WO2013011944A1 - 防振部材及び切削工具 - Google Patents

防振部材及び切削工具 Download PDF

Info

Publication number
WO2013011944A1
WO2013011944A1 PCT/JP2012/067934 JP2012067934W WO2013011944A1 WO 2013011944 A1 WO2013011944 A1 WO 2013011944A1 JP 2012067934 W JP2012067934 W JP 2012067934W WO 2013011944 A1 WO2013011944 A1 WO 2013011944A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
tool
end mill
main body
vibration isolator
Prior art date
Application number
PCT/JP2012/067934
Other languages
English (en)
French (fr)
Inventor
和弥 俣野
倫平 川下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280031718.6A priority Critical patent/CN103635287B/zh
Priority to KR1020137032890A priority patent/KR20140004252A/ko
Priority to JP2013524705A priority patent/JP5743116B2/ja
Priority to US14/125,641 priority patent/US20140105701A1/en
Priority to EP12814445.8A priority patent/EP2732913A4/en
Publication of WO2013011944A1 publication Critical patent/WO2013011944A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/003Milling-cutters with vibration suppressing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C9/00Details or accessories so far as specially adapted to milling machines or cutter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/33Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2250/00Compensating adverse effects during milling
    • B23C2250/16Damping vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/304312Milling with means to dampen vibration

Definitions

  • the present invention relates to a vibration isolating member that attenuates vibration by being attached to a tool, and a cutting tool including the vibration isolating member.
  • Patent Document 1 describes a vibration isolating tool that suppresses vibration during processing by providing a weight supported by a viscoelastic body in a hollow portion inside the tool.
  • the conventional anti-vibration tool has a complicated structure such as forming a hollow portion in the tool body and fixing a weight via a viscoelastic body inside the tool body, which increases the manufacturing cost of the tool. There is a problem of inviting.
  • a dynamic vibration absorber such as a weight is disposed inside the tool body, there is a problem that it is not possible to cope with cooling by internal oil supply that is effective for cooling during cutting.
  • the structure as described above there is a problem that the strength of the tool itself is lowered, and the tool life is adversely affected.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vibration isolating member capable of adding a damping function to a cutting tool with a simple structure without sacrificing the strength of the tool. And a cutting tool including the vibration-proof member.
  • the vibration isolator according to the present invention includes a member body having rubber elasticity or viscoelasticity, and can be attached to the outer surface of the tool body by a frictional force with the outer surface.
  • the member body having rubber elasticity or viscoelasticity is deformed by the deflection and twisting of the tool generated in the tool, and the damping effect of the member body itself causes Vibration can be damped. Further, friction is generated on the contact surface between the tool main body and the member main body, and a frictional resistance is generated at the interface between the tool main body and the member main body, so that vibration can be attenuated.
  • the vibration isolation member may have a cylindrical shape having a central shaft hole, and may be configured such that the tool body is inserted into the central shaft hole. That is, the member main body may have a cylindrical shape having a central shaft hole, and the tool main body may be inserted into the central shaft hole.
  • the vibration isolator can be manufactured with a simpler structure. Further, it is possible to provide a vibration isolation member that can be easily attached to the tool body. Furthermore, since the vibration-proof member can be easily attached to an existing tool, the existing tool can be used with reduced vibration without being discarded.
  • the inner diameter of the central shaft hole may be smaller than the outer shape of the tool body. According to the vibration isolating member of the present invention, an interference is generated between the center shaft hole of the vibration isolating member and the tool main body, and the vibration isolating is performed with a predetermined fastening force by an interference fit.
  • the member and the tool body can be fitted together.
  • the vibration isolating member may be formed with at least one slit on at least one of the inner peripheral side and the outer peripheral side of the member main body. According to the vibration isolator according to the present invention, the area that is rubbed inside the vibration isolator by the slit is increased, and a higher friction damping effect can be obtained.
  • fibers may be added to the member main body having rubber elasticity or viscoelasticity. According to the vibration isolating member of the present invention, it is possible to suppress the vibration isolating member from being deformed by the centrifugal force when the cutting tool rotates at a high speed.
  • this invention provides the cutting tool provided with the said vibration proof member and a tool main body. According to the vibration isolator according to the present invention, a damping function can be added to the tool without sacrificing the strength of the cutting tool.
  • the member main body having rubber elasticity or viscoelasticity is deformed due to the deflection and torsion of the tool generated in the tool, and the vibration of the tool main body is attenuated by the damping effect of the member main body itself. Can do. Further, friction is generated on the contact surface between the tool main body and the member main body, and a frictional resistance is generated at the interface between the tool main body and the member main body, so that vibration can be attenuated.
  • Example 2-1 Vibration-proof member over the entire length. It is a tapping test result of Example 2-2 (vibration isolation member covering half of the total length). It is a graph of the frequency response in a tapping test. It is a surface roughness measurement result of the comparative example 3. It is a surface roughness measurement result of Example 3.
  • FIG. 1 is a schematic view of a tool mounting portion of a horizontal machining center 100 (hereinafter referred to as a machine tool) provided with a cutting tool to which the vibration isolating member of the present embodiment is applied.
  • the vibration isolating member 1 of the present embodiment is applied to a milling tool (blade) of the machine tool 100.
  • the end mill 2 is used as a milling cutter.
  • the spindle of the machine tool 100 used in the present embodiment is oriented in the horizontal direction, and the end mill 2 is held by a chuck portion 51.
  • the member main body 1A of the vibration isolator 1 has a cylindrical shape, and a central shaft hole 3 is formed along the axial direction.
  • the member main body 1A is made of a viscoelastic body, and more specifically, is formed of rubber having a natural rubber compounding hardness of 65.
  • the material of the vibration isolator 1 is not limited to rubber, and any material having rubber elasticity or viscoelasticity may be used. By using these materials, a high vibration damping effect can be obtained.
  • a network polymer such as natural rubber or synthetic rubber, or a chain synthetic polymer such as plastic can be employed.
  • a gel-like material for example, ⁇ gel (registered trademark) manufactured by Taika Co., Ltd.
  • silicone as a main raw material having shock absorption capability and pressure dispersion performance may be employed. it can.
  • the axial length of the vibration isolator 1 is a length that substantially covers the body of the end mill 2. That is, the vibration isolating member 1 has a shape that covers the end mill 2 over substantially the entire length excluding the blade portion and the holding portion of the end mill 2.
  • the vibration isolator 1 of this embodiment has a length of 50 mm, an outer diameter of 40 mm, and a diameter of the central shaft hole of 13 mm.
  • FIG. 3 is an enlarged side view of the chuck portion 51.
  • the vibration isolator 1 is attached to the end mill 2 held by the chuck portion 51.
  • the end mill 2 includes a holding part 4 held by the chuck part 51, a blade part 5, and a body part 6 between the holding part and the blade part.
  • the end mill 2 has a substantially cylindrical shape, and the body portion 6 also has a cylindrical shape having a constant diameter.
  • the vibration isolator 1 is attached to the body 6 of the end mill 2.
  • the protruding amount of the end mill 2 from the chuck portion 51 is 79 mm, and the vibration isolator 1 is attached at a position of 14.5 mm from the end of the end mill 2.
  • the diameter of the body part of the end mill is 14 mm, and the inner diameter of the central shaft hole of the vibration isolator 1 is 1 mm smaller than the outer diameter of the body part of the end mill. That is, the vibration isolator 1 and the end mill 2 are fitted together by an interference fit relationship.
  • the vibration isolating member 1 is deformed by bending and twisting of the end mill 2 generated in the end mill 2 during cutting, and the vibration of the end mill 2 main body is attenuated by the damping effect of the vibration isolating member 1 itself. Can do. Further, friction is generated on the contact surface between the end mill 2 and the vibration isolating member 1, and the friction resistance is generated at the boundary surface between the end mill 2 and the vibration isolating member 1, so that the vibration can be attenuated.
  • the vibration isolator 1 is a simple shape, the vibration isolator 1 can be produced at a lower cost. Moreover, the vibration isolator 1 that can be easily attached by the end mill 2 can be provided. Furthermore, since the vibration-proof member can be easily attached to an existing tool, the existing tool can be used with reduced vibration without being discarded. Further, since a tightening margin is generated between the center shaft hole 3 of the vibration isolator 1 and the end mill 2, the vibration isolator 1 and the end mill 2 can be fitted with a predetermined fastening force by an interference fit.
  • FIG. 4 is a perspective view of the vibration isolating member 1B according to the second embodiment.
  • the member body 1 ⁇ / b> A of the vibration isolator 1 ⁇ / b> B according to the second embodiment has a central shaft hole 3 as viewed from the axial direction on the inner peripheral side of the vibration isolator 1 according to the first embodiment.
  • a plurality of slits 7 formed radially (in the radial direction) are formed. The plurality of slits 7 extend over the entire length of the vibration isolation member 1B in the axial direction (axial direction).
  • the area to be rubbed inside the vibration isolator 1B is increased by the slit 7, and a higher friction damping effect can be obtained. Further, since the central shaft hole 3 is easily widened, the vibration isolation member 1B is easily attached to the end mill 2.
  • the slit 7 may not be formed continuously in the axial direction.
  • the slit 7C may be intermittently formed in a part of the member main body 1A.
  • the slit 7 does not need to be provided linearly in the axial direction, and the slit 7D may be formed by being twisted into a screw shape as shown in FIG. 5B.
  • the slit 7E may be formed in the outer peripheral side of the member main body 1A.
  • the machine tool used was a horizontal machining center.
  • As the end mill a ⁇ 14 6-blade end mill was used.
  • the radial and axial cuts and the rotational speed were constant in the examples and comparative examples.
  • test piece was processed with the end mill of the example and the end mill of the comparative example, and the chipping amount (wear amount) after processing was measured and compared.
  • the test piece was processed by two surfaces.
  • Example 1 processed the test piece on the conditions shown in Table 1 using the end mill which attached the vibration proof member.
  • a vibration isolating member having an outer diameter of 40 mm, an inner diameter of 13 mm, and a length of 50 mm was used, and was fitted and fixed to an end mill having an outer diameter of 14 mm by an interference fit.
  • Comparative Example 1 a test piece was processed under the conditions shown in Table 1 using an end mill to which no vibration isolation member was attached.
  • Table 1 shows the chipping amount of the end mill after the end face of the test piece is processed into two faces.
  • the chipping amount was measured for the flank and scooping surface of the end mill.
  • the cutting distance on one surface was about 2.68 m. From Table 1, although there was a variation in the chipping amount on each cutting edge, it was confirmed that the chipping amount was reduced by an average of 49% in the evaluation of the flank at the time of the two-face machining. In the evaluation of the scooping surface, it was confirmed that the average chipping amount was reduced by 31%.
  • ⁇ Comparison by tapping test> In order to confirm the effect factor of the vibration-proof member, a tapping test was performed with the tool rotation stopped. The tapping test was performed by setting the tool tip position as an excitation input position and hitting the position with an impact hammer. The vibration measurement position was the tool tip position.
  • Example 2-1 an anti-vibration member covering the entire length of the end mill body was prepared.
  • Example 2-2 an anti-vibration member covering about half of the body portion of the end mill, that is, an anti-vibration member having an overall length approximately half that of Example 2-1, was prepared.
  • Comparative Example 2 was an end mill without a vibration isolation member attached.
  • FIG. 6 shows a tapping test result of Comparative Example 1 (without a vibration isolating member).
  • FIG. 7 shows the tapping test results of Example 2-1 (vibration isolation member over the entire length).
  • FIG. 8 shows the results of a tapping test of Example 2-2 (vibration isolation member covering half the total length). Both graphs show vibration acceleration in the horizontal direction. As shown in FIGS. 6 to 8, it can be seen that the attenuation effect of Example 2-1 and Example 2-2 is higher than that of Comparative Example 1.
  • FIG. 9 is a frequency response graph.
  • the attenuation ratio calculated by the half power method is about 1.5% in Comparative Example 2, 5.0% in Example 2-1, and 3.0% in Example 2-2, and depends on the attachment of the vibration isolating member. It was confirmed that there was a damping effect.
  • the vibration peaks of the tools in Comparative Example 2 and Examples 2-1 and 2-2 are around 900 Hz and around 1,200 Hz, and the vibration is calculated from the number of rotations of the tool and the number of blades.
  • the frequency is sufficiently far from the above-mentioned peak. For this reason, it is considered that the effect of attaching the vibration isolating member is due to attenuation rather than resonance avoidance.
  • Example 2-2 covers only about half of the end mill body, the anti-vibration effect was slightly reduced, but it was also shown to have an anti-vibration effect.
  • the test piece was processed with the end mill of the example and the end mill of the comparative example, and the surface roughness after processing was measured and compared.
  • the test piece was processed on a five-sided surface.
  • Example 3 The conditions were the same as in Example 1. That is, the test piece was processed using an end mill to which a vibration isolating member was attached.
  • Comparative Example 3 The conditions were the same as in Comparative Example 1. That is, the test piece was processed using an end mill to which no vibration isolation member was attached.
  • Table 2 shows surface roughness values in the tool path direction. Moreover, the surface roughness measurement result of the comparative example 3 is shown in FIG. 10, and the surface roughness measurement result of Example 3 is shown in FIG. Both FIG. 10 and FIG. 11 show the surface roughness in the direction of the tool path. The scale in the height direction is the same.
  • the surface roughness in the tool path direction is such that Ra: arithmetic average roughness, Rz: maximum height roughness, Rt: maximum cross section height are low values in Example 3. It was. In particular, the maximum height roughness Rz is reduced from 4.3 ⁇ m to 3.7 ⁇ m by attaching the vibration-proof member in Example 3. As this factor, a decrease in the amplitude of the tool vibration can be considered. Also, as shown in FIGS. 10 and 11, when looking at the shape of the machined surface measured, in Example 3, the machined surface has a continuous waveform with a short cycle, and the height of the waveform is It increases or decreases regularly when viewed with a period longer than that of each waveform.
  • the waveform is slightly smoothed by suppressing the vibration.
  • Comparative Example 3 the waveform of the processed surface is irregular, and the tendency as in Example 3 cannot be seen, and it is difficult to find regularity in which the outer shape of the waveform increases and decreases in a long cycle. That is, it can be seen that fine waveforms are irregularly arranged due to less suppression of vibration compared to Example 3.
  • a horizontal machining center is used as a machine tool.
  • the present invention is not limited to this as long as it is a machine tool that uses a long blade.
  • it is good also as a structure which uses a vibration isolator for the drill of a drilling machine, and the tool of a lathe.
  • Vibration isolation member 1A ... member body 2 ... end mill (tool body), 3 ... Center shaft hole, 4 ... holding part, 5 ... Blade, 6 ... trunk, 7, 7C, 7D, 7E ... Slit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Milling Processes (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 工具本体の外面に外面との摩擦力によって取り付け可能な、ゴム弾性または粘弾性を有する部材本体を備える防振部材を提供する。

Description

防振部材及び切削工具
 本発明は、工具に取り付けることによって振動を減衰させる防振部材、及びこの防振部材を備えた切削工具に関する。
 本願は、2011年7月15日に日本に出願された特願2011-156602号について優先権を主張し、その内容をここに援用する。
 切削加工の際に加工対象の加工精度を悪化させる原因として、加工に伴う切削工具の振動がある。例えば、フライス加工の際、加工対象と切削工具との干渉を避けるために工具長を長く設定する場合では、工具突き出し量が増加により切削工具の強度が低下し、振動の発生が大きくなることが知られている。このような事情により、切削工具の振動を抑制するために様々な試みがなされている。
 例えば、特許文献1には、工具内部の中空部分に粘弾性体によって支持された錘を設けることによって、加工時の振動を抑制する防振工具が記載されている。
特開2008-307642号公報
 ところで、上記従来の防振工具は、工具本体に中空部を形成した上でその内部に粘弾性体を介して錘を固定する必要があるなど構造が複雑であり、工具の製造コストの高騰を招くという問題がある。また、工具本体の内部に錘などの動吸振器を配置するため、切削加工の際の冷却に有効とされている内部給油による冷却に対応できないという問題がある。
さらに、上述したような構造であるが故に、工具そのものの強度が低下し、工具の寿命に悪しき影響を及ぼすという問題がある。
 この発明は、このような事情を考慮してなされたもので、その目的は、単純な構造で、工具の強度を犠牲にすることなく、切削工具に減衰機能を付加することができる防振部材、及びこの防振部材を備えた切削工具を提供することにある。
 本発明に係る防振部材は、ゴム弾性または粘弾性を有する部材本体を備え、工具本体の外面にその外面との摩擦力によって取り付け可能である。
 本発明に係る防振部材によれば、切削時において、工具に発生する工具のたわみ及び捩れにより、ゴム弾性または粘弾性を有する部材本体が変形し、部材本体自体の減衰効果により、工具本体の振動を減衰させることができる。また、工具本体と部材本体との接触面に摩擦が生じ、工具本体と部材本体との境界面で摩擦抵抗が生じることによって振動を減衰させることができる。
 前記防振部材は、中心軸孔を有する筒形状であり、前記中心軸孔に前記工具本体が挿入されるように構成されていてもよい。すなわち、前記部材本体が中心軸孔を有する筒形状であり、前記中心軸孔に前記工具本体が挿入されてもよい。
 本発明に係る防振部材によれば、より単純な構造で、防振部材を作製することができる。また、工具本体により簡単に取り付けられる防振部材を提供することができる。さらに、既存の工具にも簡単に防振部材を取り付けることができるから、既存の工具を廃却することなく低振動化して使用することができる。
 また、前記中心軸孔の内径は、前記工具本体の外形よりも小さくてもよい。
 本発明に係る防振部材によれば、防振部材の中心軸孔と工具本体との間に締め代(しめしろ)が生じ、締まり嵌め(しまりばめ)により、所定の締結力で防振部材と工具本体とを嵌め合わせることができる。
 また、前記防振部材には、前記部材本体の内周側及び外周側の少なくとも一方に、少なくとも1本のスリットが形成されていてもよい。
 本発明に係る防振部材によれば、スリットにより防振部材の内部において摩擦する面積が増加し、より高い摩擦減衰効果を得ることができる。
 また、ゴム弾性または粘弾性を有する前記部材本体に、繊維が添加されていてもよい。
 本発明に係る防振部材によれば、切削工具が高速回転した場合に防振部材が遠心力によって変形するのを抑制することができる。
 さらに、本発明は、前記防振部材と、工具本体とを備える切削工具を提供する。
 本発明に係る防振部材によれば、切削工具の強度を犠牲にすることなく、工具に減衰機能を付加することができる。
 本発明によれば、切削時において、工具に発生する工具のたわみ及び捩れにより、ゴム弾性または粘弾性を有する部材本体が変形し、部材本体自体の減衰効果により、工具本体の振動を減衰させることができる。また、工具本体と部材本体との接触面に摩擦が生じ、工具本体と部材本体との境界面で摩擦抵抗が生じることによって振動を減衰させることができる。
本発明の実施形態に係る工作機械の工具取付部の概観図である。 第一の実施形態に係る防振部材の斜視図である。 工作機械のチャック部の拡大側面図である。 第二の実施形態に係る防振部材の斜視図である。 第二の実施形態の別形態に係る防振部材の斜視図である。 第二の実施形態の別形態に係る防振部材の斜視図である。 第二の実施形態の別形態に係る防振部材の斜視図である。 比較例1(防振部材なし)のタッピング試験結果である。 実施例2-1(全長に亘る防振部材)のタッピング試験結果である。 実施例2-2(全長の半分に亘る防振部材)のタッピング試験結果である。 タッピング試験における周波数応答のグラフである。 比較例3の表面粗度測定結果である。 実施例3の表面粗度測定結果である。
 以下、本発明の第一の実施形態について図面を参照して詳細に説明する。
 図1に、本実施形態の防振部材が適用された切削工具を具備する横型マシニングセンタ100(以下、工作機械と称する)の工具取付部の概観図である。
 本実施形態の防振部材1は、工作機械100のフライス(刃物)に適用されている。本実施形態では、フライスとしてエンドミル2を使用している。図1に示すように、本実施形態で使用される工作機械100の主軸は水平方向に向いており、エンドミル2は、チャック部51によって保持されている。
 図2に示すように、防振部材1の部材本体1Aは円筒形状をなし、軸方向に沿って中心軸孔3が形成されている。部材本体1Aは粘弾性体からなり、より詳しくは、天然ゴム配合硬さ65のゴムによって形成されている。なお、防振部材1の材質としては、ゴムに限らず、ゴム弾性または粘弾性を有する部材であればよい。これらの材料を用いることで、高い振動減衰効果が得られる。例えば、ゴム弾性を有する材料としては、天然ゴムや合成ゴムなどの網目状高分子、プラスチックなどの鎖状の合成高分子を採用することが出来る。また、例えば、粘弾性を有する材料としては、衝撃吸収力や圧力分散性能を備えたシリコーンを主原料とするゲル状素材(例えば、タイカ社のαゲル(登録商標)等)を採用することができる。
 防振部材1の軸方向の長さは、エンドミル2の胴部を略覆う長さである。即ち、防振部材1は、エンドミル2の刃部及び保持部を除く、略全長に亘ってエンドミル2を覆う形状である。本実施形態の防振部材1は、長さが50mm、外径が40mm中心軸孔の直径は13mmとされている。
 図3は、チャック部51の拡大側面図である。
 図3に示すように、防振部材1は、チャック部51に保持されたエンドミル2に取り付けられている。エンドミル2は、チャック部51に保持される保持部4と、刃部5と、保持部と刃部との間の胴部6とからなる。エンドミル2は、略円柱形状であり、胴部6も一定の直径を有する円柱形状である。防振部材1は、エンドミル2の胴部6に取り付けられている。
 本実施形態においては、エンドミル2のチャック部51からの突き出し量は、79mmであり、防振部材1は、エンドミル2の先端から14.5mmの位置に取り付けられている。また、エンドミルの胴部の直径は、14mmであり、防振部材1の中心軸孔の内径は、エンドミルの胴部の外径よりも1mm小さくされている。即ち、防振部材1とエンドミル2とは、締まり嵌めの関係により嵌め合わされている。
 上記実施形態によれば、切削時において、エンドミル2に発生するエンドミル2のたわみ及び捩れにより防振部材1が変形し、防振部材1自体の減衰効果により、エンドミル2本体の振動を減衰させることができる。
 また、エンドミル2と防振部材1との接触面に摩擦が生じ、エンドミル2と防振部材1との境界面で摩擦抵抗が生じることによって振動を減衰させることができる。
 また、防振部材1は、単純な形状であるため、より低コストで、防振部材1を作製することができる。また、エンドミル2により簡単に取り付けられる防振部材1を提供することができる。さらに、既存の工具にも簡単に防振部材を取り付けることができるから、既存の工具を廃却することなく低振動化して使用することができる。
 さらに、防振部材1の中心軸孔3とエンドミル2との間に締め代が生じるため、締まり嵌めにより所定の締結力で防振部材1とエンドミル2とを嵌め合わせることができる。
 次に、第二の実施形態に係る防振部材について説明する。
 図4は、第二の実施形態に係る防振部材1Bの斜視図である。図4に示すように、第二の実施形態に係る防振部材1Bの部材本体1Aには、第一の実施形態の防振部材1の内周側に軸方向から見て、中心軸孔3から放射状(ラジアル方向)に形成された複数のスリット7が形成されている。複数のスリット7は、軸方向(アキシャル方向)に防振部材1Bの全長に亘って延在している。
 上記実施形態によれば、スリット7により防振部材1Bの内部において摩擦する面積が増加し、より高い摩擦減衰効果を得ることができる。また、中心軸孔3が広げ易くなるため、防振部材1Bをエンドミル2に取り付け易くなる。
 なお、スリット7はアキシャル方向に連続して形成されていなくてもよい。例えば、図5Aに示すように、スリット7Cが部材本体1Aの一部に断続的に形成されていてもよい。また、スリット7はアキシャル方向に直線的に設けられている必要はなく、図5Bに示すように、スリット7Dがスクリュー状に捩じれて形成されていてもよい。
 また、図5Cに示すように、スリット7Eが部材本体1Aの外周側に形成されていてもよい。スリットを内周側だけでなく外周側にも形成することによって、防振部材の剛性が下がり、構造減衰による減衰効果を期待することができる。
 次に、防振部材が取り付けられたエンドミルの実施例と、防振部材のないエンドミルの比較例について、防振効果等を確認するための各種測定を行った。
 検証は、チッピング量による比較、タッピング試験による比較、表面粗度による比較、工具損傷の検査による比較、の4つの観点から行った。
 工作機械は、横マシニングセンタを用いた。エンドミルは、φ14の6刃エンドミルを使用した。テストピースは、時効処理済みの角材(幅×高さ×奥行き=122×109×76(mm))とした。径方向と軸方向の切り込み、及び回転数は、実施例及び比較例で一定とした。
<チッピング量による比較>
 実施例のエンドミルと、比較例のエンドミルとで、テストピースを加工し、加工後のチッピング量(摩耗量)を計測し、比較した。テストピースの加工は、2面加工を行った。
<実施例1>
 実施例1は、防振部材を取り付けたエンドミルを用いて、表1に示す条件でテストピースを加工した。防振部材は、外径=40mm、内径=13mm、長さ=50mm、のものを用い、外径14mmのエンドミルに締まり嵌めにより嵌め合わせて固定した。
<比較例1>
 比較例1は、防振部材を取り付けないエンドミルを用いて、表1に示す条件でテストピースを加工した。
 表1にテストピースの端面を2面加工した後の、エンドミルのチッピング量を示す。チッピング量は、エンドミルの逃げ面、及び掬い面についてそれぞれ計測した。また、1面の切削距離は約2.68mとした。
 表1より、各切れ刃にチッピング量のバラつきはあるものの、2面加工の時点では、逃げ面の評価で平均49%のチッピング量の低減が確認できた。掬い面の評価では、平均31%のチッピング量の低減が確認できた。
Figure JPOXMLDOC01-appb-T000001
                  
<タッピング試験による比較>
 防振部材の効果要因を確認するために、工具回転を停止した状態でタッピング試験を実施した。タッピング試験は、工具先端位置を加振入力位置とし、当該位置をインパクトハンマーで打点することにより実施した。振動の計測位置は、工具先端位置とした。
<実施例2-1,2-2>
 実施例2-1として、エンドミルの胴部を全長に亘って覆う防振部材を用意した。実施例2-2として、エンドミルの胴部の約半分を覆う防振部材、即ち、実施例2-1と比較して約半分の全長を有する防振部材を用意した。
<比較例2>
 比較例2は、防振部材を取り付けないエンドミルとした。
 図6は、比較例1(防振部材なし)のタッピング試験結果である。図7は、実施例2-1(全長に亘る防振部材)のタッピング試験結果である。図8は、実施例2-2(全長の半分に亘る防振部材)のタッピング試験結果である。何れのグラフも水平方向の振動加速度を示すものである。
 図6~8に示すように、比較例1と比較して、実施例2-1及び実施例2-2の減衰効果が高いことがわかる。
 図9は、周波数応答のグラフである。ハーフパワー法により算出した減衰比は、比較例2では約1.5%、実施例2-1では5.0%、実施例2-2では3.0%であり、防振部材の取り付けによる減衰効果があることを確認することができた。図9に示すように、比較例2、実施例2-1、2-2における工具の振動のピークは900Hz付近と1,200Hz付近であり、工具の回転数と刃数より算出される加振振動数は上述したピークから十分離れている。そのため、防振部材を取り付けたことによる効果は共振回避ではなく減衰によるものであると考えられる。また、実施例2-2は、エンドミルの胴部の約半分しか覆っていないため、防振効果がやや少ないものの、やはり防振効果を有することが示された。
<表面粗度による比較>
 実施例のエンドミルと、比較例のエンドミルとで、テストピースを加工し、加工後の表面粗度を計測し、比較した。テストピースの加工は、5面加工を行った。
<実施例3>
 実施例1と同様の条件とした。即ち、防振部材を取り付けたエンドミルを用いて、テストピースを加工した。
<比較例3>
 比較例1と同様の条件とした。即ち、防振部材を取り付けないエンドミルを用いて、テストピースを加工した。
 表2にツールパス(工具経路)方向の表面粗度の値を示す。また、図10に比較例3の表面粗度測定結果を、図11に実施例3の表面粗度測定結果を示す。図10、及び図11共、ツールパスの方向の表面粗度を示している。また、高さ方向の尺度は同一としている。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ツールパス方向の表面粗度はRa:算術平均粗さ、Rz:最大高さ粗さ、Rt:最大断面高さの何れの数値も、実施例3が低い数値となった。特に、実施例3において防振部材を取り付けたことによって、最大高さ粗さRzが4.3μmから3.7μmに減少している。この要因として、工具振動の振幅の減少が考えられる。
 また、図10及び図11に示すように、加工面を測定した形状を見ると、実施例3では、加工面が、周期の短い波形が連続した形状をなし、さらにその波形の高さが、個々の波形よりも長い周期で見た場合に規則的に増減する。即ち、振動が抑制されていることによって、波形がやや滑らかになっていることがわかる。これに対し、比較例3では、加工面の波形は不規則で、実施例3のような傾向を見ることができず、波形の外形が長い周期で増減する規則性を見取るのが難しい。即ち、振動の抑制が実施例3と比較して少ないことによって、細かい波形が不規則に並んでいることがわかる。
<工具損傷の検査による比較>
 実施例1の防振部材を取り付けた切削工具について、蛍光浸透深傷試験と放射線試験を実施し、工具自体の損傷状態について確認した。
 その結果、切削加工前、切削加工後(切削距離13.4m)ともに異常はなく、切削初期の段階でも工具シャンク部分に工具の損傷は確認されなかった。
 以上の比較により、以下の結果を得た。
(1)エンドミルに防振部材を取り付けることにより、工具の減衰効果が高くなり、切れ刃のチッピングを低減する効果があることを確認できた。
(2)切れ刃のチッピング低減効果は、切削初期に有効であり、工具のプリセット時の振れよりも防振部材の取り付けによるチッピング低減効果の方が大きいことがわかった。
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。例えば、以上で説明した各実施形態では、工作機械として横型マシニングセンタを用いているが、長尺形状の刃物を使用する工作機械であれば、これに限ることはない。例えば、防振部材をボール盤のドリルや旋盤のバイトに使用する構成としてもよい。
1…防振部材、
1A…部材本体
2…エンドミル(工具本体)、
3…中心軸孔、
4…保持部、
5…刃部、
6…胴部、
7、7C、7D、7E…スリット

Claims (7)

  1.  ゴム弾性または粘弾性を有する部材本体を備え、工具本体の外面にその外面との摩擦力によって取り付け可能である防振部材。
  2.  前記部材本体が中心軸孔を有する筒形状であり、前記中心軸孔に前記工具本体が挿入される請求項1に記載の防振部材。
  3.  前記中心軸孔の内径は、前記工具本体の外径よりも小さくされている請求項2に記載の防振部材。
  4.  前記部材本体の内周側及び外周側の少なくとも一方に、少なくとも1本のスリットが形成されている請求項3に記載の防振部材。
  5.  前記部材本体に、繊維が添加されている請求項1から請求項4のいずれか一項に記載の防振部材。
  6.  請求項1から請求項4のいずれか一項に記載の防振部材と、工具本体とを備える切削工具。
  7.  請求項5に記載の防振部材と、工具本体とを備える切削工具。
PCT/JP2012/067934 2011-07-15 2012-07-13 防振部材及び切削工具 WO2013011944A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280031718.6A CN103635287B (zh) 2011-07-15 2012-07-13 防振构件及切削工具
KR1020137032890A KR20140004252A (ko) 2011-07-15 2012-07-13 방진 부재 및 절삭 공구
JP2013524705A JP5743116B2 (ja) 2011-07-15 2012-07-13 防振部材及び切削工具
US14/125,641 US20140105701A1 (en) 2011-07-15 2012-07-13 Anti-vibration member and cutting tool
EP12814445.8A EP2732913A4 (en) 2011-07-15 2012-07-13 Vibration damping element and cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011156602 2011-07-15
JP2011-156602 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011944A1 true WO2013011944A1 (ja) 2013-01-24

Family

ID=47558122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067934 WO2013011944A1 (ja) 2011-07-15 2012-07-13 防振部材及び切削工具

Country Status (6)

Country Link
US (1) US20140105701A1 (ja)
EP (1) EP2732913A4 (ja)
JP (1) JP5743116B2 (ja)
KR (1) KR20140004252A (ja)
CN (1) CN103635287B (ja)
WO (1) WO2013011944A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108581402A (zh) * 2018-07-21 2018-09-28 苏州三骏工具科技有限公司 减振铣刀的制作方法
CN109367562B (zh) * 2018-11-29 2023-11-14 中南大学 一种组合式轨道车辆吸能防爬器
CN109367561B (zh) * 2018-11-29 2023-11-21 中南大学 一种切削式轨道车辆吸能防爬器
GB2608633A (en) * 2021-07-08 2023-01-11 Gkn Aerospace Sweden Ab Tool holder damper
CN115070096B (zh) * 2022-08-16 2022-10-25 成都航空职业技术学院 一种铣刀的减振方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539806U (ja) * 1991-11-05 1993-05-28 ヤマザキマザツク株式会社 ボーリングバー
JPH09277106A (ja) * 1996-04-17 1997-10-28 Kobe Steel Ltd ボーリングバー
JP2008264978A (ja) * 2007-04-24 2008-11-06 Kobe Steel Ltd 転削装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR559350A (fr) * 1922-12-02 1923-09-13 Amortisseur à compression progressive
US2641940A (en) * 1949-08-09 1953-06-16 White Dan Special boring bar
US3463048A (en) * 1967-08-17 1969-08-26 Lovejoy Tool Co Inc Vibration damping device for milling cutters
GB1291781A (en) * 1970-01-21 1972-10-04 Padley & Venables Ltd Improvements in or relating to tools for use in percussive machines
US3848931A (en) * 1972-10-10 1974-11-19 Int Tool Sales Tool bit for vibration attenuation
US4516658A (en) * 1983-02-28 1985-05-14 Rensselaer Polytechnic Institute Coulome friction noise and vibration damping
JPH0985562A (ja) * 1995-09-28 1997-03-31 M S T Corp:Kk 工具用ホルダ
JP2001088120A (ja) * 1999-09-27 2001-04-03 Japan Drive-It Co Ltd 塑造構造物穿孔用ドリルおよび穿孔深さ設定用治具
US20020020243A1 (en) * 2000-05-22 2002-02-21 Ziegert John C. Rotary shaft vibration damping
SE518390C2 (sv) * 2000-06-20 2002-10-01 Sandvik Ab Borrverktyg försett med dämpelement avsett för hålborrning i metalliska material
JP2003062758A (ja) * 2001-08-24 2003-03-05 Enomoto Co Ltd 略円柱状回転工具
SE528470C2 (sv) * 2004-02-03 2006-11-21 Mircona Ab Vibrationsdämpad verktygshållare med viskoelastiskt dämpningsmaterial
ITBS20040008U1 (it) * 2004-02-12 2004-05-12 Cropelli S R L Bussola intivibrante per punte a cannone
US20050214087A1 (en) * 2004-03-26 2005-09-29 Agapiou John S Spacer adapter for toolholders
SE528247C2 (sv) * 2004-05-07 2006-10-03 Mircona Ab Vibrationsdämpad verktygshållare
JP2006234046A (ja) * 2005-02-24 2006-09-07 Bridgestone Corp 防振装置
JP5122202B2 (ja) * 2007-07-26 2013-01-16 株式会社ジーシー 歯科切削具用ストッパー
US8398342B2 (en) * 2009-01-05 2013-03-19 The Boeing Company Workpiece vibration reduction
CN101829799A (zh) * 2009-03-13 2010-09-15 孙辉 一种新型消振钻床刀具夹头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539806U (ja) * 1991-11-05 1993-05-28 ヤマザキマザツク株式会社 ボーリングバー
JPH09277106A (ja) * 1996-04-17 1997-10-28 Kobe Steel Ltd ボーリングバー
JP2008264978A (ja) * 2007-04-24 2008-11-06 Kobe Steel Ltd 転削装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2732913A4 *

Also Published As

Publication number Publication date
EP2732913A4 (en) 2015-08-26
US20140105701A1 (en) 2014-04-17
CN103635287B (zh) 2016-08-17
CN103635287A (zh) 2014-03-12
EP2732913A1 (en) 2014-05-21
JP5743116B2 (ja) 2015-07-01
KR20140004252A (ko) 2014-01-10
JPWO2013011944A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5743116B2 (ja) 防振部材及び切削工具
US9016988B2 (en) Tool holder
JP5352901B2 (ja) 防振エンドミル
WO2011108108A1 (ja) 切削工具
KR20160052366A (ko) 테이퍼 콜릿용 이너 슬리브 및 절삭 공구 홀더
KR20060127010A (ko) 방진 절삭 공구
Madoliat et al. Investigation of chatter suppression in slender endmill via a frictional damper
JP6145915B2 (ja) 作業機械のびびり防止構造及びそれによるびびり防止方法
KR101332467B1 (ko) 절삭공구의 방진구조
JP2018094710A (ja) 作業機械のびびり防止構造
US8296919B2 (en) Increased process damping via mass reduction for high performance milling
WO2014125951A1 (ja) コレット
JP7237698B2 (ja) 切削工具
JP2008100332A (ja) 防振工具
JP5120681B1 (ja) 防振ボーリングバー
JP4557663B2 (ja) 防振切削工具
JP2012196729A (ja) 防振機能を備えた回転切削工具
US20020020243A1 (en) Rotary shaft vibration damping
Yuvaraju et al. Investigation of stability in internal turning using a boring bar with a passive constrained layer damping
US20080298913A1 (en) Increased Process Damping Via Mass Reduction for High Performance Milling
JP3944321B2 (ja) 動吸振装置および工作機械
JP4136977B2 (ja) 切削工具および工作機械
CN116600921A (zh) 有源压电刀具、有源压电器件及有源压电刀具的操作方法
JP2021179224A (ja) 歯車
KR20120084907A (ko) 동조 질량 감쇠기를 구비하는 절삭 공구

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524705

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137032890

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125641

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012814445

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE