WO2013011684A1 - 通信ネットワークシステム - Google Patents

通信ネットワークシステム Download PDF

Info

Publication number
WO2013011684A1
WO2013011684A1 PCT/JP2012/004572 JP2012004572W WO2013011684A1 WO 2013011684 A1 WO2013011684 A1 WO 2013011684A1 JP 2012004572 W JP2012004572 W JP 2012004572W WO 2013011684 A1 WO2013011684 A1 WO 2013011684A1
Authority
WO
WIPO (PCT)
Prior art keywords
master
node
idle time
communication
transmission line
Prior art date
Application number
PCT/JP2012/004572
Other languages
English (en)
French (fr)
Inventor
啓史 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112012003018.4T priority Critical patent/DE112012003018T5/de
Priority to CN201280035479.1A priority patent/CN103688493A/zh
Priority to US14/123,559 priority patent/US20140105081A1/en
Publication of WO2013011684A1 publication Critical patent/WO2013011684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40019Details regarding a bus master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • H04L12/4035Bus networks with centralised control, e.g. polling in which slots of a TDMA packet structure are assigned based on a contention resolution carried out at a master unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40241Flexray

Definitions

  • This disclosure relates to a communication network system in which a plurality of nodes connected to a common transmission line communicate.
  • Patent Document 1 is a time management method synchronized between network nodes, and a configuration in which each node adjusts its own communication timing in accordance with time information transmitted from a master station every time a communication cycle is started. It is disclosed.
  • the inventor of the present application considered that there are the following problems with the conventional time division method.
  • First time management synchronized between nodes is required, and a complicated mechanism is required, such as performing synchronization adjustment with a highly accurate clock signal or synchronization frame.
  • Second since communication processing for synchronization adjustment occurs at startup, the startup time becomes long.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a communication network system that can flexibly perform adjustment control to give a master right with a simpler configuration.
  • a communication network system including a plurality of nodes connected to a common transmission line and performing communication.
  • a master candidate node that can be a master node among the plurality of nodes includes an idle time measuring unit that measures an idle time of the transmission line.
  • the idle time width of the transmission line that can acquire the master right to start communication is set to have different lengths as the right acquisition idle time width.
  • One of the plurality of nodes is set as a root node, and when the idle time of the transmission line exceeds the longest right acquisition idle time width assigned to each master candidate node, the root node A start frame indicating the start of the communication cycle is transmitted.
  • the idle time measuring unit of each master candidate node is cleared when the start frame is received.
  • adjustment control for granting the master right can be flexibly performed with a simple configuration.
  • FIG. 1 is a time chart illustrating an example in which each communication node performs communication via a transmission line according to the first embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the communication network system.
  • FIG. 3 is a diagram showing a configuration of the master right acquisition control unit
  • FIG. 4 is a diagram showing a configuration of the master right holding time measuring unit.
  • FIG. 5 is a diagram showing the configuration of the bus cycle start control unit.
  • FIG. 6 is a time chart illustrating an example in which each communication node performs communication via a transmission line according to the second embodiment.
  • FIG. 1 is a time chart illustrating an example in which each communication node performs communication via a transmission line according to the first embodiment.
  • FIG. 2 is a diagram schematically showing the configuration of the communication network system.
  • FIG. 3 is a diagram showing a configuration of the master right acquisition control unit
  • FIG. 4 is a diagram showing a configuration of the master right holding time measuring unit.
  • FIG. 5 is a diagram showing
  • FIG. 7 is a diagram illustrating a configuration of a master right acquisition control unit according to the second embodiment.
  • FIG. 8 is a time chart showing an example in which each communication node communicates via a transmission line according to the third embodiment.
  • FIG. 9 is a flowchart showing the processing contents of the master node.
  • FIG. 10 is a flowchart showing the processing contents of the slave node.
  • FIG. 2 schematically shows the configuration of the communication network system.
  • a plurality of communication nodes 2A, 2B, 2C,... are connected to the transmission line 1 (communication bus).
  • Each communication node 2 includes a communication control unit 3, a master interface (I / F) 4 used when the communication node 2 functions as a master, and a slave interface 5 used when the communication node 2 functions as a slave. That is, in this embodiment, all communication nodes 2 are master candidate nodes.
  • the communication control unit 3 When the communication node 2 functions as a master, when the communication control unit 3 encodes data via the master interface 4, data is transmitted by driving the transmission line 1 via the selector 6 and the transmission buffer 7. The On the other hand, when the communication node 2 functions as a slave, when the data transmitted on the transmission line 1 is received via the reception buffer 8, it is decoded by the slave interface 5 via the selector 6 and received. Data is input to the communication control unit 3.
  • the switching control of the selector 6 is performed by a master right control unit 9 (corresponding to a master right control device).
  • the master right control unit 9 monitors the state of the transmission line 1 through the reception buffer 8 to determine whether or not its own node 2 has acquired the master right.
  • Data output via the interface 5 is output from the selector 6 to the transmission buffer 7. In other cases, since it basically functions as a slave, the data received via the reception buffer 8 is input to the slave interface 5 via the selector 6.
  • Various signals output from the master right control unit 9 are input to the communication control unit 3.
  • the idle time up counter 11 (hereinafter simply referred to as counter 11; corresponding to idle time measuring means or idle time measuring unit) is a counter that is reset every time data is transmitted to the transmission line 1 by any master.
  • the count value is input to the three data comparators 12, 13, and 14. These data comparators 12, 13, 14 compare the counter values with register values set in the registers 15, 16, 17.
  • the counter 11 is a counter that measures the length of the idle time of the transmission line 1.
  • the register 15 is set with a “Bus Master Obtain Time” for the communication node 2 to acquire the master right.
  • the data comparator 12 is in a high active state.
  • the signal is output to the set terminal S of the RS flip-flop 18.
  • the register 16 is set with a “Bus Master Loose Time” which is a time for the master node to lose the master right once acquired.
  • the data comparator 13 becomes high. An active signal is output to the set terminal S of the RS flip-flop 19.
  • each node 2 can acquire the master right in a time width (right acquisition idle time width) from when the idle time exceeds the “right acquisition idle time” to when it exceeds the “right loss idle time”. ing.
  • the “right acquisition idle time” and the “right loss time” are set to be different for each node 2.
  • the “communication end time” is set to a time longer than the longest of the “right acquisition idle times” in each communication node 2.
  • the reset terminal R of the RS flip-flops 18 and 19 is given a “cycle start (start frame)” output on the transmission line 1 by the root node.
  • the output terminals Q of the RS flip-flops 18 and 19 are connected to the input terminal of the AND gate 20, respectively. However, the input terminal of the RS flip-flop 19 is negative logic.
  • the master gate acquisition signal (high active) is output from the AND gate 20.
  • the master right acquisition signal is input to the communication control unit 3 and a master right holding time measuring unit 9B described later.
  • the RS flip-flops 18 and 19 are reset when a cycle start is output on the transmission line 1, and the RS flip-flop 18 is reset when the count value of the counter 11 exceeds the register value of the register 15;
  • AND gate 20 activates the mastership acquisition signal.
  • the RS flip-flop 19 is set, and the AND gate 20 makes the master right acquisition signal inactive.
  • FIG. 4 shows a configuration of the master right holding time measuring unit 9B (corresponding to a master right releasing means or a master right releasing unit).
  • the master acquisition down counter (Bus Master Period Count) 21 corresponds to the “master right release time (Bus Master Release Time)” set in the register 22 at the timing when the master right acquisition signal described above becomes active.
  • the register value is loaded.
  • the master acquisition down counter 21 performs a down count operation with a clock signal common to that supplied to the counter 11.
  • the count value is input to the comparator 22, and the comparator 22 outputs “end of maximum communication time” when the count value becomes zero.
  • the signal is input to the communication control unit 3. Note that it is assumed that the counters and the like described below operate with a common clock signal.
  • FIG. 5 shows the configuration of the bus cycle start control unit 9C.
  • the bus cycle start control unit 9C is provided only in the communication node 2 set with the function as the root node.
  • the bus cycle counter 23 (corresponding to a communication cycle time measuring unit or a communication cycle time measuring unit) is a counter that starts resetting at the timing when it outputs a cycle start, and the count value is input to the data comparator 24. ing.
  • the data comparator 24 compares the counter value with the register value set in the register 25. In the register 25, “communication bus cycle time (Main Bus Cycle (root))” is set. When the counter value exceeds the register value, the data comparator 24 sends a high active signal to one input terminal of the AND gate 26. The master right acquisition control unit 9A provides “bus cycle end detection” to the other input terminal of the AND gate 26. Then, the AND gate 26 outputs “cycle start”. The “communication bus cycle time” set in the register 25 defines “the shortest time of the communication cycle”.
  • FIG. 1 is a time chart illustrating an example in which each communication node 2 performs communication via the transmission line 1.
  • the counter 11 of the master right acquisition control unit 9A starts resetting. Then, the one with the smallest “right acquisition idle time width” set in the register 15, for example, the communication node 2A (Node A) acquires the master right first, and (2) starts communication. Then, the counter 11 is reset accordingly.
  • the master right does not exceed the “master right release time” measured by the master right holding time measuring unit 9B, that is, until “end of maximum communication time” is output. Is maintained.
  • the counter 11 measures the idle time from that point.
  • the RS flip-flop 19 is set, and “master right acquisition” of the communication node 2A becomes inactive, and the master right is lost. Therefore, the communication node 2A can start communication again until the idle time exceeds the “right loss time”.
  • the communication node 2B (Node B) whose “right acquisition idle time width” is the second longest next to the communication node 2A acquires the master right next, (4) Start communication. (5) When the communication node 2B ends the communication, the counter 11 measures the idle time from that point. Thereafter, if the other communication node 2 does not start communication, the measured idle time becomes longer. When the “communication end time” is exceeded, “master bus acquisition end” is output from the master right acquisition control unit 9A.
  • the root node measures the bus cycle time from the time when the bus cycle counter 23 outputs “cycle start” in the bus cycle start control unit 9C. When the time exceeds the “communication bus cycle time” and the above “bus cycle end detection” is output, the bus cycle start control unit 9C performs “cycle start” to start the next communication cycle. Output (6). In the next communication cycle, since the communication node 2A did not start communication in the first idle time zone, (7) the communication node 2B acquires the master right and starts communication.
  • the “maximum communication time end” is output from the master right holding time measuring unit 9B. Then, the communication control unit 3 ends the communication when the communication being executed (for one frame) is completed.
  • each communication node 2 includes the counter 11 that measures the idle time of the transmission line 1, and the idle time width of the transmission line 1 in which the communication node 2 can acquire the master right to start communication.
  • the rights acquisition idle time widths are set with different lengths, and once the master right is acquired and becomes a master node, the master right until the idle time of the transmission line 1 exceeds its own right acquisition idle time width. Hold.
  • One of the plurality of communication nodes 2 is set as a root node. When the idle time of the transmission line 1 exceeds the longest right acquisition idle time width assigned to each communication node 2, A “cycle start” indicating the start of a communication cycle is transmitted, and the counter 11 of each communication node 2 is cleared upon reception of the “cycle start”.
  • each communication node 2 the right acquisition time width of each communication node 2 is different, so that the right of each communication node 2 to be a master once is surely guaranteed without any collision within one communication cycle. Further, since the master right acquired once by each communication node 2 is maintained as long as the idle time does not exceed its own right acquisition idle time width, communication can be performed flexibly within the limitation. Accordingly, communication can be performed in a flexible form while reliably guaranteeing the right of each communication node 2 to become a master once in one communication cycle, and thus communication efficiency can be improved.
  • the master right holding time measuring unit 9B outputs “end of maximum communication time” to release its master right. I did it. That is, even if a flexible communication mode is enabled, it is avoided that one communication node 2 becomes a master and occupies the transmission line 1 unreasonably, and other communication nodes 2 perform communication. Opportunities can be secured more reliably.
  • the root node transmits a “cycle start” on condition that the duration of the communication cycle exceeds a preset “communication bus cycle time” and that the idle time exceeds the longest right acquisition idle time width.
  • the idle time exceeds the longest right acquisition idle time width, even though only a short time has passed since the transmission of the “cycle start” last time and the start of a new communication cycle.
  • the number of communication nodes 2 connected to the transmission line 1 is small. Therefore, by transmitting the start frame on condition that the shortest time of the communication cycle has elapsed, when the communication amount of the transmission line 1 is small, the number of transmissions of the start frame; Can be reduced.
  • FIG. 7 is a diagram corresponding to FIG. 3 and shows the configuration of the master right control unit 31A.
  • the master right control unit 31A of the second embodiment includes a data comparator 32 corresponding to the data comparator 14 and the register 17 that are provided only in the communication node 2 to which the function of the root node is assigned in the first embodiment.
  • a register 33 (corresponding to a start frame alternative transmission means or a start frame alternative transmission unit) is provided.
  • a “cycle start alternative transmission time” longer than the “communication end time” set in the register 17 of the communication node 2 having the function of the root node is set.
  • cycle start is transmitted at the timing of (6) as described in the first embodiment.
  • the measurement time of the counter 11 in the other communication node 2 provided with the master right control unit 31A is “ It exceeds the “cycle start alternative transmission time”.
  • “cycle start” is transmitted from the communication node 2 at the timing of (6) ′. That is, the communication node 2 substitutes for the function of the root node.
  • the master right control unit 31A may have the configuration shown in FIG. 5 and may be configured to transmit “cycle start” on condition that the shortest time of the communication cycle has passed. .
  • the communication nodes 2 other than the original root node measure idle time longer than the longest right acquisition idle time measured by the root node; “cycle start alternative transmission time” is measured.
  • “cycle start” is not transmitted and the idle time measured by itself exceeds the “cycle start alternative transmission time”
  • the “cycle start” is transmitted instead of the original root node. Therefore, even when a failure or the like occurs in the original root node, the next communication cycle can be started by transmitting a “cycle start” instead of the function.
  • FIG. 8 shows a case where the communication node 2A acquires the master right and performs communication using the communication nodes 2B and 2C as slaves.
  • the change in the idle time measured by the counter 11 and the “right acquisition idle time width (master right acquisition window)” of the communication node 2A are shown.
  • FIG. 9 is a flowchart showing processing contents of the communication node 2A as a master
  • FIG. 10 is a processing content of the communication nodes 2B and 2C as slaves. In addition, these only show the part which concerns on the principal part of 3rd Example.
  • step S1: YES When the communication cycle is started by “cycle start” and the communication node 2A acquires the master right, in FIG. 9, when the communication node 2A determines that “there is transmission data” (step S1: YES), the transmission line 1 to send data. In FIG. 8, (2) a read request (RD Req) to the communication node 2B is transmitted. The communication node 2B that has received the read request (3) transmits data to the communication node 2A (read response; RD Res). Next, it is assumed that the communication node 2A has no data to be transmitted (step S1: NO), but has a master right holding request (step S3: YES). That is, preparation for data to be transmitted is completed when a little more time has passed.
  • step S4 the communication node 2A measures the “waiting time” during which it waits for data transmission, and if the “waiting time” is less than the “allowable time” (step S4: YES), step S1.
  • the “allowable time” here is a time during which the communication node 2A can maintain the master right without performing transmission, and is set to be less than the “right loss time”.
  • step S4 when (waiting time) ⁇ (allowable time) is satisfied (YES), the communication node 2A transmits a “NOP (No) Operation) command” to the transmission line 1 and resets a counter for measuring “waiting time”. Then (step S5), the process returns to step S1.
  • the “NOP command” is the same as the NOP command defined as the type of command of the CPU, and is a command that is ignored without being processed by the receiving side.
  • the communication node 2A transmits a NOP command in (4), and the measurement by the counter 11 is reset by the transmission. As a result, the communication node 2A can continue communication while avoiding the loss of the master right.
  • the communication node 2A transmits (5) a read request (RD Req) to the communication node 2C when “transmission data exists” in step S1.
  • the communication node 2C transmits data if preparation of transmission data is completed at the time of receiving a read request (YES) (step S12).
  • the “waiting time” that the device itself waits for data transmission is measured as in steps S4 and S5 shown in FIG. "Is less than the" allowable time "(step S13: YES)
  • the process returns to step S11.
  • the “allowable time” here is also set with the same purpose as in step S4.
  • step S13 When (waiting time) ⁇ (allowable time) is satisfied in step S13 (YES), the communication node 2C transmits a “NOP command” to the transmission line 1, resets the counter (step S14), and returns to step S11. .
  • the communication node 2C transmits a NOP command in (6), and the measurement by the counter 11 is reset by the transmission.
  • the communication node 2A can continue communication while avoiding the loss of the master right.
  • the communication node 2C transmits data to the communication node 2A (RD Res) when the preparation of transmission data is completed in step S11 (7).
  • the communication node 2A when the master node; the communication node 2A determines that data cannot be transmitted while the master node itself maintains the master right, the communication node 2A transmits a NOP command that is data that the receiving side does not process. To do. Further, the slave node requested to transmit data from the communication node 2A; the communication node 2C transmits a NOP command in the same manner when determining that the communication node 2A cannot respond while the communication node 2A maintains the master right. I made it. Therefore, it is possible to secure time for transmitting data while maintaining the master right of the communication node 2A.
  • a function to be a root node may be provided in advance in all the communication nodes, and any one may be set to be a root node by specifying at the time of initial setting.
  • nodes need to be master candidate nodes, and there may be nodes that only function as slaves.
  • a communication network system having various aspects can be provided.
  • a communication network system including a plurality of nodes connected to a common transmission line and performing communication is configured as follows.
  • a master candidate node that can be a master node among the plurality of nodes includes an idle time measuring unit that measures the idle time of the transmission line.
  • the idle time widths of the transmission lines that can acquire the master right to start communication are set as different right acquisition idle time widths. Then, once the master candidate node acquires the master right and becomes the master node, the master right is held until the idle time of the transmission line exceeds its own right acquisition idle time width.
  • One of the plurality of nodes is set as a root node.
  • the root node When the idle time of the transmission line exceeds the longest right acquisition idle time width assigned to each master candidate node, the root node performs the next communication cycle.
  • the start frame indicating the start is transmitted, and the idle time measuring means of each master candidate node is cleared when the start frame is received.
  • the master candidate nodes are referred to as the first node, the second node,.
  • the first node assigned with the shortest right acquisition idle time width first acquires the master right and starts communication.
  • the first node does not acquire the master right again in the communication cycle.
  • the idle time of the transmission line reaches the right acquisition idle time width of the second node, the second node next acquires the master right and starts communication.
  • each master candidate node sequentially acquires the master right to perform communication, and when communication by the nth node having the longest right acquisition idle time width is completed, the subsequent idle time of the transmission line is assigned to the nth node. Continue beyond the longest qualifying idle time span. Then, the root node detects the state and transmits a start frame indicating the start of the next communication cycle. That is, since the right acquisition idle time width of each master candidate node is different, the right that each master candidate node becomes the master once is surely guaranteed without causing a collision within one communication cycle.
  • the master right acquired once by each master candidate node is maintained as long as the idle time does not exceed its own right acquisition idle time width, communication can be performed flexibly within the limitation. For example, regardless of the length of the communication in which the x-th node is the master, if the communication ends, the (x + 1) -th node starts communication when the idle time reaches the next right acquisition idle time width. . Therefore, communication can be performed in a flexible manner while reliably guaranteeing the right of each master candidate node to become a master once in one communication cycle, and thus communication efficiency can be improved. In addition, even when the number of nodes connected to the communication network increases or decreases, the system settings can be easily changed accordingly.
  • the communication network system may be configured as follows. Each master node releases its own master right by the master right releasing means when the master right held by the master node exceeds the longest holding time. According to this, even if a flexible communication mode is enabled, it is avoided that one master candidate node becomes a master and the time dedicated to the transmission line is unduly long, and other master candidate nodes communicate. The opportunity to do it can be secured more reliably.
  • the communication network system may be configured as follows.
  • the root node includes a communication cycle time measurement unit that measures the duration of a communication cycle starting from transmission of a start frame.
  • the root node transmits the start frame on condition that the duration of the communication cycle exceeds the preset minimum time and the idle time of the transmission line exceeds the longest right acquisition idle time width. According to this, by transmitting the start frame on the condition that the shortest time of the communication cycle has elapsed, when the bus traffic is small, the number of start frame transmissions; the number of executions of the communication cycle is suppressed, and unnecessary power consumption Can be reduced.
  • the communication network system may be configured as follows.
  • a node other than the root node measures an idle time longer than the longest right acquisition idle time measured by the root node, and if the start frame is not transmitted and the idle time measured by itself is exceeded, the original root node Send a start frame on behalf of According to this, even if a failure occurs in the node to which the function of the root node is assigned, at least one of the other nodes did not transmit in a situation where the root node should transmit the start frame. Is detected, the next communication cycle can be started by transmitting a start frame instead of the function of the root node.
  • the communication network system may be configured as follows. There are a plurality of nodes in place of the root node, and idle times longer than the longest right acquisition idle time width measured by the root node are measured for different lengths. According to this, a plurality of nodes that substitute for the function of the root node are set in advance, and idle times longer than the longest right acquisition idle time width measured by the root node are measured for different lengths. If it is determined, the function can be sequentially replaced by another node between the plurality of nodes when a failure occurs.
  • the communication network system may be configured as follows. If the node requested to transmit data by the master node determines that it cannot respond while the master node maintains the master right, the node transmits data not processed by the receiving side. According to this, when a node (slave node) requested to transmit data by the master node determines that it cannot respond while the master node maintains the master right, it transmits data that the receiving side does not process. To do. As a result, the slave node can secure time for transmitting the requested data while maintaining the master right of the master node.
  • the communication network system may be configured as follows. If the master node determines that data cannot be transmitted while the master node maintains the master right, the master node transmits data that is not processed by the receiving side. According to this, the master node can secure time for transmitting data while maintaining its master right.
  • a master right control device provided in each master candidate node that can be a master node among a plurality of nodes connected to a common transmission line in a communication network system, the idle time measuring unit described above A master right control device is provided. Also by this, the effect mentioned above can be produced.
  • the master right control device may further include a master right releasing unit.
  • the idle time width of the transmission line that can acquire the master right to start communication is set to have a different length as the right acquisition idle time width.
  • each master candidate node acquires the master right and becomes the master node, it holds the master right until the idle time of the transmission line exceeds its own right acquisition idle time width.
  • One of the plurality of nodes is set as the root node.
  • the root node transmits a start frame indicating the start of the next communication cycle.
  • the master right releasing unit releases the master right when the held master right exceeds the longest holding time.
  • the master right control device may further include a communication cycle time measuring unit.
  • the communication cycle time measurement unit measures the duration of the communication cycle starting from transmission of the start frame when the master candidate node including the master right control device is a root node, and the master right control device The start frame is transmitted on condition that the continuation time of the transmission line exceeds the preset minimum time and the transmission line idle time exceeds the longest right acquisition idle time width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

 複数のノード(2)が伝送線路(1)に接続された通信ネットワークシステムを開示する。マスタ候補ノードは、伝送線路のアイドル時間を測定するアイドル時間測定部(9A)を備える。マスタ候補ノードは、マスタ権を獲得してマスタノードになると、当該マスタ権を、伝送線路のアイドル時間が自身の権利獲得アイドル時間幅を超えるまで保持する。ルートノードは、伝送線路のアイドル時間が各マスタ候補ノードの最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信し、アイドル時間測定部は、スタートフレームを受信するとクリアされる。

Description

通信ネットワークシステム 関連出願の相互参照
 本出願は、2011年7月19日に出願された日本特許出願2011-157894号に基づくものであり、ここにその記載内容を参照により援用する。
 本開示は、共通の伝送線路に接続されている複数のノードが通信を行う通信ネットワークシステムに関する。
 共通の伝送線路上において複数のノードが送信開始権を持つ場合のアービトレーションを行う方式には、CANやI2C(登録商標)などのドミナント/レセッシブ方式や、Ethernet(登録商標)や無線LANなどで採用されているCSMA/CD,CSMA/CA方式などがある。しかしこれらはイベント駆動型の通信方式を前提としているため、各ノードについて最低通信帯域を保証するリアルタイムシステムには適用できない。リアルタイムシステムについては、決定論的な通信を可能とする時分割方式が、FlexRay(登録商標)やTT(Time Triggered)CANなどで採用されている。
 また、特許文献1には、ネットワークノード間で同期した時間管理方式であり、通信サイクルの開始毎にマスタ局より送信される時間情報に応じて、各ノードが自身の通信タイミングを調整する構成が開示されている。
特開2005-159754号公報
 本願発明者は、従来の時分割方式の問題点としては、以下のようなものがあると考えた。第1に、ノード間で同期した時間管理が必要となり、高精度のクロック信号や同期フレームによって同期調整を行うなど、複雑な機構が必要となる。第2に、スタートアップ時に同期調整のための通信処理が発生するので、起動時間が長くなる。第3に、割り当てられた時間に対応するノードが送信を行わなかった場合に、空きスロットの発生を防止できる柔軟な方式を実現するには、やはり複雑な機構が必要となる。
 本開示は上記事情に鑑みてなされたものであり、その目的は、より簡単な構成でマスタ権を付与する調整制御を柔軟に行い得る通信ネットワークシステムを提供することにある。
 本開示の一例によると、共通の伝送線路に接続され通信を行う複数のノードを備える通信ネットワークシステムが提供される。前記複数のノードのうちマスタノードとなり得るマスタ候補ノードは、前記伝送線路のアイドル時間を測定するアイドル時間測定部を備える。前記マスタ候補ノードには、自身が通信を開始するマスタ権を獲得できる前記伝送線路のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定される。前記マスタ候補ノードは、一度マスタ権を獲得してマスタノードになると、当該マスタ権を、前記伝送線路のアイドル時間が自身の前記権利獲得アイドル時間幅を超えるまで保持する。前記複数のノードの1つは、ルートノードとして設定されており、前記ルートノードは、前記伝送線路のアイドル時間が各マスタ候補ノードに割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信する。各マスタ候補ノードのアイドル時間測定部は、前記スタートフレームを受信するとクリアされる。
 上記通信ネットワークシステムによると、簡単な構成でマスタ権を付与する調整制御を柔軟に行うことができる。
 本開示についての上記目的および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において、
図1は、第1実施例にかかる、各通信ノードが伝送線路を介して通信を行う場合の一例を示すタイムチャートであり、 図2は、通信ネットワークシステムの構成を概略的に示す図であり、 図3は、マスタ権獲得制御部の構成を示す図であり、 図4は、マスタ権保持時間測定部の構成を示す図であり、 図5は、バスサイクルスタート制御部の構成を示す図であり、 図6は、第2実施例にかかる、各通信ノードが伝送線路を介して通信を行う場合の一例を示すタイムチャートであり、 図7は、第2実施例にかかる、マスタ権獲得制御部の構成を示す図であり、 図8は、第3実施例にかかる、各通信ノードが伝送線路を介して通信を行う場合の一例を示すタイムチャートであり、 図9は、マスタノードの処理内容を示すフローチャートであり、 図10は、スレーブノードの処理内容を示すフローチャートである。
(第1実施例)
 以下、第1実施例について図1ないし図5を参照して説明する。図2は、通信ネットワークシステムの構成を概略的に示すものである。伝送線路1(通信バス)には、複数の通信ノード2A,2B,2C,…が接続されている。各通信ノード2は、通信制御部3と、自身がマスタとして機能する場合に使用するマスタインターフェイス(I/F)4と、スレーブとして機能する場合に使用するスレーブインターフェイス5とを備えている。すなわち本実施例では、全ての通信ノード2がマスタ候補ノードとなっている。
 通信ノード2がマスタとして機能する場合は、通信制御部3がマスタインターフェイス4を介してデータを符号化等すると、セレクタ6及び送信バッファ7を介して伝送線路1をドライブすることでデータが送信される。一方、通信ノード2がスレーブとして機能する場合は、伝送線路1上に送信されたデータを、受信バッファ8を介して受信すると、セレクタ6を介してスレーブインターフェイス5により復号化等が行われ、受信データが通信制御部3に入力される。
 セレクタ6の切り替え制御は、マスタ権制御部9(マスタ権制御装置に相当する)によって行われる。マスタ権制御部9は、受信バッファ8を介して伝送線路1の状態をモニタすることで、自身のノード2がマスタ権を獲得したか否かを判別し、マスタ権を獲得した場合は、スレーブインターフェイス5を介して出力されるデータをセレクタ6より送信バッファ7に出力させる。その他の場合は基本的にスレーブとして機能するため、受信バッファ8を介して受信したデータを、セレクタ6を介してスレーブインターフェイス5に入力させる。また、マスタ権制御部9より出力される各種信号は、通信制御部3に入力される。
 図3ないし図5は、マスタ権制御部9の各機能部分を個別に示したもので、図3はマスタ権獲得制御部9Aを示している。アイドル時間アップカウンタ11(以下、単にカウンタ11と称す;アイドル時間測定手段またはアイドル時間測定部に相当する)は、何れかのマスタにより伝送線路1にデータが送信される毎にリセットされるカウンタであり、そのカウント値は、3つのデータ比較器12,13,14に入力されている。これらのデータ比較器12,13,14は、上記カウンタ値を、レジスタ15,16,17に設定されるレジスタ値と比較する。
 尚、図中ではクロック信号線の図示を省略している。また、以下では、伝送線路1にデータ等の出力が行われず、通信が実行されていない状態を「アイドル」と称する。したがって、カウンタ11は伝送線路1のアイドル時間の長さを測定するカウンタである。
 レジスタ15には、自身の通信ノード2がマスタ権を獲得するための「権利獲得アイドル時間(Bus Master Obtain Time)」が設定され、カウンタ値がレジスタ値を超えるとデータ比較器12がハイアクティブの信号をRSフリップフロップ18のセット端子Sに出力する。レジスタ16には、自身の通信ノード2が一旦獲得したマスタ権を失う時間である「権利喪失時間(Bus Master Loose Time)」が設定され、カウンタ値がレジスタ値を
超えるとデータ比較器13がハイアクティブの信号をRSフリップフロップ19のセット端子Sに出力する。
 すなわち、各ノード2は、アイドル時間が「権利獲得アイドル時間」を超えた時点から「権利喪失時間」を超えるまでの間の時間幅(権利獲得アイドル時間幅)でマスタ権の取得が可能となっている。そして、「権利獲得アイドル時間」と「権利喪失時間」とは、各ノード2について時間が異なるように設定される。
 レジスタ17には、通信サイクルの終了を示す時間である「通信終了時間(Bus Cycle End Idle Time)」が設定され、カウンタ値がレジスタ値を超えるとデータ比較器14が
ハイアクティブの「バスサイクル終了検出」を出力する。尚、データ比較器14及びレジスタ17は、ルートノードとしての機能を設定された通信ノード2のみが備えている。そして、「通信終了時間」は、各通信ノード2における「権利獲得アイドル時間」のうち、最長のものよりも長くなる時間に設定されている。
 RSフリップフロップ18,19のリセット端子Rには、ルートノードにより伝送線路1上に出力される「サイクルスタート(スタートフレーム)」が与えられている。そして、RSフリップフロップ18,19の出力端子Qは、ANDゲート20の入力端子にそれぞれ接続されている。但し、RSフリップフロップ19の入力端子は負論理である。そして、ANDゲート20からはマスタ権獲得信号(ハイアクティブ)が出力される。マスタ権獲得信号は、通信制御部3や、後述するマスタ権保持時間測定部9Bに入力される。
 したがって、RSフリップフロップ18,19は、伝送線路1上にサイクルスタートが出力されるとリセットされ、カウンタ11のカウント値がレジスタ15のレジスタ値;権利獲得アイドル時間幅を超えるとRSフリップフロップ18がセットされ、ANDゲート20がマスタ権獲得信号をアクティブにする。それから、カウンタ11のカウント値がレジスタ16のレジスタ値;権利喪失時間を超えるとRSフリップフロップ19がセットされ、ANDゲート20がマスタ権獲得信号をインアクティブにする。
 尚、「サイクルスタート」については、伝送線路1に特定のデータを送信することに変わりないので、「サイクルスタート」が送信された場合もカウンタ11はリセットされる。
 図4は、マスタ権保持時間測定部9B(マスタ権開放手段またはマスタ権開放部に相当する)の構成を示している。マスタ獲得ダウンカウンタ(Bus Master Period Count)21には、上述したマスタ権獲得信号がアクティブになったタイミングで、レジスタ22に設定されている「マスタ権開放時間(Bus Master Release Time)」に相当するレジスタ値がロードされる。そして、マスタ獲得ダウンカウンタ21は、カウンタ11に供給されるものと共通のクロック信号によりダウンカウント動作を行う。そのカウント値は比較器22に入力され、比較器22は、カウント値がゼロになると「最大通信時間終了」を出力する。当該信号は、通信制御部3に入力される。尚、以降で説明する各カウンタ等についても、共通のクロック信号で動作することを前提とする。
 図5は、バスサイクルスタート制御部9Cの構成を示している。但し、バスサイクルスタート制御部9Cは、ルートノードとしての機能を設定された通信ノード2のみが備えている。バスサイクルカウンタ23(通信サイクル時間測定手段または通信サイクル時間測定部に相当する)は、自身がサイクルスタートを出力したタイミングでリセットスタートするカウンタであり、そのカウント値は、データ比較器24に入力されている。
 データ比較器24は、上記カウンタ値を、レジスタ25に設定されるレジスタ値と比較する。レジスタ25には、「通信バスサイクル時間(Main Bus Cycle(root)」が設定されており、カウンタ値がレジスタ値を超えるとデータ比較器24がハイアクティブの信号をANDゲート26の一方の入力端子に出力する。ANDゲート26の他方の入力端子には、マスタ権獲得制御部9Aより「バスサイクル終了検出」が与えられている。そして、ANDゲート26より「サイクルスタート」が出力される。すなわち、レジスタ25に設定される「通信バスサイクル時間」は、「通信サイクルの最短時間」を規定している。
 次に、本実施例の作用について図1を参照して説明する。図1は、各通信ノード2が伝送線路1を介して通信を行う場合の一例を示すタイムチャートである。(1)ルートノードが「サイクルスタート」を出力すると、マスタ権獲得制御部9Aのカウンタ11がリセットスタートする。そして、レジスタ15に設定されている「権利獲得アイドル時間幅」が最少であるもの、例えば通信ノード2A(NodeA)が最初にマスタ権を獲得し、(2)通信を開始する。すると、それに応じてカウンタ11はリセットされる。通信ノード2Aが通信を開始すると、そのマスタ権は、マスタ権保持時間測定部9Bにおいて測定されている「マスタ権開放時間」を超えない範囲で、すなわち「最大通信時間終了」が出力されるまでは維持される。
 (3)通信ノード2Aが通信を終了すると、その時点からカウンタ11がアイドル時間を測定する。そして、アイドル時間が「権利喪失時間」を超えると、RSフリップフロップ19がセットされ、通信ノード2Aの「マスタ権獲得」はインアクティブとなり、マスタ権を喪失する。したがって、アイドル時間が「権利喪失時間」を超えるまでは、通信ノード2Aが再度通信を開始することが可能である。
 通信ノード2Aがマスタ権を失った後、より長いアイドル時間が測定されると、「権利獲得アイドル時間幅」が通信ノード2Aに次いで長い通信ノード2B(NodeB)が次にマスタ権を獲得し、(4)通信を開始する。(5)通信ノード2Bが通信を終了すると、その時点からカウンタ11がアイドル時間を測定する。以降に他の通信ノード2が通信を開始しなければ測定されるアイドル時間が長くなり、「通信終了時間」を超えるとマスタ権獲得制御部9Aより「バスサイクル終了検出」が出力される。
 ルートノードは、バスサイクルスタート制御部9Cにおいて、バスサイクルカウンタ23により「サイクルスタート」を出力した時点からのバスサイクル時間を測定している。そして、その時間が「通信バスサイクル時間」を超えると共に、上記の「バスサイクル終了検出」が出力されると、バスサイクルスタート制御部9Cは、次の通信サイクルを開始するため「サイクルスタート」を出力する(6)。次の通信サイクルでは、最初のアイドル時間帯に通信ノード2Aが通信を開始しなかったため、(7)通信ノード2Bがマスタ権を獲得して通信を開始している。
 また、例えば(2)において通信ノード2Aが継続して通信を行う長さが「マスタ権開放時間」を超えると、マスタ権保持時間測定部9Bより「最大通信時間終了」が出力される。すると、通信制御部3は、実行中の通信(1フレーム分)を完了した時点で通信を終了する。
 以上のように本実施例によれば、各通信ノード2は、伝送線路1のアイドル時間を測定するカウンタ11を備え、自身が通信を開始するマスタ権を獲得できる伝送線路1のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定し、一度マスタ権を獲得してマスタノードになると、当該マスタ権は、伝送線路1のアイドル時間が、自身の権利獲得アイドル時間幅を超えるまで保持する。また、複数の通信ノード2の1つはルートノードとして設定され、ルートノードは、伝送線路1のアイドル時間が各通信ノード2に割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示す「サイクルスタート」を送信し、各通信ノード2のカウンタ11を「サイクルスタート」の受信によりクリアするようにした。
 すなわち、各通信ノード2の権利獲得時間幅がそれぞれ異なることで、1つの通信サイクル内では、コリジョンが発生することなく各通信ノード2が1回マスタとなる権利が確実に保証される。また、各通信ノード2が1度獲得したマスタ権は、アイドル時間が自身の権利獲得アイドル時間幅を超えない限りは維持されるので、その制限内で柔軟に通信を行うことができる。したがって、1つの通信サイクル内で各通信ノード2が1回マスタとなる権利を確実に保証しつつ柔軟な形態で通信を行うことができるので、通信効率の向上を図ることが可能となる。
 また、各通信ノード2は、自身が保持しているマスタ権が最長保持時間を超えると、マスタ権保持時間測定部9Bが「最大通信時間終了」を出力することで自身のマスタ権を開放するようにした。すなわち、柔軟な通信形態を可能にするとしても、1つの通信ノード2がマスタとなって伝送線路1を専有する時間が不当に長くなることを回避して、その他の通信ノード2が通信を行う機会をより確実に確保できる。
 更に、ルートノードは、通信サイクルの継続時間が予め設定した「通信バスサイクル時間」を超えると共に、アイドル時間が最長の権利獲得アイドル時間幅を超えることを条件に「サイクルスタート」を送信する。すなわち、前回に「サイクルスタート」を送信して新たな通信サイクルが開始されてから僅かな時間しか経過していないにも関わらず、アイドル時間が最長の権利獲得アイドル時間幅を超える状態になった場合は、伝送線路1に接続されている通信ノード2の数が少ないことが想定される。したがって、通信サイクルの最短時間の経過を条件にスタートフレームを送信することで、伝送線路1の通信量が少ない場合に、スタートフレームの送信回数;通信サイクルの実行回数を抑制し、不要な電力消費を低減することができる。加えて、伝送線路1に接続される通信ノード2の数が増減した場合でも、それに伴うシステム設定の変更を容易に行うことができる。
(第2実施例)
 図6及び図7は第2実施例であり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図7は図3相当図であり、マスタ権制御部31Aの構成を示す。第2実施例のマスタ権制御部31Aは、第1実施例ではルートノードの機能が割り当てられた通信ノード2だけが備えているとしたデータ比較器14及びレジスタ17に相当するデータ比較器32及びレジスタ33(スタートフレーム代替送信手段またはスタートフレーム代替送信部に相当する)を備えている。そして、レジスタ17には、ルートノードの機能を備えている通信ノード2のレジスタ17に設定されている「通信終了時間」よりも長い「サイクルスタート代替送信時間」が設定されている。
 次に、第2実施例の作用について図6を参照して説明する。ルートノードが正常に機能していれば、第1実施例で説明したように(6)のタイミングで「サイクルスタート」が送信される。しかし、例えばルートノードに故障が発生し、(6)のタイミングで「サイクルスタート」が送信されない場合は、マスタ権制御部31Aを備えている他の通信ノード2において、カウンタ11の測定時間が「サイクルスタート代替送信時間」を超える。すると(6)’のタイミングで、当該通信ノード2より「サイクルスタート」が送信される。すなわち、前記通信ノード2がルートノードの機能を代替したことになる。
 また、マスタ権制御部31Aを備える通信ノード2が複数あっても良く、その場合、それぞれのレジスタ33に設定される「サイクルスタート代替送信時間」をそれぞれ異なる値に(順次長くなるように)設定することで、ルートノードの機能を順次代替させることが可能となる。更に、マスタ権制御部31Aに、ルートノードと同様に、図5に示す構成を備え、通信サイクルの最短時間を経過していることも条件として「サイクルスタート」送信するように構成しても良い。
 以上のように第2実施例によれば、当初のルートノード以外の通信ノード2が、ルートノードにより測定される最長の権利獲得アイドル時間よりも長いアイドル時間;「サイクルスタート代替送信時間」を測定するようにし、「サイクルスタート」が送信されず、自身が測定するアイドル時間が「サイクルスタート代替送信時間」を超えると、当初のルートノードに代わって「サイクルスタート」を送信するようにした。したがって、当初のルートノードに故障等が発生した場合でも、その機能を代替して「サイクルスタート」を送信することで、次の通信サイクルを開始させることができる。
 また、ルートノードの機能を代替する通信ノード2を予め複数設定しておき、ルートノードにより測定される最長の権利獲得アイドル時間幅よりも長いアイドル時間を、それぞれ異なる長さについて測定するように構成すれば、それら複数の通信ノード2の間において、故障が発生した場合に順次機能を代替させることができる。
(第3実施例)
 図8ないし図10は第3実施例である。図8は通信ノード2Aがマスタ権を獲得し、通信ノード2B,2Cをスレーブとして通信を行う場合を示す。また同図中には、カウンタ11により測定されるアイドル時間の変化と、通信ノード2Aの「権利獲得アイドル時間幅(マスタ権獲得窓)」を示している。図9はマスタである通信ノード2A,図10はスレーブである通信ノード2B,2Cの処理内容を示すフローチャートである。なお、これらは、第3実施例の要部に係る部分のみ示している。
 (1)「サイクルスタート」により通信サイクルが開始され、通信ノード2Aがマスタ権を獲得すると、図9において、通信ノード2Aは、「送信データ有り」と判断すると(ステップS1:YES)、伝送線路1にデータを送信する。図8では(2)通信ノード2Bへのリード要求(RD Req)が送信される。そのリード要求を受信した通信ノード2Bは、(3)通信ノード2Aに対してデータを送信する(リード応答;RD Res)。次に、通信ノード2Aは、送信すべきデータはないが(ステップS1:NO)、マスタ権の保持要求はあるとする(ステップS3:YES)。すなわち、あと少し時間が経過した時点で送信すべきデータの用意が完了する状態にある。
 この時、通信ノード2Aは、自身がデータの送信を待機している「待ち時間」を測定しており、その「待ち時間」が「許容時間」未満であれば(ステップS4:YES)ステップS1に戻る。ここでの「許容時間」とは、通信ノード2Aが送信を行わずマスタ権を維持可能な時間であり、「権利喪失時間」未満に設定されている。ステップS4において、(待ち時間)≧(許容時間)になると(YES)、通信ノード2Aは、伝送線路1に「NOP(No Operation)コマンド」を送信し、「待ち時間」を測定するカウンタをリセットして(ステップS5)ステップS1に戻る。
 ここでの「NOPコマンド」とは、CPUのコマンドの種類として規定されるNOPコマンドと同様のもので、受信側が処理を行うことなく無視されるコマンドである。図8では(4)で通信ノード2AがNOPコマンドを送信しており、その送信によりカウンタ11による測定はリセットされる。これにより、通信ノード2Aはマスタ権の喪失を免れて通信を継続できる。
 続いて、通信ノード2Aは、ステップS1で「送信データ有り」となった時点で(5)通信ノード2Cへのリード要求(RD Req)を送信する。図10において、通信ノード2Cは、リード要求を受信した時点で送信データの準備が完了していれば(YES)データを送信する(ステップS12)。ここで、送信データの準備が完了していなければ(NO)、図9に示すステップS4,S5と同様に自身がデータの送信を待機している「待ち時間」を測定し、その「待ち時間」が「許容時間」未満であれば(ステップS13:YES)ステップS11に戻る。ここでの「許容時間」も、ステップS4と同じ趣旨で設定されている。
 そして、ステップS13において(待ち時間)≧(許容時間)になると(YES)、通信ノード2Cは、伝送線路1に「NOPコマンド」を送信し、カウンタをリセットして(ステップS14)ステップS11に戻る。図8では(6)で通信ノード2CがNOPコマンドを送信しており、その送信によりカウンタ11による測定はリセットされる。これにより、通信ノード2Aはマスタ権の喪失を免れて通信を継続できる。それから、通信ノード2Cは、ステップS11で送信データの準備が完了した時点で(7)通信ノード2Aに対してデータを送信する(RD Res)。
 以上のように第3実施例によれば、マスタノード;通信ノード2Aは、自身がマスタ権を維持している間にデータが送信できないと判断すると、受信側が処理しないデータであるNOPコマンドを送信する。また、通信ノード2Aよりデータの送信を要求されたスレーブノード;通信ノード2Cは、通信ノード2Aがマスタ権を維持している間に自身が応答できないと判断すると、同様にNOPコマンドを送信するようにした。したがって、通信ノード2Aのマスタ権を維持しながら、データを送信するための時間を確保することができる。
 本開示は上記し又は図面に記載した実施例にのみ限定されるものではなく、例えば、以下のような変形又は拡張が可能である。
 ルートノードとなる機能を全ての通信ノードに予め備えておき、初期設定時に指定を行うことで何れか1つがルートノードとなるように設定しても良い。
 必ずしも、全てのノードがマスタ候補ノードである必要はなく、スレーブとしての機能しかないノードが存在しても良い。
 「サイクルスタート」を送信する場合、通信サイクル時間の経過を条件とする部分は必要に応じて設ければ良い。
 通信の仕様上、各ノードの通信時間が所定時間内に完了することが確実である場合は、マスタ権開放手段(マスタ権開放部)を設ける必要はない。
(態様)
 本開示によると様々な態様を有する通信ネットワークシステムが提供できる。
 例えば、一態様によると、共通の伝送線路に接続され通信を行う複数のノードを備える通信ネットワークシステムは、次のように構成される。複数のノードのうちマスタノードになり得るマスタ候補ノードは、伝送線路のアイドル時間を測定するアイドル時間測定手段を備える。マスタ候補ノードには、自身が通信を開始するマスタ権を獲得できる伝送線路のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定されている。そして、前記マスタ候補ノードは、一度マスタ権を獲得してマスタノードになると、当該マスタ権は、伝送線路のアイドル時間が、自身の権利獲得アイドル時間幅を超えるまで保持される。また、複数のノードの1つはルートノードとして設定され、ルートノードは、伝送線路のアイドル時間が各マスタ候補ノードに割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信し、各マスタ候補ノードのアイドル時間測定手段は、スタートフレームを受信するとクリアされる。
 以下の説明において、マスタ候補ノードについて、権利獲得アイドル時間幅が短い方から第1ノード,第2ノード,…,第nノードと称する。ルートノードがスタートフレームを送信することで通信サイクルが開始されると、先ず、最短の権利獲得アイドル時間幅が割り当てられている第1ノードが最初にマスタ権を獲得して通信を開始する。第1ノードがマスタとなる通信が終了すると、当該通信サイクルでは第1ノードが再びマスタ権を獲得することはない。そして、伝送線路のアイドル時間が第2ノードの権利獲得アイドル時間幅に達すると、次は第2ノードがマスタ権を獲得して通信を開始する。
 以降、順次各マスタ候補ノードがマスタ権を獲得して通信を行い、権利獲得アイドル時間幅が最も長い第nノードによる通信が完了すると、その後の伝送線路のアイドル時間は、第nノードに割り当てられた最長の権利獲得アイドル時間幅を超えて継続する。すると、ルートノードは、その状態を検出して次の通信サイクルの開始を示すスタートフレームを送信する。すなわち、各マスタ候補ノードの権利獲得アイドル時間幅がそれぞれ異なることで、1つの通信サイクル内では、コリジョンが発生することなく各マスタ候補ノードが1回マスタとなる権利が確実に保証される。
 また、各マスタ候補ノードが1度獲得したマスタ権は、アイドル時間が自身の権利獲得アイドル時間幅を超えない限りは維持されるので、その制限内で柔軟に通信を行うことができる。そして、例えば第xノードがマスタとなる通信の長さにかかわらず、当該通信が終了すれば、アイドル時間が次の権利獲得アイドル時間幅に達した時点で第(x+1)ノードが通信を開始する。したがって、1つの通信サイクル内で各マスタ候補ノードが1回マスタとなる権利を確実に保証しつつ柔軟な形態で通信を行うことができるので、通信効率の向上を図ることが可能となる。加えて、通信ネットワークに接続されるノードの数が増減した場合でも、それに伴うシステム設定の変更を容易に行うことができる。
 上記通信ネットワークシステムは、次のように構成されてもよい。各マスタノードは、自身が保持しているマスタ権が最長保持時間を超えると、マスタ権開放手段により自身のマスタ権を開放する。これによると、柔軟な通信形態を可能にするとしても、1つのマスタ候補ノードがマスタとなって伝送線路を専有する時間が不当に長くなることを回避して、その他のマスタ候補ノードが通信を行う機会をより確実に確保できる。
 上記通信ネットワークシステムは、次のように構成されてもよい。ルートノードは、スタートフレームの送信を起点とする通信サイクルの継続時間を測定する通信サイクル時間測定部を備える。ルートノードは、通信サイクルの継続時間が予め設定した最短時間を超えると共に、伝送線路のアイドル時間が最長の権利獲得アイドル時間幅を超えることを条件にスタートフレームを送信する。これによると、通信サイクルの最短時間の経過を条件にスタートフレームを送信することで、バスの通信量が少ない場合に、スタートフレームの送信回数;通信サイクルの実行回数を抑制し、不要な電力消費を低減することができる。
 上記通信ネットワークシステムは、次のように構成されてもよい。ルートノード以外のノードは、ルートノードにより測定される最長の権利獲得アイドル時間よりも長いアイドル時間を測定し、スタートフレームが送信されず、自身が測定する前記アイドル時間を超えると、当初のルートノードに代わってスタートフレームを送信する。これによると、ルートノードの機能が割り当てられているノードについても故障が発生する状況が生じても、その他ノードの少なくとも1つが、ルートノードがスタートフレームを送信すべき状況で送信を行わなかったことを検出すると、ルートノードの機能を代替して自身がスタートフレームを送信することで、次の通信サイクルを開始させることができる。
 上記通信ネットワークシステムは、次のように構成されてもよい。ルートノードに代わるノードは複数存在し、ルートノードにより測定される最長の権利獲得アイドル時間幅よりも長いアイドル時間を、それぞれ異なる長さについて測定する。これによれば、ルートノードの機能を代替するノードを予め複数設定しておき、ルートノードにより測定される最長の権利獲得アイドル時間幅よりも長いアイドル時間を、それぞれ異なる長さについて測定することを定めておけば、それら複数のノード間についても、故障が発生した場合に他のノードによって順次機能を代替させることができる。
 上記通信ネットワークシステムは、次のように構成されてもよい。マスタノードよりデータの送信を要求されたノードは、マスタノードがマスタ権を維持している間に自身が応答できないと判断すると、受信側が処理しないデータを送信する。これによれば、マスタノードよりデータの送信を要求されたノード(スレーブノード)は、そのマスタノードがマスタ権を維持している間に自身が応答できないと判断すると、受信側が処理しないデータを送信する。これにより、スレーブノードは、マスタノードのマスタ権を維持させながら、要求されたデータを自身が送信するための時間を確保することができる。
 上記通信ネットワークシステムは、次のように構成されてもよい。マスタノードは、自身がマスタ権を維持している間にデータが送信できないと判断すると、受信側が処理しないデータを送信する。これによれば、マスタノードは、自身のマスタ権を維持しながら、データを送信するための時間を確保することができる。
 また、他の態様によると、通信ネットワークシステムにおいて共通の伝送線路に接続される複数のノードのうちマスタノードとなり得る各マスタ候補ノードに設けられるマスタ権制御装置であって、上述のアイドル時間測定部を備えるマスタ権制御装置が提供される。これによっても、上述した効果を奏することができる。
 また、上記マスタ権制御装置は、マスタ権開放部をさらに備えてもよい。このとき、各マスタ候補ノードには、自身が通信を開始するマスタ権を獲得できる伝送線路のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定される。各マスタ候補ノードは、一度マスタ権を獲得してマスタノードになると、伝送線路のアイドル時間が自身の権利獲得アイドル時間幅を超えるまで当該マスタ権を保持する。複数のノードの1つは、ルートノードとして設定される。ルートノードは、伝送線路のアイドル時間が各マスタ候補ノードに割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信する。マスタ権開放部は、保持しているマスタ権が最長保持時間を超えると、マスタ権を開放する。
 また、上記マスタ権制御装置は、通信サイクル時間測定部をさらに備えてもよい。通信サイクル時間測定部は、当該マスタ権制御装置を備えるマスタ候補ノードがルートノードである場合、スタートフレームの送信を起点とする通信サイクルの継続時間を測定し、当該マスタ権制御装置は、通信サイクルの継続時間が予め設定した最短時間を超えると共に、伝送線路のアイドル時間が最長の権利獲得アイドル時間幅を超えることを条件に、前記スタートフレームを送信する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
 

Claims (10)

  1.  共通の伝送線路(1)に接続され通信を行う複数のノード(2A,2B,2C)を備える通信ネットワークシステムであって、
     前記複数のノード(2A,2B,2C)のうちマスタノードとなり得るマスタ候補ノードは、前記伝送線路(1)のアイドル時間を測定するアイドル時間測定部(9A)を備え、
     前記マスタ候補ノードには、自身が通信を開始するマスタ権を獲得できる前記伝送線路(1)のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定されており、
     前記マスタ候補ノードは、一度マスタ権を獲得してマスタノードになると、当該マスタ権を、前記伝送線路(1)のアイドル時間が自身の前記権利獲得アイドル時間幅を超えるまで保持し、
     前記複数のノード(2A,2B,2C)の1つは、ルートノードとして設定されており、
     前記ルートノードは、前記伝送線路(1)のアイドル時間が各マスタ候補ノードに割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信し、
     各マスタ候補ノードのアイドル時間測定部(9A)は、前記スタートフレームを受信するとクリアされる通信ネットワークシステム。
  2.  前記マスタノードは、自身が保持しているマスタ権が最長保持時間を超えると、前記マスタ権を開放するマスタ権開放部(9B)を備える請求項1に記載の通信ネットワークシステム。
  3.  前記ルートノードは、前記スタートフレームの送信を起点とする通信サイクルの継続時間を測定する通信サイクル時間測定部(9C)を備え、
     前記通信サイクルの継続時間が予め設定した最短時間を超えると共に、前記伝送線路(1)のアイドル時間が前記最長の権利獲得アイドル時間幅を超えることを条件に、前記ルートノードは前記スタートフレームを送信する請求項1又は2に記載の通信ネットワークシステム。
  4.  前記ルートノード以外のノードは、前記ルートノードにより測定される最長の権利獲得アイドル時間よりも長いアイドル時間を測定し、
     前記スタートフレームが送信されず、自身が測定する前記アイドル時間を超えると、前記ルートノードに代わってスタートフレームを送信する請求項1ないし3の何れかに記載の通信ネットワークシステム。
  5.  前記ルートノードに代わるノードは複数存在し、前記ルートノードにより測定される最長の権利獲得アイドル時間幅よりも長いアイドル時間を、それぞれ異なる長さについて測定する請求項4に記載の通信ネットワークシステム。
  6.  前記マスタノードよりデータの送信を要求されたノードは、前記マスタノードがマスタ権を維持している間に自身が応答できないと判断すると、受信側が処理しないデータを送信する請求項1ないし5の何れかに記載の通信ネットワークシステム。
  7.  前記マスタノードは、自身がマスタ権を維持している間にデータが送信できないと判断すると、受信側が処理しないデータを送信する請求項1ないし6の何れかに記載の通信ネットワークシステム。
  8.  通信ネットワークシステムにおいて共通の伝送線路(1)に接続される複数のノード(2A,2B,2C)のうちマスタノードとなり得る各マスタ候補ノードに設けられるマスタ権制御装置であって、
     請求項1に記載のアイドル時間測定部(9A)を備えるマスタ権制御装置。
  9.  マスタ権開放部(9B)をさらに備える請求項8に記載のマスタ権制御装置であって、
     前記各マスタ候補ノードには、自身が通信を開始するマスタ権を獲得できる前記伝送線路(1)のアイドル時間幅が、権利獲得アイドル時間幅としてそれぞれ異なる長さで設定されており、
     前記各マスタ候補ノードは、一度マスタ権を獲得してマスタノードになると、前記伝送線路(1)のアイドル時間が自身の前記権利獲得アイドル時間幅を超えるまで当該マスタ権を保持し、
     前記複数のノード(2A,2B,2C)の1つは、ルートノードとして設定されており、
     前記ルートノードは、前記伝送線路(1)のアイドル時間が各マスタ候補ノードに割り当てられている最長の権利獲得アイドル時間幅を超えると、次の通信サイクルの開始を示すスタートフレームを送信し、
     前記マスタ権開放部(9B)は、前記保持しているマスタ権が最長保持時間を超えると、前記マスタ権を開放するマスタ権制御装置。
  10.  通信サイクル時間測定部(9C)をさらに備える請求項8又は9に記載のマスタ権制御装置であって、
     前記通信サイクル時間測定部(9C)は、当該マスタ権制御装置を備えるマスタ候補ノードがルートノードである場合、前記スタートフレームの送信を起点とする通信サイクルの継続時間を測定し、
     前記通信サイクルの継続時間が予め設定した最短時間を超えると共に、前記伝送線路(1)のアイドル時間が前記最長の権利獲得アイドル時間幅を超えることを条件に、前記スタートフレームを送信するマスタ権制御装置。
     
PCT/JP2012/004572 2011-07-19 2012-07-18 通信ネットワークシステム WO2013011684A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012003018.4T DE112012003018T5 (de) 2011-07-19 2012-07-18 Kommunikationsnetzwerksystem
CN201280035479.1A CN103688493A (zh) 2011-07-19 2012-07-18 通信网络系统
US14/123,559 US20140105081A1 (en) 2011-07-19 2012-07-18 Communication network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157894 2011-07-19
JP2011157894A JP5282806B2 (ja) 2011-07-19 2011-07-19 通信ネットワークシステム

Publications (1)

Publication Number Publication Date
WO2013011684A1 true WO2013011684A1 (ja) 2013-01-24

Family

ID=47557884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004572 WO2013011684A1 (ja) 2011-07-19 2012-07-18 通信ネットワークシステム

Country Status (5)

Country Link
US (1) US20140105081A1 (ja)
JP (1) JP5282806B2 (ja)
CN (1) CN103688493A (ja)
DE (1) DE112012003018T5 (ja)
WO (1) WO2013011684A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887919B2 (en) * 2016-04-01 2018-02-06 Intel Corporation Techniques and systems for logical mesh networks
DE112016006755B4 (de) * 2016-11-14 2020-06-18 Mitsubishi Electric Corporation Netzwerksystem und Kommunikationsverfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115300A (ja) * 1994-10-13 1996-05-07 Fujitsu Ten Ltd データ通信装置
JPH10208178A (ja) * 1997-01-20 1998-08-07 Hochiki Corp 防災システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3701855A (en) * 1971-01-18 1972-10-31 Bell Telephone Labor Inc First idle line pickup service
US4799052A (en) * 1986-01-13 1989-01-17 General Electric Company Method for communicating data on a communication network by token passing
CA1321842C (en) * 1988-05-11 1993-08-31 Digital Equipment Corporation Double unequal bus timeout
US5155725A (en) * 1991-01-03 1992-10-13 Bell Communications Research, Inc. Adaptive token release mechanism for ring networks
JP2770282B2 (ja) * 1992-04-13 1998-06-25 本田技研工業株式会社 車両用データ伝送システム
US5576702A (en) * 1995-01-10 1996-11-19 Samoylenko; Stanislav I. Method and apparatus for fault-tolerant transmission in multi-channel networks
JPH11317748A (ja) * 1998-05-07 1999-11-16 Pioneer Electron Corp 伝送システムにおける送信インターフェース装置
JPWO2002089419A1 (ja) * 2001-04-27 2004-08-19 三菱自動車工業株式会社 車両用多重通信装置
JP2003044184A (ja) * 2001-08-01 2003-02-14 Canon Inc データ処理装置及び電力制御方法
JP4946646B2 (ja) * 2006-07-10 2012-06-06 日産自動車株式会社 通信ネットワークシステム及び未ウェイクアップノードのウェイクアップ方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115300A (ja) * 1994-10-13 1996-05-07 Fujitsu Ten Ltd データ通信装置
JPH10208178A (ja) * 1997-01-20 1998-08-07 Hochiki Corp 防災システム

Also Published As

Publication number Publication date
JP2013026718A (ja) 2013-02-04
JP5282806B2 (ja) 2013-09-04
US20140105081A1 (en) 2014-04-17
DE112012003018T5 (de) 2014-04-17
CN103688493A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
US20070083787A1 (en) Method and device for exchanging data between at least two stations connected via a bus system
US20150100713A1 (en) Coexistence of i2c slave devices and camera control interface extension devices on a shared control data bus
EP3240244B1 (en) Controller area network synchronization
EP3074874B1 (en) Multipoint interface shortest pulse width priority resolution
JP2008090847A (ja) データ通信システムまたはその方法
US20160173416A1 (en) Method and apparatus for implementing deterministic response frame transmission
JP2008306648A (ja) データ中継装置及びデータ中継方法並びに通信ネットワークシステム
JP4594124B2 (ja) 通信システム及び通信方法
JP4673749B2 (ja) 車両用通信制御ユニットおよび車両用通信制御システム
JP5282806B2 (ja) 通信ネットワークシステム
JP2017092565A (ja) スリープ制御方法
CN113315668B (zh) 自适应调整网络组态的方法、节点设备和存储介质
JP2007050812A (ja) 負荷制御システム、通信制御ユニットおよび負荷制御方法
JP7477529B2 (ja) 時間依存及びベストエフォートのデータパケットのためのメディアアクセス、並びに関連するシステム、方法及びデバイス
CN107918299B (zh) 运算装置以及控制装置
JP6477438B2 (ja) 通信装置および通信システム
JP2008236217A (ja) FlexRayネットワーク接続方法、FlexRayネットワーク及びFlexRayネットワーク用電子制御ユニット
JP7044081B2 (ja) 車載用通信システム
JP4732926B2 (ja) 電子制御ユニット
CN113067880B (zh) 分布式控制系统链式分时通信方法和存储介质
KR101301078B1 (ko) 플렉스레이 네트워크 제어 시스템, 장치 및 방법
JP2017063390A (ja) 通信方法
JP2010154329A (ja) Ieee1394通信lsiおよびアシンクロナス送信方法
JP2023552627A (ja) イーサネットネットワークにおける部分ネットワーク動作においてセンサネットワークにおける転送データレートを最適化するための方法
JP2016066886A (ja) 通信波形生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123559

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120030184

Country of ref document: DE

Ref document number: 112012003018

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814780

Country of ref document: EP

Kind code of ref document: A1