CN102576057A - 过电流检测电路及电池组件 - Google Patents

过电流检测电路及电池组件 Download PDF

Info

Publication number
CN102576057A
CN102576057A CN2011800042475A CN201180004247A CN102576057A CN 102576057 A CN102576057 A CN 102576057A CN 2011800042475 A CN2011800042475 A CN 2011800042475A CN 201180004247 A CN201180004247 A CN 201180004247A CN 102576057 A CN102576057 A CN 102576057A
Authority
CN
China
Prior art keywords
voltage
variable quantity
battery
terminal voltage
excess current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800042475A
Other languages
English (en)
Inventor
谷口桂太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102576057A publication Critical patent/CN102576057A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明的过电流检测电路包括:检测电池的端子电压的电压检测部;基于由所述电压检测部检测出的端子电压,检测在预先设定的基准时间内的所述端子电压的变化量的变化量检测部;以及当由所述变化量检测部检测出的变化量超过预先设定的基准阈值时,判定为所述电池中流过了过电流的过电流判定部。

Description

过电流检测电路及电池组件
技术领域
本发明涉及检测电池中流过的过电流的过电流检测电路、以及具备该过电流检测电路的电池组件。
背景技术
当电池短路时,电池中流过过电流。而且,如果电池中流过过电流,则有可能招致电池的劣化。因此,当电池中流过的电流超过指定的判定值时,检测出过电流流过并遮断电流,从而保护电池的过电流保护电路已为公知(例如,参照专利文献1、专利文献2)。
专利文献1中所述的过电流保护电路将分流电阻(shunt resistor)和用于保护电池的开关元件与电池串联连接。而且,通过基于该分流电阻的两端电压检测电池中流过的电流,从而能够检测过电流。
另外,专利文献2中所述的过电流保护电路将用于保护电池的FET(Field EffectTransistor,场效应晶体管)与电池串联连接。而且,利用在使该FET导通时产生导通电阻,基于FET的两端电压检测电池中流过的电流,从而能够检测过电流。
但是,专利文献1中所述的过电流保护电路为了检测过电流需要分流电阻,导致部件数目增加。另外,当分流电阻中流过电流时,存在分流电阻产生电力损失的问题。
另外,专利文献2中所述的过电流保护电路需要在FET的两端之间产生与流过的电流相应的电压,因此需要有意图地使用导通电阻大到一定程度的FET。所以,与FET的导通电阻不用于检测过电流的情况相比,存在FET的导通电阻增大,FET中的电力损失增大的问题。
专利文献1:日本专利公开公报特开6-225451号
专利文献2:日本专利公开公报特开2001-14042号
发明内容
本发明的目的在于提供一种不使用分流电阻或FET的导通电阻也能够检测电池的过电流的过电流检测电路、以及具备该过电流检测电路的电池组件。
本发明所提供的过电流检测电路包括:检测电池的端子电压的电压检测部;根据由所述电压检测部检测出的端子电压,检测在预先设定的基准时间内的所述端子电压的变化量的变化量检测部;以及当由所述变化量检测部检测出的变化量超过预先设定的基准阈值时,判定为所述电池中流过了过电流的过电流判定部。
另外,本发明所提供的电池组件包括:上述的过电流检测电路以及所述电池。
附图说明
图1是表示使用本发明的第1实施方式所涉及的过电流检测电路的电池组件结构的一例的方框图。
图2是表示本发明的第2实施方式所涉及的电池组件的结构的一例的方框图。
图3是表示图2所示的过电流保护电路的动作的一例的流程图。
图4是表示图1所示的电池组件的变形例的方框图。
具体实施方式
下面基于附图说明本发明所涉及的实施方式。此外,在各图中标注有相同符号的结构表示相同的结构,并省略其说明。
(第1实施方式)
图1是表示利用本发明的第1实施方式所涉及的过电流检测电路的电池组件结构的一例的方框图。图1所示的电池组件100包括电池1、过电流保护电路102以及连接端子12、13。过电流保护电路102包括过电流检测电路101、电压监视部10、充放电控制部11、充电控制FET(Field Effect Transistor,场效应晶体管)14以及放电控制FET15。
电池1例如为锂离子二次电池或镍氢二次电池等二次电池。电池1并不限于单一的电池,还可以为组合了多个电池的组电池。另外,电池1也可以为一次电池。
电池1例如图1所示,概念上可以表示为电动势E的电压源与电阻值r的内阻的串联电路。因此,若将电池1中流过的电流Ic用正极性表示充电方向、用负极性表示放电方向,则电池1的端子电压Vt由下述式(1)表示。
Vt=E+r×Ic                ……(1)
如式(1)所示,电池1的端子电压Vt在充电方向(正)的电流Ic流过时增大,在放电方向(负)的电流Ic流过时减小。另外,端子电压Vt的变化量随电流Ic的变化量增大而增大。
电池1的正极与连接端子12连接。电池1的负极经由放电控制FET15和充电控制FET14与连接端子13连接。
充电控制FET14和放电控制FEt15分别具有寄生二极管。而且,充电控制FET14的寄生二极管配置成电池1的放电电流的流动方向(从连接端子13朝向电池1的负极的方向)为该寄生二极管的顺方向。由此,充电控制FET14断开时,仅遮断电池1的充电方向(从电池1的负极朝向连接端子13的方向)的电流。充电控制FET14的寄生二极管相当于第1二极管的一例。
另外,放电控制FET15的寄生二极管配置成电池1的充电电流的流动方向为该寄生二极管的顺方向。由此,放电控制FET15断开时,仅遮断电池1的放电方向的电流。放电控制FET15的寄生二极管相当于第2二极管的一例。
电压监视部10例如采用比较器等构成。而且,电压监视部10将电池1的端子电压Vt与例如为了判定过电压而预先设定的判定电压Vov进行比较,当端子电压Vt超过判定电压Vov时,向充放电控制部11输出表示产生了过电压的过电压信号。
过电流检测电路101包括分压电阻2、低通滤波器(low-pass filter)3、缓冲器(buffer)4、5、差分放大电路6、比较器7以及基准电压源8。另外,分压电阻2通过电阻20、21串联连接而构成。分压电阻2与电池1并联连接,端子电压Vt由电阻20、21分压。
在这种情况下,分压电阻2和缓冲器4相当于电压检测部的一例,低通滤波器3相当于延迟部的一例即一次延迟电路,差分放大电路6相当于差分部的一例,比较器7相当于过电流判定部的一例,充电控制FET14相当于充电用开关元件的一例,放电控制FET15相当于放电用开关元件的一例。
此外,示出了充电控制FET14与放电控制FET15串联连接构成开关部的例子,但也可以使用双方向遮断电流的单一的开关元件作为开关部。这种情况下,取代断开充电控制FET14或放电控制FET15,可以断开该单一的开关元件。
缓冲器4、5例如是放大率为1的非反转型运算放大器。缓冲器4的输入端子与电阻20、21的连接点P连接。而且,缓冲器4将由电阻20、21分压而得到的分压电压Vd作为电压V1向差分放大电路6输出。由于分压电压Vd与端子电压Vt成正比例,因此被用作为表示端子电压Vt的信号。
低通滤波器3作为使用电阻22和电容器(capacitor)23的一次延迟电路。电容器23被连接在缓冲器5的输入端子与电池1的负极之间。电阻22被连接在缓冲器5的输入端子与连接点P之间。由此,分压电压Vd的变化、即端子电压Vt的变化被低通滤波器3延迟,通过缓冲器5作为延迟电压V2向差分放大电路6输出。
电阻22的电阻值和电容器23的静电容量被设定成,使得基于低通滤波器3的延迟电压V2的延迟时间成为预先设定的基准时间。
这样,延迟电压V2表示与电压V1相比在延迟时间(基准时间)前的端子电压Vt。因此,如果端子电压Vt下降,则延迟电压V2高于电压V1,如果端子电压Vt上升,则延迟电压V2低于电压V1。
差分放大电路6例如具有运算放大器61以及电阻62、63、64、65。电阻62连接在运算放大器61的输出端子与反转输入端子之间。运算放大器61的非反转输入端子经由电阻65与电路接地端连接。另外,运算放大器61的反转输入端子经由电阻63与缓冲器4的输出端子连接,运算放大器61的非反转输入端子经由电阻64与缓冲器5的输出端子连接。
差分放大电路6将延迟电压V2与电压V1之差、即V2-V1放大后作为差分电压Vs向比较器7输出。此外,如果差分放大电路6的放大率较高,则有可能导致放大电路内的噪声。因此,最好使差分放大电路6具有不会使噪声的放大成为问题的程度的放大率,例如1倍左右的放大率。
这里,电压V1表示电池1的端子电压Vt,延迟电压V2使电压V1产生延迟。因此,差分电压Vs越大,则表示端子电压Vt的每单位时间的变化量(下降量)越大,即端子电压Vt的变化(下降)急剧。
基准电压源8是向比较器7输出相当于基准阈值的一例的基准电压Vref的恒压电路。
比较器7比较从基准电压源8输出的基准电压Vref与差分电压Vs,并将表示该比较结果的信号向充放电控制部11输出。这里,例如,如果连接端子12、13间发生短路,或在电池组件100内部产生短路故障而导致电池1的正极、负极间短路,电池1中流过过电流。如此,当电池1短路并流过过电流时,电池1的放电电流急剧增加。即,电流Ic变为负极性,且其绝对值急剧增大。
这样,如上述式(1)所示,端子电压Vt急剧下降。而且,如果端子电压Vt急剧下降,则差分电压Vs增大。即,差分电压Vs表示端子电压Vt下降的方向的变化量。
作为基准电压Vref,被适宜地设定为小于这样的电池1的短路造成的端子电压Vt发生急剧下降时产生的差分电压Vs、且大于因连接于电池组件100的负荷电路中的通常的负荷电流变动而产生的差分电压Vs的电压。
或者,例如若设作为过电流而要检测的电流值为Ix,则可以将表示电池1的内阻值r与电流值Ix的乘积的电压值设定为基准电压Vref。
另外,在低通滤波器3的延迟时间(基准时间)越大、即低通滤波器3的时间常数越大,则相对于端子电压Vt的变化得到的差分电压Vs越大。因此,为了在端子电压Vt的每单位时间的变化量不大时不检测短路等过电流的异常,可以缩小低通滤波器3的时间常数。另一方面,为了检测端子电压Vt的每单位时间的变化量小、电流值的变化平缓的过电流的异常,可以将时间常数设定为较大的值。如此,低通滤波器3的延迟时间、即低通滤波器3的时间常数与基准电压Vref可以根据要检测的作为过电流的异常的端子电压Vt每单位时间的变化量而适宜地设定。
由此,当比较器7比较的结果为判定差分电压Vs超过基准电压Vref时,能够判定短路造成的过电流流过电池1。
充放电控制部11例如使用逻辑电路构成。而且,例如当从电压监视部10输出表示产生了过电压的过电压信号时,充放电控制部11使充电控制FET14断开,防止对电池1施加过电压或产生过充电。
另外,例如在从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,由于可以认为短路造成的过电流流过,因此充放电控制部11使放电控制FET15断开。如此,通过放电控制FET15断开,使电池1中流过的放电电流被遮断,其结果能够防止过电流造成的电池1的劣化。
此外,也可以是将表示差分电压Vs的绝对值的电压输入到比较器7的结构。在这种情况下,当从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,充放电控制部11将充电控制FET14与放电控制FET15一起遮断,从而即使例如因充电器的故障等导致充电电流急剧增大时,也能够保护电池1免遭过电流。
另外,也可以如图4所示的过电流检测电路101b所示,电压V1经由电阻64被输入到运算放大器61的非反转输入端子,延迟电压V2经由电阻63被输入到运算放大器61的反转输入端子。在这种情况下,差分电压Vs变为V1-V2按照差分放大电路6的放大率而被放大的电压。因此,在过电流检测电路101b中,差分电压Vs表示端子电压Vt上升的方向的变化量。
而且,在过电流保护电路102b中,当从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,由于可以认为例如因充电器的故障等造成充电电流急剧增大,因此充放电控制部11使充电控制FET14断开。如此,通过充电控制FET14断开,使电池1中流过的充电电流被遮断,其结果能够防止过电流造成的电池1的劣化。
另外,也可以不使用充放电控制部11,而将比较器7的输出信号直接与放电控制FET15或充电控制FET14的栅极连接,从而当从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,放电控制FET15或充电控制FET14被断开。
如以上所示,根据图1所示的电池组件100和图4所示的电池组件100b,不利用分流电阻或FET的导通电阻,便能够检测因短路产生的电池1的过电流,能够遮断该过电流以保护电池1。在这种情况下,不会产生因分流电阻造成的发热或不必要的损失。另外,作为充电控制FET14以及放电控制FET15,能够使用导通电阻尽可能小的元件。因此,能够降低充电控制FET14和放电控制FET15中的发热或电力损失,另外也容易使电池1的输出电流值增大。
另外,如背景技术所示,在利用分流电阻或FET的导通电阻检测过电流的情况下,如果在比分流电阻或FET更接近电池侧的配线处产生短路故障,则由于短路电流不流过分流电阻或FET,因此即使过电流流过也无法被检测出。
但是,由于图1所示的过电流检测电路101基于电池1的端子电压Vt来检测短路造成的过电流,因此能够检测出在电池组件100内产生的短路故障造成的过电流的可靠性增大。
图1和图4所示的过电流检测电路101、101b、过电流保护电路102、102b可以被安装在电池组件的安全电路基板上。另外,也可以将过电流检测电路101、101b或过电流保护电路102、102b的全部或部分构成集成电路。
此外,在从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,充放电控制部11并不限于一定要断开放电控制FET15。另外,也可以不具备充电控制FET14或放电控制FET15。
例如,在从比较器7输出表示差分电压Vs超过基准电压Vref的信号时,充放电控制部11也可以使表示产生了短路造成的过电流的LED点亮,或者向电池组件100的外部通知表示产生了短路造成的过电流的通信信号。
(第2实施方式)
下面,对具备本发明的第2实施方式所涉及的过电流检测电路101a的电池组件100a进行说明。图2是表示本发明的第2实施方式所涉及的电池组件100a的结构的一例的方框图。图2所示的电池组件100a与图1所示的电池组件100在以下方面不同。
即,图2所示的电池组件100a具备过电流保护电路102a来代替过电流保护电路102。过电流保护电路102a包括过电流检测电路101a、充电控制FET14以及放电控制FET15。过电流检测电路101a包括控制部11a以及电压检测部16。其他结构与图1所示的电池组件100相同,因此省略其说明,以下对本实施方式的特征点进行说明。
电压检测部16例如采用模拟数字转换器等构成。而且,电压检测部16检测电池1的端子电压Vt,并向控制部11a输出表示端子电压Vt的数据。
控制部11a例如包括进行指定的逻辑运算的CPU(Central Processing Unit,中央处理器)、存储指定的控制程序的ROM(Read Only Memory,只读存储器)、临时存储数据的RAM(Random Access Memory,随机访问存储器)、定时器电路以及它们的周边电路等。而且,控制部11a例如通过执行存储在ROM中的控制程序,作为采样部111、差分部112、过电流判定部113以及过电压判定部114而发挥功能。
过电压判定部114将由电压检测部16检测出的端子电压Vt与判定电压Vov进行比较,当端子电压Vt超过判定电压Vov时,判定产生过电压并使充电控制FET14断开。由此,过电压判定部114防止对电池1施加过电压或产生过充电。
采样部111以预先设定的时间间隔ts周期性地对由电压检测部16检测出的端子电压Vt进行采样。
差分部112将由采样部111上次采样的端子电压Vt与此次采样的端子电压Vt之差作为变化量Vv来计算。具体而言,若将上次采样的端子电压Vt设为端子电压Vtp,将此次采样的端子电压Vt设为端子电压Vtn,差分部112基于下述式(2)计算变化量Vv。由于端子电压Vtn为端子电压Vtp被采样后经过了时间间隔ts之后而被采样的端子电压,因此端子电压Vtp相当于第1电压,端子电压Vtn相当于第2电压。
Vv=Vtp-Vtn                ……(2)
当由差分部112计算出的变化量Vv超过基准电压Vref时,过电流判定部113判定因短路故障造成电池1中流过过电流并使放电控制FET15断开。由此,电池1中流过的电流被遮断,其结果能够防止过电流造成的电池1的劣化。
此外,当由差分部112计算出的变化量Vv为负值,且变化量Vv的绝对值超过基准电压Vref时,过电流判定部113可以判定因充电器的故障等造成电池1中流过过电流并使充电控制FET14断开。由此,电池1中流过的充电电流被遮断,其结果能够防止过电流造成的电池1的劣化。
另外,差分部112也可以基于下述式(3),将由采样部111上次采样的端子电压Vtp与此次采样的端子电压Vtn之差的绝对值作为变化量Vv来计算。
Vv=|Vtp-Vtn|              ……(3)
在这种情况下,当由差分部112计算出的变化量Vv超过基准电压Vref时,过电流判定部113判定因短路故障或充电器的故障等造成电池1中流过过电流并使充电控制FET14和放电控制FET15断开。由此,电池1中流过的电流被遮断,其结果能够防止过电流造成的电池1的劣化。
这里,时间间隔ts越长,相对于平缓的端子电压Vt的变化得到的变化量Vv越大。另外,基准电压Vref越大,判定过电流流过的变化量Vv的值越大。
因此,如果想要在端子电压Vt的每单位时间的变化量为更大的值时检测出过电流的异常,则可以将时间间隔ts设定为短时间,或者将基准电压Vref设定为高电压。另外,如果想要检测出端子电压Vt的每单位时间的变化量小、且电流值的变化平缓的过电流的异常,可以将时间间隔ts设定为长时间,或者将基准电压Vref设定为低电压。
如此,时间间隔ts与基准电压Vref可以根据要检测的作为过电流的异常的端子电压Vt每单位时间的变化量而适宜地设定。例如,作为时间间隔ts可适宜地采用10msec至100msec左右的时间,尤其是10msec左右较为理想。
图3是表示图2所示的过电流保护电路102a的动作的一例的流程图。首先,充电控制FET14以及放电控制FET15在正常时通常导通。而且,采样部111利用定时器电路监视经过时间(步骤S1)。并且,每当经过时间间隔ts(在步骤S1中为“是”),采样部111向执行在时间间隔ts的采样的步骤S2转移。而且,由电压检测部16检测出的端子电压Vt被采样部111采样作为此次的端子电压Vtn(第2电压)(步骤S2)。
然后,通过差分部112从上次的端子电压Vtp减去端子电压Vtn,计算变化量Vv(步骤S3)。此外,在初次执行步骤S3时,由于还未设定端子电压Vtp,因此不执行步骤S3而是执行步骤S4设定端子电压Vtp(第1电压),再次返回步骤S1。
接着,通过采样部111,此次的端子电压Vtn被设定为上次的端子电压Vtp(第1电压)(步骤S4)。
接着,通过过电流判定部113确认变化量Vv是否小于零、即是否为负值(步骤S5)。如果变化量Vv不为负值(在步骤S5中为“否”),则变化量Vv是因放电方向的电流增大、端子电压Vt下降而产生的,因此过电流判定部113向用于确认是否产生放电引起的过电流的步骤S6转移。
在步骤S6中,由过电流判定部113比较变化量Vv与基准电压Vref(步骤S6)。如果变化量Vv未超过基准电压Vref(在步骤S6中为“否”),则过电流判定部113判断并未因短路等造成急剧的电流增加而产生过电流,并再次向步骤S1转移。
另一方面,如果变化量Vv超过基准电压Vref(在步骤S6中为“是”),则过电流判定部113判断因短路等造成急剧的电流增加而产生过电流,并向步骤S7转移。而且,过电流判定部113断开放电控制FET15(步骤S7),结束处理。由此,电池1的放电电流被遮断,保护电池1免遭过电流。
在这种情况下,由于充电控制FET14保持着导通,因此电池1的放电电流被遮断之后,电池组件100a例如被用于电力调整等时也能够向电池1充入过剩电力。
另一方面,在步骤S5中,如果变化量Vv为负值(在步骤S5中为“是”),则变化量Vv是因充电方向的电流增大、端子电压Vt上升而产生的,因此向用于确认是否产生充电引起的过电流的步骤S8转移。
在步骤S8中,由过电流判定部113比较变化量Vv与基准电压Vref(步骤S8)。如果变化量Vv的绝对值未超过基准电压Vref(在步骤S8中为“否”),则过电流判定部113判断并未因充电器的故障等造成急剧的充电电流增加而产生过电流,并再次向步骤S1转移。
另一方面,如果变化量Vv的绝对值超过基准电压Vref(在步骤S8中为“是”),则过电流判定部113判断因充电器的故障等造成急剧的充电电流增加而产生过电流,并向步骤S9转移。而且,过电流判定部113断开充电控制FET14(步骤S9),结束处理。由此,电池1中流过的充电电流被遮断,保护电池1免遭过电流。
本发明所涉及的过电流检测电路包括:检测电池的端子电压的电压检测部;基于由所述电压检测部检测出的端子电压,检测在预先设定的基准时间内的所述端子电压的变化量的变化量检测部;以及当由所述变化量检测部检测出的变化量超过预先设定的基准阈值时,判定为所述电池中流过了过电流的过电流判定部。
如果短路故障造成的电池的急剧的放电电流的增加、或充电器故障造成的急剧的充电电流的增加而产生过电流,则电池的端子电压急剧变化。因此,根据该结构,由变化量检测部检测在基准时间内的电池的端子电压的变化量。如果产生如上所述的急剧的放电电流或充电电流的变化,则由变化量检测部检测出的变化量超过基准阈值,其结果是,由过电流判定部判定电池中流过过电流,即检测出过电流。
在这种情况下,由于基于电池的端子电压的变化量检测过电流,因此不使用分流电阻或FET的导通电阻就能够检测电池的过电流。
而且,较为理想的是,所述变化量检测部具备:生成使所述电池的端子电压的变化延迟了所述基准时间的电压即延迟电压的延迟部;以及将由所述延迟部生成的延迟电压与由所述电压检测部检测出的端子电压之差作为所述变化量来检测的差分部。
根据该结构,通过延迟部生成电池的端子电压的变化被延迟的延迟电压。而且,通过差分部该延迟电压与该端子电压之差作为变化量而被检测出。这里,在电池的端子电压发生了变化的情况下,由于该变化越是急剧、即在基准时间内的该端子电压的变化量越大,该端子电压与该延迟电压之差越是增大,所以由差分部检测的变化量表示在基准时间内的该端子电压的变化量。因此,能够以使用延迟部和差分部的简单的结构构成变化量检测部。
而且,较为理想的是,所述延迟部为利用电阻和电容器的一次延迟电路。
根据该结构,由于能够利用电阻和电容器构成延迟部,因此能够使延迟部简化。
而且,所述变化量检测部可以具备:将由所述电压检测部检测出的端子电压作为第1电压来采样、将所述第1电压被采样后经过预先设定的时间间隔时由所述电压检测部检测出的端子电压作为第2电压来采样的的采样部;以及将所述第1电压与所述第2电压之差作为所述变化量来检测的差分部。
根据该结构,由于通过差分部在预先设定的时间间隔的时间内的电池的端子电压的变化量被直接检测,因此该变化量的检测精度提高。
而且,较为理想的是,上述的过电流检测电路还包括:遮断所述电池中流过的电流的开关部,所述过电流判定部在由所述变化量检测部检测出的变化量超过所述基准阈值时,通过所述开关部遮断所述电池中流过的电流。
根据该结构,当由变化量检测部检测出的变化量超过基准阈值时,由过电流判定部判定电池中流过了过电流,通过开关部电池中流过的电流被遮断。由此,降低了电池因过电流而劣化的可能性。
而且,较为理想的是,所述开关部具备:仅遮断对所述二次电池充电方向的电流的充电用开关元件;以及与所述充电用开关元件串联连接,仅遮断所述二次电池放电方向的电流的放电用开关元件,所述过电流判定部在由所述变化量检测部检测出的变化量为所述端子电压下降的方向的变化量、且所述变化量超过所述基准阈值时,通过使所述放电用开关元件断开从而遮断所述电流,在由所述变化量检测部检测出的变化量为所述端子电压上升的方向的变化量、且所述变化量超过所述基准阈值时,通过使所述充电用开关元件断开从而遮断所述电流。
电池在放电方向的电流流过时端子电压下降,在充电方向的电流流过时端子电压上升。这样,当由变化量检测部检测出的变化量为端子电压下降的方向的变化量、且该变化量超过基准阈值时,可以认为产生放电电流的增加引起的过电流。因此,过电流判定部通过使放电用开关元件断开从而遮断电池中流过的电流。在这种情况下,由于充电用开关元件未被断开,因此能够将电池维持在可充电的状态,保护电池免遭放电方向的过电流。
另一方面,当由变化量检测部检测出的变化量为端子电压上升的方向的变化量,且该变化量超过基准阈值时,可以认为产生充电电流的增加引起的过电流。因此,过电流判定部通过使充电用开关元件断开从而遮断电池中流过的电流。在这种情况下,由于放电用开关元件未被断开,因此能够将电池维持在可放电的状态,保护电池免遭充电方向的过电流。
而且,较为理想的是,上述的过电流检测电路还包括:与所述充电用开关元件并联连接的第1二极管;以及与所述放电用开关元件并联连接的第2二极管,所述第1二极管被配置成相对于所述二次电池放电的方向的电流为顺方向,所述第2二极管被配置成相对于所述二次电池充电的方向的电流为顺方向。
根据该结构,由于二次电池的放电电流经由第1二极管迂回流过充电用开关元件,因此充电用开关元件能够仅遮断二次电池的充电电流。由于二次电池的充电电流经由第2二极管迂回流过放电用开关元件,因此放电用开关元件能够仅遮断二次电池的放电电流。
另外,本发明所涉及的电池组件包括:上述的过电流检测电路以及所述电池。
根据该结构,在电池组件中,由于基于电池的端子电压的变化量检测过电流,因此不使用分流电阻或FET的导通电阻就能够检测电池的过电流。
在这种结构的过电流检测电路以及电池组件中,由于基于电池的端子电压的变化量检测过电流,因此不使用分流电阻或FET的导通电阻就能够检测电池的过电流。
本申请以2010年5月25日申请的日本专利申请特愿2010-119129号为基础,其内容包含在本申请中。
此外,在具体实施方式的项目中描述的具体的实施方式或实施例仅为明确本发明的技术内容,并不应该仅限定于这样的具体例进行狭义解释,在本发明的精神和所述的技术方案的范围内可以进行各种变更并加以实施。
产业上的可利用性
本发明所涉及的过电流检测电路以及电池组件能够适合用于便携式个人计算机或数码相机、摄像机、移动电话等电子设备、电动汽车或混合动力汽车等车辆、将太阳能电池或发电装置与二次电池组合起来的电源系统、不间断电源装置等电池搭载装置以及系统中。

Claims (8)

1.一种过电流检测电路,其特征在于包括:
电压检测部,检测电池的端子电压;
变化量检测部,基于由所述电压检测部检测出的端子电压,检测在预先设定的基准时间内的所述端子电压的变化量;以及
过电流判定部,当由所述变化量检测部检测出的变化量超过预先设定的基准阈值时,判定为所述电池中流过了过电流。
2.根据权利要求1所述的过电流检测电路,其特征在于,所述变化量检测部具备:
延迟部,生成作为使所述电池的端子电压的变化延迟了所述基准时间的电压的延迟电压;以及
差分部,将由所述延迟部生成的延迟电压与由所述电压检测部检测出的端子电压之差作为所述变化量来检测。
3.根据权利要求2所述的过电流检测电路,其特征在于:所述延迟部为利用电阻和电容器的一次延迟电路。
4.根据权利要求1所述的过电流检测电路,其特征在于,所述变化量检测部具备:
采样部,将由所述电压检测部检测出的端子电压作为第1电压来采样,将所述第1电压被采样后经过预先设定的时间间隔时由所述电压检测部检测出的端子电压作为第2电压来采样;以及
差分部,将所述第1电压与所述第2电压之差作为所述变化量来检测。
5.根据权利要求1至4中任一项所述的过电流检测电路,其特征在于还包括:遮断所述电池中流过的电流的开关部,其中,
所述过电流判定部,在由所述变化量检测部检测出的变化量超过所述基准阈值时,通过所述开关部遮断所述电池中流过的电流。
6.根据权利要求5所述的过电流检测电路,其特征在于,所述开关部具备:
充电用开关元件,仅遮断对所述二次电池充电方向的电流;以及
放电用开关元件,与所述充电用开关元件串联连接,仅遮断所述二次电池放电方向的电流,其中,
所述过电流判定部,
在由所述变化量检测部检测出的变化量为所述端子电压下降的方向的变化量、且所述变化量超过所述基准阈值时,通过使所述放电用开关元件断开来遮断所述电流,
在由所述变化量检测部检测出的变化量为所述端子电压上升的方向的变化量、且所述变化量超过所述基准阈值时,通过使所述充电用开关元件断开来遮断所述电流。
7.根据权利要求6所述的过电流检测电路,其特征在于还包括:
与所述充电用开关元件并联连接的第1二极管;以及
与所述放电用开关元件并联连接的第2二极管,其中,
所述第1二极管被配置成相对于所述二次电池放电的方向的电流为顺方向,
所述第2二极管配置成相对于对所述二次电池充电的方向的电流为顺方向。
8.一种电池组件,其特征在于包括:
如权利要求1至7中任一项所述的过电流检测电路;以及
所述电池。
CN2011800042475A 2010-05-25 2011-05-18 过电流检测电路及电池组件 Pending CN102576057A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-119129 2010-05-25
JP2010119129 2010-05-25
PCT/JP2011/002754 WO2011148592A1 (ja) 2010-05-25 2011-05-18 過電流検知回路、及び電池パック

Publications (1)

Publication Number Publication Date
CN102576057A true CN102576057A (zh) 2012-07-11

Family

ID=45003593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800042475A Pending CN102576057A (zh) 2010-05-25 2011-05-18 过电流检测电路及电池组件

Country Status (5)

Country Link
US (1) US20120212871A1 (zh)
JP (1) JP4932975B2 (zh)
KR (1) KR20120073293A (zh)
CN (1) CN102576057A (zh)
WO (1) WO2011148592A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545564A (zh) * 2012-07-16 2014-01-29 联想(北京)有限公司 充电电池单元及其缺陷检测方法
CN103546037A (zh) * 2012-07-12 2014-01-29 通嘉科技股份有限公司 适用于初级侧控制的恒定电流控制单元及相关的控制方法
CN105203962A (zh) * 2015-08-31 2015-12-30 北汽福田汽车股份有限公司 一种车载电池过流诊断方法和装置
CN105393426A (zh) * 2013-07-11 2016-03-09 日本碍子株式会社 确定二次电池系统的异常发生部位的装置、方法和程序
CN105452882A (zh) * 2013-08-23 2016-03-30 日立汽车系统株式会社 电池监视装置
CN106501585A (zh) * 2016-12-09 2017-03-15 合肥中感微电子有限公司 一种过充电检测电路和电池保护系统
CN106796255A (zh) * 2014-08-01 2017-05-31 日立汽车系统株式会社 电压检测装置
CN107300673A (zh) * 2016-04-15 2017-10-27 福特全球技术公司 电池过电流诊断系统
CN107861376A (zh) * 2016-09-21 2018-03-30 皮尔茨有限及两合公司 用于防故障地切断带来危险的技术设备的安全电路
CN108333521A (zh) * 2017-01-20 2018-07-27 矢崎总业株式会社 电池状态检测装置
CN109388175A (zh) * 2017-08-14 2019-02-26 立锜科技股份有限公司 具有温度补偿功能的充电电路及其控制电路
CN109586242A (zh) * 2017-09-29 2019-04-05 昆山国显光电有限公司 电路保护方法、保护电路和电路保护装置
CN109669144A (zh) * 2017-10-13 2019-04-23 矢崎总业株式会社 二次电池状态检测器和检测二次电池状态的方法
WO2024088139A1 (zh) * 2022-10-28 2024-05-02 深圳慧能泰半导体科技有限公司 一种图腾柱无桥电路及其浪涌保护方法、电源模组

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5806159B2 (ja) 2012-03-30 2015-11-10 日立オートモティブシステムズ株式会社 電子制御装置
US9343911B2 (en) * 2012-11-30 2016-05-17 Tesla Motors, Inc. Response to detection of an overcharge event in a series connected battery element
US9153990B2 (en) * 2012-11-30 2015-10-06 Tesla Motors, Inc. Steady state detection of an exceptional charge event in a series connected battery element
US9318901B2 (en) 2012-11-30 2016-04-19 Tesla Motors, Inc. Response to detection of an overdischarge event in a series connected battery element
DE102012111855B4 (de) 2012-12-05 2022-06-09 Sma Solar Technology Ag Verfahren zur Vermeidung von Überströmen in einem leistungselektronischen Gerät und leistungselektronisches Gerät
EP3040733B1 (en) * 2013-08-30 2020-12-16 NGK Insulators, Ltd. Device, method, and program for specifying abnormality-occurrence area of secondary battery system
US9983233B2 (en) * 2014-02-06 2018-05-29 Texas Instruments Incorporated Current sensor
KR101942726B1 (ko) * 2014-03-17 2019-01-28 삼성전기 주식회사 액티브 노이즈 필터 장치 및 이를 갖는 게이트 구동 장치
US10449862B2 (en) 2015-03-11 2019-10-22 Hitachi Automotive Systems, Ltd. Battery managing device, battery monitoring circuit, and control system
JP6544681B2 (ja) * 2015-03-31 2019-07-17 株式会社ケーヒン 電池電圧検出装置
KR101664331B1 (ko) * 2015-04-02 2016-10-10 김문겸 정션박스의 모니터링 장치
JP6398873B2 (ja) * 2015-05-28 2018-10-03 新東工業株式会社 動特性試験装置及び動特性試験方法
CN105375443A (zh) * 2015-07-23 2016-03-02 合肥工业大学 一种电池短路保护电路
KR102608464B1 (ko) 2016-10-05 2023-12-01 삼성전자주식회사 배터리를 관리하는 방법 및 장치
CN106451623B (zh) * 2016-10-14 2020-07-03 宁德时代新能源科技股份有限公司 热插拔方法及热插拔控制装置、电压平衡方法及装置
JP6870285B2 (ja) * 2016-11-14 2021-05-12 株式会社村田製作所 充電装置
EP3503341B1 (en) * 2017-08-25 2021-08-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal equipment, battery system and battery abnormality detecting device
KR102559132B1 (ko) * 2018-04-16 2023-07-24 주식회사 엘지에너지솔루션 과전압 감지 시스템 및 방법
TWI737022B (zh) * 2019-10-23 2021-08-21 國立中山大學 電池組之斷線偵測器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198366A (ja) * 1989-01-26 1990-08-06 Nec Corp 過電流検出回路
JP3839761B2 (ja) * 2001-09-14 2006-11-01 松下電器産業株式会社 バッテリ制御装置
JP4701052B2 (ja) * 2005-09-21 2011-06-15 矢崎総業株式会社 過電流検出装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546037A (zh) * 2012-07-12 2014-01-29 通嘉科技股份有限公司 适用于初级侧控制的恒定电流控制单元及相关的控制方法
CN103546037B (zh) * 2012-07-12 2016-12-21 通嘉科技股份有限公司 适用于初级侧控制的恒定电流控制单元及相关的控制方法
CN103545564A (zh) * 2012-07-16 2014-01-29 联想(北京)有限公司 充电电池单元及其缺陷检测方法
CN103545564B (zh) * 2012-07-16 2015-12-09 联想(北京)有限公司 充电电池单元及其缺陷检测方法
CN105393426A (zh) * 2013-07-11 2016-03-09 日本碍子株式会社 确定二次电池系统的异常发生部位的装置、方法和程序
CN105393426B (zh) * 2013-07-11 2019-03-08 日本碍子株式会社 确定二次电池系统的异常发生部位的装置、方法
CN105452882A (zh) * 2013-08-23 2016-03-30 日立汽车系统株式会社 电池监视装置
CN106796255B (zh) * 2014-08-01 2019-08-06 日立汽车系统株式会社 电压检测装置
CN106796255A (zh) * 2014-08-01 2017-05-31 日立汽车系统株式会社 电压检测装置
CN105203962B (zh) * 2015-08-31 2018-01-19 北汽福田汽车股份有限公司 一种车载电池过流诊断方法和装置
CN105203962A (zh) * 2015-08-31 2015-12-30 北汽福田汽车股份有限公司 一种车载电池过流诊断方法和装置
CN107300673A (zh) * 2016-04-15 2017-10-27 福特全球技术公司 电池过电流诊断系统
CN107300673B (zh) * 2016-04-15 2021-03-19 福特全球技术公司 电池过电流诊断系统
CN107861376A (zh) * 2016-09-21 2018-03-30 皮尔茨有限及两合公司 用于防故障地切断带来危险的技术设备的安全电路
CN106501585A (zh) * 2016-12-09 2017-03-15 合肥中感微电子有限公司 一种过充电检测电路和电池保护系统
CN108333521A (zh) * 2017-01-20 2018-07-27 矢崎总业株式会社 电池状态检测装置
CN108333521B (zh) * 2017-01-20 2020-08-07 矢崎总业株式会社 电池状态检测装置
CN109388175A (zh) * 2017-08-14 2019-02-26 立锜科技股份有限公司 具有温度补偿功能的充电电路及其控制电路
CN109586242B (zh) * 2017-09-29 2020-03-10 昆山国显光电有限公司 电路保护方法、保护电路和电路保护装置
CN109586242A (zh) * 2017-09-29 2019-04-05 昆山国显光电有限公司 电路保护方法、保护电路和电路保护装置
CN109669144A (zh) * 2017-10-13 2019-04-23 矢崎总业株式会社 二次电池状态检测器和检测二次电池状态的方法
CN109669144B (zh) * 2017-10-13 2023-05-16 矢崎总业株式会社 二次电池状态检测器和检测二次电池状态的方法
WO2024088139A1 (zh) * 2022-10-28 2024-05-02 深圳慧能泰半导体科技有限公司 一种图腾柱无桥电路及其浪涌保护方法、电源模组

Also Published As

Publication number Publication date
WO2011148592A1 (ja) 2011-12-01
KR20120073293A (ko) 2012-07-04
JP4932975B2 (ja) 2012-05-16
US20120212871A1 (en) 2012-08-23
JPWO2011148592A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
CN102576057A (zh) 过电流检测电路及电池组件
JP3848574B2 (ja) 充放電制御装置
KR101975395B1 (ko) 배터리 팩 및 이의 제어 방법
KR101440888B1 (ko) 배터리 보호 회로
CN102684250B (zh) 充放电控制电路以及电池装置
US7902794B2 (en) Over-voltage protected battery charger with bypass
KR102052590B1 (ko) 배터리 관리 시스템 및 그 구동 방법
CN102738775B (zh) 电池保护电路和电池保护装置以及电池组
US9917451B2 (en) Battery pack and controlling method thereof
EP2317597B1 (en) Battery pack
KR101932275B1 (ko) 전지 보호 회로와 전지 보호 장치 및 전지 팩
EP3012942A1 (en) Power feeding apparatus for solar cell, and solar cell system
CN102782977B (zh) 保护监视电路和电池组
JP3665574B2 (ja) 充放電制御回路と充電式電源装置
CN101752619A (zh) 二次电池保护集成电路装置、二次电池保护模块和电池组
KR20140048737A (ko) 배터리 팩 및 배터리 팩의 제어 방법
US20130063090A1 (en) Battery protection circuit and battery protection device, and battery pack
US20110050180A1 (en) Charging Control Circuit
WO2013108336A1 (ja) 二次電池保護回路、電池パック及び電子機器
CN102668308B (zh) 用于平衡串联连接的电池单元的充电的电路
JP3581428B2 (ja) 充電式電源装置
CN103178499B (zh) 具有零伏充电功能的可充电电池保护电路
WO1998031087A1 (en) Integrated circuit device for monitoring power supply
EP3772153A1 (en) Battery protection system
JP6947999B1 (ja) 二次電池保護回路、電池パック、電池システム及び二次電池保護方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120711