WO2013008803A1 - 発酵能を有する細菌を用いた多能性細胞の製造方法 - Google Patents

発酵能を有する細菌を用いた多能性細胞の製造方法 Download PDF

Info

Publication number
WO2013008803A1
WO2013008803A1 PCT/JP2012/067544 JP2012067544W WO2013008803A1 WO 2013008803 A1 WO2013008803 A1 WO 2013008803A1 JP 2012067544 W JP2012067544 W JP 2012067544W WO 2013008803 A1 WO2013008803 A1 WO 2013008803A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
lactic acid
cell
bacterium
lactobacillus
Prior art date
Application number
PCT/JP2012/067544
Other languages
English (en)
French (fr)
Inventor
訓正 太田
Original Assignee
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学 filed Critical 国立大学法人 熊本大学
Priority to EP12811861.9A priority Critical patent/EP2733204A4/en
Priority to JP2013523947A priority patent/JP6040494B2/ja
Priority to US14/131,498 priority patent/US9587224B2/en
Publication of WO2013008803A1 publication Critical patent/WO2013008803A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/72Undefined extracts from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/70Non-animal cells

Definitions

  • the present invention relates to a method for producing pluripotent cells using a bacterium having fermentation ability.
  • ES cells called embryonic stem cells, were discovered from mouse embryos in 1981 and human embryos in 1998. Research has been conducted mainly on constructing tissues and organs as ES cells have the ability to change into various types of cells other than the cells that make up the placenta (pluripotency). However, ES cells have a large ethical problem because they use fertilized eggs that become life if they grow smoothly. Another major problem is the problem of rejection. Even if differentiated cells or organs created based on ES cells are transplanted into patients, the immune system may recognize them as non-self and attack them.
  • Non-Patent Document 1 (Takahashi and Yamanaka, Cell 126, 663-676, 2006); and Non-Patent Document 2 (Takahashi et al., Cell 131, 861-872, 2007 ]].
  • iPS cells Since the cells used at this time are derived from somatic cells such as the patient's own differentiated skin, even if cells differentiated from iPS cells are transplanted into the patient, the immune system recognizes the organ as self and the transplant is rejected. There is nothing. The discovery of iPS cells has cleared the problem of “bioethics” that ES cells had.
  • iPS cells are attracting worldwide attention as a trump card for regenerative medicine, but there remains a technical problem that cells become cancerous.
  • One of the causes of canceration is due to the c-Myc gene introduced into the cells.
  • iPS cells were also produced by three factors other than the c-Myc gene.
  • the introduction of genes into cells did not use retroviruses, but instead of using adenoviruses and plasmids, iPS cells were made, making it a step closer to the safer and practical use of iPS cells.
  • some artificial genes are forcedly expressed in cells that have undergone cell differentiation, the possibility that these cells will become cancerous in the future cannot be denied.
  • Patent Document 1 describes a method for producing reprogrammed embryonic stem cells (ES) -like cells using Mycobacterium leprae or its components. That is, Patent Document 1 discloses a method for producing reprogrammed ES -like cells comprising contacting Mycobacterium leprae bacteria or components thereof with adult differentiated cells, and cells produced by this method. Are listed. However, Mycobacterium leprae is a leprosy, and there is a safety concern for its application to regenerative medicine.
  • ES Embryonic Stem
  • iPS induced pluripotent Stem
  • the present inventor paid attention to bacteria having fermentation ability such as lactic acid bacteria and natto bacteria, and investigated the relationship between bacteria having fermentation ability and cells. That is, the present inventor has developed human skin cells (Human Dermal Fibroblasts, CELLAPPLICATIONS, INC. Cat No.106-05a) to lactic acid bacteria [Lactococcus lactis subsp. JCM20101), Streptococcus salivarius subsp. Thermophilus (JCM20026), Lactobacillus sp. (JCM20061)] or Bacillus natto, respectively, forms cell masses like ES cells and iPS cells and is stained by alkaline phosphatase staining It was confirmed.
  • human skin cells Human Dermal Fibroblasts, CELLAPPLICATIONS, INC. Cat No.106-05a
  • lactic acid bacteria lactis subsp. JCM20101
  • Streptococcus salivarius subsp. Thermophilus JCM20026)
  • these cell clusters expressed a marker molecule (SSEA-4) that is specifically expressed in ES cells and iPS cells. Furthermore, when these cell masses were differentiated, they differentiated into cells derived from mesoderm or ectoderm.
  • SSEA-4 marker molecule
  • pluripotent stem cells induced by lactic acid bacteria present in our bodies we can overcome ethics and canceration problems, and have high safety in regenerative medicine applications. Can be manufactured.
  • the pluripotent cells produced by the method of the present invention can contribute to the treatment of diseases for which there has been no therapeutic method so far as a material for regenerative medicine.
  • a method for producing a pluripotent cell from a somatic cell comprising a step of bringing a somatic cell into contact with a bacterium having fermentation ability, a component thereof or a secretion thereof.
  • the method according to (1), wherein the somatic cell is a mammalian somatic cell.
  • the method according to (1) or (2), wherein the somatic cell is a human or mouse somatic cell.
  • the method according to any one of (1) to (4), wherein the bacteria having fermentative ability are lactic acid bacteria or natto bacteria.
  • the lactic acid bacterium is a lactic acid bacterium of the genus Lactococcus, Streptococcus, or Lactobacillus.
  • the lactic acid bacterium is Lactococcus lactis subsp. Lactis, Streptococcus salivarius subsp. Thermophilus, Lactobacillus sp., Or Lactobacillus acidophilus.
  • the step of bringing a somatic cell into contact with a bacterium having fermentation ability, its component or its secretion is a step of infecting a somatic cell with a bacterium having fermentation ability, its component or its secretion
  • Method. (10) A pluripotent cell obtainable by the method according to any one of (1) to (9).
  • (11) A method for producing somatic cells induced to differentiate from pluripotent cells, comprising the following steps.
  • a somatic cell differentiated from a pluripotent cell which can be obtained by the method according to (11).
  • a kit for producing pluripotent cells from somatic cells comprising a bacterium having fermentative ability, a component thereof, or a secreted product thereof.
  • a method for producing non-cancer cells from cancer cells comprising a step of bringing cancerous cells into contact with bacteria having fermentation ability, components thereof or secretions thereof.
  • the method according to (14), wherein the cancer cell is a human cancer cell.
  • the bacterium having fermentation ability is lactic acid bacteria or natto bacteria.
  • the lactic acid bacterium is a lactic acid bacterium of the genus Lactococcus, Streptococcus, or Lactobacillus.
  • the lactic acid bacterium is Lactococcus lactis subsp. Lactis, Streptococcus salivarius subsp. Thermophilus, Lactobacillus sp., Or Lactobacillus acidophilus.
  • the step of contacting a cancer cell with a bacterium having fermentation ability, a component thereof or a secretion thereof is a step of infecting the cancer cell with a bacterium having fermentation ability, a component thereof or a secretion thereof.
  • (20) A non-cancer cell obtainable by the method according to any one of (14) to (19).
  • (21) An anticancer agent comprising lactic acid bacteria, components thereof or secretions thereof.
  • lactic acid bacterium is a lactic acid bacterium of the genus Lactococcus, Streptococcus, or Lactobacillus.
  • the lactic acid bacterium is Lactococcus lactis subsp. Lactis, Streptococcus salivarius subsp. Thermophilus, Lactobacillus sp., Or Lactobacillus acidophilus.
  • pluripotent stem cells can be produced by infecting somatic cells with bacteria having fermentation ability such as lactic acid bacteria that exist in the human body and coexist with the cells.
  • bacteria having fermentation ability such as lactic acid bacteria that exist in the human body and coexist with the cells.
  • the method for producing pluripotent cells using a bacterium having fermentation ability such as lactic acid bacteria according to the present invention is applied to the medical field (drug discovery research, drug safety, efficacy and side effect test), disease research (cause of incurable disease). Elucidation, development of therapeutic and preventive methods), regenerative medicine (functional repair of nerves, blood vessels and organs), and foods.
  • FIG. 1 shows HDF cells cultured with lactic acid bacteria.
  • FIG. 2 shows the results of staining HDF cells with lactic acid bacteria and staining the formed cell mass with an alkaline phosphatase coloring solution.
  • FIG. 3 shows the results of staining HDF cells with lactic acid bacteria and staining the formed cell mass with an anti-SSEA-4 (MILLIPORE) antibody.
  • FIG. 4 shows the results of RT-PCR of HDF cells infected with lactic acid bacteria and cDNA derived from the cell mass.
  • FIG. 5 shows the results of examining whether a cell mass can be maintained for a long time after infecting HDF cells with lactic acid bacteria or Lactobacillus sp.
  • FIG. 1 shows HDF cells cultured with lactic acid bacteria.
  • FIG. 2 shows the results of staining HDF cells with lactic acid bacteria and staining the formed cell mass with an alkaline phosphatase coloring solution.
  • FIG. 3 shows the results of staining HDF cells
  • FIG. 6 shows that HDF cells are infected with lactic acid bacteria and stained with anti- ⁇ -SMA antibody (blood vessel marker), anti-Desmin antibody (mesoderm marker), anti-Tuj1 antibody (nerve cell marker), and anti-GFAP antibody (glial cell marker). The results are shown.
  • FIG. 7 shows the result of culturing using a culture solution that induces differentiation induction in bone cells, fat cells or chondrocytes after infecting HDF cells with lactic acid bacteria.
  • FIG. 8 shows the result of observation of the cell mass after infecting HDF cells with lactic acid bacteria with an electron microscope.
  • FIG. 9 shows the results of purifying tRNA from control HDF cells (C-HDF) and HDF cells (Bala-HDF) infected with lactic acid bacteria, and conducting microarray gene expression analysis.
  • FIG. 10 shows the results of infecting HDF cells with lactic acid bacteria and then administering the unilateral testes of SCID mice to examine the formation of malformed species after 3 months.
  • FIG. 11 shows the results of isolating Mouse Embryonic Fibroblasts cells from E12.5 GFP mice, infecting them with lactic acid bacteria (JCN1021), and culturing them for 5 days.
  • FIG. 12 shows the results of infecting lactic acid bacteria (JCM1021) with breast cancer cells (MCF7), liver cancer cells (HepG2), and lung cancer cells (A549) and culturing them for 4 days.
  • FIG. 13 shows the results of adding yogurt to liver cancer cells (HepG2) and breast cancer cells (MCF7) and culturing for 9 days.
  • FIG. 14 shows that cells were collected on days 4, 8, and 12 after infecting liver cancer cells (HepG2) with lactic acid bacteria (JCM1021), and using cancer cell markers c-Myc and CEA. The results of RT-PCR are shown.
  • FIG. 15 shows the result of producing a cell mass of lung cancer cells (A549) and transplanting it subcutaneously into nude mice (8-week-old female), and forming a tumor after about 1 month.
  • FIG. 16 shows the result of taking out and measuring the weight 40 days after transplanting the tumor subcutaneously. The control was in the absence of lactic acid bacteria (JCM1021), and the lactic acid bacteria were injected three times in the presence of lactic acid bacteria (2 ⁇ 10 8 in 0.2 ml) on the 3rd and 6th days after transplanting the tumor.
  • FIG. 17 shows HDF cells cultured with natto or E. coli.
  • the method for producing a pluripotent cell from a somatic cell comprises a step of bringing a somatic cell into contact with a bacterium having fermentation ability, a component thereof or a secreted product thereof.
  • somatic cell used for initialization in the present invention is not particularly limited, and any somatic cell can be used. That is, the somatic cells referred to in the present invention include all cells other than germ cells among the cells constituting the living body, and may be differentiated somatic cells or undifferentiated stem cells.
  • the origin of the somatic cell may be any of mammals, birds, fishes, reptiles and amphibians, but is not particularly limited, but is preferably a mammal (for example, a rodent such as a mouse or a primate such as a human). Preferably it is human or mouse.
  • any fetal, neonatal or adult somatic cells may be used.
  • somatic cells isolated from the patient suffering from the disease.
  • cancer cells can be used as somatic cells.
  • a non-cancer cell can be produced from a cancer cell by bringing the bacterium having fermentation ability, a component thereof or a secretion thereof into contact with the cancer cell.
  • the step of bringing a somatic cell (including a cancer cell) into contact with a bacterium having fermentation ability, a component thereof or a secretion thereof can be performed in vitro.
  • the pluripotent cell referred to in the present invention is capable of self-renewal over a long period of time under a predetermined culture condition (specifically, in the presence of lactic acid bacteria), and various cells (external cells) under a predetermined differentiation-inducing condition. It refers to a cell (such a cell is also referred to as a stem cell) having pluripotency into a germ layer cell, a mesoderm cell, or an endoderm cell.
  • somatic cells are brought into contact with a bacterium having fermentation ability, a component thereof, or a secretion thereof.
  • the type of bacteria having fermentative ability used in the present invention is not particularly limited, and may be an aerobic bacterium such as lactic acid bacterium or natto bacterium, or an anaerobic bacterium such as bifidobacteria.
  • the kind of lactic acid bacteria used in the present invention is not particularly limited.
  • Lactic acid bacteria is a general term for bacteria having the ability to produce lactic acid from sugars by fermentation. Typical lactic acid bacteria include Lactobacillus, Bifidobacterium, Enterococcus, Lactococcus, Pediococcus, and Leuconostoc.
  • lactic acid bacteria belonging to the genus Streptococcus can also be used in the present invention.
  • lactic acid bacteria belonging to the genus Lactococcus, Streptococcus, or Lactobacillus can be used.
  • Lactococcus lactis subsp. Lactis, Streptococcus salivarius subsp. Thermophilus, Lactobacillus sp., Or Lactobacillus acidophilus can be used particularly preferably.
  • bacterial components having fermentative ability include, but are not limited to, cell walls, nucleic acids, proteins, intracellular organelles, lipids, sugars, carbohydrates, glycolipids, and glycosylated sugars. Absent.
  • the pluripotent cell or non-cancer cell of the present invention can be isolated and cultured by culturing in the presence of a bacterium having fermentation ability using a normal medium for cell culture.
  • the medium for culturing the pluripotent cells of the present invention includes various growth factors, cytokines, hormones, etc. (for example, FGF-2, TGF ⁇ -1, activin A, Nanoggin, BDNF) as necessary.
  • cytokines, hormones, etc. for example, FGF-2, TGF ⁇ -1, activin A, Nanoggin, BDNF
  • NGF, NT-1, NT-2, NT-3 and other components involved in the growth and maintenance of human ES cells may be added.
  • the differentiation ability and proliferation ability of the separated pluripotent cells can be confirmed by using confirmation means known for ES cells.
  • the uses of the pluripotent cells and non-cancer cells produced by the method of the present invention are not particularly limited, and can be used for various tests / researches and disease treatments.
  • a growth factor such as retinoic acid, EGF, or glucocorticoid
  • desired differentiated cells for example, nerve cells, cardiomyocytes, hepatocytes, pancreas
  • stem cell therapy by autologous cell transplantation can be achieved by returning the differentiated cells thus obtained to the patient.
  • Examples of central nervous system diseases that can be treated using the pluripotent cells of the present invention include Parkinson's disease, Alzheimer's disease, multiple sclerosis, cerebral infarction, spinal cord injury and the like.
  • pluripotent cells can be differentiated into dopaminergic neurons and transplanted into the striatum of Parkinson's disease patients. Differentiation into dopaminergic neurons can be promoted by co-culturing mouse stromal cell line PA6 cells and the pluripotent cells of the present invention under serum-free conditions.
  • the pluripotent cells of the present invention can be induced to differentiate into neural stem cells and then transplanted to the site of injury.
  • the pluripotent cells of the present invention can be used for the treatment of liver diseases such as hepatitis, cirrhosis and liver failure.
  • the pluripotent cells of the present invention can be differentiated into hepatocytes or hepatic stem cells and transplanted.
  • Hepatocytes or hepatic stem cells can be obtained by culturing the pluripotent cells of the present invention in the presence of activin A for 5 days and then culturing with hepatocyte growth factor (HGF) for about 1 week.
  • HGF hepatocyte growth factor
  • the pluripotent cells of the present invention can be used for the treatment of pancreatic diseases such as type I diabetes.
  • pancreatic diseases such as type I diabetes
  • the pluripotent cells of the present invention can be differentiated into pancreatic ⁇ cells and transplanted into the pancreas.
  • the method of differentiating pluripotent cells of the present invention into pancreatic ⁇ cells can be performed according to the method of differentiating ES cells into pancreatic ⁇ cells.
  • the pluripotent cells of the present invention can be used for the treatment of heart failure associated with ischemic heart disease.
  • the pluripotent cells of the present invention are preferably differentiated into cardiomyocytes and then transplanted to the site of injury.
  • the pluripotent cells of the present invention can obtain cardiomyocytes in about 2 weeks after the formation of embryoid bodies by adding noggin 3 days before the formation of embryoid bodies and adding it to the medium.
  • non-cancer cells can be produced from cancer cells by contacting the cancer cells with bacteria having fermentation ability such as lactic acid bacteria, components thereof or secretions thereof. Therefore, lactic acid bacteria, their components or secretions thereof are useful as anticancer agents, and anticancer agents containing lactic acid bacteria, their components or secretions thereof can be provided.
  • an anticancer derived from a lactic acid bacterium is obtained by contacting a lactic acid bacterium, its component or its secretion with a cancer cell, and measuring the degree of conversion from the cancer cell to a non-cancer cell. Components can be screened.
  • the anticancer component derived from lactic acid bacteria identified by the above screening is useful as an anticancer agent.
  • Example 1 HDF cells Human Dermal Fibroblasts, CELL APPLICATIONS, INC. Cat No. 106-05a
  • CMF Fibroblast Growth Medium
  • a 10 cm petri dish Cells were washed with 10 ml CMF (Ca 2+ Mg 2+ free buffer).
  • 1 ml of a 0.25% trypsin solution (containing 1 mM EDTA) was added and dispersed throughout.
  • the cells were placed in a CO2 incubator (37 ° C) for 5 minutes. 3 ml of trypsin inhibitor solution (CELL APLICATION INC.) was added and suspended, and the number of cells was counted.
  • Example 2 In 6 well plate, the lactic acid bacteria in HDF cells (5 x 10 5/2 ml ) [Lactococcus lactis subsp. Lactis (JCM20101), Streptococcus salivarius subsp. Thermophilus (JCM20026), Lactobacillus sp. (JCM20061)] each infected with ( 7 ⁇ 10 7 ), cultured at 34 ° C. in a 5% CO 2 incubator for 8 days, the cell mass was transferred to a 4-well plate, placed in an alkaline phosphatase coloring solution (Roche), and developed for 1 hour at room temperature. As a result, as shown in FIG. 2, the cell mass was colored purple, suggesting that HDF cells infected with lactic acid bacteria have pluripotency.
  • Example 3 In 6 well plate, HDF cells (5 x 10 5/2 ml ) in lactic acid bacteria (Lactococcus lactis subsp Lactis;. JCM20101 ) were infected (7 x 10 7), 34 °C, 8 days of culture in 5% CO 2 incubator Thereafter, the formed cell mass was fixed with 4% PFA for 15 minutes at room temperature, and stained with a mouse anti-SSEA-4 (MILLIPORE) antibody. As a result, as shown in FIG. 3, the cell cluster expressed SSEA-4 antigen specifically expressed by pluripotent cells.
  • lactic acid bacteria Lactococcus lactis subsp Lactis;. JCM20101
  • MILLIPORE mouse anti-SSEA-4
  • Example 4 HDF cells (2 ⁇ 10 5 / ml) were seeded on a 12-well plate, infected with lactic acid bacteria (Lactobacillus acidophilus; JCM1021, 2 ⁇ 10 7 ) and cultured in a 34 ° C., 5% CO 2 incubator for 8 days. The culture solution was changed half by half every 5 days, and tRNA was purified from the cell mass (20 cells) formed after 2 weeks using Trizol reagent (Invitrogen). CDNA was synthesized using Oligo (dT) primer and SuperScript TM III (Invitrogen), and RT-PCR was performed with primer sets for several genes reported to be involved in pluripotency.
  • lactic acid bacteria Lactobacillus acidophilus
  • tRNA was purified from the cell mass (20 cells) formed after 2 weeks using Trizol reagent (Invitrogen).
  • CDNA was synthesized using Oligo (dT) primer and SuperScript TM III (Invitrogen), and
  • the amplified DNA was electrophoresed using a 2% agarose gel, and the band was confirmed by ethidium bromide staining.
  • c-Myc, Nanog, Oct3 / 4, Sox2, and TDGF1 expression induction not observed in HDF cells was observed, but the expression of REX1, Fgf4, GDF3, and ECAT16 was observed.
  • REX1, Fgf4, GDF3, and ECAT16 was observed.
  • Example 5 In 6 well plate, HDF cells (5 x 10 5/2 ml ) in lactic acid bacteria (Streptococcus salivarius subsp thermophilus;. JCM20026 ) or (Lactobacillus sp .; JCM20061) the post-infection (2 x 10 7), 5 % CO 2
  • the cells were cultured in an incubator, and the culture solution was changed by half every 5 days to examine whether the cell mass could be maintained for a long time.
  • Fibroblast Growth Medium CELL APLICATION INC.
  • Fibroblast Growth Medium CELL APLICATION INC.
  • the four photos on the left show 30 days after culture, and the two on the right show 50 days after culture.
  • the cell mass was cultured in the presence of lactic acid bacteria, the cell mass could be maintained after 50 days, but the cell mass cultured in the absence of lactic acid bacteria caused cell death. It was suggested that lactic acid bacteria are necessary to maintain the mass.
  • Example 6 In 6 well plate, HDF cells (5 x 10 5/2 ml ) in lactic acid bacteria (Lactococcus lactis subsp Lactis;. JCM20101,2 x 10 7) were infected with a poly-L-lysine cell mass formed after 8 days The cells were cultured for 7 days on a cover glass coated with laminin (Sigma, 50 ⁇ g / ml).
  • mouse anti- ⁇ -SMA antibody Sigma, blood vessel marker
  • rabbit anti-Desmin antibody Thermo, mesoderm marker
  • mouse anti-Tuj1 antibody R & D, neuronal marker
  • rabbit anti-GFAP Stained with antibody (Dako, glial cell marker).
  • Example 7 In 6 well plate, the HDF cells (5 x 10 5/2 ml ) Lactobacillus; infected with (Lactobacillus acidophilus JCM1021,2 x 10 7) , were transferred to cell mass 4 well plate after 2 weeks.
  • a culture solution (GIBCO; A10072-01, A10070-01, A10071-01) that induces differentiation into bone cells (B; A is 96 well after staining of B), adipocytes (C), and chondrocytes (D) 500 ml was added, and the culture medium was changed half by half every 3 days, and further cultured for 2 weeks.
  • Example 8 In 6 well plate, the lactic acid bacteria in HDF cells (5 x 10 5/2 ml ); infected with (Lactobacillus acidophilus JCM1021,2 x 10 7) , the culture medium was replaced by half in five days every formed cells The lump was observed with an electron microscope by a general resin-embedded ultrathin section method (consigned to Tokai Electron Microscope Analysis). As a result, as shown in FIG. 8, lactic acid bacteria (red arrow in the left figure) were present in the cytoplasm. The right figure shows an enlarged view of the square area of the left photograph.
  • Example 9 Microarray gene expression analysis by purifying tRNA using Trizol reagent (Invitrogen) from HDF cell mass (Bala-HDF, 20 cells) infected with control HDF cells (C-HDF) and lactic acid bacteria (Lactobacillus acidophilus; JCM1021) (Agilent Whole Genome (4 ⁇ 44K) Human 1 color method).
  • Trizol reagent Invitrogen
  • C-HDF control HDF cells
  • lactic acid bacteria Lactoferrin (25 ⁇ g / ml) was added to increase the efficiency of cell mass formation, so the cells were described as Bala-HDF.
  • lactoferrin 25 ⁇ g / ml
  • FIG. 9A a cluster analysis was performed on a gene having a gene expression increase or decrease of 2 times or more.
  • Gene group whose expression is increased in Bala-HDF compared to C-HDF is Group I, and gene group whose expression level is hardly changed in Bala-HDF is compared to Group II and C-HDF.
  • the group of genes whose expression was decreased in Bala-HDF was set as Group III.
  • FIG. 9-2 the analysis was performed focusing on a group of genes reported to be involved in stem cell pluripotency.
  • Example 10 In 6 well plate, the lactic acid bacteria in HDF cells (5 x 10 5/2 ml ); after the (Lactobacillus acidophilus JCM1021,2 x 10 7) were infected, a cell mass collected after 2 weeks, trypsinized, 5 by administering x 10 5/30 ⁇ l cells on one side testis SCID mice (male 9-10 weeks old), it was examined in the formation of teratomas after 3 months. As a result, as shown in the photograph of FIG. 10, the testis administered with lactic acid bacteria-infected cells (upper) was slightly larger than the control testis (lower; testis on the opposite side of the same mouse individual), but the malformed species The formation of was not confirmed. Paraffin sections (6 ⁇ m) were prepared and HE stained. There was no difference in the structure of testis transplanted with HDF cells infected with JCM1021 and control testis.
  • Example 11 The mouse embryo fibroblast (MEF cell) collection method produced by RIKEN Center for Developmental Sciences was followed. Day 12.5 embryonic GFP mice were removed from the uterus and the head, tail, limbs and viscera were removed. The remaining tissue with surgical scissors was minced and incubated in 0.25% trypsin-EDTA solution at 37 ° C. for 15 minutes. After filtration with a cell strainer, the cells were suspended in a cell culture solution, and cells for one fetus were spread on one 10 cm petri dish. When it became confluent, it was infected with lactic acid bacteria (JCM1021) as in the case of HDF cells and cultured for 5 days. As a result, as shown in the photograph of FIG. 11, MEF cells infected with lactic acid bacteria formed cell clusters.
  • JCM1021 lactic acid bacteria
  • Example 12 Breast cancer cell lines (MCF7; RBRC-RCB1904), lung cancer cell lines (A549; RBRC-RCB0098), and liver cancer cell lines (HEP G2; RBRC-RCB1648) were obtained from RIKEN BioResource Center.
  • MCF7 RBRC-RCB1904
  • lung cancer cell lines A549; RBRC-RCB0098
  • liver cancer cell lines HEP G2; RBRC-RCB16478
  • 1 ⁇ 10 8 lactic acid bacteria per well (Lactococcus lactis subsp. Lactis (JCM20101)) is placed in a 6 well plate in advance, and 5 ⁇ 10 5 cancer cells are added. Incubate in a 34 ° C, 5% CO 2 incubator. The results are shown in FIG. As shown in FIG. 12, cell clusters can be observed after several days. The picture is from 4 days after culturing.
  • Example 13 The same experiment as in Example 1 was performed, but 50 ⁇ l of commercially available yoghurt per well was previously placed in a 6-well plate, and 5 ⁇ 10 5 cancer cells were added. Incubate in a 34 ° C, 5% CO 2 incubator. The results are shown in FIG. As shown in FIG. 13, cell clusters can be observed after several days. The picture is from 9 days after culturing.
  • Example 14 An experiment similar to Example 12 was performed using a liver cancer cell line (HEP G2) and a lactic acid bacterium (JCM20101). Cells were collected on days 4, 8, and 12 after infection, and RT-PCR was performed using cancer cell markers c-Myc and carcino embryonic antigen (CEA). The results are shown in FIG. As shown in FIG. 14, both marker molecules were expressed on day 0, but c-Myc was observed to decrease in expression from day 4 and CEA was observed from day 8.
  • HEP G2 liver cancer cell line
  • JCM20101 lactic acid bacterium
  • Example 15 The Hanging Drop method, the cells were suspended in culture medium at a ratio of 1 x 10 5/20 [mu] l were trypsinized, after dropping to the petri dish lid, flip the lid, place overnight. On the next day, a cell mass is observed at the tip of the drop, and the cells are transplanted as a mass to a mouse.
  • a hanging drop method was performed using a lung cancer cell line (A549) to prepare a cell mass. Five of these cell masses were transplanted subcutaneously into nude mice (8 weeks old, female). After about one month, a tumor is formed ( Figure 15). The tumor is removed and trimmed to a size of 4 x 4 mm. The control soaks the tumor mass in PBS solution.
  • the tumor mass is immersed in a solution (1 ⁇ 10 8 / ml) of lactic acid bacteria (JCM20101) for 20 minutes at room temperature. Thereafter, a lump of tumor was transplanted subcutaneously into nude mice (8 weeks old, female). Mice containing lactic acid bacteria were injected with a solution containing lactic acid bacteria on the 3rd and 6th days. After 40 days, the tumor was removed and weighed. The results are shown in FIG. Compared with mice transplanted with tumor, tumors were smaller in mice infected with lactic acid bacteria and then injected with lactic acid bacteria.
  • Example 16 As in Example 1, 1 ⁇ 10 8 natto or E. coli (XLI-blue: Stratagene) per well was placed in a 6 well plate in advance, and 5 ⁇ 10 5 HDF cells (Human Dermal Fibroblasts, CELL APPLICATIONS, INC. Cat No. 106-05a). Incubate in a 34 ° C, 5% CO 2 incubator. The results are shown in FIG. As shown in FIG. 17, a cell mass can be observed after several days in the presence of Bacillus natto, but no cell mass was formed in the presence of E. coli. The photograph shows the 8 days after culturing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

 本発明の課題は、細胞の癌化の問題がなく、かつ再生医療への応用において安全性が高い多能性細胞の製造方法を提供することである。本発明によれば、体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含む、体細胞から多能性細胞を製造する方法が提供される。

Description

発酵能を有する細菌を用いた多能性細胞の製造方法
 本発明は、発酵能を有する細菌を用いた多能性細胞の製造方法に関する。
 ES細胞は、胚性幹細胞と呼ばれ、1981年にはマウスの胚から、1998年にはヒトの胚から発見された。ES細胞は胎盤を構成する細胞以外のさまざまな種類の細胞に変化する能力(多能性)を持つ細胞として、組織や器官を構築する研究が主に行われてきた。しかしながら、ES細胞は順調に成長すれば生命になる受精卵を利用しているため、倫理的に大きな問題を抱えている。もうひとつの大きな問題として、拒絶の問題がある。ES細胞を元に作製した分化細胞や臓器を患者に移植しても、免疫系はこれらを非自己と認識し攻撃する可能性がある。
 これらES細胞の問題を解決するために、京都大学の山中伸弥教授のグループは、通常は他の機能を持つ細胞に分化しない皮膚細胞からさまざまな種類の細胞に変化する能力を持つ細胞を開発し、iPS細胞と名付けた。山中ファクターと呼ばれる4つの因子(Oct 3/4, Sox2, Klf4,c-Myc)をマウスやヒトの皮膚細胞にレトロウイルスベクターを使って導入すると、細胞の初期化がおこり、ES細胞と同じく多能性を持つ細胞が作り出せることを示した[非特許文献1(Takahashi and Yamanaka, Cell 126, 663-676, 2006); 及び非特許文献2(Takahashi et al., Cell 131, 861-872, 2007)]。この時に用いる細胞は、患者自身の分化した皮膚などの体細胞に由来するため、iPS細胞から分化させた細胞を患者に移植しても免疫系はその臓器を自己と認識し移植が拒絶されることはない。iPS細胞の発見によりES細胞が抱えていた「生命倫理」という問題がクリアされた。
 上記の通り、iPS細胞は再生医療の切り札として世界的に注目されているが、細胞が癌化してしまうという技術的な問題が残されている。癌化の原因のひとつは、細胞に導入したc-Myc遺伝子によるものだが、最近ではc-Myc遺伝子を除く3つの因子でもiPS細胞が作製された。また、遺伝子の細胞への導入もレトロウイルスを使うのではなく、アデノウイルスやプラスミドを用いてiPS細胞を作製することで、より安全で実用化に近いiPS細胞の作製に一歩近づいた。しかし、人工的にいくつかの遺伝子を、細胞分化を終えた細胞に強制発現させる手法をとることから、将来、これらの細胞が癌化する可能性は否定できない。
 他方、特許文献1には、マィコバクテリウム・レプラエ菌またはその成分を用いて、再ブログラミングされた胚幹細胞(ES)様細胞を産生する方法が記載されている。即ち、特許文献1には、マイコバクテリウム・レプラエ菌またはその成分を、成人の分化細胞に接触させることを含む、再プログラミングされた ES 様細胞を産生する方法、この方法によって産生された細胞が記載されている。しかしながら、マイコバクテリウム・レプラエ菌はらい菌であり、再生医療への応用には安全性の懸念がある。
Takahashi and Yamanaka, Cell 126, 663-676, 2006 Takahashi et al., Cell 131, 861-872, 2007
米国特許出願公開US 2006/0222636 A1
 上記の通り、受精卵が胎児に発達する過程で採取できるES(Embryonic Stem)細胞や自分自身の体から採取されるiPS(induced pluripotent Stem)細胞は、将来ほとんどの組織になり得る多能性幹細胞である。これらの細胞は難病の克服への応用に期待されているが、それぞれ倫理性の問題と癌化への危険性という大きな問題を抱えている。本発明は、細胞の癌化の問題がなく、かつ再生医療への応用において安全性が高い多能性細胞の製造方法を提供することを解決すべき課題とした。
 本発明者は上記課題を解決するために乳酸菌や納豆菌などの発酵能を有する細菌に着目し、発酵能を有する細菌と細胞との関係を調べた。即ち、本発明者は、細胞分化を終えたヒト皮膚細胞(Human Dermal Fibroblasts, CELLAPPLICATIONS, INC. Cat No.106-05a)に乳酸菌[Lactococcus lactis subsp.lactis(理化学研究所バイオリソースセンター 微生物材料開発室;JCM20101)、Streptococcus salivarius subsp. thermophilus (JCM20026)、Lactobacillus sp.(JCM20061)]又は納豆菌をそれぞれ感染させると、ES細胞やiPS細胞のように細胞塊を形成し、アルカリホスファターゼ染色法で染色されることを確認した。また、これらの細胞塊は、ES細胞やiPS細胞に特異的に発現するマーカー分子(SSEA-4)を発現していた。さらに、これらの細胞塊を分化させたところ、中胚葉や外胚葉由来の細胞へと分化した。通常、私たちの体に存在する乳酸菌により誘導された多能性幹細胞を用いることにより、倫理性や癌化といった問題を克服でき、かつ再生医療への応用において安全性が高い多能性細胞を製造することができる。本発明の方法で製造される多能性細胞は、再生医療の材料として、これまで治療法のなかった病気の治療に貢献できる。さらに本発明では、1970年にマーギュリスが提唱した細胞内共生説(嫌気性真核生物が好気性細菌を飲み込むことにより共生し、現在の真核細胞へと進化した)を実験的に検証することで、細菌を飲み込むことにより細胞内にミトコンドリアや葉緑体といった独自にエネルギーを生み出す小器官をもつ真核細胞の起源の解明が期待できる。本発明は上記の知見に基づいて完成したものである。
 即ち、本発明によれば、以下の発明が提供される。
(1) 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含む、体細胞から多能性細胞を製造する方法。
(2) 体細胞が、哺乳類動物の体細胞である、(1)に記載の方法。
(3) 体細胞がヒト又はマウスの体細胞である、(1)又は(2)に記載の方法。
(4) 体細胞が、がん細胞である、(1)から(3)の何れか1項に記載の方法。
(5) 発酵能を有する細菌が、乳酸菌、又は納豆菌である、(1)から(4)の何れか1項に記載の方法。
(6) 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、(5)に記載の方法。
(7) 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、(6)に記載の方法。
(8) 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程が、体細胞に、発酵能を有する細菌、その成分又はその分泌物を感染させる工程である、(1)から(7)の何れか1項に記載の方法。
(9) 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる前に、体細胞をトリプシン処理する工程を含む、(1)から(8)の何れか1項に記載の方法。
(10) (1)から(9)の何れかに記載の方法により得ることができる多能性細胞。
(11) 以下の工程を含む、多能性細胞から分化誘導された体細胞を製造する方法。
(a)(1)から(9)の何れかに記載の方法により多能性細胞を製造する工程;及び
(b)工程(a)で得られた多能性細胞を分化誘導する工程。
(12) (11)に記載の方法により得ることができる、多能性細胞から分化誘導された体細胞。
(13) 発酵能を有する細菌、その成分又はその分泌物を含む、体細胞から多能性細胞を製造するためのキット。
(14) がん細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含む、がん細胞から非がん細胞を製造する方法。
(15) がん細胞がヒトのがん細胞である、(14)に記載の方法。
(16) 発酵能を有する細菌が、乳酸菌、又は納豆菌である、(14)又は(15)に記載の方法。
(17) 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、(16)に記載の方法。
(18) 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、(17)に記載の方法。
(19) がん細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程が、がん細胞に、発酵能を有する細菌、その成分又はその分泌物を感染させる工程である、(14)から(18)の何れか1項に記載の方法。
(20) (14)から(19)の何れかに記載の方法により得ることができる非がん細胞。
(21) 乳酸菌、その成分又はその分泌物を含む、抗がん剤。
(22) 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、(21)に記載の抗がん剤。
(23) 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、(21)又は(22)に記載の抗がん剤。
(24) がん細胞に、乳酸菌、その成分又はその分泌物を接触させる工程、及びがん細胞から非がん細胞への転換の程度を測定する工程を含む、乳酸菌由来の抗がん成分をスクリーニングする方法。
(25) 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、(24)に記載の方法。
(26) 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、(24)又は(25)に記載の方法。
 本発明においては、人体に存在して細胞と共存している乳酸菌などの発酵能を有する細菌を体細胞に感染させることにより多能性幹細胞を製造することができる。本発明の方法においては、人工的な遺伝子の導入操作は全く必要としないことから、製造される多能性細胞の癌化の可能性は正常状態とほとんど差がないと言える。本発明による乳酸菌などの発酵能を有する細菌を用いた多能性細胞の製造方法は、医療分野(創薬研究、並びに医薬品の安全性、有効性及び副作用の試験)、疾患研究(難病の原因解明、治療法や予防法の開発)、再生医療(神経、血管、臓器の機能修復)、並びに食品分野において有用である。
図1は、乳酸菌と一緒に培養したHDF細胞を示す。 図2は、HDF細胞に乳酸菌を感染させ、形成した細胞塊をアルカリファスファターゼ発色液で染色した結果を示す。 図3は、HDF細胞に乳酸菌を感染させ、形成した細胞塊を抗SSEA-4(MILLIPORE)抗体で染色した結果を示す。 図4は、HDF細胞に乳酸菌を感染させ、その細胞塊由来のcDNAについてRT-PCRを行った結果を示す。 図5は、HDF細胞に乳酸菌またはLactobacillus spを感染させた後、細胞塊を長期間維持できるか検討した結果を示す。 図6は、HDF細胞に乳酸菌を感染させ、抗α-SMA抗体(血管マーカー)、抗Desmin抗体 (中胚葉マーカー)、抗Tuj1抗体(神経細胞マーカー)、抗GFAP抗体(グリア細胞マーカー)で染色した結果を示す。 図7は、HDF細胞に乳酸菌を感染させた後、骨細胞、脂肪細胞又は軟骨細胞に分化誘導をうながす培養液を用いて培養した結果を示す。 図8は、HDF細胞に乳酸菌を感染させたあとの細胞塊を電子顕微鏡で観察した結果を示す。 図9は、コントロールのHDF細胞(C-HDF)と、乳酸菌を感染させたHDF細胞(Bala-HDF)からtRNAを精製し、マイクロアレイ遺伝子発現解析を行った結果を示す。 図10は、HDF細胞に乳酸菌を感染させた後、SCIDマウスの片側精巣に投与して、奇形種の形成を3ヶ月後に調べた結果を示す。 図11は、E12.5 のGFP マウスからMouse Embryonic Fibroblasts 細胞を単離し、乳酸菌(JCN1021)を感染させ,5日間培養した結果を示す。 図12は、乳がん細胞(MCF7)、肝がん細胞(HepG2)、肺がん細胞(A549)に乳酸菌(JCM1021)を感染させ4 日間培養した結果を示す。 図13は、肝がん細胞(HepG2)、乳がん細胞(MCF7)にヨーグルトを加え、9日間培養した結果を示す。 図14は、肝がん細胞(HepG2) に乳酸菌(JCM1021)を感染させた後、4、8、12日目に細胞を回収し、がん細胞のマーカーであるc-Myc とCEA を用いてRT-PCR を行った結果を示す。 図15は、肺がん細胞(A549)の細胞塊を作製し、ヌードマウス(8週齢のメス)の皮下に移植し、約1ヶ月後に腫瘍が形成される結果を示す。 図16は、腫瘍を皮下に移植して40日後、取り出して 重さを計測した結果を示す。コントロールは乳酸菌( JCM1021 )の非存在下で、乳酸菌3回は乳酸菌(2 x 108 in 0.2 ml)の存在下で腫瘍を移植後、3日と6日目に乳酸菌を注入した。 図17は、納豆菌又は大腸菌と一緒に培養したHDF細胞を示す。
 以下、本発明について更に詳細に説明する。
 本発明による体細胞から多能性細胞を製造する方法は、体細胞に発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含むことを特徴とする。
 本発明で初期化のために用いる体細胞の種類は特に限定されず、任意の体細胞を用いることができる。即ち、本発明で言う体細胞とは、生体を構成する細胞のうち生殖細胞以外の全ての細胞を包含し、分化した体細胞でもよいし、未分化の幹細胞でもよい。体細胞の由来は、哺乳動物、鳥類、魚類、爬虫類、両生類の何れでもよく特に限定されないが、好ましくは哺乳動物(例えば、マウスなどのげっ歯類、またはヒトなどの霊長類)であり、特に好ましくはヒト又はマウスである。また、ヒトの体細胞を用いる場合、胎児、新生児又は成人の何れの体細胞を用いてもよい。本発明の方法で製造される多能性細胞を再生医療など疾患の治療に用いる場合には、該疾患を患う患者自身から分離した体細胞を用いることが好ましい。また、本発明では体細胞としてがん細胞を用いることができる。がん細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させることによって、がん細胞から非がん細胞を製造することができる。本発明において、体細胞(がん細胞である場合を含む)に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程は、インビトロで行うことができる。
 本発明で言う多能性細胞とは、所定の培養条件下(具体的には、乳酸菌の存在下)において長期にわたって自己複製能を有し、また所定の分化誘導条件下において多種の細胞(外胚葉系の細胞、中胚葉系の細胞、又は内胚葉系の細胞など)への多分化能を有する細胞(このような細胞のことは、幹細胞とも称する)のことを言う。
 本発明では、体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる。
 本発明で用いる発酵能を有する細菌の種類は特に限定されず、乳酸菌、納豆菌などの好気性細菌でもよいし、ビフィズス菌などの嫌気性細菌でもよい。
 本発明で用いる乳酸菌の種類は特に限定されない。乳酸菌とは、発酵によって糖類から乳酸を産生する能力を有する菌の総称である。代表的な乳酸菌としては、ラクトバシラス属 (Lactobacillus) 、ビフィドバクテリウム属 (Bifidobacterium)、エンテロコッカス属 (Enterococcus) 、ラクトコッカス属 (Lactococcus) 、ペディオコッカス属(Pediococcus)、リューコノストック属 (Leuconostoc) 、ストレプトコッカス属(Streptococcus)などに属する乳酸菌が挙げられ、本発明においてもこれらの乳酸菌を使用することができる。好ましくは、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌を使用することができる。乳酸菌としては、特に好ましくは、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilusを使用することができる。
 発酵能を有する細菌の成分としては、細胞壁、核酸、タンパク質、細胞内小器官、脂質、糖、炭水化物、糖脂質、グリコシル化された糖などを挙げることができるが、これらに限定されるものではない。
 本発明においては、細胞培養用の通常の培地を用いて発酵能を有する細菌の存在下において培養を行うことにより、本発明の多能性細胞又は非がん細胞を分離及び培養することができる。本発明の多能性細胞を培養するための培地には、必要に応じて、各種の成長因子、サイトカイン、ホルモンなど(例えば、FGF-2、TGFβ-1、アクチビンA、ノギン(Nanoggin)、BDNF、NGF、NT-1、NT-2、NT-3等のヒトES細胞の増殖・維持に関与する成分)を添加してもよい。また、分離された多能性細胞の分化能及び増殖能は、ES細胞について知られている確認手段を利用することにより確認することができる。
 本発明の方法で製造される多能性細胞及び非がん細胞の用途は特に限定されず、各種の試験・研究や疾病の治療などに使用することができる。例えば、本発明の方法により得られた多能性細胞をレチノイン酸、EGFなどの増殖因子、又はグルココルチコイドなどで処理することにより、所望の分化細胞(例えば神経細胞、心筋細胞、肝細胞、膵臓細胞、血球細胞など)を誘導することができ、そのようにして得られた分化細胞を患者に戻すことにより自家細胞移植による幹細胞療法を達成することができる。
 本発明の多能性細胞を用いて治療を行うことができる中枢神経系の疾患としてはパーキンソン病、アルツハイマー病、多発性硬化症、脳梗塞、脊髄損傷などが挙げられる。パーキンソン病の治療のためには、多能性細胞をドーパミン作動性ニューロンへと分化しパーキンソン病患者の線条体に移植することができる。ドーパミン作動性ニューロンへの分化はマウスのストローマ細胞株であるPA6細胞と本発明の多能性細胞を無血清条件で共培養することで進めることができる。アルツイハイマー病、脳梗塞、脊髄損傷の治療においては本発明の多能性細胞を神経幹細胞に分化誘導した後に、傷害部位に移植することができる。
 また、本発明の多能性細胞は肝炎、肝硬変、肝不全などの肝疾患の治療に用いることができる。これら疾患を治療するには、本発明の多能性細胞を肝細胞あるいは肝幹細胞に分化し移植することができる。本発明の多能性細胞をアクチビンA存在下で5日間培養し、その後肝細胞増殖因子(HGF)で1週間程度培養することで肝細胞あるいは肝幹細胞を取得することができる。
 さらに本発明の多能性細胞はI型糖尿病などのすい臓疾患の治療に用いることができる。I型糖尿病の場合には、本発明の多能性細胞を膵臓β細胞に分化させ、膵臓に移植することができる。本発明の多能性細胞を膵臓β細胞に分化させる方法は、ES細胞を膵臓β細胞に分化させる方法に準じて行うことができる。
 さらに本発明の多能性細胞は虚血性心疾患に伴う心不全の治療に用いることができる。心不全の治療には、本発明の多能性細胞を心筋細胞に分化させた後に傷害部位に移植することが好ましい。本発明の多能性細胞は胚様体を形成させる3日前よりノギンを添加し培地中に添加することで、胚様体形成後2週間程度で心筋細胞を得ることができる。
 また、本発明によれば、がん細胞に、乳酸菌などの発酵能を有する細菌、その成分又はその分泌物を接触させることによって、がん細胞から非がん細胞を製造することができる。従って、乳酸菌、その成分又はその分泌物は抗がん剤として有用であり、乳酸菌、その成分又はその分泌物を含む抗がん剤を提供することができる。
 さらに、本発明によれば、がん細胞に、乳酸菌、その成分又はその分泌物を接触させ、がん細胞から非がん細胞への転換の程度を測定することによって、乳酸菌由来の抗がん成分をスクリーニングすることができる。上記スクリーニングによって同定される乳酸菌由来の抗がん成分は、抗がん剤として有用である。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
実施例1
 10cmシャーレでHDF細胞(Human Dermal Fibroblasts, CELL APPLICATIONS, INC. Cat No.106-05a)をFibroblast Growth Medium(CELL  APLICATION INC.)で培養した。10mlのCMF(Ca2+ Mg2+フリーバッファー)で細胞を洗浄した。0.25%トリプシン溶液(1mM EDTA含)を1ml加えて全体にいきわたらせた。細胞をCO2インキュベーター(37℃)に5分間入れた。トリプシン阻害溶液(CELL  APLICATION INC.)3mlを加え懸濁し、細胞数をカウントした。あらかじめ6 well plate に1 wellあたり7 x 107の乳酸菌[Lactococcus lactis subsp. Lactis (JCM20101)、Streptococcus salivarius subsp. thermophilus (JCM20026)、Lactobacillus sp. (JCM20061)、Lactobacillus acidophilus (JCM1021)]を各々入れておき、HDF細胞(5 x 105/2 ml)を加えた。乳酸菌は理化学研究所バイオリソースセンター 微生物材料開発室から購入したものを使用した。細胞をそのまま34℃、5% CO2インキュベータで培養した。
 その結果、数日後には細胞塊が観察でき、図1の写真は培養してから8日後のものを示す。
実施例2
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌[Lactococcus lactis subsp. Lactis (JCM20101)、Streptococcus salivarius subsp. thermophilus (JCM20026)、Lactobacillus sp. (JCM20061)]を各々感染させ(7 x 107)、34℃、5% CO2インキュベータで8日間培養後、細胞塊を4 well plateに移し、アルカリファスファターゼ発色液(Roche)に入れ、室温で1時間発色させた。
 その結果、図2に示すように細胞塊が紫色に発色したことから、乳酸菌を感染させたHDF細胞が多能性を有することが示唆された。
実施例3
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌(Lactococcus lactis subsp. Lactis; JCM20101)を感染させ(7 x 107)、34℃、5% CO2インキュベータで8日間培養後、形成された細胞塊を4% PFAで室温15分間固定し、マウス抗SSEA-4(MILLIPORE)抗体で染色した。
 その結果、図3に示すように細胞塊は多能性細胞が特異的に発現するSSEA-4抗原を発現していた。
実施例4
 HDF細胞(2 x 105/ml)を12well plateにまき、乳酸菌(Lactobacillus acidophilus; JCM1021、2 x 107)と感染させ34℃、5% CO2インキュベータで8日間培養した。5日間おきに培養液を半分ずつ交換し、2週間後に形成された細胞塊(20個)からTrizol試薬(Invitrogen)を用いてtRNAを精製した。 Oligo(dT)プライマーとSuperScriptTM III(Invitrogen)を用いてcDNAを合成し、多能性に関与すると報告されているいくつかの遺伝子に対するプライマーセットによりRT-PCR法を行った。2%アガロースゲルを用いて増幅されたDNAを電気泳動し、エチジウムブロマイド染色によりバンドを確認した。
 その結果、乳酸菌を感染させた細胞塊では、HDF細胞では発現していないc-Myc、Nanog、Oct3/4、Sox2、TDGF1の発現誘導が観察されたが、REX1、Fgf4、GDF3、ECAT16の発現はみられなかった。
実施例5
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌 (Streptococcus salivarius subsp. thermophilus; JCM20026)または(Lactobacillus sp.; JCM20061)を感染後(2 x 107)、5% CO2インキュベータで培養し、5日おきに培養液を半分ずつ交換し、細胞塊を長期間維持できるか検討した。培養には、乳酸菌を加えたFibroblast Growth Medium(CELL  APLICATION INC.)、または、加えないFibroblast Growth Medium(CELL  APLICATION INC.)を用いた。左の4枚の写真は培養30日後、右の2枚の写真は培養50日後を示す。
 その結果、図5に示すように、乳酸菌の存在下で細胞塊を培養すると50日後も細胞塊は維持できたが、乳酸菌非存在下で培養した細胞塊は細胞死をおこしたことから、細胞塊の維持には乳酸菌が必要であることが示唆された。
実施例6
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌(Lactococcus lactis subsp. Lactis; JCM20101、2 x 107)を感染させ、8日後に形成された細胞塊をポリLリジンとラミニン(Sigma、50μg/ml)でコートしたカバーグラス上で7日間培養した。4% PFAで室温15分間固定後、マウス抗α-SMA抗体(Sigma、血管マーカー)、ウサギ抗Desmin抗体 (Thermo、中胚葉マーカー)、マウス抗Tuj1抗体(R&D、神経細胞マーカー)、ウサギ抗GFAP抗体(Dako、グリア細胞マーカー)で染色した。
 その結果、図6に示すように、分化させた後の細胞は各々の抗体で認識されたことから、HDF細胞が様々なタイプの細胞に分化したことが示された。
実施例7
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌(Lactobacillus acidophilus; JCM1021、2 x 107)を感染させ、2週間後に細胞塊を4 well plateに移した。骨細胞(B; AはBの染色後の96 well)、脂肪細胞(C)、軟骨細胞(D)に分化誘導をうながす培養液(GIBCO; A10072-01, A10070-01, A10071-01)を500 ml加え、3日間おきに培養液を半分ずつ交換し、さらに2週間培養した。細胞分化を調べるために、各々のplate内の細胞をAlizarin Red S染色(骨)、Oil Red O染色(脂肪)、Alcian Blue染色(軟骨)により染色した。
 その結果、図7に示すように、乳酸菌を感染させた細胞塊はAlizarin Red S染色(骨)、Oil Red O染色(脂肪)、Alcian Blue染色(軟骨)により染色されたことにより、細胞の分化が確認できた。
実施例8
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌(Lactobacillus acidophilus; JCM1021、2 x 107)を感染させ、5日間おきに培養液を半分ずつ交換し、形成された細胞塊を一般的な樹脂包埋超薄切片法により電子顕微鏡で観察した(株式会社 東海電子顕微鏡解析に委託)。
 その結果、図8に示すように、乳酸菌(左図の赤矢印)は細胞質内に存在していた。右図は左写真の四角領域の拡大図を示す。
実施例9
 コントロールのHDF細胞(C-HDF)と乳酸菌(Lactobacillus acidophilus; JCM1021)を感染させたHDF細胞塊(Bala-HDF、20個)からTrizol試薬(Invitrogen)を用いてtRNAを精製し、マイクロアレイ遺伝子発現解析を行った(Agilent Whole Genome (4 x 44K) Human 1色法)。この実験では、細胞塊形成の効率を上げるために、ラクトフェリン(25μg/ml)を加えているので、細胞をBala-HDFと記載した。解析は株式会社Oncomicsに委託した。
 その結果を図9に示す。
 図9-1は遺伝子発現の増減が2倍以上ある遺伝子についてクラスター解析を行った。C-HDFに対してBala-HDFで発現が増加している遺伝子群をグループI、C-HDFに対してBala-HDFで発現量がほとんど変化しない遺伝子群をグループII、C-HDFに対してBala-HDFで発現が減少している遺伝子群をグループIIIとした。図9-2では、幹細胞の多能性に関与すると報告されている遺伝子群に注目して解析を行った。
 C-HDFに対してBala-HDFで発現が30倍以上上昇している遺伝子は108個存在した。逆に、C-HDFに対してBala-HDFで発現が30倍以上減少している遺伝子は126個存在した(表1)。多能性幹細胞関連の遺伝子としては、C-HDFに対してBala-HDFにおいてNanog遺伝子が8.5倍、Oct3/4遺伝子が2.7倍の発現上昇を示した。注目すべき遺伝子としては、あらゆる動物の体軸に沿った構造の決定に中心的な役割を担っているHox遺伝子群(Homeotic genes)が、C-HDFに対してBala-HDFで発現が30倍以上減少している遺伝子の中に19種類も存在していることである(表1におけるNo.1~4、6、8、10、13、14、17、18、22、35、47、53、59、74、117、121)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例10
 6 well plate内で、HDF細胞(5 x 105/2 ml)に乳酸菌(Lactobacillus acidophilus; JCM1021、2 x 107)を感染させた後、2週間後に細胞塊を集め、トリプシン処理を行い、5 x 105/30 μl細胞をSCIDマウス(オス9-10週令)の片側精巣に投与して、奇形種の形成を3ヶ月後に調べた。
 その結果、図10の写真のように、乳酸菌感染細胞を投与した精巣(上)ではコントロールの精巣(下;同一マウス個体の反対側の精巣)と比べて少し大きくはなっていたが、奇形種の形成は確認されなかった。パラフィン切片(6μm)を作製し、HE染色を行った。JCM1021を感染させたHDF細胞を移植した精巣とコントロールの精巣の構造には差が見られなかった。
実施例11
 理化学研究所 発生・再生科学総合研究センター作製のマウス胚線維芽細胞(MEF細胞)採取方法に従った。12.5日目胚のGFPマウスを子宮から摘出し、頭部、尾部、四肢および内臓を除去した。手術用ハサミで残った組織を細かく切り刻み、0.25% trypsin-EDTA液に37℃で15分間インキュベートした。セルストレーナーで濾過後、細胞培養液に懸濁し、10cmシャーレ1枚に胎児1匹分の細胞をまいた。コンフルエントになったら、HDF細胞の場合と同様に乳酸菌(JCM1021)を感染させ、5日間培養した。
 その結果、図11の写真のように、乳酸菌を感染させたMEF細胞は細胞塊を形成した。
実施例12
 理化学研究所 バイオリソースセンターから乳がん細胞株(MCF7; RBRC-RCB1904)、肺がん細胞株(A549; RBRC-RCB0098)、肝がん細胞株(HEP G2; RBRC-RCB1648)を入手した。実施例1と同様に、あらかじめ6 well plate に1 wellあたり1 x 108の乳酸菌[Lactococcus lactis subsp. Lactis (JCM20101)]を入れておき、5 x 105のがん細胞を加える。そのまま34℃、5% CO2インキュベータで培養する。
 結果を図12に示す。図12に示すように数日後には細胞塊が観察できる。写真は培養してから4日後のものである。
実施例13
 実施例1と同様の実験を行ったが、あらかじめ6 well plate に1 wellあたり50μlの市販ヨーグルトを入れておき、5 x 105のがん細胞を加える。そのまま34℃、5% CO2インキュベータで培養する。
 結果を図13に示す。図13に示すように数日後には細胞塊が観察できる。写真は培養してから9日後のものである。
実施例14
 実施例12と同様の実験を肝がん細胞株(HEP G2)と乳酸菌(JCM20101)を用いて行った。感染から4, 8, 12日目に細胞を回収し、がん細胞のマーカーであるc-Mycとcarcino embryonic antigen(CEA)を用いてRT-PCR法を行った。
 結果を図14に示す。図14に示すように、両マーカー分子とも0日目には発現しているが、c-Mycは4日目、CEAは8日目から発現の減少が観察された。
実施例15
 Hanging Drop法とは、細胞をトリプシン処理して1 x 105 / 20μlの割合で培養液に懸濁し、シャーレの蓋にドロップした後、蓋をひっくり返し、1晩置く。翌日、ドロップの先端に細胞塊が観察され、細胞を塊としてマウスに移植するための方法である。肺がん細胞株(A549)を用いてHanging Drop法を行い、細胞塊を作製した。これらの細胞塊5個をヌードマウス(8週齢、メス)の皮下に移植した。約1ヶ月後、腫瘍が形成される(図15)。この腫瘍を取り出し、4 x 4 mmの大きさにトリミングする。コントロールは腫瘍の固まりをPBS液に浸ける。実験対象として、腫瘍の固まりを乳酸菌(JCM20101)の液(1 x 10/ml)に室温で20分間浸ける。その後、1個の腫瘍の固まりをヌードマウス(8週齢、メス)の皮下に移植した。乳酸菌の実験対象マウスには、3、6日目に乳酸菌を含む液を注入した。40日後に、腫瘍を取り出し、その重さを計測した。
 結果を図16に示す。腫瘍を移植したマウスと比べ、乳酸菌を感染させ、その後乳酸菌を注入したマウスでは、腫瘍が小さくなっていた。
実施例16
 実施例1と同様に、あらかじめ6 well plate に1 wellあたり1 x 108の納豆菌または大腸菌(XLI-blue: Stratagene社)を入れておき、5 x 105のHDF細胞(Human Dermal Fibroblasts, CELL APPLICATIONS, INC. Cat No.106-05a)を加える。そのまま34℃、5% CO2インキュベータで培養する。
 結果を図17に示す。図17に示すように、納豆菌存在下では数日後に細胞塊が観察できるが、大腸菌存在下では、細胞塊は形成されなかった。写真は培養してから8日後のものを示す。

Claims (26)

  1. 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含む、体細胞から多能性細胞を製造する方法。
  2. 体細胞が、哺乳類動物の体細胞である、請求項1に記載の方法。
  3. 体細胞がヒト又はマウスの体細胞である、請求項1又は2に記載の方法。
  4. 体細胞が、がん細胞である、請求項1から3の何れか1項に記載の方法。
  5. 発酵能を有する細菌が、乳酸菌、又は納豆菌である、請求項1から4の何れか1項に記載の方法。
  6. 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、請求項5に記載の方法。
  7. 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、請求項6に記載の方法。
  8. 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程が、体細胞に、発酵能を有する細菌、その成分又はその分泌物を感染させる工程である、請求項1から7の何れか1項に記載の方法。
  9. 体細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる前に、体細胞をトリプシン処理する工程を含む、請求項1から8の何れか1項に記載の方法。
  10. 請求項1から9の何れかに記載の方法により得ることができる多能性細胞。
  11. 以下の工程を含む、多能性細胞から分化誘導された体細胞を製造する方法。
    (a)請求項1から9の何れかに記載の方法により多能性細胞を製造する工程;及び
    (b)工程(a)で得られた多能性細胞を分化誘導する工程。
  12. 請求項11に記載の方法により得ることができる、多能性細胞から分化誘導された体細胞。
  13. 発酵能を有する細菌、その成分又はその分泌物を含む、体細胞から多能性細胞を製造するためのキット。
  14. がん細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程を含む、がん細胞から非がん細胞を製造する方法。
  15. がん細胞がヒトのがん細胞である、請求項14に記載の方法。
  16. 発酵能を有する細菌が、乳酸菌、又は納豆菌である、請求項14又は15に記載の方法。
  17. 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、請求項16に記載の方法。
  18. 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、請求項17に記載の方法。
  19. がん細胞に、発酵能を有する細菌、その成分又はその分泌物を接触させる工程が、がん細胞に、発酵能を有する細菌、その成分又はその分泌物を感染させる工程である、請求項14から18の何れか1項に記載の方法。
  20. 請求項14から19の何れかに記載の方法により得ることができる非がん細胞。
  21. 乳酸菌、その成分又はその分泌物を含む、抗がん剤。
  22. 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、請求項21に記載の抗がん剤。
  23. 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、請求項21又は22に記載の抗がん剤。
  24. がん細胞に、乳酸菌、その成分又はその分泌物を接触させる工程、及びがん細胞から非がん細胞への転換の程度を測定する工程を含む、乳酸菌由来の抗がん成分をスクリーニングする方法。
  25. 乳酸菌が、Lactococcus属、Streptococcus属、又はLactobacillus属の乳酸菌である、請求項24に記載の方法。
  26. 乳酸菌が、Lactococcus lactis subsp. Lactis、Streptococcus salivarius subsp. thermophilus 、Lactobacillus sp.、又はLactobacillus acidophilus である、請求項24又は25に記載の方法。
PCT/JP2012/067544 2011-07-11 2012-07-10 発酵能を有する細菌を用いた多能性細胞の製造方法 WO2013008803A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12811861.9A EP2733204A4 (en) 2011-07-11 2012-07-10 METHOD FOR THE PRODUCTION OF A PLURIPOTENTIAL CELL WITH FERMENTABLE BACTERIUM
JP2013523947A JP6040494B2 (ja) 2011-07-11 2012-07-10 発酵能を有する細菌を用いた多能性細胞の製造方法
US14/131,498 US9587224B2 (en) 2011-07-11 2012-07-10 Method for producing pluripotent cell using bacterium having fermentation ability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-152479 2011-07-11
JP2011152479 2011-07-11
JP2012107210 2012-05-09
JP2012-107210 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013008803A1 true WO2013008803A1 (ja) 2013-01-17

Family

ID=47506086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067544 WO2013008803A1 (ja) 2011-07-11 2012-07-10 発酵能を有する細菌を用いた多能性細胞の製造方法

Country Status (4)

Country Link
US (1) US9587224B2 (ja)
EP (1) EP2733204A4 (ja)
JP (1) JP6040494B2 (ja)
WO (1) WO2013008803A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167943A1 (ja) * 2013-04-11 2014-10-16 国立大学法人熊本大学 細胞の再プログラミングを誘導するタンパク質含有成分、並びに該成分を用いた多能性細胞の製造方法および該成分を含む培地
WO2015174364A1 (ja) * 2014-05-11 2015-11-19 国立大学法人熊本大学 細胞の再プログラミング誘導方法、および多能性細胞の製造方法
WO2017086329A1 (ja) * 2015-11-16 2017-05-26 国立大学法人熊本大学 細胞の再プログラミングを誘導する組成物、及び該組成物を用いた多能性細胞の製造方法
JP2022534150A (ja) * 2018-12-10 2022-07-28 コリア フード リサーチ インスティテュート ラクトバチルス・サケイwikim30を有効成分として含む癌の予防又は治療用薬学組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946053B1 (ja) * 1967-10-28 1974-12-07
JPH0930981A (ja) * 1995-07-17 1997-02-04 Meiji Milk Prod Co Ltd 免疫賦活組成物
WO2004087218A1 (ja) * 2003-03-31 2004-10-14 Ajinomoto Co., Inc. Ctコロノグラフィ又はmrコロノグラフィにおける、消化管の病変検出能改善剤ならびに腸管洗浄用組成物および腸管洗浄用キットまたは包装品
JP2005097280A (ja) * 2003-08-27 2005-04-14 Aaku Giken:Kk 抗腫瘍活性剤
JP2005154387A (ja) * 2003-11-28 2005-06-16 National Institute Of Agrobiological Sciences 免疫調節性機能を誘導する乳酸菌類・成分とその取得方法
WO2007027156A1 (en) * 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells
WO2010069920A1 (en) * 2008-12-18 2010-06-24 Bracco Imaging Spa Probiotic formulations
JP2010537666A (ja) * 2007-09-04 2010-12-09 プロセル セラピューティックス インコーポレーティッド 細胞透過性p18組換えタンパク質、これをコードするポリヌクレオチド及びこれを有効成分として含有する抗癌組成物
WO2011049099A1 (ja) * 2009-10-20 2011-04-28 国立大学法人大阪大学 癌幹細胞の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4059999A (en) 1998-06-05 1999-12-30 Wakamoto Pharmaceutical Co., Ltd. Lactic acid bacterium-containing compositions, drugs and foods
GB0113118D0 (en) * 2001-05-31 2001-07-18 Intercytex Ltd Stem Cells
JP2004248505A (ja) * 2001-09-21 2004-09-09 Norio Nakatsuji 移植抗原の一部または全てを欠除したes細胞由来の未分化な体細胞融合細胞およびその製造
EP1391503A1 (en) * 2002-08-12 2004-02-25 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts A method of cell re-programming by cytoplasmic transfer
WO2005033297A1 (en) 2003-09-19 2005-04-14 The Rockefeller University Compositions, methods and kits relating to reprogramming adult differentiated cells and production of embryonic stem cell-like cells
WO2007026255A2 (en) * 2005-06-22 2007-03-08 Universitetet I Oslo Dedifferentiated cells and methods of making and using dedifferentiated cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946053B1 (ja) * 1967-10-28 1974-12-07
JPH0930981A (ja) * 1995-07-17 1997-02-04 Meiji Milk Prod Co Ltd 免疫賦活組成物
WO2004087218A1 (ja) * 2003-03-31 2004-10-14 Ajinomoto Co., Inc. Ctコロノグラフィ又はmrコロノグラフィにおける、消化管の病変検出能改善剤ならびに腸管洗浄用組成物および腸管洗浄用キットまたは包装品
JP2005097280A (ja) * 2003-08-27 2005-04-14 Aaku Giken:Kk 抗腫瘍活性剤
JP2005154387A (ja) * 2003-11-28 2005-06-16 National Institute Of Agrobiological Sciences 免疫調節性機能を誘導する乳酸菌類・成分とその取得方法
WO2007027156A1 (en) * 2005-09-02 2007-03-08 Agency For Science, Technology And Research Method of deriving mesenchymal stem cells
JP2010537666A (ja) * 2007-09-04 2010-12-09 プロセル セラピューティックス インコーポレーティッド 細胞透過性p18組換えタンパク質、これをコードするポリヌクレオチド及びこれを有効成分として含有する抗癌組成物
WO2010069920A1 (en) * 2008-12-18 2010-06-24 Bracco Imaging Spa Probiotic formulations
WO2011049099A1 (ja) * 2009-10-20 2011-04-28 国立大学法人大阪大学 癌幹細胞の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167943A1 (ja) * 2013-04-11 2014-10-16 国立大学法人熊本大学 細胞の再プログラミングを誘導するタンパク質含有成分、並びに該成分を用いた多能性細胞の製造方法および該成分を含む培地
WO2015174364A1 (ja) * 2014-05-11 2015-11-19 国立大学法人熊本大学 細胞の再プログラミング誘導方法、および多能性細胞の製造方法
JPWO2015174364A1 (ja) * 2014-05-11 2017-04-20 国立大学法人 熊本大学 細胞の再プログラミング誘導方法、および多能性細胞の製造方法
US10729723B2 (en) 2014-05-11 2020-08-04 National University Corporation Kumamoto University Method for inducing cell reprogramming, and method for producing pluripotent cells
WO2017086329A1 (ja) * 2015-11-16 2017-05-26 国立大学法人熊本大学 細胞の再プログラミングを誘導する組成物、及び該組成物を用いた多能性細胞の製造方法
JPWO2017086329A1 (ja) * 2015-11-16 2018-09-06 国立大学法人 熊本大学 細胞の再プログラミングを誘導する組成物、及び該組成物を用いた多能性細胞の製造方法
JP7016521B2 (ja) 2015-11-16 2022-02-07 国立大学法人 熊本大学 細胞の再プログラミングを誘導する組成物、及び該組成物を用いた多能性細胞の製造方法
US11702636B2 (en) 2015-11-16 2023-07-18 National University Corporation Kumamoto University Composition inducing cell reprogramming and production method for multifunction cells using said composition
JP2022534150A (ja) * 2018-12-10 2022-07-28 コリア フード リサーチ インスティテュート ラクトバチルス・サケイwikim30を有効成分として含む癌の予防又は治療用薬学組成物

Also Published As

Publication number Publication date
JPWO2013008803A1 (ja) 2015-02-23
JP6040494B2 (ja) 2016-12-07
EP2733204A1 (en) 2014-05-21
US20140255942A1 (en) 2014-09-11
EP2733204A4 (en) 2014-10-01
US9587224B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
JP2020124219A (ja) 細胞の再プログラミングのための方法とその用途
Borooah et al. Using human induced pluripotent stem cells to treat retinal disease
RU2646099C2 (ru) Способ получения индуцированных нервных стволовых клеток, перепрограммированных из клеток, не являющихся нервными, с использованием hmga2
KR20080086433A (ko) 시험관 내와 생체 내에서의 세포를 재생시키는 방법들
Walsh et al. Human central nervous system tissue culture: a historical review and examination of recent advances
JP6040494B2 (ja) 発酵能を有する細菌を用いた多能性細胞の製造方法
WO2012133942A1 (ja) 生体の臍帯又は脂肪組織から単離できる多能性幹細胞
JP6275646B2 (ja) Mait様細胞およびその作製方法
KR20140120834A (ko) 샤르코-마리-투스 질환 치료제의 스크리닝 방법 및 이에 이용되는 자가 분화 운동신경세포
KR20160063066A (ko) 유전자 전달용 그래핀 옥사이드―폴리에틸렌이민 복합체 및 이의 용도
JP4576545B2 (ja) 羊膜由来因子による胚性幹細胞の培養方法
WO2018025975A1 (ja) インビトロで多能性幹細胞を分化誘導する方法
WO2014167943A1 (ja) 細胞の再プログラミングを誘導するタンパク質含有成分、並びに該成分を用いた多能性細胞の製造方法および該成分を含む培地
KR102137884B1 (ko) 타우로우루소디옥시콜린산을 포함하는 고효율 세포전환용 배지 첨가제
KR102137883B1 (ko) 페닐부틸산나트륨을 포함하는 고효율 세포전환용 배지 첨가제
US9976118B2 (en) Method for inducing tailored pluripotent stem cells using extract of plant stem cells or plant dedifferentiated stem cells, and pluripotent stem cells produced by means of the method
US10729723B2 (en) Method for inducing cell reprogramming, and method for producing pluripotent cells
KR100683199B1 (ko) 신경전구세포를 콜린성 신경세포로 분화시키는 방법 및그에 사용되는 배지
KR101907801B1 (ko) 유전자 전달용 그래핀 옥사이드―폴리에틸렌이민 복합체 및 이의 용도
KR102137885B1 (ko) 부틸화하이드록시아니솔을 포함하는 고효율 세포전환용 배지 첨가제
WO2022244502A1 (ja) 皮膚付属器誘導能を有する細胞、及びその製造方法
Islam A review on successful approaches of converting adult somatic cells into induced pluripotent stem cells (iPSCs)
JP2017522909A (ja) 間葉系幹細胞から誘導した万能幹細胞株を製造する方法及び得られた細胞株
JP2023090959A (ja) 幹細胞の製造方法、及び癌細胞化のリスク低減方法
De Lazaro Del Rey In vivo cell reprogramming to pluripotency: generating induced pluripotent stem cells in situ for tissue regeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012811861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14131498

Country of ref document: US