: 所述调节分子量、 分子量 分布以及荷电特性作用的结构单元 A包括 (甲基)丙烯酰胺类单体单元 和/或 (甲基) 丙烯酸类单体单元 A2
3、如权利要求 1所述的两亲高分子, 其特征在于: 所述高空间位阻结构单元 B 含有结构 G,所述结构 G为以主链相邻两个碳原子为基础形成的环状烃结构或选自 式 (3)表示的结构, 所述高空间位阻结构单元 B任选的含有式 (4)所示的结构:
- cH2-c)- CH,一 C
o=c o=c
式 (3) 式 (4)
式 (3)中, 为11或甲基; R6选自如下式 (5)-(6)所示的基团: ,CH2— 0(CH2)aCH3
CH2— O— CH
CH2― 0(CH2)2COOCH2CH3
CH2— 0(CH2)aCH3
-CH
.CHfCHCH^CHs
— NH—— C—— CH?—— 0(CH?)?COOCH?CH;
CH2— O—— CH,
CH2— 0(CH2)aCH3 "CH2― 0(CH2)2COOCH2CH3 式 (5) 式 (6)
式 (5)中, a为 1-11的整数;
式 (4)中, R7为 H或甲基; R8选自- HPhOH、 -OCH2Ph、 -OPhOH、 -OPhCOOH 及其盐、 -NHC(CH3)2CH2S03H及其盐、 -OC(CH3)2(CH2)bCH3、 -NHC(CH3)2(CH2)eCH3、 -OC(CH3)2CH2C(CH3)2(CH2)dCH3、 - HC(CH3)2CH2C(CH3)2(CH2)eCH3
-0 CH2)fN+(CH3)2CH2PhX 、
Figure imgf000019_0001
其中, b、 c分别为 0-21的整数; d、 e分别为 0-17的整数; f为 2-8的整数, X—为 C1—或 Br―。
4、 如权利要求 2所述的两亲高分子, 其特征在于: 以两亲高分子所有重复单 元总数为 100mol%计,所述 (甲基)丙烯酰胺类单体单元 在整个两亲高分子所有重 复单元中所占的摩尔百分数为 70-99mol%; 所述 (甲基)丙烯酸类单体单元 A2在整个 两亲高分子所有重复单元中所占的摩尔百分数为 l-30mol%。
5、 如权利要求 3所述的两亲高分子, 其特征在于: 以两亲高分子所有重复单 元总数为 100mol%计, 结构 G在整个两亲高分子所有重复单元中所占的摩尔百分 数为 0.02-2mol%;式 (4)所示的结构在整个两亲高分子所有重复单元中所占的摩尔百 分数为 0.05-5mol%。
6、 如权利要求 1所述的两亲高分子, 其特征在于: 以两亲高分子所有重复单 元总数为 100mol%计, 所述式 (8)表示的结构单元在整个两亲高分子所有重复单元 中所占的摩尔百分数为 0.05-10mol%。
7、 如权利要求 1所述的两亲高分子, 其特征在于: 所述调节分子量、 分子量 分布以及荷电特性作用的结构单元 A具有如下式 (2)所示的结构:
Figure imgf000020_0001
式 (2)
式 (2)中, 1^为11或甲基; R2和 R3各自独立的选自 H、 CrC3的烷基; 选自 H 或甲基; Gr为 -OH或 -0"Na+; m和 n表示该结构单元在整个两亲高分子所有重复单 元中所占的摩尔百分数; m为 70-99mol%; n为 l-30mol%。
8、 如权利要求 3所述的两亲高分子, 其特征在于: 所述以主链相邻两个碳原 子为基础形成的环状烃结构选自:
-
H
Figure imgf000020_0002
9、如权利要求 1所述的两亲高分子, 其特征在于: 所述高空间位阻结构单元 B 具有式 (7)所示的结构:
Figure imgf000020_0003
式 (7)
式 (7)中, G的定义如权利要求 3所述; R7和 的定义如上述式 (4)中所述; X 和 y分别表示该结构单元在整个两亲高分子所有重复单元中所占的摩尔百分数; X 为 0.02-2mol%; y为 0.05-5mol%。
10、 如权利要求 1所述的两亲高分子, 其特征在于: 所述两亲高分子具有式 (9) 所示的结构:
Figure imgf000021_0001
式 (9)
式 (9)中, R4, m, n的定义如上述式 (2)所述; R7, R8, G, x, y的定义如上述 式 (7)所述; R9, 。的定义如上述式 (8)所述, z表示该结构单元在整个两亲高分子 所有重复单元中所占的摩尔百分数, z为 0.05-10mol%。
11、 1所述的两亲高分子, 所述高分子是如下式(I)-(X)的化合物:
Figure imgf000021_0002
( i )
Figure imgf000021_0003
Figure imgf000022_0001
个(
A
Figure imgf000022_0002
Figure imgf000023_0001
VI)
Figure imgf000023_0002
環)
Figure imgf000024_0001
Figure imgf000024_0002
(X)
12、 如权利要求 1-11任一项所述的两亲高分子, 其特征在于: 分子量为 100 万 -2000万之间。
13、权利要求 1-12任一项所述的两亲高分子的用途, 其特征在于: 用于油田钻 井、 固井、 压裂、 原油集输、 污水处理、 污泥处理和造纸, 或用作强化采油驱油剂、 稠油降粘剂、 压裂液、 粘土稳定剂、 污水处理剂、 造纸用助留助滤剂或补强剂。
PCT/CN2011/001578 2011-07-26 2011-09-16 一种两亲高分子和用途 WO2013013356A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11870061.6A EP2738190B1 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use
ES11870061.6T ES2641318T3 (es) 2011-07-26 2011-09-16 Macromolécula anfífila y uso
CA2842705A CA2842705C (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use
NO11870061A NO2738190T3 (zh) 2011-07-26 2011-09-16
EA201490340A EA025880B1 (ru) 2011-07-26 2011-09-16 Амфифильная макромолекула и ее применение
DK11870061.6T DK2738190T3 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use
US14/235,035 US9260555B2 (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and the purpose of this amphiphilic macromolecule
MYPI2014700166A MY173059A (en) 2011-07-26 2011-09-16 Amphiphilic macromolecule and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102103441A CN102382243B (zh) 2011-07-26 2011-07-26 一种两亲高分子和用途
CN201110210344.1 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013013356A1 true WO2013013356A1 (zh) 2013-01-31

Family

ID=45822123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001578 WO2013013356A1 (zh) 2011-07-26 2011-09-16 一种两亲高分子和用途

Country Status (10)

Country Link
US (1) US9260555B2 (zh)
EP (1) EP2738190B1 (zh)
CN (1) CN102382243B (zh)
CA (1) CA2842705C (zh)
DK (1) DK2738190T3 (zh)
EA (1) EA025880B1 (zh)
ES (1) ES2641318T3 (zh)
MY (1) MY173059A (zh)
NO (1) NO2738190T3 (zh)
WO (1) WO2013013356A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260555B2 (en) 2011-07-26 2016-02-16 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and the purpose of this amphiphilic macromolecule
US9738741B2 (en) 2011-07-26 2017-08-22 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570864B (zh) * 2012-07-27 2016-05-25 中国石油化工股份有限公司 一种丙烯酰胺系三元共聚物及其制备方法和应用
CN105646777A (zh) * 2015-12-29 2016-06-08 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN106701053A (zh) * 2016-12-08 2017-05-24 北京百特泰科能源工程技术有限公司 一种高分子原油活化剂及其制备方法与应用
CN108794680B (zh) * 2018-06-30 2020-09-15 胜利油田盛嘉化工有限责任公司 一种稠油降粘剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653584A (en) * 1985-05-30 1987-03-31 The Standard Oil Company Maleimide-modified bioresistant polymers and enhanced oil recovery method employing same
US4702319A (en) * 1986-12-29 1987-10-27 Exxon Research And Engineering Company Enhanced oil recovery with hydrophobically associating polymers containing sulfonate functionality
CN101492515A (zh) * 2009-01-23 2009-07-29 成都理工大学 丙烯酰胺改性接枝共聚物及其制备方法和用途
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法
CN101798503A (zh) * 2010-01-05 2010-08-11 西南石油大学 一种用于提高采收率的新型聚合物驱油剂及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314720C (zh) * 2004-12-13 2007-05-09 大连广汇化学有限公司 高分子量两性高分子的制备方法
FR2914647B1 (fr) * 2007-04-05 2011-10-21 Rhodia Recherches Et Tech Copolymere comprenant des unites betainiques et des unites hydrophobes et/ou amphiphiles,procede de preparation,et utilisations.
CN101284893B (zh) * 2008-06-06 2010-10-27 成都理工大学 梳型两亲水溶性共聚物及其制备方法和用途
CN101570697B (zh) * 2009-06-01 2013-01-02 中国科学院化学研究所 一种原油破乳剂
CN102382243B (zh) 2011-07-26 2013-03-27 中国科学院化学研究所 一种两亲高分子和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653584A (en) * 1985-05-30 1987-03-31 The Standard Oil Company Maleimide-modified bioresistant polymers and enhanced oil recovery method employing same
US4702319A (en) * 1986-12-29 1987-10-27 Exxon Research And Engineering Company Enhanced oil recovery with hydrophobically associating polymers containing sulfonate functionality
CN101492515A (zh) * 2009-01-23 2009-07-29 成都理工大学 丙烯酰胺改性接枝共聚物及其制备方法和用途
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法
CN101798503A (zh) * 2010-01-05 2010-08-11 西南石油大学 一种用于提高采收率的新型聚合物驱油剂及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260555B2 (en) 2011-07-26 2016-02-16 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and the purpose of this amphiphilic macromolecule
US9738741B2 (en) 2011-07-26 2017-08-22 Beijing Junlun Runzhong Science & Technology Co., Limited Amphiphilic macromolecule and use thereof

Also Published As

Publication number Publication date
CN102382243B (zh) 2013-03-27
EP2738190B1 (en) 2017-08-09
EA201490340A1 (ru) 2014-05-30
EA025880B1 (ru) 2017-02-28
EP2738190A1 (en) 2014-06-04
CA2842705A1 (en) 2013-01-31
US20150183911A1 (en) 2015-07-02
CN102382243A (zh) 2012-03-21
CA2842705C (en) 2016-07-05
NO2738190T3 (zh) 2018-01-06
US9260555B2 (en) 2016-02-16
ES2641318T3 (es) 2017-11-08
EP2738190A4 (en) 2015-08-19
DK2738190T3 (en) 2017-10-02
MY173059A (en) 2019-12-23

Similar Documents

Publication Publication Date Title
CA2842788C (en) Amphiphilic macromolecule and use
WO2013013357A1 (zh) 两亲高分子及其用途
EP2738189B1 (en) Amphiphilic macromolecule and use thereof
WO2013013356A1 (zh) 一种两亲高分子和用途
CN112521560A (zh) 一种高效抗盐一剂两用稠化剂及其制备方法和应用
US20180371137A1 (en) Salt-resistant hydrophobically modified copolymer nanostructures as viscosity increasing agents for enhanced oil recovery
CN103540307B (zh) 用于提高高温油藏采收率的组合物及其制备方法
US20160068743A1 (en) Extraction fluids based on associative polymers and on labile surfactants
CN111363073A (zh) 一种兼具防膨和絮凝作用的两亲聚合物及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2842705

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14235035

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011870061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011870061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201490340

Country of ref document: EA