WO2013008750A1 - ターボ圧縮機 - Google Patents

ターボ圧縮機 Download PDF

Info

Publication number
WO2013008750A1
WO2013008750A1 PCT/JP2012/067339 JP2012067339W WO2013008750A1 WO 2013008750 A1 WO2013008750 A1 WO 2013008750A1 JP 2012067339 W JP2012067339 W JP 2012067339W WO 2013008750 A1 WO2013008750 A1 WO 2013008750A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
demister
housing
cover
lubricating oil
Prior art date
Application number
PCT/JP2012/067339
Other languages
English (en)
French (fr)
Inventor
兼太郎 小田
信義 佐久間
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201280034158.XA priority Critical patent/CN103649547B/zh
Priority to EP12811147.3A priority patent/EP2733360B1/en
Publication of WO2013008750A1 publication Critical patent/WO2013008750A1/ja
Priority to US14/141,510 priority patent/US9416681B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a turbo compressor [turbo compressor] capable of compressing fluid with a plurality of impellers.
  • the turbo compressor includes a housing in which lubricating oil is accommodated, a large-diameter gear accommodated in the housing, and a demister disposed above the large-diameter gear in the housing.
  • the large diameter gear supplies lubricating oil by its rotation.
  • the demister is provided with an air inlet that communicates with the outside of the housing. The demister captures the smoke from the lubricating oil (splashed lubricating oil) that has been scraped by the rotation of the large-diameter gear and returns it to the bottom of the housing.
  • the intake port of the demister is connected to a lower pressure space than the inside of the housing via a pressure equalizing pipe or the like, and the pressure rise inside the housing is suppressed.
  • oil smoke generated by the rotation of the gear member is generated. For this reason, when the air in the housing is sucked from the intake port, the demister captures oil smoke and returns it to the lower part of the housing to prevent the lubricating oil from being discharged out of the housing.
  • the amount of lubricating oil passing through the demister is large, and the lubricating oil cannot be completely captured by the demister, and the lubricating oil may be discharged out of the housing.
  • An object of the present invention is to provide a turbo compressor capable of reducing the amount of lubricating oil passing through a demister.
  • a feature of the present invention is a turbo compressor, which is disposed above the gear in the housing, a housing in which the lubricating oil is accommodated, a gear accommodated in the housing and supplied with the lubricating oil.
  • An intake port that communicates with the outside of the housing, and a demister that captures the smoke of the lubricating oil in the housing, and the lubricating oil that is scraped up by the gear and that covers the gear.
  • a gear cover that captures and drops downward, and a demister cover that is provided in the vicinity of the demister and that drops the lubricating oil captured by the demister downward, the demister cover and an inner wall surface of the housing,
  • a turbo compressor characterized in that a minute gap is formed between the two.
  • the demister cover for dropping the lubricating oil captured by the demister downward is provided in the vicinity of the demister, the demister cover can suppress the arrival of the lubricating oil that could not be captured by the gear cover.
  • the amount of lubricating oil reaching the demister can be reduced by the gear cover and the demister cover.
  • a lower end edge of the gear cover facing the rotation direction of the gear is extended longer than a lower end edge on the opposite side. In this way, it is possible to effectively suppress the scattering of the lubricating oil on the side where the amount of lubricating oil scraped up by the gear is large. Moreover, since the lower end edge on the opposite side of the gear cover has a minimum necessary length, the gear cover can be reduced in weight.
  • a total area of the minute gaps is set larger than an opening area of the intake port of the demister. In this way, the amount of lubricating oil reaching the demister can be reduced by the demister cover without lowering the intake function of the demister.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is a perspective view of the demister and demister cover of the turbo compressor. It is a perspective view of the gear cover of the said turbo compressor.
  • the turbo chiller 101 is a device for generating cooling air-conditioning cooling water.
  • the turbo refrigerator 101 includes a condenser 103, an economizer 105, an evaporator 107, and the turbo compressor 1.
  • the condenser 103 is connected to the turbo compressor 1 through a flow path F1 and is connected to the economizer 105 through a flow path F2 in which an expansion valve (pressure reducing valve) 109 is disposed.
  • the condenser 103 is supplied with the gas refrigerant [refrigerant gas] C1 compressed by the turbo compressor 1 via the flow path F1, and the condenser 103 supplies the compressed gas refrigerant C1 to the liquid refrigerant [refrigerant liquid] C2. Condensed into (part of the gas refrigerant remains).
  • the liquid refrigerant C2 condensed by the condenser 103 is depressurized by the expansion valve 109 via the flow path F2, and supplied to the economizer 105.
  • the economizer 105 is connected to the turbo compressor 1 through a flow path F3 and is connected to the evaporator 107 through a flow path F4 in which an expansion valve (pressure reducing valve) 111 is disposed.
  • the economizer 105 temporarily stores liquid refrigerant C2 (partially gas refrigerant) that has been condensed by the condenser 103 and then decompressed by the expansion valve (reducing valve) 109.
  • the gas-phase component (gas refrigerant) C3 of the liquid refrigerant C2 (partly gas refrigerant) stored in the economizer 105 is supplied to the second compression stage [second of the turbo compressor 1 via the flow path F3. compression stage] 23.
  • liquid-phase component of the liquid refrigerant C2 (partly gas refrigerant) stored in the economizer 105 is supplied to the evaporator 107 after being decompressed by the expansion valve 111 on the flow path F4. .
  • the evaporator 107 is connected to the first compression stage 21 of the turbo compressor 1 via the flow path F5.
  • the evaporator 107 evaporates the liquid refrigerant C2 decompressed on the flow path F4 into the gas refrigerant C4.
  • the gas refrigerant C4 evaporated by the evaporator 107 is supplied to the first compression stage 21 of the turbo compressor 1 through the flow path F5.
  • the turbo compressor 1 is connected to the condenser 103 via the flow path F ⁇ b> 1 and has a first compression stage 21 and a second compression stage 23.
  • the turbo compressor 1 compresses the gas refrigerant C4 supplied via the flow path F5 by the first compression stage 21 and discharges it to the flow path F3, and also supplies the gas refrigerant C3 (the first refrigerant C3 supplied via the flow path F3).
  • the gas is compressed by the second compression stage 23 (including the gas refrigerant discharged from the first compression stage 21) and discharged to the flow path F1 as the gas refrigerant C1.
  • the gas refrigerant C1 compressed by the turbo compressor 1 is supplied to the condenser 103 via the flow path F1.
  • the cooling water for air conditioning is cooled by heat exchange with the refrigerant in the evaporator 107.
  • turbo compressor 1 will be described with reference to FIGS.
  • the turbo compressor 1 includes a gear housing 3 in which lubricating oil is accommodated, a gear 5 accommodated in the gear housing 3, and a demister 9 disposed above the gear 5 in the gear housing 3.
  • the gear 5 supplies lubricating oil by its rotation.
  • the demister 9 is provided with an air inlet 7 (see FIGS. 3 and 4) that communicates with the outside of the gear housing 3.
  • the demister 9 captures the smoke of the lubricating oil scraped up by the rotation of the gear 5 and returns it to the lower part of the gear housing 3.
  • a gear cover 11 that captures the lubricating oil scraped up by the rotation of the gear 5 and drops it on the lower part of the gear housing 3. Further, a demister cover 15 is provided for dropping the smoke of the lubricating oil captured by the demister 9 to the lower part of the gear housing 3. In the vicinity of the demister 9, a minute gap [narrow gap] 13 is formed between the demister cover 15 and the inner wall surface of the gear housing 3 (see FIGS. 2 and 3).
  • the lower edge of the gear cover 11 that faces the rotation direction of the gear 5 [an end edge of the gear cover 11 counter to a rotational direction (see an arrow in Fig. 3) of the gear 5 ] Extends longer than the lower edge on the opposite side (see FIGS. 3 and 5). Further, the total area of the minute gaps 13 formed between the demister cover 15 and the inner wall surface of the gear housing 3 is set larger than the opening area of the intake port 7 of the demister 9.
  • the turbo compressor 1 includes a housing 17, a gear unit 19, a first compression stage 21, a second compression stage 23, and the like.
  • the housing 17 includes a motor housing 25, the above-described gear housing 3, and a compressor housing 27, and the respective housings are fixed to each other by bolts or the like.
  • the housing 17 accommodates a gear unit 19, a first compression stage 21, and a second compression stage 23.
  • the gear unit 19 includes an output shaft [output shaft] 29 of a motor (drive source: not shown), a gear set [gear set] 31, and a rotary shaft [rotary shaft] 33.
  • the output shaft 29 is rotatably supported by the motor housing 25 via a bearing 35. The rotation of the output shaft 29 is transmitted to the gear set 31.
  • the gear set 31 is accommodated in the gear housing 3, and includes the gear 5 as the large-diameter gear and the pinion gear 37 as the small-diameter gear.
  • the gear 5 is fixed to the end of the output shaft 29 and rotates together with the output shaft 29.
  • the pinion gear 37 meshes with the gear 5 and increases the rotation speed of the output shaft 29.
  • the pinion gear 37 is fixed to the end of the rotating shaft 33 and rotates together with the rotating shaft 33.
  • One side in the axial direction of the rotating shaft 33 is rotatably supported by the gear housing 3 via the bearing 39 described above.
  • the other side of the rotating shaft 33 is rotatably supported by the compressor housing 27 via a bearing 41.
  • the first compression stage 21 and the second compression stage 23 are operated by the rotation of the rotating shaft 33.
  • the first compression stage 21 includes a first suction port [first inlet port] 43, a first impeller 45, and a first scroll chamber [first scroll chamber] 47.
  • the suction port 43 is provided in the compressor housing 27 and communicates with the flow path F5 (see FIG. 1).
  • the inlet 43 is provided with a plurality of inlet guide vanes 49 that adjust the suction flow rate of the gas refrigerant C4 as a fluid.
  • the inlet guide vane 49 is rotated by the drive mechanism 51 to change the effective opening area of the suction port 43 and adjust the suction flow rate of the gas refrigerant C4.
  • the suction port 43 sucks the gas refrigerant C4 evaporated by the evaporator 107 (see FIG. 1) and supplies it to the first impeller 45.
  • the first impeller 45 is fixed to the rotating shaft 33 and rotates together with the rotating shaft 33.
  • the first impeller 45 compresses the gas refrigerant C4 supplied from the suction port 43 by the rotation of the rotating shaft 33 and discharges it in the radial direction.
  • the compressed gas refrigerant C4 is supplied to the first scroll chamber 47.
  • the first scroll chamber 47 is provided in the compressor housing 27 and communicates with an external pipe (not shown) provided outside the housing 17.
  • the first scroll chamber 47 supplies the gas refrigerant C4 compressed by the first impeller 45 to the flow path F3 via an external pipe. Note that the first scroll chamber 47 may directly communicate with the flow path F3 without using an external pipe.
  • the second compression stage 23 includes a suction scroll chamber 53, a second impeller 55, and a second scroll chamber 57.
  • the suction scroll chamber 53 is provided in the gear housing 3 and communicates with the flow path F3 (see FIG. 1).
  • the suction scroll chamber 53 sucks the gas refrigerant C3 from the economizer 105 (see FIG. 1) and the gas refrigerant C4 compressed by the first compression stage 21 and supplies the drawn refrigerant C3 to the second impeller 55.
  • the second impeller 55 is fixed to the rotating shaft 33 and rotates together with the rotating shaft 33.
  • the second impeller 55 is disposed with its back surface facing the back surface of the first impeller 45.
  • the second impeller 55 compresses the gas refrigerant C3 supplied from the suction scroll chamber 53 by the rotation of the rotating shaft 33 and discharges it in the radial direction.
  • the compressed gas refrigerant C ⁇ b> 1 is supplied to the second scroll chamber 57.
  • the second scroll chamber 57 is provided in the gear housing 3 and communicates with the flow path F1 (see FIG. 1).
  • the second scroll chamber 57 supplies the gas refrigerant C1 compressed by the second impeller 55 to the condenser 103 via the flow path F1.
  • the rotation shaft 33 is rotated through the gear set 31 by the rotation of the output shaft 29 of the motor.
  • the first compression stage 21 and the second compression stage 23 are operated, and the refrigerant is compressed.
  • the gas refrigerant C4 flowing through the flow path F5 is supplied from the suction port 43 to the first impeller 45.
  • the gas refrigerant C4 supplied to the first impeller 45 is compressed by the first impeller 45 and supplied to the suction scroll chamber 53 of the second compression stage 23 via the first scroll chamber 47.
  • coolant C3 from the economizer 105 (refer FIG. 1) is also supplied to the suction scroll chamber 53 of the 2nd compression stage 23 via the flow path F3.
  • the gas refrigerant C3 (including the gas refrigerant from the first compression stage 21) supplied to the suction scroll chamber 53 is supplied to the second impeller 55.
  • the gas refrigerant C3 supplied to the second impeller 55 is compressed by the second impeller 55 and supplied to the condenser 103 (see FIG. 1) via the second scroll chamber 57 and the flow path F1.
  • An oil tank 59 for storing lubricating oil is provided below the gear housing 3.
  • the lubricating oil stored in the oil tank 59 is supplied to the bearings 35, 39, and 41 described above via an oil cooler (not shown) or an internal pipe (not shown) provided in the gear housing 3.
  • the sliding portion and the meshing portion of the gear communicate with the oil tank 59, and the lubricating oil that has lubricated and cooled the sliding portion and the meshing portion of the gear is dropped into the oil tank 59 by gravity and collected.
  • the turbo compressor 1 includes a pressure equalizing pipe that communicates the inside of the gear housing 3 with the vicinity of the suction port 43 in order to supply the gas refrigerant generated in the oil tank 59 to the vicinity of the suction port 43 when the turbo refrigerator 101 is started.
  • pressure equalizing pipe] 61 is provided.
  • the inside of the gear housing 3 in which the gear set 31 and the like are accommodated has a relatively high pressure, but the vicinity of the suction port 43 of the compressor housing 27 has a lower pressure than the inside of the gear housing 3. Therefore, in the pressure equalizing pipe 61, an air flow from the high pressure gear housing 3 to the vicinity of the suction port 43 of the compressor housing 27 on the low pressure side is generated due to the pressure difference.
  • the lubricating oil is scraped up by the rotation of the gear 5 of the gear set 31, and oil smoke is generated.
  • the oily smoke is discharged to the outside of the gear housing 3 by the airflow passing through the pressure equalizing pipe 61. Therefore, a demister 9 that captures the smoke of the lubricating oil is disposed in the gear housing 3.
  • the demister 9 is disposed above the gear 5, is fixed to the gear housing 3 with a bolt or the like, and has an open end of a pressure equalizing pipe 61 that is opened inside the gear housing 3. (See FIG. 2). Further, the demister 9 includes two intake ports 7 that are opened inside the gear housing 3. The inside of the demister 9 is configured by a lattice-shaped or mesh-shaped capturing member [catching member] that captures the lubricating oil, and the gas refrigerant that flows from the inlet 7 to the pressure equalizing pipe 61. The oil smoke mixed in is captured. The lubricating oil (oil smoke) captured by the demister 9 flows downward along the inclined surface of the demister cover 15 by its own weight, and drops from the minute gap 13 to the lower portion of the gear housing 3 (see FIG. 3). (See FIG. 2).
  • the gear cover 11 and the demister cover 15 are disposed in the gear housing 3.
  • the gear cover 11 is fixed to the gear housing 3 with a bolt or the like so as to cover the gear 5.
  • the gear cover 11 prevents the lubricating oil from being scattered by the gear 5, and collects the lubricating oil by dropping it into the oil tank 59 provided at the lower part of the gear housing 3 farthest from the demister 9.
  • the lower end edge of the gear cover 11 facing the rotation direction of the gear 5 extends longer than the lower end edge on the opposite side. For this reason, the gear cover 11 can efficiently receive the lubricating oil at the start of rotation of the gear 5 with the largest amount of scattered lubricating oil. Moreover, the gear cover 11 can be reduced in weight by making the lower end edge on the opposite side of the gear cover 11 the minimum necessary length.
  • a demister cover 15 is disposed above the gear cover 11.
  • the demister cover 15 is integrated with the demister 9 so as to incline downward from the air inlet 7 of the demister 9.
  • the inclination of the demister cover 15 allows the lubricating oil to flow downward against the gas flow sucked into the intake port 7 in consideration of the gas flow rate sucked from the intake port 7 and the lubricating oil viscosity. Is set.
  • a minute gap 13 (see FIGS. 2 and 3) is formed between the demister cover 15 and the inner wall surface of the gear housing 3.
  • the total area of the minute gaps 13 is set larger than the opening area of the intake port 7 of the demister 9. For this reason, it does not affect the intake of the gas at the intake port 7 (the intake amount is not reduced).
  • the demister cover 15 returns the lubricating oil captured by the demister 9 to the lower part of the gear housing 3, protects the vicinity of the intake port 7 from oil smoke, and the lubricating oil that could not be captured by the gear cover 11 reaches the intake port 7. Is suppressed.
  • the gear cover 11 that captures and drops the lubricating oil scraped up by the rotation of the gear 5 to the lower portion of the gear housing 3 is provided around the gear 5, so that the lubricating oil is stored. A long distance between the oil tank 59 and the demister 9 can be secured, and the arrival of the lubricating oil to the demister 9 can be suppressed.
  • a demister cover 15 for dropping the lubricating oil (smoke) captured by the demister 9 to the lower portion of the gear housing 3 is provided, and a minute gap 13 is formed between the demister cover 15 and the inner wall surface of the gear housing 3.
  • the demister cover 15 (and the minute gap 13) can suppress the arrival of the lubricating oil that could not be captured by the gear cover 11 to the intake port 7.
  • the amount of lubricating oil reaching the demister 9 can be reduced by the gear cover 11 and the demister cover 15.
  • the gear cover 11 facing the rotation direction of the gear 5 extends longer than the lower end edge on the opposite side, scattering of the lubricating oil on the side where the amount of lubricating oil scraped up by the gear 5 is large. Can be effectively suppressed. Furthermore, since the lower end edge on the opposite side of the gear cover 11 has a minimum necessary length, the gear cover 11 can be reduced in weight.
  • the demister cover 15 (and the minute gap 13) does not deteriorate the intake function of the demister 9.
  • the amount of lubricating oil reaching the demister 9 can be reduced.
  • two intake ports 7 that are opened in opposite directions are provided in parallel to the fixing surface of the demister 9 to the housing 17.
  • an intake port that opens in a direction perpendicular to the fixed surface may be provided.
  • the demister (and its inlet) may have any structure as long as it has a function of capturing oil smoke.
  • the gear cover 15 is formed so as to cover the gear 5.
  • the gear cover may have a shape that covers the pinion gear as long as the gear and the pinion gear can be engaged with each other.
  • the gear cover may have any shape as long as scattering of the lubricating oil by the gear (and generation of oil smoke accompanying it) can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • General Details Of Gearings (AREA)

Abstract

 ターボ圧縮機は、潤滑油が収容されるハウジングと、前記ハウジング内に収容され、前記潤滑油が供給されるギヤと、前記ハウジング内の前記ギヤの上方に配置され、前記ハウジングの外部と連通する吸気口が設けられ、前記ハウジング内の前記潤滑油の油煙を捕捉するデミスタと、前記ギヤを覆うように設けられた、前記ギヤによって掻き上げられた前記潤滑油を捕捉して下方に滴下させるギヤカバーと、前記デミスタの近傍に設けられ、前記デミスタが捕捉した前記潤滑油を下方に滴下させるデミスタカバーと、を備えている。ここで、前記デミスタカバーと前記ハウジングの内壁面との間に微小隙間が形成されている。上記ターボ圧縮機によれば、ギヤカバーとデミスタカバーとによってデミスタを流れる潤滑油量を低減することができる。

Description

ターボ圧縮機
 本発明は、複数のインペラで流体を圧縮可能なターボ圧縮機[turbo compressor]に関する。
 従来、ターボ冷凍機[turbo refrigerator]などに適用されるターボ圧縮機としては、下記特許文献1に開示されたものが知られている。上記ターボ圧縮機は、潤滑油が収容されたハウジングと、ハウジング内に収容された大径ギアと、ハウジング内で大径ギアの上方に配置されたデミスタ[demister]とを備えている。大径ギアは、その回転によって潤滑油を供給する。デミスタには、ハウジングの外部と連通する吸気口が設けられている。デミスタは、大径ギアの回転によって掻き上げられた潤滑油[splashed lubricating oil]の油煙を捕捉して、ハウジングの下部に戻す。
 上記ターボ圧縮機では、デミスタの吸気口は均圧管などを介してハウジング内部よりも低圧力の空間に接続されており、ハウジング内部の圧力上昇が抑制されている。また、ハウジング内には、ギヤ部材の回転によって掻き上げられた潤滑油の油煙[oil mist]が発生している。このため、デミスタは、ハウジング内の空気が吸気口から吸入される際に、油煙を捕捉してハウジングの下部に戻して潤滑油のハウジング外への排出を防止している。
日本国特開2011-26960号公報
 しかし、上記ターボ圧縮機では、デミスタを通過する潤滑油の量が多く、デミスタで潤滑油を完全に捕捉することができず、潤滑油がハウジング外に排出される可能性があった。
 本発明の目的は、デミスタを通過する潤滑油の量を減少させることができるターボ圧縮機を提供することにある。
 本発明の特徴は、ターボ圧縮機であって、潤滑油が収容されるハウジングと、前記ハウジング内に収容され、前記潤滑油が供給されるギヤと、前記ハウジング内の前記ギヤの上方に配置され、前記ハウジングの外部と連通する吸気口が設けられ、前記ハウジング内の前記潤滑油の油煙を捕捉するデミスタと、前記ギヤを覆うように設けられた、前記ギヤによって掻き上げられた前記潤滑油を捕捉して下方に滴下させるギヤカバーと、前記デミスタの近傍に設けられ、前記デミスタが捕捉した前記潤滑油を下方に滴下させるデミスタカバーと、を備えており、前記デミスタカバーと前記ハウジングの内壁面との間に微小隙間が形成されている、ことを特徴とするターボ圧縮機、を提供する。
 上記ターボ圧縮機では、ギヤによって掻き上げられる潤滑油をハウジングの下方に滴下させるギヤカバーがギヤを覆うように設けられるので、ハウジング下方に収容された潤滑油とデミスタとの間の距離を長く確保でき、潤滑油のデミスタへの到達を抑制できる。
 また、デミスタが捕捉した潤滑油を下方に滴下させるデミスタカバーがデミスタの近傍に設けられるので、ギヤカバーで捕捉できなかった潤滑油の吸気口7への到達をデミスタカバーによって抑制できる。
 従って、上記ターボ圧縮機によれば、ギヤカバーとデミスタカバーとによって、デミスタに到達する潤滑油量を減少させることができる。
 ここで、前記ギヤカバーは、前記ギヤの回転方向と対向する前記ギヤカバーの下端縁が、反対側の下端縁より下方に長く延出されていることが好ましい。このようにすれば、ギヤによって掻き上げられる潤滑油量が多い側の潤滑油の飛散を効果的に抑制できる。また、ギヤカバーの反対側の下端縁は必要最低限の長さとされるので、ギヤカバーを軽量化できる。
 また、前記微小隙間の合計面積が、前記デミスタの前記吸気口の開口面積より大きく設定されていることが好ましい。このようにすれば、デミスタの吸気機能を低下させることなく、デミスタカバーによってデミスタに到達する潤滑油量を減少させることができる。
ターボ圧縮機の実施形態を備えたターボ冷凍機のブロック図である。 上記ターボ圧縮機の断面図である。 図2中のIII-III線断面図である。 上記ターボ圧縮機のデミスタ及びデミスタカバーの斜視図である。 上記ターボ圧縮機のギヤカバーの斜視図である。
 まず、ターボ圧縮機1の実施形態が適用されたターボ冷凍機101について図1を参照しつつ説明する。
 図1に示されるように、ターボ冷凍機101は、空調用の冷却水[coolant for air conditioning]を生成するための装置である。ターボ冷凍機101は、凝縮器[condenser]103と、エコノマイザ[economizer]105と、蒸発器[evaporator]107と、ターボ圧縮機1とを備えている。
 凝縮器103は、流路F1を介してターボ圧縮機1と接続されると共に、膨張弁(減圧弁)109が配置された流路F2を介してエコノマイザ105と接続されている。凝縮器103には、ターボ圧縮機1で圧縮された気冷媒[refrigerant gas]C1が流路F1を介して供給され、凝縮器103は、圧縮された気冷媒C1を液冷媒[refrigerant liquid]C2に凝縮する(気冷媒として一部残る)。凝縮器103で凝縮された液冷媒C2は、流路F2を介して膨張弁109によって減圧され、エコノマイザ105に供給される。
 エコノマイザ105は、流路F3を介してターボ圧縮機1と接続されると共に、膨張弁(減圧弁)111が配置された流路F4を介して蒸発器107と接続されている。エコノマイザ105は、凝縮器103で凝縮された後に膨張弁(減圧弁)109によって減圧された液冷媒C2(一部は気冷媒)を一時的に貯留する。エコノマイザ105に貯留された液冷媒C2(一部は気冷媒)の気相成分[gas-phase component](気冷媒)C3は、流路F3を介してターボ圧縮機1の第2圧縮段[second compression stage]23に供給される。一方、エコノマイザ105に貯留された液冷媒C2(一部は気冷媒)の液相成分[liquid-phase component]は、流路F4上で膨張弁111によって減圧された後に蒸発器107に供給される。
 蒸発器107は、流路F5を介してターボ圧縮機1の第1圧縮段[first compression stage]21と接続されている。蒸発器107は、流路F4上で減圧された液冷媒C2を気冷媒C4に蒸発させる。蒸発器107で蒸発された気冷媒C4は、流路F5を介してターボ圧縮機1の第1圧縮段21に供給される。
 ターボ圧縮機1は、流路F1を介して凝縮器103に接続され、第1圧縮段21と第2圧縮段23とを有する。ターボ圧縮機1は、流路F5を介して供給された気冷媒C4を第1圧縮段21によって圧縮して流路F3に排出すると共に、流路F3を介して供給された気冷媒C3(第1圧縮段21から排出された気冷媒を含む)第2圧縮段23によって圧縮して気冷媒C1として流路F1に排出する。このターボ圧縮機1で圧縮された気冷媒C1は、流路F1を介して凝縮器103に供給される。空調用の冷却水は、蒸発器107での冷媒との熱交換によって冷却される。
 以下、図2~図4を参照しつつターボ圧縮機1について説明する。
 ターボ圧縮機1は、潤滑油が収容されたギヤハウジング3と、ギヤハウジング3内に収容されたギヤ5と、ギヤハウジング3内でギヤ5の上方に配置されたデミスタ9とを備えている。ギヤ5は、その回転によって潤滑油を供給する。デミスタ9には、ギヤハウジング3の外部と連通する吸気口7(図3及び図4参照)が設けられている。デミスタ9は、ギヤ5の回転によって掻き上げられた潤滑油の油煙を捕捉して、ギヤハウジング3の下部に戻す。
 ギヤ5の周囲には、ギヤ5の回転によって掻き上げられた潤滑油を捕捉してギヤハウジング3の下部に滴下させるギヤカバー11が設けられている。また、デミスタ9によって捕捉された潤滑油の油煙をギヤハウジング3の下部に滴下させるデミスタカバー15が設けられている。デミスタ9の近傍には、デミスタカバー15とギヤハウジング3の内壁面との間に微小隙間[narrow gap]13が形成されている(図2及び図3参照)。
 また、ギヤ5の回転方向(図3中の矢印参照)と対向するギヤカバー11の下端縁[an end edge of the gear cover 11 counter to a rotational direction (see an arrow in Fig. 3) of the gear 5]は、反対側の下端縁より下方に長く延出されている(図3及び図5参照)。さらに、デミスタカバー15とギヤハウジング3の内壁面との間に形成された微小隙間13の合計面積は、デミスタ9の吸気口7の開口面積より大きく設定されている。
 図2に示されるように、ターボ圧縮機1は、ハウジング17、ギヤユニット19、第1圧縮段21、及び、第2圧縮段23などから構成されている。
 ハウジング17は、モータハウジング25と、上述したギヤハウジング3と、圧縮機ハウジング27とからなり、各ハウジングがボルトなどによって互いに固定されている。ハウジング17には、ギヤユニット19と第1圧縮段21と第2圧縮段23とが収容されている。
 ギヤユニット19は、モータ(駆動源:図示せず)の出力軸[output shaft]29と、ギヤ組[gear set]31と、回転軸[rotary shaft]33とで構成されている。出力軸29は、ベアリング35を介して回転可能にモータハウジング25に支持されている。出力軸29の回転は、ギヤ組31に伝達される。
 ギヤ組31は、ギヤハウジング3内に収容され、上述した大径ギヤとしてのギヤ5と、小径ギヤとしてのピニオンギヤ37とからなる。ギヤ5は、出力軸29の端部に固定されており、出力軸29と共に回転する。ピニオンギヤ37は、ギヤ5と噛み合っており、出力軸29の回転を増速する。ピニオンギヤ37は、回転軸33の端部に固定されており、回転軸33と共に回転する。
 回転軸33の軸方向の一側は、上述したベアリング39を介してギヤハウジング3に回転可能に支持されている。回転軸33の他側は、ベアリング41を介して圧縮機ハウジング27に回転可能に支持されている。回転軸33の回転によって、第1圧縮段21及び第2圧縮段23が作動される。
 第1圧縮段21は、第1吸入口[first inlet port]43と、第1インペラ[first impeller]45と、第1スクロール室[first scroll chamber]47とで構成されている。吸入口43は、圧縮機ハウジング27に設けられており、流路F5(図1参照)と連通している。吸入口43には、流体[fluid]としての気冷媒C4の吸入流量を調整する複数のインレットガイドベーン49が配設されている。インレットガイドベーン49は、駆動機構51によって回転され、吸入口43の有効開口面積を変更し、気冷媒C4の吸入流量を調整する。吸入口43は、蒸発器107(図1参照)で蒸発された気冷媒C4を吸入して第1インペラ45に供給する。
 第1インペラ45は、回転軸33に固定されており、回転軸33と共に回転する。第1インペラ45は、回転軸33の回転によって、吸入口43から供給された気冷媒C4を圧縮して径方向に排出する。圧縮された気冷媒C4は、第1スクロール室47に供給される。
 第1スクロール室47は、圧縮機ハウジング27に設けられており、ハウジング17の外部に設けられた外部配管(図示せず)と連通している。第1スクロール室47は、第1インペラ45によって圧縮された気冷媒C4を外部配管を介して流路F3に供給する。なお、第1スクロール室47は、外部配管を介さずに、流路F3と直接連通していてもよい。
 第2圧縮段23は、吸入スクロール室[inlet scroll chamber]53と、第2インペラ55と、第2スクロール室57とで構成されている。吸入スクロール室53は、ギヤハウジング3に設けられており、流路F3(図1参照)と連通している。吸入スクロール室53は、エコノマイザ105(図1参照)からの気冷媒C3と第1圧縮段21によって圧縮された気冷媒C4とを吸入して第2インペラ55に供給する。
 第2インペラ55は、回転軸33に固定されており、回転軸33と共に回転する。第2インペラ55は、その背面を第1インペラ45の背面と対向させて配置されている。第2インペラ55は、回転軸33の回転によって、吸入スクロール室53から供給された気冷媒C3を圧縮して径方向に排出する。圧縮された気冷媒C1は、第2スクロール室57に供給される。
 第2スクロール室57は、ギヤハウジング3に設けられており、流路F1(図1参照)と連通している。第2スクロール室57は、第2インペラ55によって圧縮された気冷媒C1を流路F1を介して凝縮器103に供給する。
 上述したように、ターボ圧縮機1では、モータの出力軸29の回転によって回転軸33がギヤ組31を介して回転される。回転軸33の回転によって、第1圧縮段21及び第2圧縮段23が作動され、冷媒が圧縮される。
 第1圧縮段21では、流路F5を流れる気冷媒C4が吸入口43から第1インペラ45に供給される。第1インペラ45に供給された気冷媒C4は、第1インペラ45によって圧縮されて第1スクロール室47を介して第2圧縮段23の吸入スクロール室53に供給される。なお、第2圧縮段23の吸入スクロール室53には、流路F3を介してエコノマイザ105(図1参照)からの気冷媒C3も供給される。
 吸入スクロール室53に供給された気冷媒C3(第1圧縮段21からの気冷媒を含む)は、第2インペラ55に供給される。第2インペラ55に供給された気冷媒C3は、第2インペラ55によって圧縮されて第2スクロール室57及び流路F1を介して凝縮器103(図1参照)に供給される。
 ギヤハウジング3の下方には、潤滑油を貯留するオイルタンク59が設けられている。オイルタンク59に貯留された潤滑油は、ギヤハウジング3に設けられたオイル冷却器[oil cooler](図示せず)や内部配管(図示せず)を介して、上述したベアリング35、39及び41などの摺動部[slidably contact portions]やギヤ組31などのギア噛み合い部[gear-meshing portions]に供給され、摺動部やギア噛み合い部を潤滑・冷却する。摺動部やギヤの噛み合い部はオイルタンク59と連通しており、摺動部やギヤの噛み合い部を潤滑・冷却した潤滑油は、重力によってオイルタンク59に滴下して回収される。
 ターボ圧縮機1には、ターボ冷凍機101の始動時にオイルタンク59内に発生する気冷媒を吸入口43近傍に供給するために、ギヤハウジング3の内部を吸入口43近傍と連通させる均圧管[pressure equalizing pipe]61が設けられている。ここで、ギヤ組31などが収容されたギヤハウジング3の内部は比較的高圧となるが、圧縮機ハウジング27の吸入口43近傍はギヤハウジング3の内部よりも低圧である。従って、均圧管61内には、圧力差によって、高圧側のギヤハウジング3から低圧側である圧縮機ハウジング27の吸入口43近傍への気流が生じる。
 また、ギヤハウジング3内には、ギヤ組31のギヤ5の回転によって潤滑油が掻き上げられて油煙が発生している。この油煙は、均圧管61を通る気流によってギヤハウジング3の外部に排出されてしまう。そこで、ギヤハウジング3内には、潤滑油の油煙を捕捉するデミスタ9が配置されている。
 図3及び図4に示されるように、デミスタ9は、ギヤ5の上方に配置され、ギヤハウジング3にボルトなどによって固定されており、ギヤハウジング3の内部に開口された均圧管61の開口端を覆っている(図2参照)。また、デミスタ9は、ギヤハウジング3の内部に開口された2つの吸気口7を備えている。デミスタ9の内部は、潤滑油を捕捉する格子状[lattice-shaped]や網状[mesh-shaped]の捕捉部材[catching member]で構成されており、吸気口7から均圧管61へと流れる気冷媒に混入している油煙を捕捉する。デミスタ9に捕捉された潤滑油(油煙)は、自重によって、デミスタカバー15の傾斜面に沿って下方に流れて微小隙間13からギヤハウジング3の下部に滴下し(図3参照)、オイルタンク59(図2参照)に回収される。
 このように、ギヤ5によって掻き上げられた潤滑油がデミスタ9によって捕捉され、潤滑油のギヤハウジング3外への排出が防止される。しかし、上述したように、デミスタを通過する潤滑油の量が多いと、デミスタ9によって潤滑油を十分に捕捉できない可能性がある。そこで、本実施形態では、ギヤハウジング3内に、ギヤカバー11とデミスタカバー15とが配置されている。
 ギヤカバー11は、ギヤ5を覆うように、ギヤハウジング3にボルトなどで固定されている。ギヤカバー11は、ギヤ5による潤滑油の飛散を防止し、デミスタ9から最も遠いギヤハウジング3の下部に設けられたオイルタンク59に潤滑油を滴下させて回収する。
 また、上述したように、ギヤ5の回転方向と対向するギヤカバー11の下端縁は、反対側の下端縁より下方に長く延出されている。このため、潤滑油の飛散が最も多いギヤ5の回転開始時の潤滑油をギヤカバー11によって効率的に受けることができる。また、ギヤカバー11の反対側の下端縁を必要最低限の長さとすることでギヤカバー11を軽量化できる。ギヤカバー11の上方にデミスタカバー15が配置されている。
 デミスタカバー15は、デミスタ9の吸気口7から下方に向けて傾斜するように、デミスタ9と一体化されている。デミスタカバー15の傾斜は、吸気口7から吸入される気体流量と潤滑油粘性とを考慮して、吸気口7に吸入される気体流に抗して潤滑油が下方に流れることができるように設定される。
 また、上述したように、デミスタカバー15とギヤハウジング3の内壁面との間には、微小隙間13(図2及び図3参照)が形成されている。微小隙間13の合計面積は、デミスタ9の吸気口7の開口面積より大きく設定されている。このため、吸気口7の気体の吸気に影響を与えない(吸気量を低減させることがない)。デミスタカバー15は、デミスタ9によって捕捉された潤滑油をギヤハウジング3の下部に戻すと共に、吸気口7近傍を油煙から保護し、ギヤカバー11によって捕捉できなかった潤滑油が吸気口7に到達するのを抑制している。
 上述したターボ圧縮機1では、ギヤ5の回転によって掻き上げられる潤滑油を捕捉してギヤハウジング3の下部に滴下させるギヤカバー11がギヤ5の周囲に設けられているので、潤滑油が貯留されるオイルタンク59とデミスタ9との距離を長く確保でき、潤滑油のデミスタ9への到達を抑制できる。
 また、デミスタ9が捕捉した潤滑油(油煙)をギヤハウジング3の下部に滴下させるデミスタカバー15が設けられると共にデミスタカバー15とギヤハウジング3の内壁面との間に微小隙間13が形成されており、ギヤカバー11で捕捉できなかった潤滑油の吸気口7への到達をデミスタカバー15(及び微小隙間13)によって抑制できる。
 従って、上述したターボ圧縮機1によれば、ギヤカバー11とデミスタカバー15とによって、デミスタ9に到達する潤滑油量を減少させることができる。
 また、ギヤ5の回転方向と対向するギヤカバー11の下端縁は、反対側の下端縁より下方に長く延出されているので、ギヤ5によって掻き上げられる潤滑油量が多い側の潤滑油の飛散を効果的に抑制できる。さらに、ギヤカバー11の反対側の下端縁は必要最低限の長さとされるので、ギヤカバー11を軽量化できる。
 さらに、上述した微小隙間13の合計面積は、デミスタ9の吸気口7の開口面積より大きく設定されているので、デミスタ9の吸気機能を低下させることなく、デミスタカバー15(及び微小隙間13)によってデミスタ9に到達する潤滑油量を減少させることができる。
 なお、上記実施形態では、デミスタ9のハウジング17への固定面に平行に、互いに反対方向に開口された二つの吸気口7が設けられた。しかし、固定面に垂直な方向に開口された吸気口が設けられてもよい。デミスタ(及びその吸気口)は、油煙を捕捉する機能を有していれば、どのような構造であってもよい。
 また、上記実施形態では、ギヤカバー15は、ギヤ5を覆うように形成された。しかし、ギヤとピニオンギヤとの噛み合いが可能であれば、ギヤカバーはピニオンギヤも覆う形状を有していてもよい。ギヤカバーは、ギヤによる潤滑油の飛散(及びそれに伴う油煙の発生)を抑制できれば、どのような形状を有していてもよい。

Claims (3)

  1.  ターボ圧縮機であって、
     潤滑油が収容されるハウジングと、
     前記ハウジング内に収容され、前記潤滑油が供給されるギヤと、
     前記ハウジング内の前記ギヤの上方に配置され、前記ハウジングの外部と連通する吸気口が設けられ、前記ハウジング内の前記潤滑油の油煙を捕捉するデミスタと、
     前記ギヤを覆うように設けられた、前記ギヤによって掻き上げられた前記潤滑油を捕捉して下方に滴下させるギヤカバーと、
     前記デミスタの近傍に設けられ、前記デミスタが捕捉した前記潤滑油を下方に滴下させるデミスタカバーと、を備えており、
     前記デミスタカバーと前記ハウジングの内壁面との間に微小隙間が形成されている、ことを特徴とするターボ圧縮機。
  2.  請求項1記載のターボ圧縮機であって、
     前記ギヤの回転方向と対向する前記ギヤカバーの下端縁が、反対側の下端縁より下方に長く延出されている、ことを特徴とするターボ圧縮機。
  3.  請求項1又は2記載のターボ圧縮機であって、
     前記微小隙間の合計面積が、前記デミスタの前記吸気口の開口面積より大きく設定されている、ことを特徴するターボ圧縮機。
PCT/JP2012/067339 2011-07-13 2012-07-06 ターボ圧縮機 WO2013008750A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280034158.XA CN103649547B (zh) 2011-07-13 2012-07-06 涡轮压缩机
EP12811147.3A EP2733360B1 (en) 2011-07-13 2012-07-06 Turbocompressor
US14/141,510 US9416681B2 (en) 2011-07-13 2013-12-27 Turbo compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-154647 2011-07-13
JP2011154647A JP5757465B2 (ja) 2011-07-13 2011-07-13 ターボ圧縮機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/141,510 Continuation US9416681B2 (en) 2011-07-13 2013-12-27 Turbo compressor

Publications (1)

Publication Number Publication Date
WO2013008750A1 true WO2013008750A1 (ja) 2013-01-17

Family

ID=47506040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067339 WO2013008750A1 (ja) 2011-07-13 2012-07-06 ターボ圧縮機

Country Status (5)

Country Link
US (1) US9416681B2 (ja)
EP (1) EP2733360B1 (ja)
JP (1) JP5757465B2 (ja)
CN (1) CN103649547B (ja)
WO (1) WO2013008750A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983188B2 (ja) * 2012-08-28 2016-08-31 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105607A (ja) * 1975-02-10 1976-09-18 Ebara Mfg Taaboatsushukuki
JPH05223092A (ja) * 1991-08-22 1993-08-31 Carrier Corp 遠心圧縮機及びその機械損失の低減方法
JP2011026960A (ja) * 2009-07-21 2011-02-10 Ihi Corp ターボ圧縮機及び冷凍機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010016A (en) * 1975-05-27 1977-03-01 Ingersoll-Rand Company Gas compressor
US5404964A (en) * 1991-08-05 1995-04-11 Carrier Corporation System for reducing oil migration from a transmission
US5685699A (en) * 1996-06-20 1997-11-11 Carrier Corporation Compressor transmission vent system
US6018962A (en) * 1998-12-16 2000-02-01 American Standard Inc. Centrifugal compressor oil sump demister apparatus
US20060196220A1 (en) * 2005-03-02 2006-09-07 Westermeyer Gary W Vertical oil separator
JP5715111B2 (ja) * 2012-12-12 2015-05-07 株式会社神戸製鋼所 発電装置及び発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105607A (ja) * 1975-02-10 1976-09-18 Ebara Mfg Taaboatsushukuki
JPH05223092A (ja) * 1991-08-22 1993-08-31 Carrier Corp 遠心圧縮機及びその機械損失の低減方法
JP2011026960A (ja) * 2009-07-21 2011-02-10 Ihi Corp ターボ圧縮機及び冷凍機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733360A4 *

Also Published As

Publication number Publication date
JP5757465B2 (ja) 2015-07-29
EP2733360A4 (en) 2015-01-21
CN103649547A (zh) 2014-03-19
US20140102831A1 (en) 2014-04-17
EP2733360A1 (en) 2014-05-21
EP2733360B1 (en) 2017-06-28
CN103649547B (zh) 2016-02-24
US9416681B2 (en) 2016-08-16
JP2013019373A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP6056270B2 (ja) ターボ圧縮機及びターボ冷凍機
JP5167845B2 (ja) ターボ圧縮機及び冷凍機
JP5577762B2 (ja) ターボ圧縮機及びターボ冷凍機
JP2017053285A (ja) 圧縮機
WO2014045684A1 (ja) スクリュー圧縮機及びこれを備えるチラーユニット
JP2009185712A (ja) ターボ圧縮機及び冷凍機
JP5983188B2 (ja) ターボ圧縮機及びターボ冷凍機
US20130305723A1 (en) Compressor system including gear integrated screw expander
JP2007182773A (ja) 圧縮機
JP6464006B2 (ja) 密閉形スクロール圧縮機及び冷凍空調装置
WO2013008750A1 (ja) ターボ圧縮機
JP2014202160A (ja) 圧縮機
JP5517592B2 (ja) 圧縮機
WO2016092688A1 (ja) 圧縮機
JP5434746B2 (ja) ターボ圧縮機及びターボ冷凍機
JP5545326B2 (ja) ターボ圧縮機及び冷凍機
JP2000009074A (ja) スクリュー圧縮機
JP7407026B2 (ja) 遠心式冷凍機に使用される油タンク、および遠心式冷凍機
WO2017063480A1 (zh) 旋转式压缩机及提高其润滑效果的方法
JP5421177B2 (ja) 電動気体圧縮機
JP2003193975A (ja) 圧縮機
JP2007327339A (ja) 気体圧縮機
JP2015151919A (ja) 密閉形スクリュー圧縮機
JP2006291890A (ja) 圧縮機
JP2011144739A (ja) 密閉型圧縮機、及びこの密閉型圧縮機を備えた冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280034158.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012811147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012811147

Country of ref document: EP