WO2013008658A1 - 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 - Google Patents
難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 Download PDFInfo
- Publication number
- WO2013008658A1 WO2013008658A1 PCT/JP2012/066840 JP2012066840W WO2013008658A1 WO 2013008658 A1 WO2013008658 A1 WO 2013008658A1 JP 2012066840 W JP2012066840 W JP 2012066840W WO 2013008658 A1 WO2013008658 A1 WO 2013008658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- flame
- flexible resin
- chlorinated polyethylene
- retardant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L23/28—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
- C08L23/286—Chlorinated polyethylene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/307—Other macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/26—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
- C08J2323/28—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
Definitions
- the present invention relates to a flame-retardant flexible resin composition used for resin tubes used in automobiles, electrical equipment, etc., and insulation coatings for insulated wires. Moreover, this invention relates to the resin tube and insulated wire which were formed using the said flame-retardant flexible resin composition.
- resin tubes such as heat-shrinkable tubes and insulating tubes are used to insulate and protect the bundling portions of the wiring inside.
- Resin tubes are required to have high mechanical strength, flexibility, heat resistance, oil resistance, flame retardancy, and workability. Therefore, a resin that can provide these properties in a balanced manner for the formation of this resin tube.
- a composition is desired.
- high mechanical strength, flexibility, heat resistance, oil resistance, flame resistance, and workability are also required for insulated wires (including insulated cables) used as wiring in automobiles and electrical equipment. Therefore, a resin composition used for forming an insulation coating of an insulated wire is desired to be able to impart the above properties in a well-balanced manner.
- Patent Document 1 discloses that a mixture of 90 to 30% by weight of a polyolefin resin and 10 to 70% by weight of a chlorinated polyethylene is blended with a hindered phenol type and a thioether type antioxidant and cross-linked.
- a featured flame retardant resin composition is disclosed. And this flame retardant resin composition is excellent in heat aging resistance, flexibility (softness), flame retardancy, and further, there is no precipitation (so-called bloom) on the surface of the compound during storage, It is stated that it is useful as a cable insulator material, that is, an insulating coating material for an insulated wire.
- Patent Document 2 discloses a resin composition in which a chlorine-containing polymer such as chlorinated polyethylene is blended with (a) a zeolite compound, (b) a vulcanizing agent, and, if necessary, (c) a vulcanization accelerator. Things are disclosed.
- the (a) zeolitic compounds used here include natural zeolite, A-type, X-type, Y-type synthetic zeolite, sodalite, natural or synthetic mordenite, ZSM-5, and metal substitutes thereof. It is said that it may be.
- the resin composition described in Patent Document 2 has a problem that it is difficult to increase the extrusion line speed, and when used for forming a resin tube or an insulation coating, the processability is low and the processing cost is high. That is, this resin composition is a material containing a vulcanizing agent, and when it is raised to 150 ° C. or higher, the crosslinking reaction proceeds. However, if the extrusion line speed is increased at less than 150 ° C., the appearance of extrusion deteriorates, so that processing at a high extrusion line speed is difficult. Therefore, a resin composition having higher heat resistance and excellent mechanical strength, flexibility, oil resistance, flame retardancy, and workability has been desired.
- the present invention provides a resin composition that meets this demand, specifically, a flame-retardant flexible resin having a good balance of high mechanical strength, flexibility, heat resistance, oil resistance, flame resistance, and workability. It is an object to provide a composition. Another object of the present invention is to provide a resin tube formed using the flame retardant flexible resin composition as a material and an insulated wire having an insulating coating formed using the flame retardant flexible resin composition as a material. To do.
- the present inventor has obtained a high mechanical strength by cross-linking a resin composition containing a zeolitic compound in a predetermined composition range in chlorinated polyethylene by ionizing radiation irradiation, The inventors have found that a flame-retardant flexible resin composition having a good balance of flexibility, heat resistance, oil resistance, flame retardancy, and processability can be obtained, and the present invention has been completed.
- the invention according to claim 1 is a resin composition comprising chlorinated polyethylene as a main resin component and containing 0.5 to 20 parts by mass of a zeolitic compound with respect to 100 parts by mass of chlorinated polyethylene. It is a flame-retardant flexible resin composition characterized by being formed.
- Chlorinated polyethylene is known as a thermoplastic elastomer excellent in mechanical strength, processability, oil resistance, and flexibility, and also exhibits flame retardancy because it contains chlorine.
- the flame-retardant flexible resin composition of the present invention is mainly composed of chlorinated polyethylene in order to have excellent mechanical strength and high extrudability, oil resistance, flexibility, and flame retardancy.
- chlorinated polyethylene There are crystalline, semi-crystalline and amorphous chlorinated polyethylenes, and any of them may be used in the present invention.
- the zeolite-based compound constituting the resin composition of the present invention silica and alumina (aluminum oxide) (silicon dioxide) in mineral as a main component, the general formula M 2 / x O ⁇ Al 2 O 3 ⁇ ySiO 2 ⁇ nH 2 O (M is an alkali metal or alkaline earth metal, x is 1 or 2, y is 2 to 10, and n is zero or a positive number).
- This zeolitic compound includes natural zeolite which is a mineral formed by solidification of volcanic rock, synthetic (artificial) zeolite, sodalite, natural or synthetic mordenite, ZSM-5, and metal substitutes thereof. .
- those represented by the chemical structural formula of the following formula (1), wherein M in the general formula is Ca or Mg are particularly preferred because of their high heat resistance.
- the flame-retardant flexible resin composition of the present invention is characterized by containing 0.5 to 20 parts by mass of a zeolitic compound with respect to 100 parts by mass of chlorinated polyethylene.
- a zeolitic compound By adding a zeolitic compound to chlorinated polyethylene, a resin composition exhibiting excellent heat resistance in which mechanical strength is unlikely to decrease even when stored at high temperatures can be obtained.
- Chlorinated polyethylene is believed to degrade mechanical strength because it undergoes dehydrochlorination at high temperature and then undergoes oxidative decomposition and the main chain is cleaved, but the zeolitic compound is the hydrochloric acid generated by its excellent adsorption performance. (Hydrogen chloride gas) is adsorbed, so it is considered that the decrease in mechanical strength can be suppressed.
- a zeolite compound is added within the above composition range, problems such as foaming do not occur when the resin composition is extruded to form a resin tube or an insulation coating. That is, the excellent processability of chlorinated polyethylene is maintained.
- the use of a zeolite compound reduces foaming and suppresses oil permeation, thus improving oil resistance.
- the addition amount of the zeolite compound is less than 0.5 parts by mass with respect to 100 parts by mass of the chlorinated polyethylene, the effect of improving the heat resistance is not sufficiently obtained.
- the addition amount exceeds 20 parts by mass, mechanical strength such as tensile strength and tensile elongation at break becomes insufficient, and oil resistance and workability are also lowered. Further, the 100% modulus may be out of the standard range and the flexibility may be insufficient. Therefore, the intended effect of the present invention cannot be obtained.
- the flame retardant flexible resin composition of the present invention is obtained by crosslinking a resin by irradiating ionizing radiation to a resin composition containing a chlorinated polyethylene and a zeolite compound. By crosslinking the resin, a resin composition having high mechanical strength can be obtained.
- the zeolite-based compound has the general formula M 2 / x O ⁇ Al 2 O 3 ⁇ ySiO 2 ⁇ nH 2 O (M is an alkaline earth metal, x is 1 or 2, y
- M is an alkaline earth metal, x is 1 or 2
- y The flame retardant flexible resin composition according to claim 1, wherein the zeolite is a synthetic zeolite represented by 2 to 10 and n is a zero or a positive number.
- Examples of the synthetic zeolite include artificial zeolite having a regular chemical structure obtained by chemically treating ash mainly composed of silica and alumina with an alkali or the like at high temperature and high pressure. Moreover, the synthetic zeolite manufactured by the method of patent document 2 (paragraph 0025) can be mentioned. By adjusting the blending and reaction conditions, an artificial zeolite having higher adsorption performance than natural zeolite can be obtained. Any synthetic zeolite of A type, X type, and Y type can be used.
- the invention according to claim 3 is the flame retardant flexible resin composition according to claim 2, wherein the zeolitic compound is calcined zeolite.
- Calcinated zeolite refers to a product obtained by heating and dehydrating (calcining) the above zeolitic compound so as to be substantially free of moisture.
- a method for producing a calcined zeolite a method described in Patent Document 2 (paragraph 0026), that is, a method in which a zeolitic compound is heated and dehydrated at a temperature of 100 ° C. or higher in a dry air or nitrogen stream, or chlorinated polyethylene
- a method of activating by introducing a zeolitic compound and exposing it to a kneading temperature of 140 ° C. to 200 ° C.
- the invention according to claim 4 further comprises 20 parts by mass of a polyolefin resin selected from an ethylene- ⁇ olefin copolymer, wherein the ⁇ olefin is a polar monomer, with respect to a total of 100 parts by mass of chlorinated polyethylene and the polyolefin resin.
- a polyolefin resin selected from an ethylene- ⁇ olefin copolymer, wherein the ⁇ olefin is a polar monomer, with respect to a total of 100 parts by mass of chlorinated polyethylene and the polyolefin resin.
- the resin component of the flame retardant flexible resin composition of the present invention is mainly chlorinated polyethylene.
- “mainly” means to include both the case of consisting of only chlorinated polyethylene and the case of consisting of chlorinated polyethylene and other resin components contained within a range not impairing the gist of the present invention.
- the total of chlorinated polyethylene and the other resin components is 100 parts by mass, and chlorinated polyethylene is blended at least 50 parts by mass, preferably 80 parts by mass or more.
- the flame retardant flexible resin composition of claim 4 is a polyolefin resin selected from an ethylene- ⁇ -olefin copolymer, wherein the ⁇ -olefin is a polar monomer. 20 mass parts or less are mix
- the heat resistance and flexibility of the resin composition are further improved.
- the blending amount of the polyolefin resin exceeds 20 parts by mass with respect to 100 parts by mass in total of the chlorinated polyethylene and the polyolefin resin, the oil resistance is lowered, and the flame-retardant flexibility that achieves the object of the present invention is achieved. A resin composition cannot be obtained.
- Examples of the polyolefin resin selected from ethylene- ⁇ -olefin copolymers and wherein the ⁇ -olefin is a polar monomer include ethylene-vinyl acetate copolymer (EVA).
- EVA ethylene-vinyl acetate copolymer
- a commercially available product such as EVAFLEX EV360 (manufactured by Mitsui DuPont Chemical Co., Ltd.) can be used.
- the flame-retardant flexible resin composition of the present invention is a flame retardant such as antimony trioxide, other polyolefin resins, fillers, antioxidants, in a range that does not impair the spirit of the present invention.
- Lubricants, color pigments and the like may be added.
- the flame retardant flexible resin composition of the present invention is obtained by irradiating an ion beam such as an electron beam or gamma ray to a mixture of the above compositions by a conventional method to crosslink chlorinated polyethylene (in some cases, a polyolefin resin). It will be.
- an ion beam such as an electron beam or gamma ray
- a conventional method to crosslink chlorinated polyethylene (in some cases, a polyolefin resin).
- the electron beam dose is preferably about 30 to 500 kGy.
- a known electron beam irradiation means usually used for resin crosslinking or the like can be used, and can be performed by a conventional method.
- the invention according to claim 5 is a resin tube characterized in that the flame-retardant flexible resin composition according to any one of claims 1 to 4 is formed in a tube shape. Since this resin tube is a molded body of the flame-retardant flexible resin composition of the present invention, it has a high mechanical strength, flexibility, heat resistance, oil resistance, and flame resistance in a well-balanced manner. It is suitably used as a heat-shrinkable tube, an insulating tube or the like for insulating and protecting a binding portion of wiring in an electric device. Examples of the method for forming into a tube shape include extrusion molding, and the same method and conditions as in the case of molding a known resin tube can be used.
- a method of irradiating ionizing radiation after producing a resin composition having the above composition and extruding it into a tube shape is preferable. Molding is easy before irradiation with ionizing radiation, and high productivity can be achieved because molding can be performed at a high extrusion speed.
- the invention described in claim 6 is an insulated wire characterized by having an insulating coating made of the flame-retardant flexible resin composition according to any one of claims 1 to 4. Since the insulation coating of this insulated wire is formed from the flame-retardant flexible resin composition of the present invention, it has a high balance of mechanical strength, flexibility, heat resistance, oil resistance, and flame resistance. And is suitably used as wiring in electrical equipment. The formation of the insulation coating can be performed in the same manner as the formation of the insulation coating on a normal insulated wire.
- the insulated wire includes an insulated cable.
- a method of irradiating ionizing radiation after producing a resin composition having the above composition and extruding so as to cover the conductor is preferable. Insulation coating is easy before irradiation with ionizing radiation and insulation coating can be performed at a high speed, so that high productivity can be achieved.
- the flame-retardant flexible resin composition of the present invention is a resin composition that can give a molded product having high mechanical strength, flexibility, heat resistance, oil resistance, and flame retardancy, and is excellent in workability. Therefore, the resin tube and insulated wire of the present invention formed using this flame-retardant flexible resin composition also have high mechanical strength, flexibility, heat resistance, oil resistance, and flame resistance.
- polyolefin resins that are ethylene- ⁇ olefin copolymers and ⁇ olefins are polar monomers include, in addition to the ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate copolymers, ethylene-butyl acrylate copolymers, Examples thereof include an ethylene-methyl acrylate copolymer.
- the polyolefin resin may contain other polyolefin resins such as low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and polypropylene as long as the gist of the present invention is not impaired.
- the amount of antimony trioxide that may be added to impart flame retardancy to the resin composition is preferably in the range of 1 to 30% by mass with respect to the total mass of the chlorinated polyethylene and the polyolefin resin.
- the added amount of antimony trioxide exceeds 30% by mass, the tensile strength, the tensile elongation at break and the like are lowered, and the mechanical strength becomes insufficient. Furthermore, the heat resistance becomes insufficient, and the intended effect of the present invention cannot be obtained. Also, the flexibility is reduced.
- flame retardants other than antimony trioxide include brominated flame retardants, metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide.
- Fillers include metal oxides such as magnesium oxide, calcium oxide and titanium oxide, carbonates such as magnesium carbonate, aluminum carbonate, calcium carbonate and barium carbonate, silicates such as magnesium silicate, calcium silicate, sodium silicate and aluminum silicate , Sulfates such as aluminum sulfate, calcium sulfate and barium sulfate, carbon black, talc and the like can be used.
- antioxidant examples include a phenolic antioxidant, an amine antioxidant, a sulfur antioxidant, and a phosphorus antioxidant.
- examples of the lubricant include stearic acid, fatty acid amide, silicone, polyethylene wax and the like. These additives may be contained alone or in combination.
- the chlorinated polyethylene, polyolefin resin, zeolite, and hydrotalcite used in Examples and Comparative Examples are shown below.
- antimony trioxide as a flame retardant (manufactured by Nippon Seiko Co., Ltd.)
- calcium carbonate as a bulking agent
- phenolic antioxidant An agent trade name: Irganox 1010, manufactured by Ciba Specialty Chemicals
- stearic acid manufactured by NOF Corporation
- the composition shown in Table 1 was kneaded with an open roll at 140 ° C., and then pressed at 140 ° C. for 10 minutes under the condition of 600 MPa to prepare a sheet-like sample having a thickness of 1 mm.
- the remaining material was pelletized by a pelletizer and extruded into a tube shape having an inner diameter of 3 mm ⁇ and an outer diameter of 4 mm ⁇ with a 50 mm ⁇ extruder. Both the sheet and the tube were irradiated with an electron beam of 200 kGy to prepare a crosslinked body.
- the tube was evaluated for tensile break strength, tensile break elongation, flexibility, heat resistance, and oil resistance, and the sheet was evaluated for flame retardancy and workability.
- the results are shown in Table 1.
- the evaluation method is as follows.
- the flame-retardant flexible resin composition of the present invention (Examples 1 to 3) in which 1 to 18% by mass of a zeolitic compound (synthetic active zeolite) is blended with chlorinated polyethylene is It gives a molded product having strength (tensile strength, tensile elongation) and flexibility (100% modulus), and exhibits excellent workability without foaming during processing. Furthermore, molded products that meet the standards for heat resistance, oil resistance, and flame retardancy have been obtained.
- EVA Evaflex EV360: polyolefin resin selected from ethylene- ⁇ -olefin copolymer and the ⁇ -olefin is a polar monomer
- Example 3 heat resistance superior to that of Example 1 (the other compositions are the same) is obtained.
- Comparative Example 1 in which hydrotalcite was used instead of the zeolite-based compound, it was shown that foaming was observed and the processability was not good under the conditions at the time of processing although the other conditions were the same. .
- the obtained molded product does not satisfy the standards for tensile elongation in terms of heat resistance and tensile strength in terms of oil resistance. This is because hydrochloric acid gas generated from chlorinated polyethylene is not sufficiently adsorbed by hydrotalcite.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Insulating Bodies (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
Abstract
高い機械強度、柔軟性、耐熱性、耐油性、難燃性、加工性をバランスよく兼ね備えた難燃性柔軟樹脂組成物、並びに、この難燃性柔軟樹脂組成物を材料として形成された樹脂チューブ及び絶縁被覆を有する絶縁電線を提供する。 塩素化ポリエチレンを樹脂成分の主体とし、塩素化ポリエチレン100質量部に対してゼオライト系化合物を0.5~20質量部含有する樹脂組成物を、電離放射線照射架橋してなることを特徴とする難燃性柔軟樹脂組成物、並びに、この難燃性柔軟樹脂組成物を材料として形成された樹脂チューブ及び絶縁被覆を有する絶縁電線。
Description
本発明は、自動車内、電気機器内等に使用される樹脂チューブや絶縁電線の絶縁被覆等に用いられる難燃性柔軟樹脂組成物に関する。又、本発明は、前記難燃性柔軟樹脂組成物を用いて形成された樹脂チューブ及び絶縁電線に関する。
自動車や電気機器では、その内部にある配線の結束部を絶縁保護するために、熱収縮チューブ、絶縁チューブ等の樹脂チューブが用いられている。樹脂チューブには、高い機械強度、柔軟性、耐熱性、耐油性、難燃性、加工性が求められるので、この樹脂チューブの形成のために、これらの性質をバランスよく付与することができる樹脂組成物が望まれている。又、自動車内や電気機器内の配線として用いられる絶縁電線(絶縁ケーブルも含む。)にも高い機械強度、柔軟性、耐熱性、耐油性、難燃性、加工性が求められる。そこで、絶縁電線の絶縁被覆の形成に用いる樹脂組成物にも、前記の性質をバランスよく付与することができるものが望まれている。
特許文献1には、ポリオレフィン系樹脂90~30重量%と塩素化ポリエチレン10~70重量%との混合物に、ヒンダードフェノール系及びチオエーテル系酸化防止剤を配合し、これを架橋してなることを特徴とする難燃性樹脂組成物が開示されている。そして、この難燃性樹脂組成物は、耐熱老化性や可撓性(柔軟性)、難燃性に優れており、さらに保管中に配合物の表面への析出(いわゆるブルーム)がないので、ケーブル絶縁体材料、すなわち絶縁電線の絶縁被覆材料として有用であることが述べられている。
又、特許文献2には、塩素化ポリエチレン等の塩素含有重合体に、(a)ゼオライト系化合物、(b)加硫剤、及び必要に応じて(c)加硫促進剤を配合した樹脂組成物が開示されている。そして、ここで用いられる(a)ゼオライト系化合物としては、天然ゼオライト、A型、X型、Y型の合成ゼオライト、ソーダライト類、天然ないしは合成モルデナイト、ZSM-5、及びこれらの金属置換体であってもよいと述べられている。
しかし、特許文献1に記載の難燃性樹脂組成物は、該文献中では耐熱老化性に優れる旨が述べられているものの、実際には不満足な耐熱性しか得られない。これは、該難燃性樹脂組成物を構成する塩素化ポリエチレンが、高温で脱塩酸を起こした後に酸化分解し主鎖が切断されていくためと考えられる。
又、特許文献2に記載の樹脂組成物は、押出線速を上げることが困難であり、樹脂チューブや絶縁被覆の形成等に用いる場合、加工性が低く加工コストが高くなる問題がある。すなわち、この樹脂組成物は加硫剤を含む材料であり150℃以上に上げると架橋反応が進行するので押出温度は150℃未満に抑える必要がある。しかし、150℃未満で押出線速を上げると押出外観が悪くなるので、高い押出線速での加工が困難であった。そこで、より耐熱性が高くさらに機械強度、柔軟性、耐油性、難燃性、加工性にも優れた樹脂組成物が望まれていた。
本発明は、この要請に応える樹脂組成物を提供すること、具体的には、高い機械強度、柔軟性、耐熱性、耐油性、難燃性、加工性をバランスよく兼ね備えた難燃性柔軟樹脂組成物を提供することを課題とする。本発明は、さらに、この難燃性柔軟樹脂組成物を材料として形成された樹脂チューブ及びこの難燃性柔軟樹脂組成物を材料として形成された絶縁被覆を有する絶縁電線を提供することを課題とする。
本発明者は、前記課題を解決するために検討を行った結果、塩素化ポリエチレンにゼオライト系化合物を所定の組成範囲で含有する樹脂組成物を、電離放射線照射架橋することにより、高い機械強度、柔軟性、耐熱性、耐油性、難燃性、加工性をバランスよく兼ね備えた難燃性柔軟樹脂組成物が得られることを見出し、本発明を完成した。
請求項1に記載の発明は、塩素化ポリエチレンを樹脂成分の主体とし、塩素化ポリエチレン100質量部に対してゼオライト系化合物を0.5~20質量部含有する樹脂組成物を、電離放射線照射架橋してなることを特徴とする難燃性柔軟樹脂組成物である。
塩素化ポリエチレンは、機械強度、加工性、耐油性、柔軟性に優れる熱可塑性エラストマーとして知られており、塩素を含有するので難燃性も示す。本発明の難燃性柔軟樹脂組成物は、優れた機械強度と高い押出加工性、耐油性、柔軟性、難燃性を兼ね備えるために、塩素化ポリエチレンを主体として構成される。塩素化ポリエチレンには、結晶性、半結晶性及び非晶性のものがあるが、本発明ではいずれを使用してもよい。
本発明の樹脂組成物を構成するゼオライト系化合物とは、シリカ(二酸化ケイ素)とアルミナ(酸化アルミニウム)を主成分とする鉱物で、一般式M2/xO・Al2O3・ySiO2・nH2O(Mは、アルカリ類金属又はアルカリ土類金属、xは1又は2、yは2~10、nはゼロまたは正の数)で表されるものである。このゼオライト系化合物には、火山岩が凝固してできた鉱物である天然ゼオライトや、合成(人工)ゼオライト、ソーダライト類、天然ないしは合成モルデナイト、ZSM-5、およびこれらの金属置換体等が含まれる。例えば、下記式(1)の化学構造式で表され、前記一般式のMがCaであるもの又はMgであるものが特に耐熱性が高いので好ましく用いられる。
本発明の難燃性柔軟樹脂組成物では、塩素化ポリエチレン100質量部に対しゼオライト系化合物が0.5~20質量部含有されていることを特徴とする。塩素化ポリエチレンにゼオライト系化合物を添加することにより、高温で保存されても機械強度が低下しにくい優れた耐熱性を示す樹脂組成物が得られる。塩素化ポリエチレンは、高温で脱塩酸を起こした後に酸化分解し、主鎖が切断されていくため機械強度が低下すると考えられているが、ゼオライト系化合物が、その優れた吸着性能により発生した塩酸(塩化水素ガス)を吸着するので機械強度の低下が抑えられるものと考えられる。
又、上記の組成範囲内でゼオライト系化合物が添加されても、樹脂チューブや絶縁被覆を形成するために樹脂組成物を押出加工する際に、発泡等の問題を生じない。すなわち、塩素化ポリエチレンの優れた加工性が保たれる。又、ゼオライト系化合物の使用で発泡が少なくなり油の浸透が抑えられるため、耐油性も向上する。
ゼオライト系化合物の添加量が、塩素化ポリエチレン100質量部に対し0.5質量部未満の場合は、耐熱性向上効果が充分得られない。一方、添加量が20質量部を超えると、引張強度、引張破断伸び等の機械的強度が不十分となり、又耐油性、加工性も低下する。さらに、100%モジュラスも規格範囲外となり柔軟性も不十分となる場合がある。従って、本発明の目的とする効果は得られない。
本発明の難燃性柔軟樹脂組成物は、塩素化ポリエチレンにゼオライト系化合物を含有させた樹脂組成物に、電離放射線を照射し樹脂を架橋してなるものである。樹脂を架橋することにより、高い機械強度を備えた樹脂組成物が得られる。
請求項2に記載の発明は、前記ゼオライト系化合物が、一般式M2/xO・Al2O3・ySiO2・nH2O(Mは、アルカリ土類金属、xは1又は2、yは2~10、nはゼロまたは正の数)で表される合成ゼオライトであることを特徴とする請求項1に記載の難燃性柔軟樹脂組成物である。
合成ゼオライトとしては、シリカとアルミナを主成分とする灰をアルカリ等とともに高温、高圧で化学処理して得られた規則正しい化学構造をもつ人工ゼオライトを挙げることができる。又、特許文献2(段落0025)に記載の方法により製造される合成ゼオライトを挙げることができる。配合や反応条件を調整することにより、天然ゼオライトより高い吸着性能を有する人工ゼオライトが得られる。A型、X型、Y型のいずれの合成ゼオライトも使用することができる。
このような合成ゼオライトであって、アルカリ土類金属を保持するものを使用することにより、より高い押出加工性とより高い耐熱性を兼ね備えた樹脂組成物を作製することができる。
請求項3に記載の発明は、前記ゼオライト系化合物が、焼成ゼオライトであることを特徴とする請求項2に記載の難燃性柔軟樹脂組成物である。
焼成ゼオライト(活性ゼオライトとも言う。)とは、前記のゼオライト系化合物を加熱して脱水(焼成処理)し、実質的に水分のない状態として活性化したものを言う。焼成ゼオライトを作製する方法としては、特許文献2(段落0026)に記載の方法、すなわちゼオライト系化合物を100℃以上の温度で、乾燥空気、窒素気流下で加熱脱水する方法、もしくは、塩素化ポリエチレンを他の成分と共に混練りする際に、ゼオライト系化合物を投入して140℃から200℃の混練温度に晒すことにより活性化する方法等が挙げられる。
このような焼成ゼオライトを使用することにより、さらに高い押出加工性とさらに高い耐熱性を兼ね備えた樹脂組成物を作製することができる。
請求項4に記載の発明は、さらにエチレン-αオレフィン共重合体から選ばれ前記αオレフィンが極性モノマーであるポリオレフィン樹脂を、塩素化ポリエチレンと前記ポリオレフィン樹脂の合計100質量部に対し、20質量部以下配合したことを特徴とする請求項1ないし請求項3のいずれか1項に記載の難燃性柔軟樹脂組成物である。
本発明の難燃性柔軟樹脂組成物の樹脂成分は塩素化ポリエチレンを主体とする。ここで「主体とする」とは、塩素化ポリエチレンのみからなる場合及び塩素化ポリエチレンと本発明の趣旨を損ねない範囲で含有される他の樹脂成分からなる場合のいずれをも含む意味である。他の樹脂成分を含む場合は、塩素化ポリエチレンと前記他の樹脂成分の合計は100質量部に対し、塩素化ポリエチレンは少なくとも50質量部以上、好ましくは80質量部以上配合される。
請求項4の難燃性柔軟樹脂組成物は、前記の組成に加えて、エチレン-αオレフィン共重合体から選ばれ前記αオレフィンが極性モノマーであるポリオレフィン樹脂を、塩素化ポリエチレンと前記ポリオレフィン樹脂の合計100質量部に対し、20質量部以下配合することを特徴とする。このポリオレフィン樹脂を配合することにより、樹脂組成物の耐熱性及び柔軟性がより向上する。ただし、このポリオレフィン樹脂の配合量が、塩素化ポリエチレンと前記ポリオレフィン樹脂の合計100質量部に対し、20質量部を超える場合は、耐油性が低下し、本発明の目的を達成する難燃性柔軟樹脂組成物が得られない。
エチレン-αオレフィン共重合体から選ばれ前記αオレフィンが極性モノマーであるポリオレフィン樹脂としては、例えば、エチレン-酢酸ビニル共重合体(EVA)を挙げることができる。エチレン-酢酸ビニル共重合体としては、エバフレックスEV360(三井・デュポンケミカル社製)等の商品名で市販されているものを用いることができる。
本発明の難燃性柔軟樹脂組成物は、前記の組成に加えて、さらに本発明の趣旨を損ねない範囲で、三酸化アンチモン等の難燃剤、他のポリオレフィン樹脂、充填材、酸化防止剤、滑剤、着色顔料等を添加しても良い。
本発明の難燃性柔軟樹脂組成物は、上記の組成を常法により混合したものに、電子線、ガンマ線等の電離放射線を照射して、塩素化ポリエチレン(場合によりさらにポリオレフィン樹脂)を架橋させてなるものである。放射線としては工業的に広く用いられ低コストでの架橋が可能な電子線照射が好ましい。電子線照射量は、30~500kGy程度が好ましい。電子線照射には、樹脂の架橋等に通常用いられている公知の電子線照射手段を用いることができ、常法により行うことができる。
請求項5に記載の発明は、請求項1ないし請求項4のいずれか1項に記載の難燃性柔軟樹脂組成物がチューブ状に形成されていることを特徴とする樹脂チューブである。この樹脂チューブは、本発明の難燃性柔軟樹脂組成物の成形体であるので、高い機械強度、柔軟性、耐熱性、耐油性、難燃性をバランス良く兼ね備えたものであり、自動車内や電気機器内の配線の結束部を絶縁保護するための熱収縮チューブや絶縁チューブ等として好適に用いられる。チューブ状に成形する方法としては、押出成形を挙げることができ、公知の樹脂チューブの成形の場合と同様の方法、条件で行うことができる。
本発明の樹脂チューブの製造では、前記の組成からなる樹脂組成物を作製し、チューブ状に押出成形した後、電離放射線を照射する方法が好ましい。電離放射線の照射前は成形が容易であり、高い押出速度で成形できるので高い生産性を達成することができる。
請求項6に記載の発明は、請求項1ないし請求項4のいずれか1項に記載の難燃性柔軟樹脂組成物からなる絶縁被覆を有することを特徴とする絶縁電線である。この絶縁電線の絶縁被覆は、本発明の難燃性柔軟樹脂組成物から形成されているので、高い機械強度、柔軟性、耐熱性、耐油性、難燃性をバランス良く兼ね備えており、自動車内や電気機器内の配線として好適に用いられる。絶縁被覆の形成は、通常の絶縁電線における絶縁被覆の形成と同様にして行うことができる。なお、絶縁電線とは絶縁ケーブルも含む意味である。
本発明の絶縁電線の製造では、前記の組成からなる樹脂組成物を作製し、導体を被覆するように押出加工した後、電離放射線を照射する方法が好ましい。電離放射線の照射前は絶縁被覆が容易であり、高い速度で絶縁被覆できるので高い生産性を達成することができる。
本発明の難燃性柔軟樹脂組成物は、高い機械強度、柔軟性、耐熱性、耐油性、難燃性を兼ね備えた成形物を与えることができ、加工性に優れる樹脂組成物である。従って、この難燃性柔軟樹脂組成物を用いて形成した本発明の樹脂チューブや絶縁電線も、高い機械強度、柔軟性、耐熱性、耐油性、難燃性を兼ね備えている。
次に、本発明を実施するための形態について説明するが本発明の範囲はこの形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
エチレン-αオレフィン共重合体でありαオレフィンが極性モノマーであるポリオレフィン樹脂としては、前記のエチレン-酢酸ビニル共重合体の他に、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-メチルアクリレート共重合体等を挙げることができる。
ポリオレフィン樹脂には、本発明の趣旨を損ねない範囲で、他のポリオレフィン樹脂、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等を含ませてもよい。
樹脂組成物に難燃性を付与するために添加されてもよい三酸化アンチモンの添加量は、塩素化ポリエチレンとポリオレフィン樹脂の質量の合計に対し、1~30質量%の範囲が好ましい。三酸化アンチモンの添加量が30質量%を超える場合は、引張強度、引張破断伸び等が低くなり、機械的強度が不十分となる。さらに耐熱性が不十分となり、本発明の目的とする効果は得られない。又柔軟性も低下する。
三酸化アンチモン以外の難燃剤としては、臭素系難燃剤、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム等の金属水酸化物、等を挙げることができる。充填剤としては、酸化マグネシウム、酸化カルシウム、酸化チタン等の金属酸化物、炭酸マグネシウム、炭酸アルミニウム、炭酸カルシウム、炭酸バリウム等の炭酸塩、珪酸マグネシウム、珪酸カルシウム、珪酸ナトリウム、珪酸アルミニウム等の珪酸塩、硫酸アルミニウム、硫酸カルシウム、硫酸バリウム等の硫酸塩、カーボンブラック、タルク等を用いることができる。
酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤及びリン系酸化防止剤等を挙げることができる。又、滑剤としては、ステアリン酸、脂肪酸アミド、シリコーン、ポリエチレンワックス等を挙げることができる。これらの添加剤は、単独で又は併用して含有してもよい。
実施例、比較例で用いた塩素化ポリエチレン、ポリオレフィン樹脂、ゼオライト、ハイドロタルサイトを以下に示す。実施例、比較例の樹脂組成物には、さらに、難燃剤としての三酸化アンチモン(日本精鉱社製)、増量剤としての炭酸カルシウム(商品名KS1000、カルファイン社製)、フェノール系酸化防止剤(商品名イルガノックス1010、チバスペシャリティーケミカル社製)、滑剤としてのステアリン酸(日油社製)を添加している。
[塩素化ポリエチレン]
・エラスレン252B(商品名、昭和電工社製)
[ポリオレフィン樹脂]
・エバフレックスEV360(商品名、三井デュポンポリケミカル社製、EVA)
[ゼオライト]
・MIZUKALIZER RAD-P(商品名、水澤化学社製、合成活性ゼオライト(主成分:Al、Si、Ca、Mg))
[ハイドロタルサイト]
・DHT-4A(商品名、協和化学社製、合成ハイドロタルサイト)
・エラスレン252B(商品名、昭和電工社製)
[ポリオレフィン樹脂]
・エバフレックスEV360(商品名、三井デュポンポリケミカル社製、EVA)
[ゼオライト]
・MIZUKALIZER RAD-P(商品名、水澤化学社製、合成活性ゼオライト(主成分:Al、Si、Ca、Mg))
[ハイドロタルサイト]
・DHT-4A(商品名、協和化学社製、合成ハイドロタルサイト)
表1に示す配合をオープンロールにて140℃で混練し、その後、140℃10分間、600MPaの条件にてプレスし、厚さ1mmのシート状サンプルを作製した。残りの材料はペレタイザによってペレット状にして50mmφ押出機にて内径3mmφ、外径4mmφのチューブ形状に押出した。シート、チューブともに200kGyの電子線照射を行って架橋体を作製した。チューブについては、引張破断強度、引張破断伸び、柔軟性、耐熱性、耐油性の評価を行い、シートについては難燃性、加工性の評価を行った。結果は表1に併せて示した。評価方法は以下の通りである。
(引張破断強度、引張破断伸び)
120mmのチューブを切り取り、引張速度500mm/分で引張破断強度と引張破断伸び(表中では「引張強度」、「引張伸び」と表す。以下の測定項目についても同じ。)を測定した。合否の基準としては、引張破断強度が10.4MPa以上、引張破断伸びが225%以上のものを合格と判定した。
120mmのチューブを切り取り、引張速度500mm/分で引張破断強度と引張破断伸び(表中では「引張強度」、「引張伸び」と表す。以下の測定項目についても同じ。)を測定した。合否の基準としては、引張破断強度が10.4MPa以上、引張破断伸びが225%以上のものを合格と判定した。
(柔軟性)
引張破断強度、引張破断伸びを測定する際に、S-Sカーブから100%伸びたときのモジュラスを読み取った。その値が10MPa未満を合格とした。
引張破断強度、引張破断伸びを測定する際に、S-Sカーブから100%伸びたときのモジュラスを読み取った。その値が10MPa未満を合格とした。
(耐熱性)
120mmのチューブを切り取り、121℃のギア式オーブンに7日間投入し、その後取り出して、引張速度500mm/分で引張破断強度と引張破断伸びを測定した。合否の基準としては、引張破断強度が8.3MPa以上、引張破断伸びが175%以上のものを合格と判定した。
120mmのチューブを切り取り、121℃のギア式オーブンに7日間投入し、その後取り出して、引張速度500mm/分で引張破断強度と引張破断伸びを測定した。合否の基準としては、引張破断強度が8.3MPa以上、引張破断伸びが175%以上のものを合格と判定した。
(耐油性)
120mmのチューブを切り取り、MIL規格の油圧オイルであるMIL-H-5606に室温×1日浸漬後、引張速度500mm/分で引張破断強度、引張破断伸びを測定した。合否の基準としては、引張破断強度が6.9MPa以上、引張破断伸びが175%以上のものを合格と判定した。
120mmのチューブを切り取り、MIL規格の油圧オイルであるMIL-H-5606に室温×1日浸漬後、引張速度500mm/分で引張破断強度、引張破断伸びを測定した。合否の基準としては、引張破断強度が6.9MPa以上、引張破断伸びが175%以上のものを合格と判定した。
(難燃性)
UL94燃焼試験にて評価した。V-2以上を合格とした。
UL94燃焼試験にて評価した。V-2以上を合格とした。
(加工性)
200℃10分間、600MPaの条件にてプレスし、発泡の有無を目視で調べ、発泡がない場合を合格とし、表中では○で表わした。発泡が見られる場合は、表中では×で表わした。
200℃10分間、600MPaの条件にてプレスし、発泡の有無を目視で調べ、発泡がない場合を合格とし、表中では○で表わした。発泡が見られる場合は、表中では×で表わした。
表1に示された結果より、塩素化ポリエチレンにゼオライト系化合物(合成活性ゼオライト)を1~18質量%配合した本発明の難燃性柔軟樹脂組成物(実施例1~3)は、高い機械強度(引張強度、引張伸び)、柔軟性(100%モジュラス)を有する成形物を与え、又加工時の発泡も見られず優れた加工性を示す。さらに、耐熱性、耐油性、難燃性についても規格を満たす成形物が得られている。
なお、EVA(エバフレックスEV360:エチレン-αオレフィン共重合体から選ばれ前記αオレフィンが極性モノマーであるポリオレフィン樹脂)を、塩素化ポリエチレンと前記ポリオレフィン樹脂の合計100質量部に対し18質量部配合した実施例3では、(他の組成が同じである)実施例1に比べて優れた耐熱性が得られている。
一方、ゼオライト系化合物の代わりにハイドロタルサイトを使用した比較例1では、他の条件は同一にも係らず、加工時の条件では、発泡が見られ加工性がよくないことが示されている。又、得られた成形物は、耐熱性に関しては引張伸びが、又耐油性に関しては引張強度が、規格を満たしていない。塩素化ポリエチレンから発生した塩酸ガスが、ハイドロタルサイトでは充分吸着されないためと考えられる。
又、ゼオライト系化合物の配合量が、塩素化ポリエチレンに対し22質量%である比較例2では、引張強度が規格を満たしていない。
Claims (6)
- 塩素化ポリエチレンを樹脂成分の主体とし、塩素化ポリエチレン100質量部に対してゼオライト系化合物を0.5~20質量部含有する樹脂組成物を、電離放射線照射架橋してなることを特徴とする難燃性柔軟樹脂組成物。
- 前記ゼオライト系化合物が、一般式M2/xO・Al2O3・ySiO2・nH2O(Mは、アルカリ土類金属、xは1又は2、yは2~10、nはゼロまたは正の数)で表される合成ゼオライトであることを特徴とする請求項1に記載の難燃性柔軟樹脂組成物。
- 前記ゼオライト系化合物が、焼成ゼオライトであることを特徴とする請求項2に記載の難燃性柔軟樹脂組成物。
- さらにエチレン-αオレフィン共重合体から選ばれ前記αオレフィンが極性モノマーであるポリオレフィン樹脂を、塩素化ポリエチレンと前記ポリオレフィン樹脂の合計100質量部に対し、20質量部以下配合したことを特徴とする請求項1ないし請求項3のいずれか1項に記載の難燃性柔軟樹脂組成物。
- 請求項1ないし請求項4のいずれか1項に記載の難燃性柔軟樹脂組成物がチューブ状に形成されていることを特徴とする樹脂チューブ。
- 請求項1ないし請求項4のいずれか1項に記載の難燃性柔軟樹脂組成物からなる絶縁被覆を有することを特徴とする絶縁電線。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/883,287 US20130243988A1 (en) | 2011-07-14 | 2012-07-02 | Flame-retardant, flexible resin composition and resin tube and insulated wire using same |
CN2012800036750A CN103210036A (zh) | 2011-07-14 | 2012-07-02 | 阻燃性柔软树脂组合物及使用其的树脂管和绝缘电线 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011155595A JP2013018935A (ja) | 2011-07-14 | 2011-07-14 | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 |
JP2011-155595 | 2011-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013008658A1 true WO2013008658A1 (ja) | 2013-01-17 |
Family
ID=47505951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066840 WO2013008658A1 (ja) | 2011-07-14 | 2012-07-02 | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130243988A1 (ja) |
JP (1) | JP2013018935A (ja) |
CN (1) | CN103210036A (ja) |
WO (1) | WO2013008658A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102020066B1 (ko) * | 2013-02-01 | 2019-09-10 | 엘에스전선 주식회사 | 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선 |
JP5570648B1 (ja) * | 2013-12-20 | 2014-08-13 | 株式会社池田工業 | 壁紙塗料 |
JP6359880B2 (ja) | 2014-06-05 | 2018-07-18 | 住友電気工業株式会社 | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 |
JP6975378B2 (ja) * | 2017-06-06 | 2021-12-01 | 日立金属株式会社 | シース材およびケーブル |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5550042A (en) * | 1978-10-05 | 1980-04-11 | Osaka Soda Co Ltd | Heat-resistant and electrical insulating resin composition |
JPS5592752A (en) * | 1979-01-08 | 1980-07-14 | Nippon Chem Ind Co Ltd:The | Halogen-containing resin composition |
JPS6335330A (ja) * | 1986-07-30 | 1988-02-16 | Sumitomo Electric Ind Ltd | 熱収縮チユ−ブ |
JPS63308054A (ja) * | 1987-06-09 | 1988-12-15 | Showa Electric Wire & Cable Co Ltd | 難燃性塩素ポリエチレン組成物 |
JP2001226546A (ja) * | 2000-02-16 | 2001-08-21 | Daiso Co Ltd | 塩素化ポリエチン架橋ゴム用組成物および同組成物からなる高圧ホース |
JP2003055513A (ja) * | 2001-08-22 | 2003-02-26 | Daiso Co Ltd | 低硬度ゴム用組成物、その加硫物およびゴムロール |
JP2004349183A (ja) * | 2003-05-23 | 2004-12-09 | Asahi Denka Kogyo Kk | 透明電線用塩化ビニル系樹脂組成物 |
JP2011144286A (ja) * | 2010-01-15 | 2011-07-28 | Sumitomo Electric Ind Ltd | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 |
JP2011225673A (ja) * | 2010-04-16 | 2011-11-10 | Sumitomo Electric Ind Ltd | 耐磨耗性樹脂組成物及びそれを用いた耐磨耗性絶縁電線並びに樹脂チューブ |
-
2011
- 2011-07-14 JP JP2011155595A patent/JP2013018935A/ja not_active Withdrawn
-
2012
- 2012-07-02 WO PCT/JP2012/066840 patent/WO2013008658A1/ja active Application Filing
- 2012-07-02 US US13/883,287 patent/US20130243988A1/en not_active Abandoned
- 2012-07-02 CN CN2012800036750A patent/CN103210036A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5550042A (en) * | 1978-10-05 | 1980-04-11 | Osaka Soda Co Ltd | Heat-resistant and electrical insulating resin composition |
JPS5592752A (en) * | 1979-01-08 | 1980-07-14 | Nippon Chem Ind Co Ltd:The | Halogen-containing resin composition |
JPS6335330A (ja) * | 1986-07-30 | 1988-02-16 | Sumitomo Electric Ind Ltd | 熱収縮チユ−ブ |
JPS63308054A (ja) * | 1987-06-09 | 1988-12-15 | Showa Electric Wire & Cable Co Ltd | 難燃性塩素ポリエチレン組成物 |
JP2001226546A (ja) * | 2000-02-16 | 2001-08-21 | Daiso Co Ltd | 塩素化ポリエチン架橋ゴム用組成物および同組成物からなる高圧ホース |
JP2003055513A (ja) * | 2001-08-22 | 2003-02-26 | Daiso Co Ltd | 低硬度ゴム用組成物、その加硫物およびゴムロール |
JP2004349183A (ja) * | 2003-05-23 | 2004-12-09 | Asahi Denka Kogyo Kk | 透明電線用塩化ビニル系樹脂組成物 |
JP2011144286A (ja) * | 2010-01-15 | 2011-07-28 | Sumitomo Electric Ind Ltd | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 |
JP2011225673A (ja) * | 2010-04-16 | 2011-11-10 | Sumitomo Electric Ind Ltd | 耐磨耗性樹脂組成物及びそれを用いた耐磨耗性絶縁電線並びに樹脂チューブ |
Also Published As
Publication number | Publication date |
---|---|
CN103210036A (zh) | 2013-07-17 |
JP2013018935A (ja) | 2013-01-31 |
US20130243988A1 (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8063308B2 (en) | Halogen free electric wire, wire bundle, and automotive wiring harness | |
JP4255368B2 (ja) | 架橋型難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス | |
JP2009051918A (ja) | 難燃性絶縁電線 | |
JP6329907B2 (ja) | 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法 | |
JP2011144286A (ja) | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 | |
WO2016056635A1 (ja) | 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品 | |
CN110770291B (zh) | 树脂组合物、树脂被覆材料、汽车用线束和汽车用线束的制造方法 | |
US9502156B2 (en) | Flame-retardant resin composition | |
WO2013008658A1 (ja) | 難燃性柔軟樹脂組成物、並びにそれを用いた樹脂チューブ及び絶縁電線 | |
JP2011225673A (ja) | 耐磨耗性樹脂組成物及びそれを用いた耐磨耗性絶縁電線並びに樹脂チューブ | |
WO2016056634A1 (ja) | 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品 | |
JP6868420B2 (ja) | 難燃性架橋樹脂組成物及び配線材 | |
JP7203783B2 (ja) | 耐熱性難燃架橋フッ素ゴム成形体及びその製造方法、並びに耐熱性製品 | |
JP4163052B2 (ja) | 難燃性樹脂組成物、その製造方法および該難燃性樹脂組成物を被覆した絶縁電線 | |
KR101385986B1 (ko) | 알루미늄 도체를 위한 피복 조성물 및 이를 이용하여 제조된 전선 및 케이블 | |
JP3960795B2 (ja) | 絶縁電線 | |
JP2003226792A (ja) | 難燃性樹脂組成物及びこれを用いたノンハロゲン絶縁電線並びにワイヤーハーネス | |
EP2927268A1 (en) | Production method for moulded body using heat-resistant silane-cross-linkable resin composition | |
JP2012124061A (ja) | 難燃性電線・ケーブル | |
JP6639937B2 (ja) | 耐熱性シラン架橋熱可塑性エラストマー成形体の製造方法、シランマスターバッチ、並びに、耐熱性製品 | |
JP2015117318A (ja) | 難燃性樹脂組成物及びこれを用いた電線・ケーブル | |
JP6428463B2 (ja) | ノンハロゲン難燃性樹脂組成物、並びにこれを用いた絶縁電線及びケーブル | |
JP2004075993A (ja) | 難燃性樹脂組成物およびそれを被覆した絶縁電線 | |
JP2015117317A (ja) | 難燃性樹脂組成物及びこれを用いた電線・ケーブル | |
EP2495731A1 (en) | Insulating material composition for automotive electric cable with excellent abrasion resistance and flame retardancy, and automotive electric cable using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12810668 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13883287 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12810668 Country of ref document: EP Kind code of ref document: A1 |