WO2013011927A1 - 溶融ガラス搬送設備要素および溶融ガラス搬送設備要素の製造方法、ならびにガラス製造装置 - Google Patents
溶融ガラス搬送設備要素および溶融ガラス搬送設備要素の製造方法、ならびにガラス製造装置 Download PDFInfo
- Publication number
- WO2013011927A1 WO2013011927A1 PCT/JP2012/067863 JP2012067863W WO2013011927A1 WO 2013011927 A1 WO2013011927 A1 WO 2013011927A1 JP 2012067863 W JP2012067863 W JP 2012067863W WO 2013011927 A1 WO2013011927 A1 WO 2013011927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conduit
- molten glass
- ceramic structure
- stabilized zirconia
- equipment element
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/42—Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
- C03B5/43—Use of materials for furnace walls, e.g. fire-bricks
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/18—Stirring devices; Homogenisation
- C03B5/187—Stirring devices; Homogenisation with moving elements
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/225—Refining
- C03B5/2252—Refining under reduced pressure, e.g. with vacuum refiners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/482—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00431—Refractory materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/95—Products characterised by their size, e.g. microceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Definitions
- the present invention relates to a molten glass conveying equipment element that can be suitably used in a glass manufacturing apparatus such as a vacuum degassing apparatus, a method for producing a molten glass conveying equipment element, and a glass manufacturing apparatus including the molten glass conveying equipment element.
- a constituent material of a molten glass conduit is required to have excellent heat resistance and corrosion resistance to molten glass.
- platinum or a platinum alloy is used (see Patent Document 1).
- a heat insulating brick is disposed around a conduit made of platinum or a platinum alloy molten glass so as to surround the conduit. Since the thermal expansion coefficient is different between platinum or platinum alloy constituting the conduit and the insulating bricks arranged around the conduit, there is a difference in the amount of thermal expansion during heating and the amount of contraction during cooling. It becomes a problem.
- castable cement is used between the two so that the two can move slightly when the temperature changes. Is filled with an irregular ceramic material.
- the inventors of the present application may not be able to absorb the difference in thermal expansion during heating or the difference in shrinkage during cooling when filled with an irregular ceramic material.
- the difference in thermal expansion during heating or the difference in shrinkage during cooling cannot be absorbed by an amorphous ceramic material, and cracks are not generated at the joint. May occur.
- a crack occurs at the joint, there is a problem that the insulating brick disposed around is eroded by the molten glass leaking from the crack.
- problems such as a decrease in productivity due to restoration work and a shortened equipment life.
- the inventors of the present application provided a molten glass conveying equipment element and a glass manufacturing apparatus described in Patent Document 2.
- a ceramic structure having a linear thermal expansion coefficient substantially equal to that of platinum or platinum alloy constituting the conduit is disposed around a conduit of platinum or a platinum alloy molten glass.
- the use form of a molten-glass conveyance equipment element changes, for example, the expansion pressure added from a molten glass may increase by stirring the molten glass which passes the inside of a conduit
- the ceramic structure may be disposed without providing a gap around the conduit.
- the gap may not be provided around the conduit. It may be difficult to arrange the ceramic structure. For example, it is difficult to dispose a ceramic structure without providing a gap around a conduit at a joint between a vertical pipe and a horizontal pipe.
- Japanese National Publication No. 2004-070251 discloses a platinum or platinum alloy hollow tube provided with at least one convex portion continuous 360 degrees in the circumferential direction in order to absorb thermal expansion and contraction. ing.
- 2006-315894 discloses that 360 degree continuous in the circumferential direction in order to prevent the conduit from being damaged by applying thermal stress or external stress during long-term use.
- a hollow tube made of platinum or a platinum alloy in which convex portions and concave portions are alternately provided along the axial direction is disclosed, but a gap is provided around a conduit provided with such convex portions and concave portions. It is difficult to dispose a ceramic structure without using it.
- the present invention achieves prevention of cracking of the conduit by thermal expansion during heating or contraction during cooling, and prevention of deformation of the conduit due to expansion pressure applied from the molten glass.
- the molten glass conveying equipment element having the ceramic structure that is not easily eroded, the manufacturing method of the molten glass conveying equipment element, and the molten glass conveying equipment element It aims at providing the glass manufacturing apparatus containing this.
- the present invention provides a molten glass conduit structure including at least one conduit made of platinum or a platinum alloy, a first ceramic structure disposed around the conduit, and the first A method for producing a molten glass conveying equipment element having a second ceramic structure located around a ceramic structure of one,
- zirconium oxide is contained in an amount of 75 wt% or more by mass% based on the total composition, and the proportion of cubic zirconia in the zirconium oxide is 80 wt% or more.
- the slurry body is mixed so that the mass of the particles / the mass of the second stabilized zirconia particles) is 0.3 to 0.6. Wherein by causing sintered at a temperature of 1200 ⁇ 1700 ° C.
- the first ceramic structure is formed, to provide a method of manufacturing a molten glass conveying equipment element.
- the present invention is a molten glass transport equipment element manufactured by the method for manufacturing a molten glass transport equipment element of the present invention, wherein the average open porosity of the first ceramic structure is 25 to 60%,
- the linear thermal expansion coefficient of the first ceramic structure at 20 to 1000 ° C. is 8 ⁇ 10 ⁇ 6 to 12 ⁇ 10 ⁇ 6 / ° C., and the gap between the conduit and the first ceramic structure is 0.
- a molten glass transport equipment element is provided that is less than 5 mm.
- this invention provides the glass manufacturing apparatus containing the molten glass conveyance equipment element of this invention.
- the first ceramics having a predetermined average open porosity with a linear thermal expansion coefficient substantially the same as that of platinum or a platinum alloy constituting the molten glass conduit.
- the structure can be formed without any gap around the conduit of molten glass made of platinum or platinum alloy without being affected by the arrangement or shape of the conduit.
- the linear thermal expansion coefficients of the molten glass conduit made of platinum or a platinum alloy and the ceramic structure disposed around the conduit are substantially the same.
- the difference in thermal expansion amount or shrinkage amount during cooling is extremely small. For this reason, cracks occur in the conduit due to thermal expansion during heating or contraction during cooling, for example, at the junction between a conduit having a central axis in the vertical direction and a conduit having a central axis in the horizontal direction. Occurrence is prevented. Furthermore, even if the molten glass leaks for some reason, the ceramic structure in the present invention is hardly eroded.
- the first ceramic structure having sufficient compressive strength is formed without providing a gap around the molten glass conduit in the temperature range when the molten glass flows. Therefore, the conduit is prevented from being deformed by the expansion pressure applied from the molten glass passing through the inside.
- the glass manufacturing apparatus of the present invention including such a molten glass conveying equipment element, cracks are prevented from occurring in the conduit due to thermal expansion during heating or contraction during cooling, and melting that passes through the inside. Excellent reliability due to the fact that the duct is prevented from being deformed by the expansion pressure applied from the glass and that the ceramic structure is less likely to erode even if the molten glass leaks for some reason. Thus, glass can be produced stably over a long period of time.
- FIG. 1 is a cross-sectional view showing one configuration example of the molten glass conveying equipment element of the present invention.
- FIG. 2 is a cross-sectional view showing another configuration example of the molten glass conveyance facility element of the present invention.
- FIG. 3 is a graph showing the relationship between the load time and the amount of compressive strain.
- FIG. 4 shows the state of the conduit before and after the compressive strain test.
- FIG. 1 is a cross-sectional view showing one configuration example of the molten glass conveying equipment element of the present invention.
- the molten glass conduit structure 1 has a central axis in the horizontal direction with respect to a conduit having a central axis in the vertical direction (hereinafter referred to as “vertical tube”) 1a.
- Two conduits (hereinafter referred to as “horizontal pipes”) 1b and 1b communicate with each other.
- a first ceramic structure 2 is arranged around the conduits (vertical tube 1 a and horizontal tube 1 b) constituting the molten glass conduit structure 1, and the first ceramic structure 2.
- the second ceramic structure 3 is located around the.
- FIG. 2 is a cross-sectional view showing another configuration example of the molten glass conveyance facility element of the present invention.
- the molten glass conduit structure 1 has only one conduit 1c.
- the conduit 1c is provided with convex portions and concave portions that continue 360 degrees in the circumferential direction alternately along the axial direction, and has an accordion-shaped outer shape.
- the first ceramic structure 2 is disposed around the conduit 1 c constituting the molten glass conduit structure 1, and the second ceramic structure 2 is surrounded by the second ceramic structure 2.
- the ceramic structure 3 is located.
- the structure in which the vertical pipe and the horizontal pipe communicate with each other as shown in FIG. 1 is not limited to the illustrated embodiment, and one horizontal pipe may communicate with one vertical pipe. Good. Further, one horizontal pipe communicates with one vertical pipe at one end side, and the horizontal pipe communicates with another vertical pipe at the other end side. Alternatively, one or more vertical pipes or horizontal pipes, or both may communicate with such a structure.
- the vertical pipe in the present invention does not necessarily require that the central axis is in the vertical direction in a strict sense, and the central axis may be inclined with respect to the vertical direction.
- the central axis is not necessarily required to be in the horizontal direction in a strict sense, and the central axis may be inclined to some extent with respect to the horizontal direction.
- the vertical pipe and the horizontal pipe in the present invention are intended to have a relative relationship between them, and when one of the pipes is a vertical pipe, the pipe intersecting with the vertical pipe is the horizontal pipe. It is.
- pipe which comprises the conduit
- pipe 1c shown in FIG. 2 has an unevenness
- convex portions and concave portions continuous 360 degrees in the circumferential direction are alternately provided along the axial direction. It is not limited, You may have only one among a convex part or a recessed part, Furthermore, the normal straight pipe which does not have a convex part and a recessed part may be sufficient.
- the stirrer for stirring molten glass may be provided in the inside of the conduit
- the conduit may be deformed and damaged by the expansion pressure applied from the molten glass during stirring by the stirrer. Therefore, the gap between the conduit constituting the conduit structure for molten glass and the first ceramic structure disposed around the conduit is extremely small, and the deformation of the conduit due to the expansion pressure applied from the molten glass can be suppressed. It is preferable to apply the invention.
- the conduits constituting the molten glass conduit structure 1 are used as molten glass conduits.
- the constituent material is required to have excellent heat resistance and corrosion resistance to molten glass. Therefore, the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG. 2) are platinum, platinum-gold alloy, platinum-rhodium alloy, platinum- It consists of a platinum alloy such as an iridium alloy. Platinum or a platinum alloy constituting the conduits constituting the molten glass conduit structure 1 (vertical pipe 1a, horizontal pipe 1b in FIG. 1 and conduit 1c in FIG.
- the first ceramic structure 2 contains 75 wt% or more of zirconium oxide in mass% with respect to the entire composition, and the proportion of cubic zirconia in the zirconium oxide is 80 wt% or more.
- the first ceramic structure 2 is mainly composed of cubic zirconia which is fully stabilized zirconia.
- cubic zirconia By using cubic zirconia as a main component, the amount of thermal expansion during heating or the amount of shrinkage during cooling is a conduit constituting the conduit structure 1 for molten glass and the first ceramic disposed around the conduit.
- the structure 2 is almost the same.
- Cubic Zirconia 8.5 ⁇ 10 -6 /°C ⁇ 10.5 ⁇ 10 -6 / °C Zirconium oxide such as cubic zirconia is excellent in heat resistance, corrosion resistance of molten glass, corrosion resistance against corrosive gas, and the like. Therefore, the conduits constituting the conduit structure 1 for molten glass (vertical tube in FIG. 1). It is suitable as the first ceramic structure 2 disposed around 1a, the horizontal pipe 1b, and the conduit 1c) of FIG.
- the linear thermal expansion coefficient of the ceramic structure at 20 to 1000 ° C. is 8 ⁇ 10 ⁇ 6 to 12 ⁇ 10 ⁇ 6 / ° C., and 9 ⁇ 10 ⁇ 6 to 11 ⁇ 10 ⁇ 6. / ° C. is preferable, and 9.5 ⁇ 10 ⁇ 6 to 10.5 ⁇ 10 ⁇ 6 / ° C. is more preferable.
- the conduits constituting the molten glass conduit structure 1 vertical tube 1a, horizontal tube 1b in FIG. 1, and conduit 1c in FIG. 2 are used.
- the linear thermal expansion coefficient of the first ceramic structure 2 is the conduit (the vertical tube 1a, the horizontal tube 1b, and the figure of FIG. 1) constituting the molten glass conduit structure 1. It is preferably within ⁇ 15%, more preferably within ⁇ 10%, more preferably within ⁇ 5% of the linear thermal expansion coefficient at 20 to 1000 ° C. of the platinum or platinum alloy used for the second conduit 1c) Is more preferable.
- zirconium oxide contained in the first ceramic structure 2 is 75 wt% or more, and the proportion of cubic zirconia in the zirconium oxide needs to be 80 wt% or more.
- the proportion of cubic zirconia in the zirconium oxide contained in the first ceramic structure 2 is preferably 85 wt% or more, and more preferably 90 wt% or more.
- the first ceramic structure 2 has an average open porosity of 25 to 60%.
- the first ceramic structure 2 having the above composition is excellent in corrosion resistance to the molten glass, but if the average open porosity is more than 60%, the corrosion resistance to the molten glass is lowered. On the other hand, if the average open porosity is less than 25%, the thermal shock resistance of the first ceramic structure 2 is lowered. Further, since the heat capacity is increased, the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG.
- the first ceramic structure 2 preferably has an average open porosity of 30 to 50%, more preferably 35 to 45%.
- the average open porosity of the 1st ceramic structure 2 can be calculated
- the first ceramic structure 2 may have different open porosity depending on the part. For example, the open porosity of the portion facing the conduits (vertical tube 1a, horizontal tube 1b in FIG. 1 and conduit 1c in FIG. 2) constituting the molten glass conduit structure 1 is made lower than the other portions. Thus, the corrosion resistance against molten glass can be enhanced.
- the gap between the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG. 2) and the first ceramic structure 2 is the same. Should be extremely small, specifically, less than 0.5 mm.
- the gap between the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG. 2) and the first ceramic structure 2 is 0.4 mm or less. Is preferably 0.2 mm or less, and more preferably no gap is present.
- the first ceramic structure 2 has a sufficient compressive strength in the temperature range when the molten glass flows in order to suppress deformation of the conduit constituting the molten glass conduit structure 1 by the expansion pressure applied from the molten glass. It is required to do.
- the first ceramic structure 2 preferably has a compressive strength at 1400 ° C. of 5 MPa or more, more preferably 8 MPa or more, and further preferably 10 MPa or more.
- the compressive strength at 1400 ° C. is because the temperature is normally experienced by the first ceramic structure 2 during distribution of the molten glass.
- the thickness d of the first ceramic structure 2 is preferably 15 mm or more and 50 mm or less.
- the second ceramic structure 3 hinders the amount of thermal expansion during heating or the amount of contraction during cooling of the first ceramic structure 2. Therefore, between the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG. 2) and the first ceramic structure 2 during heating. The difference in the amount of thermal expansion or the amount of shrinkage during cooling increases, and there is a risk that cracks will occur in the conduit constituting the conduit structure 1 for molten glass.
- the thickness d of the first ceramic structure 2 is less than 15 mm, the slurry is formed in the gap between the conduit constituting the molten glass conduit structure 1 and the second ceramic structure 3 in the procedure described later.
- the workability may be inferior. Since cubic zirconia is an expensive material, it is preferable from the viewpoint of cost to keep the thickness of the first ceramic structure 2 to the minimum necessary. From this viewpoint, the thickness d of the first ceramic structure 2 is preferably 50 mm or less. If the thickness d of the first ceramic structure 2 is larger than 50 mm, a temperature difference may occur in the thickness direction of the first ceramic structure 2 when the molten glass is distributed.
- the thickness d of the first ceramic structure 2 is more preferably 20 to 40 mm, and further preferably 25 to 35 mm.
- thickness is in all the site
- the thickness of the first ceramic structure 2 is such that the conduit constituting the molten glass conduit structure 1, the second ceramic structure 3,
- the second ceramic structure 3 is positioned around the first ceramic structure 2.
- a heat insulating brick mainly composed of at least one selected from the group consisting of alumina, magnesia, zircon and silica can be used.
- Specific examples of the heat insulating brick used as the second ceramic structure 3 include silica / alumina heat insulating brick, zirconia heat insulating brick, and magnesia heat insulating brick. Examples of commercially available products include SP-15 (manufactured by Hinomaru Ceramics Co., Ltd.), LBK3000 (manufactured by Isolite Kogyo Co., Ltd.), and the like.
- the manufacturing method of the molten glass conveyance equipment element of this invention is demonstrated.
- the gap between the conduits constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b, and conduit 1c in FIG. 2) and the first ceramic structure 2 is set to 0.
- the insulating brick mainly composed of cubic zirconia, which is a completely stabilized zirconia is arranged around the conduit constituting the conduit structure 1 for molten glass, the above gap Cannot be achieved.
- a slurry body containing particles is formed by a conduit (a vertical tube 1a, a horizontal tube 1b, and a conduit 1c in FIG. 2) constituting the molten glass conduit structure 1 and a second ceramic structure 3.
- the first ceramic structure 2 is formed by filling the gap and sintering the slurry.
- the gap between the first ceramic structure 2 after formation and the conduits constituting the molten glass conduit structure 1.
- the first ceramic structure 2 after the formation has a sufficient compressive strength in the temperature range when the molten glass flows. It is necessary to select stabilized zirconia particles.
- the gap between the formed first ceramic structure 2 and the conduits constituting the molten glass conduit structure 1 is reduced.
- the dimensional change (shrinkage) during sintering of the slurry body may be reduced.
- a slurry body containing stabilized zirconia particles having a large particle diameter may be used.
- the compressive strength of the sintered body, that is, the first ceramic structure 2 is reduced because the bonding area between the particles is small.
- the sintered body that is, the compressive strength of the first ceramic structure 2 is increased in order to bond so as to reinforce the joint point of the large particles. Get higher.
- the dimensional change (shrinkage) during sintering of the slurry body becomes large, so that the first ceramic structure 2 after formation and the melt
- the gap between the conduits constituting the glass conduit structure 1 (vertical tubes 1a, horizontal tubes 1b, and conduits 1c in FIG. 2) is increased.
- the first ceramic structure 2 after the formation and the molten glass are used.
- the first ceramic structure after forming the gap between the conduits constituting the conduit structure 1 for use (vertical pipe 1a, horizontal pipe 1b in FIG. 1 and conduit 1c in FIG. 2) less than 0.5 mm
- the body 2 shall have sufficient compressive strength in the temperature range at the time of distribution
- the second stabilized zirconia particles having a large median diameter D50 suppress the dimensional change (shrinkage) during sintering by forming a skeleton of the sintered body, while the median diameter D50 is small. Since the first stabilized zirconia particles reinforce the bonding of large particles serving as the skeleton of the sintered body, the compressive strength of the sintered body, that is, the first ceramic structure 2 is increased.
- the first stabilized zirconia particles and the second stabilized zirconia particles not only have different particle diameters but also have a median diameter D50 in the above range.
- the median diameter D50 of the first stabilized zirconia particles is less than 0.2 ⁇ m, the powder is likely to aggregate and cannot be uniformly dispersed. As a result, a portion where the bonding points of the skeleton particles of the sintered body are not strengthened remains. Therefore, the compressive strength of the sintered body, that is, the first ceramic structure 2 is lowered.
- the first stabilized zirconia particles having a small median diameter D50 are ion-exchanged water, a pH adjuster, and Then, after mixing with a ball mill together with an organic binder to be added as necessary to obtain a slurry precursor, the slurry precursor and second stabilized zirconia particles having a large median diameter D50 are mixed with a planetary mixer.
- a slurry body is preferred.
- the first stabilized zirconia particles settle when the slurry precursor is produced by the above procedure, so that a good slurry precursor (zirconia particles Cannot be obtained in a uniform manner. Even when a slurry precursor is obtained, when a slurry body produced using the slurry precursor is sintered, the joint points of the skeletal particles of the sintered body cannot be sufficiently strengthened, Since there are many voids in the bonded body, the compressive strength of the sintered body, that is, the first ceramic structure 2 is lowered.
- the first stabilized zirconia particles preferably have a median diameter D50 of 0.5 to 4 ⁇ m, and more preferably 1 to 3 ⁇ m.
- the first stabilized zirconia particles preferably have an integrated sieve 90% diameter (D90) of 10 ⁇ m or less in order to maintain the uniformity of the slurry and increase the compressive strength of the sintered body. The following is more preferable.
- the median diameter D50 of the second stabilized zirconia particles is less than 0.2 mm, the dimensional change (shrinkage) during sintering increases.
- the slurry precursor containing the first stabilized zirconia particles and the second stabilized zirconia particles are mixed with the planetary mixer.
- the first stabilized zirconia particles and the second stabilized zirconia particles are not uniformly dispersed, and a slurry having a desired composition cannot be obtained.
- the slurry body when the slurry body is sintered, the bonding area as the skeleton particles of the sintered body is reduced, and the sintered body, that is, the first ceramic structure 2 is obtained.
- the compressive strength of is low.
- the second stabilized zirconia particles preferably have a median diameter D50 of 0.25 to 1.75 ⁇ m, and more preferably 0.5 to 1.5 ⁇ m.
- the second stabilized zirconia particles have a cumulative sieve 10% diameter (D10) of 0.1 mm or more to suppress dimensional change (shrinkage) during sintering and to increase the compressive strength of the sintered body. It is preferable when making it high, and it is more preferable that it is 0.2 mm or more.
- the mass ratio of the first stabilized zirconia particles to the second stabilized zirconia particles is smaller than 0.3, the skeleton particles of the sintered body are obtained when the slurry body is sintered.
- the joint point of the coarse particles cannot be sufficiently strengthened, and the compression strength of the sintered body, that is, the first ceramic structure 2 is lowered.
- the mass ratio of the first stabilized zirconia particles to the second stabilized zirconia particles is larger than 0.6 in the slurry body, the dimensional change (shrinkage) during sintering increases.
- the mass ratio of the first stabilized zirconia particles to the second stabilized zirconia particles is preferably 0.35 to 0.55, and more preferably 0.4 to 0.5.
- the gap between the conduits constituting the molten glass conduit structure 1 (vertical pipe 1a, horizontal pipe 1b in FIG. 1 and conduit 1c in FIG. 2) and the second ceramic structure 3 is filled.
- the first stabilized zirconia particles and the second stabilized zirconia particles contained in the slurry body are the first-mentioned zirconia particles described above.
- the composition is required to be the same as that of the ceramic structure.
- the first stabilized zirconia particles and the second stabilized zirconia particles each contain 75 wt% or more of zirconium oxide in mass% with respect to the total composition, and the proportion of cubic zirconia in the zirconium oxide is 80 wt%. % Or more.
- the 1st stabilization zirconia particle and the 2nd stabilization zirconia particle contain the stabilizer added in order to make zirconium oxide into cubic zirconia which is stabilized zirconia as a remainder except a zirconium oxide. Further, the remainder may contain inevitable impurities. Moreover, as long as the present invention is not affected, other components other than zirconium oxide and the stabilizer may be contained in the first stabilized zirconia particles and the second stabilized zirconia particles up to about 8 wt% in total. . Examples of such other components include Al 2 O 3 and MgO which are added for improving the sinterability, and these can be contained up to about 5 wt% in total.
- Stabilizers include yttrium oxide, cerium oxide, magnesium oxide, calcium oxide, erbium oxide, etc., but have excellent corrosion resistance to molten glass, are easily available, and are stable even when kept at high temperatures for a long time. For this reason, yttrium oxide and cerium oxide are preferred.
- the stabilizer contains at least one selected from the group consisting of yttrium oxide and cerium oxide, the total content of both is preferably 6 wt% or more, more preferably 8 wt% or more, and 10 wt% % Or more is more preferable.
- the amount of stabilizer added is too large, there are problems such as difficulty in sintering and increased raw material costs. For this reason, it is preferable that the total content rate of both is 25 wt% or less, and it is more preferable that it is 20 wt% or less.
- the content of zirconium oxide in the first stabilized zirconia particles and the second stabilized zirconia particles varies depending on the amount of stabilizer added, but is 75 wt% or more in order to bring the thermal expansion coefficient into a predetermined range, and 80 wt% % Or more is preferable, and 85 wt% or more is more preferable.
- the upper limit of the content of zirconium oxide in the first stabilized zirconia particles and the second stabilized zirconia particles is about 94 wt% in consideration of the addition amount of the stabilizer.
- two kinds of stabilized zirconia particles having different median diameters D50 are blended to form a slurry, so that the first stabilized zirconia particles having a small median diameter D50 are ion exchange water, Then, after mixing with a ball mill together with an organic binder to be added as necessary to obtain a slurry precursor, the slurry precursor and second stabilized zirconia particles having a large median diameter D50 are mixed with a planetary mixer. A slurry body is used.
- the first stabilization with a small median diameter D50 is performed.
- a zirconia particle is mixed with a ball mill together with ion-exchanged water, a pH adjuster, and an organic binder to be added if necessary to obtain a slurry precursor, and then the slurry precursor and the second stable material having a large median diameter D50.
- Zirconia particles are preferably mixed with a planetary mixer to form a slurry.
- the method for preparing the slurry body is not limited to this, and for example, a generally known powder or slurry mixing method can also be used.
- the pH adjuster is used when the slurry precursor is produced, in order to uniformly disperse the first stabilized zirconia particles in the ion exchange water, the pH is weakly alkaline. This is because it is necessary to adjust the pH to about 7-9.
- the pH adjuster CaO, ammonia, potassium carbonate and the like can be used. Among these, CaO is preferable because it is easy to handle and has little residue after heating.
- CaO is used as a pH adjuster, it is preferably 0.01 to 0.2 wt%, more preferably 0.02 to 0.1 wt%, and more preferably 0.0 to 0.1 wt%, based on the total composition of the slurry. More preferably, it is 03 to 0.5 wt%.
- the slurry body is mixed with an organic binder as necessary.
- an organic binder methyl cellulose, liquid paraffin, polyethylene glycol or the like can be used.
- an organic binder containing methylcellulose as a component for example, there is a product name Metroose of Shin-Etsu Chemical Co., Ltd. Since the organic binder burns and scatters during the sintering of the slurry, if the amount of the organic binder is too high, it remains as carbon after combustion.
- the blending amount of the organic binder is preferably 0.5 wt% or less, more preferably 0.3 wt% or less, and more preferably 0.2 wt% or less in terms of mass% with respect to the total composition of the slurry body. Is more preferable.
- the blending ratio of the zirconia particles (first stabilized zirconia particles and second stabilized zirconia particles) and ion-exchanged water in the slurry body is such that the filling property of the slurry body, that is, the molten glass conduit structure 1 is determined. Fillability when filling a slurry body in the gap between the constituent conduits (vertical pipe 1a, horizontal pipe 1b in FIG. 1 and conduit 1c in FIG.
- the blending ratio of the zirconia particles (first stabilized zirconia particles and second stabilized zirconia particles) and ion-exchanged water in the slurry body is zirconia particles (first stabilized zirconia particles and second stabilized zirconia particles).
- the mass% of the zirconia particles with respect to the total mass of the zirconia particles) and the ion-exchanged water is preferably 8 to 25 wt%, more preferably 10 to 20 wt%, and further preferably 12 to 18 wt%.
- the gap between the conduit (the vertical tube 1a, the horizontal tube 1b in FIG. 1 and the conduit 1c in FIG. 2) constituting the molten glass conduit structure 1 and the second ceramic structure 3 was filled with a slurry body. Then, in order to remove the ion exchange water contained in the slurry body, it is dried in the air. Thereafter, the slurry body is sintered at a temperature of 1200 to 1700 ° C. When it is less than 1200 ° C., the first stabilized zirconia particles and the second stabilized zirconia particles contained in the slurry body are not sintered. If it exceeds 1700 ° C., the strength of the conduits (vertical tube 1a, horizontal tube 1b in FIG. 1 and conduit 1c in FIG. 2) made of platinum or a platinum alloy constituting the molten glass conduit structure 1 may be reduced. is there.
- the sintering temperature of the slurry is preferably 1250 to 1600 ° C., more preferably 1300 to 1500 ° C.
- the gap between the conduit constituting the molten glass conduit structure 1 (vertical tube 1a, horizontal tube 1b in FIG. 1 and conduit 1c in FIG. 2) and the first ceramic structure 2 is set to 0.
- the volume reduction rate before and after sintering is preferably 10% or less, more preferably 7% or less, and even more preferably 4% or less. That is, the volume ratio before and after sintering ((volume after heating / volume before heating) ⁇ 100) is preferably 90% or more, more preferably 93% or more, and still more preferably 96% or more.
- the sintered body has a sufficient compressive strength in the temperature range during the flow of the molten glass in order to suppress the deformation of the conduit constituting the molten glass conduit structure 1 by the expansion pressure applied from the molten glass. It is required to do.
- the compressive strength at 1400 ° C. of the sintered body is preferably 5 MPa or more, more preferably 8 MPa or more, and further preferably 10 MPa or more.
- the glass manufacturing apparatus of the present invention uses the molten glass conveying equipment element of the present invention as at least a part of the flow path of the molten glass.
- the vacuum degassing apparatus using the molten glass conveyance equipment element of this invention is mentioned as at least one part of the flow path of molten glass.
- the glass manufacturing apparatus of the present invention is not particularly limited as long as it uses the molten glass conveying equipment element of the present invention as at least a part of the flow path of the molten glass, and the upstream glass melting tank and the downstream glass sheet A molding apparatus (for example, a float bath) may be included.
- the molten glass used in the present invention is preferably the following alkali-free glass whose melting point is about 100 ° C. higher than that of soda lime glass.
- SiO 2 50 to 73%
- Al 2 O 3 10.5-24%
- B 2 O 3 0 to 12%
- SrO: 0 to 24% BaO: 0 to 13.5%
- ZrO 2 0 to 5%
- SiO 2 58 to 66%
- Al 2 O 3 15-22%
- B 2 O 3 5 to 12%
- CaO 0-9%
- SrO 3 to 12.5%
- BaO 0-2%
- MgO + CaO + SrO + BaO 9 to 18%
- Alkali-free glass containing
- SiO 2 50 to 61.5%
- Al 2 O 3 10.5-18%
- B 2 O 3 7 to 10%
- MgO 2-5%
- CaO 0 to 14.5%
- SrO 0 to 24%
- BaO 0 to 13.5%
- MgO + CaO + SrO + BaO 16 to 29.5%
- Alkali-free glass containing
- the oxide-based mass percentage display SiO 2 : 54-73% Al 2 O 3 : 10.5 to 22.5%, B 2 O 3 : 1.5-5.5% MgO: 0 to 6.5%, CaO: 0-9%, SrO: 0 to 16%, BaO: 0 to 2.5%, MgO + CaO + SrO + BaO: 8-25%, Alkali-free glass containing
- Example 1-7 As the first particles, fully stabilized zirconia particles F1, F2, and F3 having median diameters D50 of 15 ⁇ m (D90 45 ⁇ m), 0.96 ⁇ m (D90 1.8 ⁇ m), and 0.15 ⁇ m (D90 0.9 ⁇ m), respectively. Got ready. Of these particles, the particle F2 satisfies the median diameter D50 of the first stabilized zirconia particles in the present invention. All of the particles F1, F2 and F3 contained 12% by mass of yttrium oxide as a stabilizer, the zirconium oxide content was 87 wt%, and the proportion of cubic zirconia in the zirconium oxide was 95 wt%. .
- Particles F1, F2 and F3 76.85%, ion-exchanged water: 23%, CaO (pH adjuster): 0.05%, Metrose (organic binder, manufactured by Shin-Etsu Chemical Co., Ltd.): 0.1% by mass
- the mixture was blended in a ratio, and ball mill mixing was performed for 3 hours using a pot and balls made of zirconia to prepare a slurry precursor.
- the particles F1 having a median diameter D50 of more than 5 ⁇ m the solid content easily settled and did not become a good slurry precursor (a slurry precursor in which zirconia particles were uniformly dispersed). It was not subjected to the process.
- the second particles fully stabilized zirconia particles C1 having median diameters D50 of 3.15 mm (D10 0.8 mm), 0.42 mm (D10 0.22 mm), and 0.08 mm (D10 0.02 mm), respectively.
- C2 and C3 were prepared.
- the particle C2 satisfies the median diameter D50 of the second stabilized zirconia particles in the present invention.
- All of the particles C1, C2 and C3 contained 12% by mass of yttrium oxide as a stabilizer, the zirconium oxide content was 87 wt%, and the proportion of cubic zirconia in the zirconium oxide was 95 wt%. .
- the slurry precursor obtained by the above procedure and the particles C1, C2, and C3 were mixed for 20 minutes to obtain a slurry body so that the mass ratio shown in the following table was obtained.
- the particles C1 having a median diameter D50 of more than 2 mm the particles C1 and the particles F2 and F3 were not uniformly dispersed, and thus were not subjected to subsequent processes.
- Five types of slurry bodies produced by the above procedure were filled in a cylindrical mold having an inner diameter of 25 mm and a height of 30 mm, dried in the air for 10 hours, and then heated using a thermostatic bath heated to 80 ° C. Let dry for hours. After drying, the mold was removed to obtain a cylindrical sample.
- This cylindrical sample is held in the atmosphere of 1400 ° C. for 10 hours, and after the slurry body is sintered, the volume ratio after heating is measured by cooling and measuring the external dimensions ((volume after heating / volume before heating). ) ⁇ 100) (%). Moreover, the compressive strength (MPa) in the 1400 degreeC air
- the compressive strength was measured by using a portal type universal testing machine (manufactured by Shimadzu Corporation: Autograph) and compressing a cylindrical sample in an oven (atmosphere) through an alumina jig.
- the moving speed of the crosshead was 2 mm per minute, and the maximum load was the compressive strength.
- the results obtained from these measurements are summarized in the table below.
- the average open porosity was 40 to 60%, and the linear thermal expansion coefficient at 20 to 1000 ° C. was 8 ⁇ 10 ⁇ 6 to 12 ⁇ 10 ⁇ 6 / ° C.
- the first particle and the second particle are the particle F2 and the particle C2, respectively, and the mass ratio (first particle / second particle) of both satisfies 0.3 to 0.6.
- the dimensional change (shrinkage) during sintering was small, and the volume ratio after heating was 90% or more.
- the compressive strength at 1400 ° C. was 10 MPa or more.
- a conduit 1c shown in FIG. 2 was prepared.
- the conduit 1c is made of a platinum-rhodium alloy (rhodium 10% by mass), and convex portions and concave portions continuous 360 degrees in the circumferential direction are alternately provided along the axial direction to form a bellows-like outer shape.
- the conduit 1c has a total length of 70 mm, an outer diameter of 112 mm, and a wall thickness of 0.8 mm.
- the height difference between the convex portion and the concave portion is 5 mm.
- the distance between adjacent convex portions (or concave portions) is 14.6 mm.
- the length of the portion where the is formed is 58.4 mm.
- a heat-resistant cast steel ring was disposed outside the conduit 1c.
- the gap between the heat-resistant cast steel ring and the outermost diameter of the conduit 1c is 20 mm.
- the same slurry as that prepared in Experimental Example 1 was densely filled in the gap between the heat-resistant cast steel ring and the conduit 1c.
- a commercially available alumina hollow particle caster product name: Alphalux (manufactured by Saint-Gobain Ceramics)
- coefficient of linear thermal expansion at 20 to 1000 ° C. in the gap between the heat-resistant cast steel ring and the conduit 1c 6.
- FIG. 3 is a graph showing the measurement results, showing the relationship between the load time and the amount of compressive strain.
- FIG. 4 shows the result of observing each of the conduits 1c after performing the above-described test, and the deformation difference between them is remarkable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
- Glass Compositions (AREA)
Abstract
Description
導管を構成する白金または白金合金と、該導管の周囲に配置する断熱れんがと、は熱膨張係数が異なっているため、加熱時の熱膨張量の差、および、冷却時の収縮量の差が問題となる。
このような加熱時の熱膨張量の差、若しくは、冷却時の収縮量の差を吸収させるため、温度変化が生じた際に両者がわずかに相対移動できるように、両者の間にはキャスタブルセメントのような不定形のセラミックス材料が充填される。
このような問題を解決するため、本願発明者らは、特許文献2に記載の溶融ガラス搬送設備要素およびガラス製造装置を提供した。
特許文献2に記載の溶融ガラス搬送設備要素では、白金または白金合金製の溶融ガラスの導管の周囲に、該導管を構成する白金または白金合金と線熱膨張係数がほぼ一致するセラミックス構造体を配置することにより、加熱時の熱膨張量、若しくは冷却時の収縮量の差がきわめて小さくなる。このため、加熱時の熱膨張、若しくは冷却時の収縮によって、垂直管と水平管との接合部で亀裂が発生することが防止される。
特許文献2に記載の溶融ガラス搬送設備要素では、白金または白金合金製の導管が使用時において十分な強度を有していると考えられているが、高温環境下での使用による導管の材料の劣化等により、導管の強度が低下するおそれもありうる。また、溶融ガラス搬送設備要素の使用形態の変化し、例えば、導管内部を通過する溶融ガラスをスターラー等で撹拌することにより、溶融ガラスから加わる膨張圧力が増加する場合がある。これらの結果、導管の強度が、溶融ガラスから加わる膨張圧力に対して不十分になり、導管が変形し破損するおそれもありうる。
前記導管と、前記第2のセラミックス構造体と、の間隙に、各々全体組成に対する質量%で酸化ジルコニウムを75wt%以上含有し、かつ、前記酸化ジルコニウムに占める立方晶ジルコニアの割合が80wt%以上であり、安定化剤として、酸化イットリウムおよび酸化セリウムからなる群から選択される少なくとも1つを合計含有率で6~25wt%含有する、メディアン径D50が0.2~5μmの第1の安定化ジルコニア粒子、および、メディアン径D50が0.2~2mmの第2の安定化ジルコニア粒子を、前記第2の安定化ジルコニア粒子に対する前記第1の安定化ジルコニア粒子の質量比(第1の安定化ジルコニア粒子の質量/第2の安定化ジルコニア粒子の質量)が0.3~0.6になるように配合したスラリー体を充填し、1200~1700℃の温度で焼結させることで前記第1のセラミックス構造体が形成される、溶融ガラス搬送設備要素の製造方法を提供する。
また、本発明の溶融ガラス搬送設備要素では、溶融ガラスの流通時の温度域において、十分な圧縮強度を有する第1のセラミックス構造体が、溶融ガラスの導管の周囲に間隙を設けずに形成されているため、内部を通過する溶融ガラスから加わる膨張圧力により導管が変形することが防止されている。
このような溶融ガラス搬送設備要素を含む本発明のガラス製造装置は、加熱時の熱膨張、若しくは冷却時の収縮によって、導管に亀裂が発生することが防止されていること、内部を通過する溶融ガラスから加わる膨張圧力により導管が変形することが防止されていること、および、何らかの理由で溶融ガラスが漏えいするようなことがあってもセラミックス構造体が侵食され難いことから、信頼性に優れており、長期間にわたって安定してガラスを製造することができる。
図1は、本発明の溶融ガラス搬送設備要素の1構成例を示した断面図である。
図1に示す溶融ガラス搬送設備要素において、溶融ガラス用導管構造体1は、垂直方向に中心軸のある導管(以下、「垂直管」という。)1aに対して、水平方向に中心軸のある2本の導管(以下、「水平管」という。)1b,1bが連通した構造である。
図2は、本発明の溶融ガラス搬送設備要素の別の1構成例を示した断面図である。
図2に示す溶融ガラス搬送設備要素において、溶融ガラス用導管構造体1は、1本の導管1cのみを有している。該導管1cは、周方向に360度連続する凸部および凹部が、軸方向に沿って交互に設けられており、蛇腹状の外形をなしている。
図2においても、溶融ガラス用導管構造体1を構成する導管1cの周囲には、第1のセラミックス構造体2が配されており、該第1のセラミックス構造体2の周囲には、第2のセラミックス構造体3が位置している。
また、垂直管1aと、水平管1bと、の接合部の周辺では、導管(垂直管1a、水平管1b)と、該導管の周囲に配置される耐火レンガ等のセラミックス構造体と、の間に間隙が生じやすく、溶融ガラスから加わる膨張圧力によって導管が変形し、破損するおそれがあるため、溶融ガラス用導管構造体1を構成する導管(垂直管1a、水平管1b)と、該導管の周囲に配される第1のセラミックス構造体2と、の間隙がきわめて小さく、溶融ガラスから加わる膨張圧力による導管の変形を抑制できる本発明を適用するのが好適である。
なお、図1に示すような垂直管と水平管とが連通した構造についても、図示した態様に限定されず、1本の垂直管に対して1本の水平管が連通するものであってもよい。また、1本の垂直管に対して1本の水平管がその一端側で連通しており、かつ、該水平管がその他端側において、さらに別の1本の垂直管と連通するものであってもよく、このような構造にさらに1本以上の垂直管若しくは水平管、またはその両方が連通するものであってもよい。
なお、図2に示すような1本の導管のみを有する場合についても、図示するような、周方向に360度連続する凸部および凹部が、軸方向に沿って交互に設けられているものに限定されず、凸部または凹部のうち、一方のみを有するものであってもよく、さらには、凸部や凹部を持たない通常の直管であってもよい。
溶融ガラス用導管構造体を構成する導管の内部に溶融ガラスを撹拌するためのスターラーが設けられている場合、スターラーによる撹拌時に、溶融ガラスから加わる膨張圧力によって導管が変形し、破損するおそれがあるため、溶融ガラス用導管構造体を構成する導管と、該導管の周囲に配される第1のセラミックス構造体と、の間隙がきわめて小さく、溶融ガラスから加わる膨張圧力による導管の変形を抑制できる本発明を適用するのが好適である。
溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)を構成する白金または白金合金は、白金または白金合金にAl2O3、ZrO2、Y2O3のような金属酸化物粒子を分散させた強化白金からなることが好ましい。強化白金では、白金または白金合金に分散させた金属酸化物粒子が転位や結晶粒の成長を妨げる効果を生じ、これによって機械的強度が高められている。しかしながら、その一方で通常の白金または白金合金に比べて材料の延性が低下しているため、溶融ガラス用導管構造体1を構成する導管と、該導管の周囲に配置される断熱レンガ等のセラミックス構造体と、の加熱時の熱膨張量の差、若しくは冷却時の収縮量の差を管材料の伸びにより吸収することができず、該導管に亀裂が発生するおそれがある。このため、加熱時の熱膨張、若しくは冷却時の収縮によって、溶融ガラス用導管構造体1を構成する導管での亀裂の発生を抑制することができる本発明を適用するのが好適な材料ということができる。
立方晶ジルコニアを主体とすることにより、加熱時の熱膨張量、若しくは冷却時の収縮量が、溶融ガラス用導管構造体1を構成する導管と、該導管の周囲に配される第1のセラミックス構造体2と、でほぼ等しくなる。この結果、加熱時の熱膨張量若しくは冷却時の収縮量の差がきわめて小さくなり、加熱時の熱膨張若しくは冷却時の収縮によって、溶融ガラス用導管構造体1を構成する導管で亀裂が発生すること、例えば、図1における垂直管1aと水平管1bとの接合部で亀裂が発生することが防止される。
完全安定化ジルコニアである立方晶ジルコニアは、以下に示すように、20~1000℃において、該導管を構成する白金または白金合金と極めて近い線熱膨張係数を有するためである。
白金、白金合金:9.5×10-6/℃~11×10-6/℃
立方晶ジルコニア:8.5×10-6/℃~10.5×10-6/℃
なお、立方晶ジルコニアのような酸化ジルコニウムは、耐熱性、溶融ガラスの耐食性、および腐食性ガスに対する耐食性等に優れているため、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)の周囲に配する、第1のセラミックス構造体2として好適である。
但し、白金または白金合金の線熱膨張係数は組成によって多少異なるので、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)に用いる白金または白金合金の線熱膨張係数に応じて、第1のセラミックス構造体2の線熱膨張係数を選択することが好ましい。具体的には、第1のセラミックス構造体2の20~1000℃における線熱膨張係数が、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)に用いる白金または白金合金の20~1000℃における線熱膨張係数の±15%以内であることが好ましく、±10%以内であることがより好ましく、±5%以内であることがさらに好ましい。
第1のセラミックス構造体2は、平均開気孔率が30~50%であることが好ましく、35~45%であることがより好ましい。
第1のセラミックス構造体2の平均開気孔率は、アルキメデス法や水銀ポロシメークによる測定により求めることができる。
第1のセラミックス構造体2は、部位によって開気孔率が異なっていてもよい。例えば、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と面する部位を他の部位よりも開気孔率を低くすることで、溶融ガラスに対する耐食性を高めることができる。
上述したように、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第1のセラミックス構造体2と、の間に間隙が存在すると、溶融ガラスから加わる膨張圧力によって導管が変形し、破損するおそれがある。
溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第1のセラミックス構造体2と、の間隙が存在しなければ、溶融ガラスから加わる膨張圧力による導管の変形を抑制できる。
但し、本発明では、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第1のセラミックス構造体2と、の間隙がきわめて小さければよく、具体的には、0.5mm未満であればよい。
溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第1のセラミックス構造体2と、の間隙は、0.4mm以下であることが好ましく、0.2mm以下であることがより好ましく、間隙が存在しないことがさらに好ましい。
また、第1のセラミックス構造体2の厚さdが15mm未満だと、後述する手順で、溶融ガラス用導管構造体1を構成する導管と、第2のセラミックス構造体3と、の間隙にスラリー体を充填し、該スラリー体を焼結させて第1のセラミックス構造体2を形成する際に、施工性に劣るおそれがある。
立方晶ジルコニアは高価な材料であるため、第1のセラミックス構造体2の厚さは、必要最小限に留めることがコスト面から好ましい。この観点から、第1のセラミックス構造体2の厚さdが50mm以下であることが好ましい。
また、第1のセラミックス構造体2の厚さdが、50mmよりも大きいと、溶融ガラスの流通時において、第1のセラミックス構造体2の厚さ方向で温度差が生じるおそれがある。
第1のセラミックス構造体2の厚さdは、20~40mmであることがより好ましく、25~35mmであることがさらに好ましい。
なお、溶融ガラス用導管構造体1を構成する導管が、図2の導管1cのように凹凸を有する場合、導管1cの凹凸と対面する第1のセラミックス構造体2の全て部位において、厚さが上記の範囲を満たすようにする。
第2のセラミックス構造体3としては、アルミナ、マグネシア、ジルコンおよびシリカからなる群から選択される少なくとも1つを主体とする断熱れんがを用いることができる。
第2のセラミックス構造体3として用いる断熱れんがの具体例としては、シリカ・アルミナ質断熱れんが、ジルコニア質断熱れんが、マグネシア質断熱れんが等が挙げられる。市販品としては、SP-15(日の丸窯業株式会社製)、LBK3000(イソライト工業株式会社製)等が挙げられる。
本発明では、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第1のセラミックス構造体2と、の間隙を0.5mm未満にすることが求められるが、溶融ガラス用導管構造体1を構成する導管の周囲に、完全安定化ジルコニアである立方晶ジルコニアを主体とする断熱レンガを配置したのでは、上記の間隙を達成することができない。
このため、本発明では、上記した第1のセラミックス構造体2の組成(すなわち、酸化ジルコニウムは75wt%以上であり、そのうちに占める立方晶ジルコニアの割合を80wt%以上である)を満たす安定化ジルコニア粒子を含むスラリー体を、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、第2のセラミックス構造体3と、の間隙に充填し、該スラリー体を焼結させることで第1のセラミックス構造体2を形成する。
しかしながら、粒子径が大きい安定化ジルコニア粒子をのみを含むスラリー体を使用した場合、粒子相互の接合面積が小さいため、焼結体、すなわち、第1のセラミックス構造体2の圧縮強度が低くなる。
しかしながら、粒子径が小さい安定化ジルコニア粒子のみを含むスラリー体を使用した場合、スラリー体の焼結時の寸法変化(収縮)が大きくなるため、形成後の第1のセラミックス構造体2と、溶融ガラス用導管構造体1を構成する導管(図1の垂直管1a、水平管1b、および、図2の導管1c)と、の間隙が大きくなる。
すなわち、本発明では、メディアン径D50が0.2~5μmの第1の安定化ジルコニア粒子、および、メディアン径D50が0.2~2mmの第2の安定化ジルコニア粒子を、第2の安定化ジルコニア粒子に対する第1の安定化ジルコニア粒子の質量比(第1の安定化ジルコニア粒子の質量/第2の安定化ジルコニア粒子の質量)が0.3~0.6になるように配合したスラリー体を使用する。
第1の安定化ジルコニア粒子のメディアン径D50が0.2μm未満だと、粉末の凝集が生じ易く、均一な分散ができなくなる結果、焼結体の骨格粒子の結合点が強化されない部位が残存するため、焼結体、すなわち、第1のセラミックス構造体2の圧縮強度が低くなる。
本発明では、メディアン径D50が互いに異なる2種類の安定化ジルコニア粒子を配合してスラリー体とするため、メディアン径D50が小さい第1の安定化ジルコニア粒子を、イオン交換水、pH調整剤、および、必要に応じて添加する有機バインダとともにボールミルで混合してスラリー前駆体とした後、該スラリー前駆体と、メディアン径D50が大きい第2の安定化ジルコニア粒子と、をプラネタリーミキサーで混合してスラリー体とすることが好ましい。
第1の安定化ジルコニア粒子のメディアン径D50が5μm超だと、上記の手順でスラリー前駆体を作製する際に、第1の安定化ジルコニア粒子が沈降するため、良好なスラリー前駆体(ジルコニア粒子が均一に分散したスラリー前駆体)を得ることができない。
また、スラリー前駆体が得られた場合でも、該スラリー前駆体を用いて作製したスラリー体を焼結した際に、焼結体の骨格粒子の接合点を十分に強化することができず、焼結体に多数の空隙が存在するため、焼結体、すなわち、第1のセラミックス構造体2の圧縮強度が低くなる。
第1の安定化ジルコニア粒子は、メディアン径D50が0.5~4μmであることが好ましく、1~3μmであることがより好ましい。
また、スラリー体が得られた場合でも、該スラリー体を焼結した際に、焼結体の骨格粒子としての接合面積が小さくなってしまい、焼結体、すなわち、第1のセラミックス構造体2の圧縮強度が低くなる。
第2の安定化ジルコニア粒子は、メディアン径D50が0.25~1.75μmであることが好ましく、0.5~1.5μmであることがより好ましい。
このため、第1の安定化ジルコニア粒子および第2の安定化ジルコニア粒子は、各々全体組成に対する質量%で酸化ジルコニウムを75wt%以上含有し、かつ、該酸化ジルコニウムに占める立方晶ジルコニアの割合が80wt%以上である。
安定化剤としては、酸化イットリウム、酸化セリウム、酸化マグネシウム、酸化カルシウム、酸化エルビニウム等があるが、溶融ガラスに対する耐食性に優れる、入手が容易である、長時間高温で保持しても安定である等の理由から酸化イットリウムおよび酸化セリウムが好ましい。
安定化剤として酸化イットリウムおよび酸化セリウムからなる群から選択される少なくとも1つを含有する場合、両者の合計含有率が6wt%以上であることが好ましく、8wt%以上であることがより好ましく、10wt%以上であることがさらに好ましい。
しかしながら、安定化剤の添加量が多すぎると、焼結が難しい、原料費が上がる等の問題がある。このため、両者の合計含有率が25wt%以下であることが好ましく、20wt%以下であることがより好ましい。
但し、スラリー体の調製方法はこれに限定されず、たとえば、一般的に知られる粉末やスラリーの混合方法を用いることもできる。
pH調整剤としては、CaO、アンモニア、炭酸カリウム等を用いることができる。これらの中でもCaOが、扱いが容易であり、加熱後の残存物が少ないことから好ましい。
pH調整剤としてCaOを使用する場合、スラリー体の全体組成に対する質量%で0.01~0.2wt%であることが好ましく、0.02~0.1wt%であることがより好ましく、0.03~0.5wt%であることがさらに好ましい。
有機バインダとしては、メチルセルロース、流動パラフィン、ポリエチレングリコール等を用いることができる。メチルセルロースを成分とする有機バインダとしては、たとえば、信越化学工業株式会社の製品名メトロースがある。
有機バインダはスラリー体の焼結時に燃焼し、飛散するため、有機バインダの配合量が高すぎると、燃焼後にカーボンとして残存する。
このため、有機バインダの配合量は、スラリー体の全体組成に対する質量%で0.5wt%以下であることが好ましく、0.3wt%以下であることがより好ましく、0.2wt%以下であることがさらに好ましい。
スラリー体におけるジルコニア粒子(第1の安定化ジルコニア粒子および第2の安定化ジルコニア粒子)と、イオン交換水と、の配合割合は、ジルコニア粒子(第1の安定化ジルコニア粒子および第2の安定化ジルコニア粒子)とイオン交換水の合計質量に対するジルコニア粒子の質量%で8~25wt%であることが好ましく、10~20wt%であることがより好ましく、12~18wt%であることがさらに好ましい。
その後、1200~1700℃の温度でスラリー体を焼結させる。
1200℃未満だと、スラリー体に含まれる第1の安定化ジルコニア粒子および第2の安定化ジルコニア粒子が焼結しない。1700℃超だと、溶融ガラス用導管構造体1を構成する白金または白金合金からなる導管(図1の垂直管1a、水平管1b、および、図2の導管1c)の強度が低下するおそれがある。
スラリー体の焼結温度は、1250~1600℃であることが好ましく、1300~1500℃であることがより好ましい。
酸化物基準の質量百分率表示で、
SiO2:50~73%、
Al2O3:10.5~24%、
B2O3:0~12%、
MgO:0~8%、
CaO:0~14.5%、
SrO:0~24%、
BaO:0~13.5%、
MgO+CaO+SrO+BaO:8~29.5%、
ZrO2:0~5%、
を含有する無アルカリガラス。
SiO2:58~66%、
Al2O3:15~22%、
B2O3:5~12%、
MgO:0~8%、
CaO:0~9%、
SrO:3~12.5%、
BaO:0~2%、
MgO+CaO+SrO+BaO:9~18%、
を含有する無アルカリガラス。
SiO2:50~61.5%、
Al2O3:10.5~18%、
B2O3:7~10%、
MgO:2~5%、
CaO:0~14.5%、
SrO:0~24%、
BaO:0~13.5%、
MgO+CaO+SrO+BaO:16~29.5%、
を含有する無アルカリガラス。
SiO2:56~70%、
Al2O3:14.5~22.5%、
B2O3:0 ~2%、
MgO:0~6.5%、
CaO:0~9%、
SrO:0~15.5%、
BaO:0~2.5%、
MgO+CaO+SrO+BaO:10~26%、
を含有する無アルカリガラス。
SiO2:54~73%、
Al2O3:10.5~22.5%、
B2O3:1.5~5.5%、
MgO:0~6.5%、
CaO:0~9%、
SrO:0~16%、
BaO:0~2.5%、
MgO+CaO+SrO+BaO:8~25 %、
を含有する無アルカリガラス。
第1粒子として、メディアン径D50が各々15μm(D90 45μm)、0.96μm(D90 1.8μm)、および、0.15μm(D90 0.9μm)である完全安定化ジルコニア粒子F1、F2及びF3を準備した。なお、これらの粒子のうち、粒子F2が本発明における第1の安定化ジルコニア粒子のメディアン径D50を満たしている。粒子F1、F2及びF3は全て、安定化剤として酸化イットリウムを12質量%含有しており、酸化ジルコニウムの含有率は87wt%であり、酸化ジルコニウムに占める立方晶ジルコニアの割合は95wt%であった。
粒子F1、F2及びF3:76.85%、イオン交換水:23%、CaO(pH調整剤):0.05%、メトロース(有機バインダ、信越化学工業株式会社製):0.1%の質量比で配合し、ジルコニア製のポットとボールを用いて、ボールミル混合を3時間行い、スラリー前駆体を作製した。
ここで、メディアン径D50が5μm超の粒子F1を用いたものでは、固形分が容易に沈下して、良好なスラリー前駆体(ジルコニア粒子が均一に分散したスラリー前駆体)とならなかったため、その後のプロセスには供しなかった。
下記表に示す質量比となるように、プラネタリーミキサーを用いて、上記の手順で得られたスラリー前駆体と、粒子C1、C2及びC3と、を20分間混合してスラリー体を得た。
ここで、メディアン径D50が2mm超の粒子C1を用いたものでは、粒子C1と、粒子F2,F3と、が均一に分散しなかったため、その後のプロセスには供しなかった。
上記の手順で作製した5種のスラリー体を内径:25mm、高さ:30mmの円柱形の型に充填し、大気中で10時間乾燥させた後、80℃に加熱した恒温槽を用いて2時間乾燥させた。乾燥の後、型を外し円柱形の試料を得た。この円柱形試料を1400℃の大気中に10時間保持し、スラリー体を焼結させた後、冷却し外寸を測定することで加熱後の体積率((加熱後の体積/加熱前の体積)×100)(%)を算出した。また、該円柱試料の1400℃の大気中における圧縮強度(MPa)を下記手順で測定した。
圧縮強度の測定は門型万能試験機(島津製作所製:オートグラフ)を用い、円柱型試料をアルミナ治具を介して炉内(大気雰囲気)にて圧縮することによって実施した。なお、クロスヘッドの移動速度は毎分2mmとし、最高負荷を圧縮強度とした。
これらの測定によって得られた結果を下表にまとめた。
第1粒子、第2粒子をそれぞれ粒子F2、粒子C2を使用し、両者の質量比(第1粒子/第2粒子)が0.3~0.6を満たす実験例1~3は、いずれも焼結時の寸法変化(収縮)が小さく、加熱後体積率が90%以上であった。また、1400℃における圧縮強度も10MPa以上であった。
一方、両者の質量比(第1粒子/第2粒子)が0.3よりも小さい実験例4では、1400℃における圧縮強度が2.1MPaと低かった。
また、両者の質量比(第1粒子/第2粒子)が0.6よりも大きい実験例5では、焼結時の寸法変化(収縮)が大きく、加熱後体積率が90%未満であった。
第2粒子として、メディアン径D50が0.2mm未満の粒子C3を用いた実験例6では、焼結時の寸法変化(収縮)が大きく、加熱後体積率が90%未満であった。
第1粒子として、メディアン径D50が0.2μm未満の粒子F3を用いた実験例7では、1400℃における圧縮強度が3.7MPaと低かった。
本実施例、比較例では、図2に示す導管1cを準備した。導管1cは白金-ロジウム合金(ロジウム10質量%)製であり、周方向に360度連続する凸部および凹部が、軸方向に沿って交互に設けられており、蛇腹状の外形をなしている。導管1cは、全長70mm、外径112mm、肉厚0.8mmであり、凸部と凹部との高低差は5mm、隣接する凸部(または凹部)間の距離は14.6mm、凸部および凹部が形成されている部分の長さは58.4mmである。
図2に示す第2のセラミックス構造体3の代わりに、耐熱鋳鋼製リングを導管1cの外側に配した。耐熱鋳鋼製リングと、導管1cの最外径と、の間隙は20mmである。
実施例では、耐熱鋳鋼製リングと導管1cとの間隙に、実験例1で作製したのと同じスラリー体を密に充填した。一方、比較例では、耐熱鋳鋼製リングと導管1cとの間隙に、市販のアルミナ中空粒子キャスター(製品名:アルファラックス(サンゴバン・セラミックス社製)、20~1000℃における線熱膨張係数:6.5×10-6/℃ 、1400℃における圧縮強度:1.2MPa)を密に充填した。上記の手順で作製した試験体を十分に乾燥した後、門型万能試験機に備えられた電気炉の中で1300℃まで加熱し、スラリー体を焼結させた後(実施例)、上方から均一になるように500Nの負荷を与え続け、生じる圧変位量(圧縮歪み)を連続的に測定した。図3は測定結果を示したグラフであり、負荷時間と圧縮歪み量との関係を示している。
図3から明らかなように、充填性も十分でなく高温強度(1400℃における圧縮強度)が不足するアルミナ中空粒子キャスターを使用した比較例では、導管1cの収縮を抑えられないことが明白である。一方、実験例1のスラリー体を使用した実施例では、耐熱鋳鋼製リングと導管1cとの間隙に、スラリー体を隙間なく充填でき、且つ加熱前後での寸法変化が少なく、高温強度(1400℃における圧縮強度)が十分であるため、導管1cの収縮を抑制することができた。図4は前述の試験を行った後、各々導管1cを観察した結果であり、両者の変形差が顕著である。
本出願は、2011年7月21日出願の日本特許出願2011-159929に基づくものであり、その内容はここに参照として取り込まれる。
Claims (12)
- 白金または白金合金からなる少なくとも1つの導管を含む溶融ガラス用導管構造体、該導管の周囲に配される第1のセラミックス構造体、および、該第1のセラミックス構造体の周囲に位置する第2のセラミックス構造体を有する溶融ガラス搬送設備要素の製造方法であって、
前記導管と、前記第2のセラミックス構造体と、の間隙に、各々全体組成に対する質量%で酸化ジルコニウムを75wt%以上含有し、かつ、前記酸化ジルコニウムに占める立方晶ジルコニアの割合が80wt%以上であり、安定化剤として、酸化イットリウムおよび酸化セリウムからなる群から選択される少なくとも1つを合計含有率で6~25wt%含有する、メディアン径D50が0.2~5μmの第1の安定化ジルコニア粒子、および、メディアン径D50が0.2~2mmの第2の安定化ジルコニア粒子を、前記第2の安定化ジルコニア粒子に対する前記第1の安定化ジルコニア粒子の質量比(第1の安定化ジルコニア粒子の質量/第2の安定化ジルコニア粒子の質量)が0.3~0.6になるように配合したスラリー体を充填し、1200~1700℃の温度で焼結させることで前記第1のセラミックス構造体が形成される、溶融ガラス搬送設備要素の製造方法。 - 前記溶融ガラス用導管構造体は、垂直方向に中心軸のある第1の導管と、該第1の導管と連通する水平方向に中心軸のある第2の導管と、を、少なくとも1本ずつ有する、請求項1に記載の溶融ガラス搬送設備要素の製造方法。
- 前記導管として、周方向に360度連続する凸部および凹部の少なくとも一方を有する導管を含む、請求項1または2に記載の溶融ガラス搬送設備要素の製造方法。
- 前記導管として、内部にスターラーが設けられた導管を含む、請求項1~3のいずれか1項に記載の溶融ガラス搬送設備要素の製造方法。
- 前記導管を構成する白金または白金合金が、白金または白金合金に金属酸化物が分散された強化白金である、請求項1~4のいずれか1項に記載の溶融ガラス搬送設備要素の製造方法。
- 前記第1の安定化ジルコニア粒子の積算ふるい下90%径(D90)が10μm以下であり、前記第2の安定化ジルコニア粒子の積算ふるい下10%径(D10)が0.1mm以上である、請求項1~5のいずれか1項に記載の溶融ガラス搬送設備要素の製造方法。
- 前記第2のセラミックス構造体が、アルミナ、マグネシア、ジルコン、およびシリカからなる群から選択される少なくとも1つを主体とする、請求項1~5のいずれか1項に記載の溶融ガラス搬送設備要素の製造方法。
- 請求項1~7のいずれか1項に記載の溶融ガラス搬送設備要素の製造方法により製造された溶融ガラス搬送設備要素であって、前記第1のセラミックス構造体の平均開気孔率が25~60%であり、前記第1のセラミックス構造体の20~1000℃における線熱膨張係数が8×10-6~12×10-6/℃であり、前記導管と前記第1のセラミックス構造体との間隙が0.5mm未満である、溶融ガラス搬送設備要素。
- 前記第1のセラミックス構造体の20~1000℃における線熱膨張係数が、前記導管を構成する白金または白金合金の20~1000℃における線熱膨張係数の±15%以内である、請求項8に記載の溶融ガラス搬送設備要素。
- 前記第1のセラミックス構造体の厚さが15~50mmである、請求項8または9に記載の溶融ガラス搬送設備要素。
- 前記第1のセラミックス構造体の1400℃における圧縮強度が5MPa以上である、請求項8~10のいずれか1項に記載の溶融ガラス搬送設備要素。
- 請求項8~11のいずれか1項に記載の溶融ガラス搬送設備要素を含むガラス製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280036179.5A CN103687821B (zh) | 2011-07-21 | 2012-07-12 | 熔融玻璃搬运设备元件和熔融玻璃搬运设备元件的制造方法以及玻璃制造装置 |
JP2013524697A JP5928466B2 (ja) | 2011-07-21 | 2012-07-12 | 溶融ガラス搬送設備要素の製造方法、およびガラス製造方法 |
EP12814776.6A EP2735550B1 (en) | 2011-07-21 | 2012-07-12 | Molten glass conveying equipment element, method for producing molten glass conveying equipment element, and glass manufacturing apparatus |
KR1020147001584A KR101922277B1 (ko) | 2011-07-21 | 2012-07-12 | 용융 유리 반송 설비 요소 및 용융 유리 반송 설비 요소의 제조 방법, 및 유리 제조 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011159929 | 2011-07-21 | ||
JP2011-159929 | 2011-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011927A1 true WO2013011927A1 (ja) | 2013-01-24 |
Family
ID=47558105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067863 WO2013011927A1 (ja) | 2011-07-21 | 2012-07-12 | 溶融ガラス搬送設備要素および溶融ガラス搬送設備要素の製造方法、ならびにガラス製造装置 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2735550B1 (ja) |
JP (1) | JP5928466B2 (ja) |
KR (1) | KR101922277B1 (ja) |
CN (1) | CN103687821B (ja) |
TW (1) | TWI542557B (ja) |
WO (1) | WO2013011927A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014073594A1 (ja) * | 2012-11-12 | 2014-05-15 | 旭硝子株式会社 | 溶融ガラス搬送設備要素、溶融ガラス搬送設備要素の製造方法、溶融ガラス搬送設備要素を含むガラス製造装置、およびガラス物品の製造方法 |
CN111039544A (zh) * | 2019-12-30 | 2020-04-21 | 彩虹显示器件股份有限公司 | 一种铂金通道保护支撑结构 |
US20210032148A1 (en) * | 2017-12-01 | 2021-02-04 | Corning Incorporated | Apparatus and method for producing glass |
JP2021062990A (ja) * | 2019-10-15 | 2021-04-22 | Agc株式会社 | 溶融ガラスの搬送装置、ガラス物品の製造設備、およびガラス物品の製造方法 |
CN114671598A (zh) * | 2022-02-24 | 2022-06-28 | 彩虹显示器件股份有限公司 | 一种用于液晶基板玻璃通道降温段膨胀调节系统及方法 |
JP2022158980A (ja) * | 2021-03-31 | 2022-10-17 | AvanStrate株式会社 | ガラス基板製造装置及び管部材 |
CN116924793A (zh) * | 2022-03-29 | 2023-10-24 | 比亚迪股份有限公司 | 一种玻璃陶瓷复合材料及其制备方法、电子设备 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI530464B (zh) * | 2014-12-31 | 2016-04-21 | Eglass Taiwan Ltd | Molten glass guide |
TWI826432B (zh) * | 2018-04-06 | 2023-12-21 | 美商康寧公司 | 玻璃熔融系統的排放導管 |
CN109626831A (zh) * | 2019-01-16 | 2019-04-16 | 河南光远新材料股份有限公司 | 一种减少电子级玻璃纤维中残留微气泡的方法 |
JP7159972B2 (ja) * | 2019-05-22 | 2022-10-25 | Agc株式会社 | 溶融ガラス搬送装置、ガラス製造装置及びガラス製造方法 |
CN114630813B (zh) * | 2019-10-29 | 2023-11-21 | 京瓷株式会社 | 陶瓷结构体、吸嘴、刀具、镊子、磨损检测器、粉体除电装置、粉体制造装置、顶销、搬运手及纤维引导件 |
CN114380608B (zh) * | 2022-02-16 | 2023-04-25 | 中钢集团洛阳耐火材料研究院有限公司 | 一种tft-lcd基板玻璃供料道用氧化锆质填充料 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002087826A (ja) | 2000-06-29 | 2002-03-27 | Corning Inc | 減圧清澄用のチューブ装置 |
WO2004070251A1 (ja) | 2003-02-04 | 2004-08-19 | Asahi Glass Company, Limited | 溶融ガラス用導管、溶融ガラス用接続導管および減圧脱泡装置 |
WO2004101466A1 (ja) * | 2003-05-14 | 2004-11-25 | Asahi Glass Ceramics, Co., Ltd. | ジルコニア質不定形耐火物 |
JP2006031589A (ja) | 2004-07-21 | 2006-02-02 | Daiwa Securities Group Inc | 有価証券売買取引システムおよびその方法、並びにプログラム |
JP2006315894A (ja) * | 2005-05-11 | 2006-11-24 | Asahi Glass Co Ltd | ガラス製造装置およびその構成要素 |
WO2010067669A1 (ja) | 2008-12-11 | 2010-06-17 | 旭硝子株式会社 | 溶融ガラス搬送設備要素およびガラス製造装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923830A (en) * | 1989-09-18 | 1990-05-08 | Swiss Aluminum Ltd. | Ceramic bodies formed from partially stabilized zirconia |
JP2004101466A (ja) * | 2002-09-12 | 2004-04-02 | Fuji Photo Optical Co Ltd | 不要光除去体を備えた干渉計装置 |
US8278231B2 (en) * | 2008-11-24 | 2012-10-02 | Exxonmobil Chemical Patents Inc. | Heat stable formed ceramic, apparatus and method of using the same |
US8512663B2 (en) * | 2009-05-18 | 2013-08-20 | Exxonmobile Chemical Patents Inc. | Pyrolysis reactor materials and methods |
US8399372B2 (en) * | 2009-05-18 | 2013-03-19 | Exxonmobil Chemical Patents Inc. | Stabilized ceramic composition, apparatus and methods of using the same |
-
2012
- 2012-07-12 CN CN201280036179.5A patent/CN103687821B/zh active Active
- 2012-07-12 KR KR1020147001584A patent/KR101922277B1/ko active IP Right Grant
- 2012-07-12 JP JP2013524697A patent/JP5928466B2/ja active Active
- 2012-07-12 WO PCT/JP2012/067863 patent/WO2013011927A1/ja active Application Filing
- 2012-07-12 EP EP12814776.6A patent/EP2735550B1/en active Active
- 2012-07-18 TW TW101125897A patent/TWI542557B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002087826A (ja) | 2000-06-29 | 2002-03-27 | Corning Inc | 減圧清澄用のチューブ装置 |
WO2004070251A1 (ja) | 2003-02-04 | 2004-08-19 | Asahi Glass Company, Limited | 溶融ガラス用導管、溶融ガラス用接続導管および減圧脱泡装置 |
WO2004101466A1 (ja) * | 2003-05-14 | 2004-11-25 | Asahi Glass Ceramics, Co., Ltd. | ジルコニア質不定形耐火物 |
JP2006031589A (ja) | 2004-07-21 | 2006-02-02 | Daiwa Securities Group Inc | 有価証券売買取引システムおよびその方法、並びにプログラム |
JP2006315894A (ja) * | 2005-05-11 | 2006-11-24 | Asahi Glass Co Ltd | ガラス製造装置およびその構成要素 |
WO2010067669A1 (ja) | 2008-12-11 | 2010-06-17 | 旭硝子株式会社 | 溶融ガラス搬送設備要素およびガラス製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2735550A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2918554A4 (en) * | 2012-11-12 | 2016-06-15 | Asahi Glass Co Ltd | ELEMENT OF A GLASS MELTER CONVEYING DEVICE, METHOD FOR PRODUCING THE ELEMENTS OF A GLASS MELTER CONVEYING DEVICE, GLASS PRODUCING APPARATUS WITH ELEMENT OF A GLASS MELTER CONVEYOR DEVICE AND METHOD FOR PRODUCING A GLASS PRODUCT |
JPWO2014073594A1 (ja) * | 2012-11-12 | 2016-09-08 | 旭硝子株式会社 | 溶融ガラス搬送設備要素、溶融ガラス搬送設備要素の製造方法、溶融ガラス搬送設備要素を含むガラス製造装置、およびガラス物品の製造方法 |
US9446976B2 (en) | 2012-11-12 | 2016-09-20 | Asahi Glass Company, Limited | Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product |
WO2014073594A1 (ja) * | 2012-11-12 | 2014-05-15 | 旭硝子株式会社 | 溶融ガラス搬送設備要素、溶融ガラス搬送設備要素の製造方法、溶融ガラス搬送設備要素を含むガラス製造装置、およびガラス物品の製造方法 |
US20210032148A1 (en) * | 2017-12-01 | 2021-02-04 | Corning Incorporated | Apparatus and method for producing glass |
JP2021062990A (ja) * | 2019-10-15 | 2021-04-22 | Agc株式会社 | 溶融ガラスの搬送装置、ガラス物品の製造設備、およびガラス物品の製造方法 |
JP7314761B2 (ja) | 2019-10-15 | 2023-07-26 | Agc株式会社 | 溶融ガラスの搬送装置、ガラス物品の製造設備、およびガラス物品の製造方法 |
CN111039544A (zh) * | 2019-12-30 | 2020-04-21 | 彩虹显示器件股份有限公司 | 一种铂金通道保护支撑结构 |
JP2022158980A (ja) * | 2021-03-31 | 2022-10-17 | AvanStrate株式会社 | ガラス基板製造装置及び管部材 |
JP7320097B2 (ja) | 2021-03-31 | 2023-08-02 | AvanStrate株式会社 | ガラス基板製造装置及び管部材 |
CN114671598A (zh) * | 2022-02-24 | 2022-06-28 | 彩虹显示器件股份有限公司 | 一种用于液晶基板玻璃通道降温段膨胀调节系统及方法 |
CN114671598B (zh) * | 2022-02-24 | 2023-12-12 | 彩虹显示器件股份有限公司 | 一种用于液晶基板玻璃通道降温段膨胀调节系统及方法 |
CN116924793A (zh) * | 2022-03-29 | 2023-10-24 | 比亚迪股份有限公司 | 一种玻璃陶瓷复合材料及其制备方法、电子设备 |
Also Published As
Publication number | Publication date |
---|---|
TWI542557B (zh) | 2016-07-21 |
KR20140057245A (ko) | 2014-05-12 |
CN103687821B (zh) | 2016-05-11 |
JP5928466B2 (ja) | 2016-06-01 |
CN103687821A (zh) | 2014-03-26 |
TW201307229A (zh) | 2013-02-16 |
EP2735550A4 (en) | 2014-12-10 |
KR101922277B1 (ko) | 2018-11-26 |
EP2735550A1 (en) | 2014-05-28 |
JPWO2013011927A1 (ja) | 2015-02-23 |
EP2735550B1 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5928466B2 (ja) | 溶融ガラス搬送設備要素の製造方法、およびガラス製造方法 | |
JP6248944B2 (ja) | 溶融ガラス搬送設備要素の製造方法、およびガラス物品の製造方法 | |
JP5500077B2 (ja) | 溶融ガラス搬送設備要素およびガラス製造装置 | |
JP5468448B2 (ja) | 高ジルコニア質耐火物及び溶融窯 | |
JP6222223B2 (ja) | 溶融ガラスの導管構造、該導管構造を用いた装置および方法 | |
JP4992713B2 (ja) | 減圧脱泡装置の上昇管または下降管のバックアップ構造 | |
JP2009084697A (ja) | 白金材料用コーティング材及び該コーティング材が被覆された白金材料並びにガラス製造装置 | |
KR20100017174A (ko) | 유리로 재생기의 체커 워크 요소용 내화성 제품 | |
WO2016013384A1 (ja) | アルミナ・ジルコニア・シリカ質溶融鋳造耐火物、ガラス溶融窯、およびガラス板の製造方法 | |
TWI845772B (zh) | 熔融玻璃之搬送裝置、玻璃物品之製造設備、及玻璃物品之製造方法 | |
CN102442754A (zh) | 减压脱泡装置的上升管或下降管的支撑构造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280036179.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814776 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013524697 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012814776 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147001584 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |