WO2013011929A1 - 電気機器 - Google Patents
電気機器 Download PDFInfo
- Publication number
- WO2013011929A1 WO2013011929A1 PCT/JP2012/067871 JP2012067871W WO2013011929A1 WO 2013011929 A1 WO2013011929 A1 WO 2013011929A1 JP 2012067871 W JP2012067871 W JP 2012067871W WO 2013011929 A1 WO2013011929 A1 WO 2013011929A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- thermistor
- battery
- secondary battery
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/24—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
- G01K7/25—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electric device that operates with electric power supplied from a secondary battery.
- the battery module incorporates a thermistor
- the electric device body includes a measurement circuit that measures the resistance value of the thermistor. Since the resistance value of the thermistor changes with temperature, the measurement circuit can measure the temperature in the battery module by measuring the resistance value of the thermistor.
- one end of the thermistor and one end of the secondary battery may be connected to a common external connection terminal.
- a potential difference may occur between one end of the thermistor and the measurement circuit due to the influence of the current flowing through the secondary battery, and the measurement circuit may not be able to accurately measure the resistance value of the thermistor.
- the present invention has been made in consideration of the above problems, and one of its purposes is to determine the resistance value of the thermistor when one end of the thermistor and one end of the secondary battery are connected to a common external connection terminal.
- An object of the present invention is to provide an electrical device capable of measuring with high accuracy.
- An electrical device is an electrical device including a battery module and a measurement circuit
- the battery module includes a secondary battery, a thermistor, one end of the thermistor, and one end of the secondary battery.
- the resistance value of the thermistor is calculated by measuring the voltage between the two terminals, the current measuring means for measuring the current flowing through the secondary battery, and the first terminal and the second terminal, and the calculation Temperature measuring means for measuring the temperature of the battery module using the resistance value, wherein the temperature measuring means measures the voltage between the first terminal and the second terminal. Performing correction using the current, and calculates the resistance value of the thermistor.
- the measurement circuit includes a third terminal, a resistor is connected between the first terminal and the third terminal, and the current measurement unit is configured to measure a voltage between both ends of the resistor. It is good also as measuring the electric current which flows into the said secondary battery by measuring.
- the measurement circuit may be a battery remaining amount detection circuit having a function of detecting a remaining battery amount of the secondary battery.
- An electrical device is an electrical device including a battery module and a measurement circuit
- the battery module includes a secondary battery, a thermistor, one end of the thermistor, and the secondary battery.
- a reference terminal connected to both ends of the thermistor, and a thermistor connection terminal connected to the other end of the thermistor
- the measurement circuit includes a first terminal connected to the reference terminal, and a thermistor connection terminal.
- the resistance value of the thermistor is calculated by measuring the voltage between the second terminal to be connected, the current measuring means for measuring the current flowing through the secondary battery, and the first terminal and the second terminal.
- a temperature measuring means for measuring the temperature of the battery module using the calculated resistance value, the temperature measuring means for the voltage between the first terminal and the second terminal. Performing correction using the current obtained by the measurement, and calculates a resistance value of the thermistor.
- the measurement circuit includes a third terminal, a resistor is connected between the first terminal and the third terminal, and the current measurement unit is configured to measure a voltage between both ends of the resistor. It is good also as measuring the electric current which flows into the said secondary battery by measuring.
- the measurement circuit may be a battery remaining amount detection circuit having a function of detecting a remaining battery amount of the secondary battery.
- FIG. 1 is a circuit configuration diagram of an electrical device 1 according to an embodiment of the present invention.
- the electrical device 1 includes a battery pack (battery module) 10, a battery remaining amount detection circuit (measurement circuit) 20, a first resistor 21, a second resistor 22, and a charge control circuit. 30.
- the electrical device 1 may be various devices that operate using the secondary battery 11 included in the battery pack 10 as a power supply source, such as a portable game machine, a mobile phone, and a notebook personal computer.
- the battery pack 10 includes a secondary battery 11, a thermistor 12, and a protection circuit 13.
- the battery pack 10 includes three terminals, ie, a power supply terminal T11, a thermistor connection terminal T12, and a reference terminal T13 as connection terminals to the outside. Circuits in the main body of the electric apparatus 1 are connected through these connection terminals. Connected to the board.
- the secondary battery 11 is a rechargeable battery such as a lithium ion battery, and is charged by electric power supplied from the outside of the electric device 1. The electric power accumulated by the charging is supplied to a load (not shown) in the electric device 1. Supply.
- the thermistor 12 is a circuit element whose resistance value changes according to a change in ambient temperature.
- the battery remaining amount detection circuit 20 to be described later can measure the temperature of the battery pack 10 by measuring the resistance value Rt of the thermistor 12.
- the protection circuit 13 includes transistors Q1 and Q2 that function as switching elements, and a protection IC 13a that controls on / off of these transistors according to various conditions.
- the protection circuit 13 protects the secondary battery 11 by separating the secondary battery 11 from other circuits as necessary.
- the power supply terminal T11 is connected to the positive electrode of the secondary battery 11.
- the reference terminal T13 is connected to the negative electrode of the secondary battery 11 via the protection circuit 13.
- one end of the thermistor 12 is connected to the reference terminal T13, and the other end is connected to the thermistor connection terminal T12. That is, inside the battery pack 10, one end of the secondary battery 11 and one end of the thermistor 12 are connected to each other via the protection circuit 13. In this way, by connecting one end of the thermistor 12 and one end of the secondary battery 11 to a common connection terminal (here, the reference terminal T13), both ends of the secondary battery 11 and both ends of the thermistor 12 are all connected to other terminals.
- the number of terminals for external connection that the battery pack 10 should have can be reduced as compared with the case where the battery pack 10 is connected to the outside independently.
- the battery remaining amount detection circuit 20 is an integrated circuit or the like, and detects the remaining battery amount of the secondary battery 11.
- the battery remaining amount detection circuit 20 includes five terminals, ie, a first terminal T21, a second terminal T22, a third terminal T23, a fourth terminal T24, and a fifth terminal T25, as connection terminals to the outside.
- the first terminal T21 is a ground terminal, and the potential thereof becomes the reference potential Vo2 of the battery remaining amount detection circuit 20.
- the first terminal T21 is connected to the reference terminal T13 of the battery pack 10.
- the second terminal T22 is connected to the thermistor connection terminal T12, and the fifth terminal T25 is connected to the power supply terminal T11.
- a first resistor 21 is connected between the first terminal T21 and the third terminal T23, and a second resistor 22 is connected between the second terminal T22 and the fourth terminal T24. Yes.
- achieves in this embodiment is mentioned later.
- the charging control circuit 30 is an integrated circuit or the like, and controls the charging voltage and the charging current when the secondary battery 11 is charged with the power supplied from the power supply source outside the electric device 1. Although not shown in FIG. 1, the charge control circuit 30 is further connected to a load for realizing the function of the electrical device 1 and a connection terminal with a power supply source.
- the remaining battery level detection circuit 20 outputs a constant voltage from the fourth terminal T24.
- the voltage output from the fourth terminal T24 is assumed to be a voltage that is higher than the reference potential Vo2 by Vc.
- voltage values based on the reference potential Vo2 of the second terminal T22 and the third terminal T23 are denoted as V2 and V3.
- the battery remaining amount detection circuit 20 functionally includes a current measuring unit 20a, a temperature measuring unit 20b, and a battery remaining amount calculating unit 20c as shown in FIG.
- the current measuring unit 20a measures the current value I1 of the current flowing through the secondary battery 11 by measuring the voltage Vr1 across the first resistor 21.
- the current measuring unit 20a uses the measured voltage Vr1 of the first resistor 21 and the resistance value R1 of the first resistor 21 to flow the current flowing through the first resistor 21 (that is, the secondary battery 11).
- Current I1 is calculated.
- the resistance value R1 of the first resistor 21 is stored in the battery remaining amount detection circuit 20 in advance.
- the temperature measurement unit 20b acquires the voltage value V2 by A / D converting the voltage of the second terminal T22, and uses the acquired voltage value V2, the known resistance value R2, and the constant voltage Vc, the above formula.
- the resistance value Rt at that time can be calculated by (1). If the resistance value Rt is known, the temperature in the battery pack 10 can be known using information on the temperature dependence of the resistance value Rt of the thermistor 12.
- the temperature measurement unit 20b performs correction for absorbing the potential difference between the reference potential Vo1 and the reference potential Vo2 using information on the current I1 measured by the current measurement unit 20a.
- the magnitude of the resistance between the first terminal T21 and the reference potential point of the battery pack 10 is R3.
- the resistor R3 is generated by the impedance of the circuit pattern, the contact resistance at the reference terminal T13 of the battery pack 10, and the value of the resistor R3 can be specified in advance when designing the circuit of the electric device 1.
- the direction of flowing toward the negative electrode of the secondary battery 11 that is, the direction of the current when the secondary battery 11 is discharged
- the reference potential Vo2 becomes higher than the reference potential Vo1.
- the reference potential Vo2 becomes lower than the reference potential Vo1.
- the reference potential Vo2 is reversed in polarity between charging and discharging, so that a relatively large difference occurs between charging and discharging. For this reason, if the difference between the reference potential Vo2 and the reference potential Vo1 is not corrected, the temperature appears to change greatly between charging and discharging.
- the temperature measurement unit 20b calculates each of Vc and V2 in the equation (1).
- the resistance value Rt is calculated using the following formula (2) replaced with (Vc + Vo2) and (V2 + Vo2).
- V2 + Vo2 (Rt / (R2 + Rt)) (Vc + Vo2) (2)
- the temperature measurement part 20b can calculate the resistance value Rt with high accuracy using the current I1.
- the current measuring unit 20a measures the current I1 at regular intervals. Moreover, the temperature measurement part 20b also measures temperature every fixed time. Therefore, the current measurement unit 20a stores the value of the last measured current I1 in the battery remaining amount detection circuit 20, and the temperature measurement unit 20b stores the value of the stored current I1 (that is, the most recent value I1). The temperature is measured using the current I1 value measured in the past.
- the battery remaining amount calculation unit 20 c calculates the remaining battery level of the secondary battery 11 at that time using information such as the battery voltage of the secondary battery 11. At this time, the battery remaining amount calculating unit 20c corrects the calculated value of the remaining battery level using information on the temperature in the battery pack 10 measured by the temperature measuring unit 20b. Thereby, the remaining battery level detection circuit 20 can detect the remaining battery level of the secondary battery 11 with high accuracy.
- the reference potential Vo1 of the thermistor 12 and the reference potential of the secondary battery 11 are common, so that each of them is compared with a case where each is independently connected to the outside.
- the number of external connection terminals provided in the battery pack 10 can be reduced.
- a potential difference between the reference potential Vo2 of the battery remaining amount detection circuit 20 and the reference potential Vo1 of the thermistor 12 is caused by the current flowing in the secondary battery 11 and the impedance caused by the circuit pattern and the like. Occurs.
- this potential difference is calculated using the current I1 measured by the current measurement function provided in the battery remaining amount detection circuit 20, and measured during temperature measurement using the calculated potential difference information.
- the voltage V2 to be corrected is corrected. Therefore, temperature can be accurately measured.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
サーミスタの一端と二次電池の一端とを共通の外部接続端子に接続する場合に、サーミスタの抵抗値を精度よく測定することのできる電気機器を提供する。電池モジュール(10)と計測回路(20)とを備える電気機器(1)であって、電池モジュール(10)は、二次電池(11)と、サーミスタ(12)と、サーミスタ(12)及び二次電池(11)双方の一端と接続される基準端子T13と、サーミスタ(12)の他端と接続されるサーミスタ接続端子T12とを備え、計測回路(20)は、基準端子T13に接続される第1端子T21と、サーミスタ接続端子T12に接続される第2端子T22とを備え、二次電池(11)に流れる電流を計測し、第1端子T21と第2端子T22との間の電圧を測定し、当該電圧に対して計測した電流を用いた補正を行ってサーミスタ(12)の抵抗値を算出し、算出した抵抗値を用いて電池モジュール(10)の温度を計測する。
Description
本発明は、二次電池が供給する電力により動作する電気機器に関する。
二次電池を内蔵した電池モジュールを接続して、この二次電池が供給する電力により動作する電気機器がある。このような電気機器においては、二次電池の電池残量を精度よく検出するなどの目的で、電池モジュール内の温度を計測する機能を備えることがある。具体的には、電池モジュールがサーミスタを内蔵し、電気機器本体はこのサーミスタの抵抗値を測定する計測回路を備える。サーミスタの抵抗値は温度によって変化するため、計測回路は、サーミスタの抵抗値を測定することによって、電池モジュール内の温度を計測することができる。
電池モジュールの外部接続端子を減らすために、サーミスタの一端と二次電池の一端とを共通の外部接続端子に接続する場合がある。しかしながら、このような構成を採用すると、二次電池に流れる電流の影響によって、サーミスタの一端と計測回路との間で電位差が生じ、計測回路がサーミスタの抵抗値を精度よく測定できなくなってしまうおそれがある。
本発明は上記課題を考慮してなされたものであって、その目的の一つは、サーミスタの一端と二次電池の一端とを共通の外部接続端子に接続する場合に、サーミスタの抵抗値を精度よく測定することのできる電気機器を提供することにある。
本発明に係る電気機器は、電池モジュールと計測回路とを備える電気機器であって、前記電池モジュールは、二次電池と、サーミスタと、前記サーミスタの一端、及び前記二次電池の一端の双方と接続される基準端子と、前記サーミスタの他端と接続されるサーミスタ接続端子と、を備え、前記計測回路は、前記基準端子に接続される第1端子と、前記サーミスタ接続端子に接続される第2端子と、前記二次電池に流れる電流を計測する電流計測手段と、前記第1端子と前記第2端子との間の電圧を測定することによって、前記サーミスタの抵抗値を算出し、当該算出した抵抗値を用いて前記電池モジュールの温度を計測する温度計測手段と、を備え、前記温度計測手段は、前記第1端子と前記第2端子との間の電圧に対して、前記計測した電流を用いた補正を行って、前記サーミスタの抵抗値を算出することを特徴とする。
前記電気機器において、前記計測回路は第3端子を備え、前記第1端子と前記第3端子との間には抵抗器が接続され、前記電流計測手段は、前記抵抗器の両端間の電圧を測定することによって、前記二次電池に流れる電流を計測することとしてもよい。
また、前記電気機器において、前記計測回路は、前記二次電池の電池残量を検出する機能を備える電池残量検出回路であることとしてもよい。
本発明の実施の形態に係る電気機器は、電池モジュールと計測回路とを備える電気機器であって、前記電池モジュールは、二次電池と、サーミスタと、前記サーミスタの一端、及び前記二次電池の一端の双方と接続される基準端子と、前記サーミスタの他端と接続されるサーミスタ接続端子と、を備え、前記計測回路は、前記基準端子に接続される第1端子と、前記サーミスタ接続端子に接続される第2端子と、前記二次電池に流れる電流を計測する電流計測手段と、前記第1端子と前記第2端子との間の電圧を測定することによって、前記サーミスタの抵抗値を算出し、当該算出した抵抗値を用いて前記電池モジュールの温度を計測する温度計測手段と、を備え、前記温度計測手段は、前記第1端子と前記第2端子との間の電圧に対して、前記計測した電流を用いた補正を行って、前記サーミスタの抵抗値を算出することを特徴とする。
前記電気機器において、前記計測回路は第3端子を備え、前記第1端子と前記第3端子との間には抵抗器が接続され、前記電流計測手段は、前記抵抗器の両端間の電圧を測定することによって、前記二次電池に流れる電流を計測することとしてもよい。
また、前記電気機器において、前記計測回路は、前記二次電池の電池残量を検出する機能を備える電池残量検出回路であることとしてもよい。
以下、本発明の実施形態について、図面に基づき詳細に説明する。
図1は、本発明の一実施形態に係る電気機器1の回路構成図である。同図に示すように、電気機器1は、バッテリパック(電池モジュール)10と、電池残量検出回路(計測回路)20と、第1抵抗器21と、第2抵抗器22と、充電制御回路30と、を含んで構成される。電気機器1は、例えば携帯型ゲーム機や携帯電話、ノート型パーソナルコンピュータなど、バッテリパック10に含まれる二次電池11を電力供給源として動作する各種の機器であってよい。
バッテリパック10は、二次電池11と、サーミスタ12と、保護回路13と、を含んで構成されている。また、バッテリパック10は、外部との接続端子として、電源端子T11、サーミスタ接続端子T12、及び基準端子T13の3つの端子を備えており、これらの接続端子を介して電気機器1本体内の回路基板と接続される。
二次電池11は、リチウムイオン電池等の充電可能な電池であって、電気機器1の外部から供給される電力によって充電され、充電によって蓄積した電力を電気機器1内の負荷(不図示)に供給する。
サーミスタ12は、周囲の温度変化に応じて抵抗値が変化する回路素子である。後述する電池残量検出回路20は、このサーミスタ12の抵抗値Rtを測定することによって、バッテリパック10の温度を計測することができる。
保護回路13は、スイッチ素子として機能するトランジスタQ1及びQ2と、各種の条件に応じてこれらのトランジスタのオン/オフを制御する保護IC13aと、を含んで構成される。保護回路13は、必要に応じて二次電池11を他の回路から切り離すなどして、二次電池11を保護する。
電源端子T11は、二次電池11の正極に接続されている。また、基準端子T13は、保護回路13を介して二次電池11の負極に接続されている。さらに、サーミスタ12の一端は基準端子T13に、他端はサーミスタ接続端子T12に、それぞれ接続されている。つまり、バッテリパック10の内部で、二次電池11の一端とサーミスタ12の一端とが保護回路13を介して互いに接続されている。このようにサーミスタ12の一端と二次電池11の一端とを共通の接続端子(ここでは基準端子T13)に接続することによって、二次電池11の両端、及びサーミスタ12の両端を全て他の端子と独立に外部と接続する場合と比較して、バッテリパック10が備えるべき外部接続用の端子の数を減らすことができる。なお、以下ではサーミスタ12の基準端子T13側の電位を、サーミスタ12の基準電位Vo1(=0V)とする。
電池残量検出回路20は、集積回路等であって、二次電池11の電池残量を検出する。電池残量検出回路20は、外部との接続端子として、第1端子T21、第2端子T22、第3端子T23、第4端子T24及び第5端子T25の5個の端子を備えている。第1端子T21はグランド端子であって、その電位が電池残量検出回路20の基準電位Vo2となる。第1端子T21はバッテリパック10の基準端子T13と接続されている。また、第2端子T22はサーミスタ接続端子T12と接続されており、第5端子T25は電源端子T11と接続されている。さらに、第1端子T21と第3端子T23との間には第1抵抗器21が接続されており、第2端子T22と第4端子T24との間には第2抵抗器22が接続されている。なお、本実施形態において電池残量検出回路20が実現する機能については、後述する。
充電制御回路30は、集積回路等であって、電気機器1外部の電力供給源から供給される電力によって二次電池11を充電する際に、その充電電圧及び充電電流を制御する。図1には示されていないが、充電制御回路30には、さらに電気機器1の機能を実現するための負荷、及び電力供給源との接続端子が接続される。
以下、電池残量検出回路20が実現する機能について、説明する。電池残量検出回路20は、第4端子T24から一定電圧を出力する。第4端子T24が出力する電圧は、基準電位Vo2に対してVcだけ高い電圧であるものとする。また、以下では、第2端子T22、及び第3端子T23それぞれの基準電位Vo2を基準とした電圧値をV2及びV3と表記する。
電池残量検出回路20は、機能的に、図2に示すように、電流計測部20aと、温度計測部20bと、電池残量算出部20cと、を含んでいる。
電流計測部20aは、第1抵抗器21の両端間の電圧Vr1を測定することによって、二次電池11に流れる電流の電流値I1を計測する。第1抵抗器21の両端間の電圧は、基準電位Vo2に対する第3端子T23の電圧値V3に一致する。そのため電流計測部20aは、第3端子T23の電圧をA/D変換することによって、第1抵抗器21の両端間の電圧Vr1(=V3)を測定する。
さらに電流計測部20aは、測定された第1抵抗器21の電圧Vr1と第1抵抗器21の抵抗値R1とを用いて、第1抵抗器21を流れる電流(すなわち、二次電池11に流れる電流)の電流値I1を算出する。電流値I1は、以下の計算式により算出される。
I1=Vr1/R1
なお、第1抵抗器21の抵抗値R1は、予め電池残量検出回路20内に記憶されている。
I1=Vr1/R1
なお、第1抵抗器21の抵抗値R1は、予め電池残量検出回路20内に記憶されている。
温度計測部20bは、サーミスタ12の抵抗値Rtを測定することによって、バッテリパック10内の温度を計測する。具体的に、もし仮に電池残量検出回路20の基準電位Vo2とサーミスタ12の基準電位Vo1とが一致すると仮定した場合、第4端子T24から出力される定電圧Vcは、第2抵抗器22及びサーミスタ12によって分圧されるので、第2端子T22の電圧値V2は、第2抵抗器22の抵抗値R2を用いて、
V2=(Rt/(R2+Rt))・Vc ・・・(1)
と表される。そのため温度計測部20bは、第2端子T22の電圧をA/D変換することによって、電圧値V2を取得し、取得した電圧値V2と既知の抵抗値R2及び定電圧Vcとを用いて上記式(1)によりその時点での抵抗値Rtを算出できる。抵抗値Rtが分かれば、サーミスタ12の抵抗値Rtの温度依存性に関する情報を用いてバッテリパック10内の温度を知ることができる。
V2=(Rt/(R2+Rt))・Vc ・・・(1)
と表される。そのため温度計測部20bは、第2端子T22の電圧をA/D変換することによって、電圧値V2を取得し、取得した電圧値V2と既知の抵抗値R2及び定電圧Vcとを用いて上記式(1)によりその時点での抵抗値Rtを算出できる。抵抗値Rtが分かれば、サーミスタ12の抵抗値Rtの温度依存性に関する情報を用いてバッテリパック10内の温度を知ることができる。
しかしながら、実際には、充放電によって二次電池11に比較的大きな電流I1が流れるので、第1端子T21とバッテリパック10の基準電位点との間のインピーダンスによって、基準電位Vo2と基準電位Vo1との間には電位差が生じる。そのため、上述の式(1)を使用するだけでは精度よくサーミスタ12の抵抗値Rtを算出することができない。そこで本実施形態において温度計測部20bは、電流計測部20aが計測した電流I1の情報を用いて、基準電位Vo1と基準電位Vo2との間の電位差を吸収する補正を行う。
具体的に、第1端子T21とバッテリパック10の基準電位点との間の抵抗の大きさをR3とする。この抵抗R3は、回路パターンのインピーダンスやバッテリパック10の基準端子T13における接触抵抗等によって生じるものであって、電気機器1の回路設計時に予めその値を特定することができる。基準電位Vo2は、基準電位Vo1を0として
Vo2=R3・I1
と算出される。ただし、ここでは二次電池11の負極に向かって流れる向き(すなわち、二次電池11が放電する際の電流の向き)を電流I1の正方向としている。放電時には電流I1が正の値となるので、基準電位Vo2は基準電位Vo1より高くなる。充電時には逆に電流I1が負の値となるので、基準電位Vo2は基準電位Vo1より低くなる。このように、基準電位Vo2は、充電時と放電時とで正負が逆になるので、充電時と放電時とで比較的大きな差が生じることになる。そのため、この基準電位Vo2と基準電位Vo1との間の差異を補正しない場合には、充電時と放電時とで温度が大きく変化するように見えてしまう。
Vo2=R3・I1
と算出される。ただし、ここでは二次電池11の負極に向かって流れる向き(すなわち、二次電池11が放電する際の電流の向き)を電流I1の正方向としている。放電時には電流I1が正の値となるので、基準電位Vo2は基準電位Vo1より高くなる。充電時には逆に電流I1が負の値となるので、基準電位Vo2は基準電位Vo1より低くなる。このように、基準電位Vo2は、充電時と放電時とで正負が逆になるので、充電時と放電時とで比較的大きな差が生じることになる。そのため、この基準電位Vo2と基準電位Vo1との間の差異を補正しない場合には、充電時と放電時とで温度が大きく変化するように見えてしまう。
電圧Vc及びV2は、いずれも基準電位Vo2を基準とした電圧なので、基準電位Vo2と基準電位Vo1との差が無視できない場合、温度計測部20bは、式(1)におけるVc及びV2のそれぞれを(Vc+Vo2)及び(V2+Vo2)に置換した下記の式(2)を用いて、抵抗値Rtを算出する。
V2+Vo2=(Rt/(R2+Rt))(Vc+Vo2) ・・・(2)
これにより、温度計測部20bは、電流I1を用いて精度よく抵抗値Rtを算出することができる。
V2+Vo2=(Rt/(R2+Rt))(Vc+Vo2) ・・・(2)
これにより、温度計測部20bは、電流I1を用いて精度よく抵抗値Rtを算出することができる。
なお、電流計測部20aは、一定時間おきに電流I1を計測している。また、温度計測部20bも、一定時間おきに温度の計測を行う。そこで、電流計測部20aは、最後に計測された電流I1の値を電池残量検出回路20内に記憶しておき、温度計測部20bは、この記憶された電流I1の値(すなわち、直近の過去に計測された電流I1の値)を用いて、温度の計測を行うこととする。
電池残量算出部20cは、二次電池11の電池電圧等の情報を用いて二次電池11のその時点での電池残量を算出する。このとき電池残量算出部20cは、温度計測部20bによって計測されたバッテリパック10内の温度の情報を用いて、算出された電池残量の値を補正する。これにより、電池残量検出回路20は、精度よく二次電池11の電池残量を検出することができる。
以上説明した本実施形態に係る電気機器1によれば、サーミスタ12の基準電位Vo1と二次電池11の基準電位が共通になっているので、それぞれを独立に外部と接続する場合と比較して、バッテリパック10が備える外部接続端子の数を少なくすることができる。一方で、このような構成を採用すると、二次電池11に流れる電流と回路パターン等に起因するインピーダンスによって、電池残量検出回路20の基準電位Vo2とサーミスタ12の基準電位Vo1との間に電位差が生じる。しかしながら、本実施形態では、電池残量検出回路20が備える電流計測機能によって計測された電流I1を用いて、この電位差を算出し、この算出された電位差の情報を用いて温度計測の際に測定する電圧V2を補正する。そのため、精度よく温度の計測を行うことができる。
Claims (3)
- 電池モジュールと計測回路とを備える電気機器であって、
前記電池モジュールは、
二次電池と、
サーミスタと、
前記サーミスタの一端、及び前記二次電池の一端の双方と接続される基準端子と、
前記サーミスタの他端と接続されるサーミスタ接続端子と、
を備え、
前記計測回路は、
前記基準端子に接続される第1端子と、
前記サーミスタ接続端子に接続される第2端子と、
前記二次電池に流れる電流を計測する電流計測手段と、
前記第1端子と前記第2端子との間の電圧を測定することによって、前記サーミスタの抵抗値を算出し、当該算出した抵抗値を用いて前記電池モジュールの温度を計測する温度計測手段と、
を備え、
前記温度計測手段は、前記第1端子と前記第2端子との間の電圧に対して、前記計測した電流を用いた補正を行って、前記サーミスタの抵抗値を算出する
ことを特徴とする電気機器。 - 請求項1に記載の電気機器において、
前記計測回路は第3端子を備え、
前記第1端子と前記第3端子との間には抵抗器が接続され、
前記電流計測手段は、前記抵抗器の両端間の電圧を測定することによって、前記二次電池に流れる電流を計測する
ことを特徴とする電気機器。 - 請求項1に記載の電気機器において、
前記計測回路は、前記二次電池の電池残量を検出する機能を備える電池残量検出回路である
ことを特徴とする電気機器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-159417 | 2011-07-20 | ||
JP2011159417A JP2013026010A (ja) | 2011-07-20 | 2011-07-20 | 電気機器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011929A1 true WO2013011929A1 (ja) | 2013-01-24 |
Family
ID=47558107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067871 WO2013011929A1 (ja) | 2011-07-20 | 2012-07-12 | 電気機器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013026010A (ja) |
WO (1) | WO2013011929A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786880A (zh) * | 2019-01-23 | 2019-05-21 | 成都市银隆新能源产业技术研究有限公司 | 一种测试电池内部温度的方法 |
CN117110913A (zh) * | 2023-10-13 | 2023-11-24 | 荣耀终端有限公司 | 电池检测电路、电子设备和电池检测方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015033236A (ja) * | 2013-08-02 | 2015-02-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 電子機器及び電子機器システム |
CN107041166B (zh) * | 2015-08-28 | 2019-03-12 | 新电元工业株式会社 | 电力转换装置、以及半导体装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070846A (ja) * | 1996-08-27 | 1998-03-10 | Matsushita Electric Ind Co Ltd | 充電装置 |
JP2000333380A (ja) * | 1999-05-20 | 2000-11-30 | Murata Mfg Co Ltd | 出力可変充電回路およびそれを用いた充電器 |
JP2001245436A (ja) * | 2000-02-29 | 2001-09-07 | Makita Corp | 充電装置 |
JP2006112786A (ja) * | 2004-10-12 | 2006-04-27 | Sanyo Electric Co Ltd | 電池の残容量検出方法及び電源装置 |
-
2011
- 2011-07-20 JP JP2011159417A patent/JP2013026010A/ja not_active Withdrawn
-
2012
- 2012-07-12 WO PCT/JP2012/067871 patent/WO2013011929A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070846A (ja) * | 1996-08-27 | 1998-03-10 | Matsushita Electric Ind Co Ltd | 充電装置 |
JP2000333380A (ja) * | 1999-05-20 | 2000-11-30 | Murata Mfg Co Ltd | 出力可変充電回路およびそれを用いた充電器 |
JP2001245436A (ja) * | 2000-02-29 | 2001-09-07 | Makita Corp | 充電装置 |
JP2006112786A (ja) * | 2004-10-12 | 2006-04-27 | Sanyo Electric Co Ltd | 電池の残容量検出方法及び電源装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786880A (zh) * | 2019-01-23 | 2019-05-21 | 成都市银隆新能源产业技术研究有限公司 | 一种测试电池内部温度的方法 |
CN109786880B (zh) * | 2019-01-23 | 2023-11-10 | 成都市银隆新能源产业技术研究有限公司 | 一种测试电池内部温度的方法 |
CN117110913A (zh) * | 2023-10-13 | 2023-11-24 | 荣耀终端有限公司 | 电池检测电路、电子设备和电池检测方法 |
CN117110913B (zh) * | 2023-10-13 | 2024-04-05 | 荣耀终端有限公司 | 电池检测电路、电子设备和电池检测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013026010A (ja) | 2013-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5196366B2 (ja) | 携帯端末および充電システム | |
JP6012447B2 (ja) | 半導体装置、電池パック、及び電子機器 | |
JP6009409B2 (ja) | バッテリーセルの電圧検出方法及び装置 | |
KR101146404B1 (ko) | 배터리 관리 시스템 및 그를 포함하는 배터리 팩 | |
JP6219687B2 (ja) | 半導体装置、電池パック及び携帯端末 | |
JP5620297B2 (ja) | インピーダンス測定装置 | |
JP2008064536A (ja) | 組電池総電圧検出およびリーク検出装置 | |
CN101322280A (zh) | 电池组、电子仪器、和检测电池余量的方法 | |
US9651594B2 (en) | Battery remaining power predicting device and battery pack | |
KR101236606B1 (ko) | 전기 자동차의 누전 검출 장치 | |
US11243255B2 (en) | Electronic device for determining state of charge of battery device, and method of operating the electronic device | |
WO2012005186A1 (ja) | 電圧測定回路及び方法 | |
WO2013011929A1 (ja) | 電気機器 | |
EP3675303A1 (en) | Power source protection apparatus and terminal using same | |
JP2010122162A (ja) | 電源装置 | |
JP4086008B2 (ja) | 二次電池の残容量率算出方法および電池パック | |
KR20120059850A (ko) | 아날로그 스위치, 이를 갖는 배터리 팩 및 배터리 전압 측정 방법 | |
CN105203958A (zh) | 电池状态监视电路和电池装置 | |
KR20110080140A (ko) | 배터리의 비존재를 측정하는 회로 및 방법 | |
EP2571137B1 (en) | Circuit for a small electric appliance with an accumulator and method for measuring a charging current | |
WO2012039209A1 (ja) | 充電式電気機器 | |
JP2008275524A (ja) | 電池パックおよび残容量算出方法 | |
CN110793660A (zh) | 电池温度检测电路 | |
CN109473736B (zh) | 电池的电阻检测方法、充放电控制方法、装置及电子设备 | |
JP2012029382A (ja) | 蓄電装置及びエネルギバランス調整方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814475 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12814475 Country of ref document: EP Kind code of ref document: A1 |