WO2013007069A1 - 泵车及其控制方法和装置 - Google Patents

泵车及其控制方法和装置 Download PDF

Info

Publication number
WO2013007069A1
WO2013007069A1 PCT/CN2011/080899 CN2011080899W WO2013007069A1 WO 2013007069 A1 WO2013007069 A1 WO 2013007069A1 CN 2011080899 W CN2011080899 W CN 2011080899W WO 2013007069 A1 WO2013007069 A1 WO 2013007069A1
Authority
WO
WIPO (PCT)
Prior art keywords
gravity
vehicle
pump truck
center
safety factor
Prior art date
Application number
PCT/CN2011/080899
Other languages
English (en)
French (fr)
Inventor
吴斌兴
李学俊
易伟春
李葵芳
岳红旭
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Priority to RU2013115571/03A priority Critical patent/RU2013115571A/ru
Priority to BR112013006558-3A priority patent/BR112013006558B1/pt
Priority to EP11869207.8A priority patent/EP2733281B1/en
Publication of WO2013007069A1 publication Critical patent/WO2013007069A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to the field of pump trucks, and in particular to a pump truck and a control method and apparatus therefor.
  • BACKGROUND OF THE INVENTION The safety of concrete pump trucks during construction is a critical technical issue. At present, the pump truck is fully safe to open the legs to ensure the maximum safe working surface. As shown in Figure 1, the concrete radius of the pump truck can be maximized, ensuring that the pump truck can safely pump concrete in the horizontal posture of the boom. However, due to the limitation of the working space, the legs are often not fully deployed, thus limiting the safe delivery radius of the pump truck, and thus the safety of the pumping state of the boom in any posture cannot be guaranteed, and it is possible that under certain conditions.
  • a primary object of the present invention is to provide a pump truck and a control method and apparatus therefor, which can solve the problem that the safety of the pump truck cannot be ensured when the pump truck legs cannot be fully deployed.
  • a pump truck control method is provided.
  • the pumping vehicle control method comprises: obtaining the opening degree of the four legs of the pumping vehicle; determining the end points of the four legs of the pumping vehicle according to the opening degree, and connecting the end points of the four supporting legs to determine the safety of the pumping vehicle Working surface boundary; Calculate the stability of the whole pump according to the gravity of the pumping vehicle, the coordinates of the center of gravity of the vehicle, and the gravity of the whole vehicle of the pumping vehicle; according to the gravity of the pumping vehicle, the gravity of the pumping frame, and the pumping Calculate the center of gravity of the pump truck by calculating the gravity of the vehicle, the coordinates of the center of gravity of the boom of the pump truck, and the coordinates of the center of gravity of the pumping vehicle; calculating the safety factor of the pump truck according to the boundary of the safe working surface, the stability of the whole vehicle, and the center of gravity of the vehicle; The safety factor controls the pump truck.
  • a pumping cart control apparatus comprises: a first obtaining module for acquiring the opening degree of the four legs of the pumping vehicle; and a first determining module, configured to determine an end point of the four legs of the pumping truck according to the opening degree , connecting the ends of the four legs The end point determines the safe working surface boundary of the pumping vehicle; the first calculating module is configured to calculate the whole vehicle stability of the pumping vehicle according to the getting-off gravity of the pumping vehicle, the gravity center of the getting-off vehicle, and the vehicle gravity of the pumping vehicle;
  • the utility model is used for calculating the center of gravity of the pumping vehicle according to the gravity of the pumping vehicle, the gravity of the boom of the pumping vehicle, the gravity of the whole vehicle of the pumping vehicle, the coordinates of the center of gravity of the pumping vehicle, and the center of gravity of the pumping vehicle;
  • the module is used for calculating the safety factor of the pump truck
  • a pump truck is provided.
  • the pump truck according to the present invention comprises: a control device for any pump truck provided by the present invention; and a display interface connected to the control device for the vehicle state of the pump truck.
  • a pumping vehicle control method comprising the following steps: obtaining the opening degree of the four legs of the pumping vehicle; determining the end points of the four legs of the pumping vehicle according to the opening degree, and determining the end points of the four supporting legs
  • the safe working surface boundary of the pump truck Calculate the stability of the pump truck according to the gravity of the pump truck, the coordinates of the center of gravity of the vehicle, and the gravity of the whole vehicle of the pump truck; according to the gravity of the pump truck, the gravity of the boom of the pump truck , the vehicle gravity of the pump truck, the gravity center coordinates of the pump truck, and the center of gravity of the pump truck to calculate the center of gravity of the pump truck; calculate the safety of the pump truck according to the boundary of the safe working surface, the stability of the vehicle and the center of gravity of the vehicle.
  • FIG. 1 is a schematic diagram of a pump truck control according to the prior art
  • FIG. 2 is a flow chart of a pump truck control method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a pump truck control according to an embodiment of the present invention
  • 4 is a schematic diagram of calculation of a cylinder force arm of a pump truck according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a pump truck control according to the prior art
  • FIG. 2 is a flow chart of a pump truck control method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a pump truck control according to an embodiment of the present invention
  • 4 is a schematic diagram of calculation of a cylinder force arm of a pump truck according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a pump truck control according to the prior art
  • FIG. 2 is a flow chart of a pump truck control method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram
  • FIG. 5 is a schematic diagram of a pump truck control method according to an embodiment of the present invention
  • FIG. 6 is a pump vehicle control apparatus according to an embodiment of the present invention. block diagram. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. 2 is a flow chart of a pumping cart control method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following steps S102 to S112: Step S102, obtaining the opening degrees of the four legs of the pump truck.
  • FIG. 3 is a schematic diagram of the pump control according to the embodiment of the present invention. As shown in FIG. 3, the measurement includes two front X legs 1 and two. The opening of the rear swing leg 2. Step S104, determining a safe working surface boundary of the pumping vehicle according to the opening degree, and then forming a boundary of the safe working surface of the pumping vehicle by the end point connecting quadrilateral of the leg, as shown in FIG. 3, according to the two front X legs 1 and 2 The opening of the rear swing leg 2 is based on the safe working surface boundary 7 of the pump truck. In step S106, the whole vehicle stability of the pump truck is calculated. As shown in Figure 3, the following formula is used to calculate the vehicle stability of the pump truck 6:
  • Ystab G tnwk truck IG t total
  • JT ⁇ is the horizontal axis of the vehicle's stability. 3 ⁇ 4 is the ordinate of the whole car
  • G in ⁇ is the gravity of getting off
  • G tota is the gravity of the whole vehicle
  • (x ira£ , _y in ⁇ ) is the coordinate of the center of gravity of the getting off, where the gravity of the vehicle is getting off
  • the gravity of the whole vehicle is The coordinates of the center of gravity of the vehicle are the intrinsic parameters of the pump truck.
  • Step S108 calculating the center of gravity of the whole vehicle of the pump truck. As shown in Fig.
  • the center of gravity 5 is obtained with the center of gravity 5 as the center of the center, and the center of the turntable 3 is taken as the coordinate origin, and the tail direction of the front is the horizontal axis, and the vertical direction is the vertical axis to form the rectangular coordinate system.
  • the abscissa of the center of gravity of the vehicle is the ordinate of the center of gravity of the vehicle
  • G 3 ⁇ 4 . . m is the weight of the boom
  • the gravity for getting off G TOTA is the gravity of the whole vehicle
  • (x 3 ⁇ 4 m , _y 3 ⁇ 4 J is the coordinate of the center of gravity of the boom
  • ( ⁇ , ⁇ ) is the coordinates of the center of gravity of the vehicle
  • the boom Gravity, getting off gravity, vehicle gravity and the center of gravity of the vehicle are the inherent parameters of the pump truck.
  • the coordinates of the center of gravity of the boom are calculated by the following formula:
  • FIG. 4 is a schematic diagram of the calculation of the cylinder force arm of the pump truck according to the embodiment of the present invention. As shown in FIG. 4, the cylinder is hinged and the cylinder is hinged.
  • the distance between the pivot point of the boom, the pivot point of the boom 0, and the pivot point of the boom on the upper and lower hinge points of the cylinder is the force arm of the cylinder.
  • the lower hinge point B of the cylinder is utilized.
  • the horizontal distance LD between the pivot point 0 of the boom, the vertical distance LC between the lower hinge point B of the cylinder and the pivot point 0 of the boom, the hinge point A on the cylinder and the turning point 0 of the boom are along the boom direction of the pump truck.
  • the distance LE, the hinge point A on the cylinder and the pivot point 0 of the boom along the vertical direction of the pump boom and the inclination of the pump boom are calculated by geometric relations.
  • the calculation process is pure mathematical geometry operation. It will not be described here.
  • Step S110 calculating the safety factor of the pumping vehicle according to the boundary of the safe working surface, the stability of the whole vehicle, and the center of gravity of the vehicle.
  • Step S112 controlling the pump truck according to the safety factor. Controlling the pump truck according to the safety factor includes: controlling the action of the pump truck to lock the pump truck according to the safety factor; controlling the opposite action of the pump truck to perform the locked action; and controlling the pump truck to unlock the locked action.
  • the action of the pump truck is locked correspondingly by the danger level, and then the pump truck is controlled to perform the opposite action of the locked action, and the boom is operated in the direction of the safe rotation or the unlocking direction of the arm section, so that the safety factor becomes larger and enters the safe area, and the whole is restored.
  • the action restricted by the anti-rollover function prevents the vehicle from tipping over in time.
  • the safety factor of the whole vehicle is equal to 1
  • the tilting torque of the whole vehicle is balanced with the whole vehicle torque.
  • the whole vehicle is critically overturned.
  • the safety factor of the whole vehicle is less than 1, the whole vehicle will have a rollover accident, in order to protect the whole vehicle.
  • the safety factor should be greater than 1.
  • the different degrees of safety are used to indicate the different levels of risk of tipping. If the safety factor is less than a and greater than or equal to b, it is a level hazard and will be controlled in the controller program: lock boom speedshift, enter slow gear mode, lock arm moves downward, locks one side of dangerous direction If the safety factor is less than b and greater than or equal to c, it is a h-class hazard. The lock arm movement lasts for several seconds.
  • the lock arm moves for 5 seconds, the lock boom is fast, enters the slow mode, and locks one.
  • the safety factor is less than c and greater than or equal to 1
  • it is a dangerous class c
  • the boom is locked in the safe direction of rotation
  • the pump is pumped.
  • the boom can be operated in a safe direction to ensure the safety of the vehicle.
  • the danger of the pump reaches the highest level of danger When possible, limit all possible dangerous vehicle movements to ensure the safety of the vehicle.
  • the pump can be controlled at different levels according to the safety factor of the vehicle.
  • the control method is not limited to the control of the boom, the swing, and the pumping, such as the function control of the remote controller.
  • 5 is a schematic diagram of a pumping cart control method according to an embodiment of the present invention. As shown in FIG. 5, in the calculation process, the measurement of the parameters is not limited to the measurement manner of one or more sensors, and is not limited to the type of the sensor. For example, the measurement of the opening of the leg may be one or more methods such as a wire sensor, an angle sensor, and a laser sensor.
  • the anti-rollover intelligentity of the pumping vehicle can be intelligentized, and the safety factor of the whole vehicle can be dynamically calculated, and the danger degree of the whole vehicle tipping can be judged and correspondingly controlled, and the boom is limited.
  • the action of tilting the dangerous direction, and directly operating the boom to return the center of gravity of the vehicle to a safer working range improves the flexibility of the pump truck, and automatically achieves safety when the outrigger space is limited.
  • the pumping within the range ensures the safety, stability and continuity of the pump construction.
  • a pumping cart control apparatus is provided. 6 is a block diagram of a pumping control device according to an embodiment of the present invention. As shown in FIG.
  • the control device includes: a first acquiring module 10 for obtaining the opening degree of four legs of the pumping vehicle, which can pass through the legs
  • the sensor includes a wire and an angle sensor for real-time measurement;
  • the first determining module 20 is configured to determine a safe working surface boundary of the pumping vehicle according to the opening degree, and the boundary of the leg end connection line constitutes a safe working surface boundary of the pumping vehicle;
  • the module 30 is configured to calculate the stability of the whole vehicle according to the gravity of the pumping vehicle, the coordinates of the center of gravity of the vehicle, and the gravity of the whole vehicle of the pumping vehicle;
  • the second calculating module 40 is configured to be used according to the gravity of the pumping vehicle and the pump.
  • the weight of the boom of the car, the gravity of the truck, the boom of the pump truck Calculating the center of gravity of the pump truck by the coordinates of the center of gravity and the center of gravity of the pumping vehicle; the third calculation module 50 is configured to calculate the safety factor of the pumping vehicle according to the boundary of the safe working surface, the stability of the vehicle and the center of gravity of the vehicle; and the control module 60, used to control the pump truck according to the safety factor.
  • the safety factor of the whole vehicle can be dynamically calculated, the safety degree of the whole vehicle is judged by the safety factor of the whole vehicle, and the movement of the boom to the dangerous direction of the tilting is correspondingly restricted, and the pump can be made
  • the anti-tip function of the car is more intelligent, which improves the flexibility of the pump.
  • the pumping in the safe range can be automatically realized, ensuring the safety and stability of the pump construction. Sexuality, continuity.
  • the first calculation module 30 uses the following calculation method when calculating the stability of the pump truck:
  • the second calculation module 40 uses the following calculation method when calculating the center of gravity of the pump truck:
  • the abscissa of the center of gravity of the vehicle is the ordinate of the center of gravity of the vehicle
  • G 3 ⁇ 4 . . m is the weight of the boom
  • the gravity of the vehicle G TOTA
  • (x 3 ⁇ 4 m , _y 3 ⁇ 4 J is the coordinate of the center of gravity of the boom
  • ( ⁇ , ⁇ ) is the coordinates of the center of gravity of the vehicle, where the boom Gravity, getting off gravity, vehicle gravity and the center of gravity of the vehicle are the inherent parameters of the pump truck.
  • the coordinates of the center of gravity of the boom are calculated by the following formula:
  • FIG. 4 is a schematic diagram of the calculation of the cylinder force arm of the pump truck according to the embodiment of the present invention, and the description thereof will not be repeated here.
  • the third calculation module 50 includes: a first calculation sub-module, configured to calculate a first distance, where the first distance is a distance between a center of gravity of the vehicle and a vehicle stability; and a second calculation sub-module, configured to calculate The second distance, the second distance is a minimum distance from the center of gravity of the vehicle to the boundary of the safe working surface; and a third calculating sub-module for calculating the safety factor according to the first distance and the second distance.
  • the distance between the center of gravity of the vehicle and the center of stability of the vehicle is a safety distance, that is, a first distance; the minimum distance from the center of gravity of the vehicle to the boundary of the safe working surface is a second distance, the minimum distance is divided
  • the safety distance is the safety factor.
  • the control module 60 includes: a first control sub-module for controlling the action of the pump truck to lock the pump truck according to the safety factor; a second control sub-module for controlling the opposite action of the pump truck to perform the locked action; and a third control sub-module , used to control the pump truck to unlock the already locked action.
  • the action of the pump truck is firstly locked by the danger level, and then the pump truck is controlled to perform the opposite action of the locked action, and the boom is operated in the direction of the safe rotation or the unlocking direction of the arm section, so that the safety factor is increased. Enter the safe area and restore the action restricted by the anti-rollover function of the whole vehicle.
  • the safety factor is referred to: when the safety factor is less than the first safety factor and greater than or equal to the second safety factor, the lock boom is in the fast gear mode and enters the slow gear mode.
  • the lock arm moves downward, and the side of the dangerous direction of the lock rotates; when it is less than the second safety factor and is greater than or equal to the third safety factor, the lock arm movement continues for a preset time, the lock arm frame is fast, and the slow gear mode is entered.
  • the hazard is defined as three levels according to the condition of the pump truck and is controlled accordingly, so that the pump truck can take the least measures to prevent the tipping in different situations.
  • a pump truck is provided.
  • the pump truck comprises: a control device for any pump truck provided by the invention; and a display interface connected to the control device for the vehicle state of the pump truck.
  • the coordinates of the leg, the center of gravity coordinate, the coordinate of the center of gravity are sent to the display interface to form a safety plan view of the pump truck.
  • the sensor parameters are combined with the sensor parameters to enable the operator to know the state of the vehicle in time and make corresponding The adjustment ensures the safety of the operator, saves equipment, and improves the service life of the pump.
  • the present invention achieves the following technical effects: It can dynamically calculate the safety factor of the whole vehicle, judge the danger degree of the whole vehicle tipping by the safety factor of the whole vehicle, and correspondingly limit the tilting of the boom.
  • the action in the dangerous direction improves the flexibility of the pump control.
  • the pumping in the safe range can be automatically realized, ensuring the safety, stability and continuity of the pump construction. Sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Jib Cranes (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种泵车及其控制方法以及泵车控制装置,该泵车控制方法包括:获得泵车的四个支腿(1,2)的开度;根据开度确定泵车的四个支腿(1,2)的末端点,连接四个支腿(1,2)的末端点确定泵车的安全作业面边界(7);根据泵车的下车重力、下车重心坐标以及泵车的整车重力计算泵车的整车稳心(6);根据泵车的下车重力、泵车的臂架重力、泵车的整车重力、泵车的臂架重心坐标以及泵车的下车重心坐标计算泵车的整车重心(5);根据安全作业面边界(7)、整车稳心(6)和整车重心(5)计算泵车的安全系数;根据安全系数控制泵车。采用该泵车控制方法,能够在泵车支腿不能完全展开时,保证泵车的安全。

Description

泵车及其控制方法和装置 技术领域 本发明涉及泵车领域, 具体而言, 涉及一种泵车及其控制方法和装置。 背景技术 混凝土泵车在施工过程的安全性是很关键的技术问题。 目前泵车是以完全打开支 腿来保障最大的安全作业面, 如图 1所示, 使泵车的输送混凝土半径可以达到最大, 保证泵车可以在臂架水平姿态下安全泵送混凝土。 但受作业空间的限制, 支腿往往不 能完全展开, 从而限制了泵车的安全输送半径, 从而也就不能保证臂架在任意姿态下 泵送状态的安全性, 就有可能在有的状况下出现整车倾翻的危险。 在不完全打开支腿 的情况下, 如何动态地确定泵车安全工作范围, 从而把臂架动作限制在安全面内, 是 做好泵车防倾翻的首要问题。 针对相关技术中泵车支腿不能完全展开时无法保证泵车安全性的问题, 目前尚未 提出有效的解决方案。 发明内容 本发明的主要目的在于提供一种泵车及其控制方法和装置, 以解决泵车支腿不能 完全展开时无法保证泵车安全性问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种泵车控制方法。 根据本发明的泵车控制方法包括: 获取泵车的四个支腿的开度; 根据开度确定泵 车的四个支腿的末端点, 连接四个支腿的末端点确定泵车的安全作业面边界; 根据泵 车的下车重力、 下车重心坐标以及泵车的整车重力计算泵车的整车稳心; 根据泵车的 下车重力、 泵车的臂架重力、 泵车的整车重力、 泵车的臂架重心坐标以及泵车的下车 重心坐标计算泵车的整车重心; 根据安全作业面边界、 整车稳心和整车重心计算泵车 的安全系数; 以及根据安全系数控制泵车。 为了实现上述目的, 根据本发明的另一方面, 提供了一种泵车控制装置。 根据本发明的泵车控制装置包括: 第一获取模块, 用于获取泵车的四个支腿的开 度; 第一确定模块, 用于根据开度确定泵车的四个支腿的末端点, 连接四个支腿的末 端点确定泵车的安全作业面边界; 第一计算模块, 用于根据泵车的下车重力、 下车重 心坐标以及泵车的整车重力计算泵车的整车稳心; 第二计算模块, 用于根据泵车的下 车重力、 泵车的臂架重力、 泵车的整车重力、 泵车的臂架重心坐标以及泵车的下车重 心坐标计算泵车的整车重心; 第三计算模块, 用于根据安全作业面边界、 整车稳心和 整车重心计算泵车的安全系数; 以及控制模块, 用于根据安全系数控制泵车。 为了实现上述目的, 根据本发明的另一方面, 提供了一种泵车。 根据本发明的泵车包括: 本发明提供的任意一种泵车的控制装置; 以及显示界面, 与控制装置相连接, 用于泵车的整车状态。 通过本发明, 采用包括以下步骤的泵车控制方法: 获取泵车的四个支腿的开度; 根据开度确定泵车的四个支腿的末端点, 连接四个支腿的末端点确定泵车的安全作业 面边界; 根据泵车的下车重力、 下车重心坐标以及泵车的整车重力计算泵车的整车稳 心; 根据泵车的下车重力、 泵车的臂架重力、 泵车的整车重力、 泵车的臂架重心坐标 以及泵车的下车重心坐标计算泵车的整车重心; 根据安全作业面边界、 整车稳心和整 车重心计算泵车的安全系数; 以及根据安全系数控制泵车, 解决了泵车支腿不能完全 展开时无法保证泵车安全性的问题, 进而达到了在泵车支腿不能完全展开时, 能够保 证泵车安全的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据现有技术的泵车控制示意图; 图 2是根据本发明实施例的泵车控制方法的流程图; 图 3是根据本发明实施例的泵车控制的示意图; 图 4是根据本发明实施例的泵车的油缸力臂的计算示意图; 图 5是根据本发明实施例的泵车控制方法的示意图; 以及 图 6是根据本发明实施例的泵车控制装置的框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 2是根据本发明实施例的泵车控制方法的流程图, 如图 2所示, 该方法包括如 下的步骤 S102至步骤 S112: 步骤 S102, 获取泵车的四个支腿的开度。 本步骤通过支腿传感器包括拉线、 角度传感器实时测量支腿的开度, 图 3是根据 本发明实施例的泵车控制示意图, 如图 3所示, 包括测量两个前 X支腿 1和两个后摆 腿 2的开度。 步骤 S104, 根据开度确定泵车的安全作业面边界, 然后由支腿端点连线四边形构 成泵车的整车安全作业面边界, 如图 3所示, 根据两个前 X支腿 1和两个后摆腿 2的 开度根据泵车的安全作业面边界 7。 步骤 S106, 计算泵车的整车稳心。 如图 3所示, 采用以下公式计算泵车的整车稳心 6:
^stab = Gtnwk X Struck I ^tc
Ystab = Gtnwk truck I Gt total 其中, JT^为整车稳心的横坐标, 。¾为整车稳心的纵坐标, Gin ^为下车重力, Gtota,为整车重力, (xira£ , _yin^)为下车重心坐标, 其中, 下车重力、 整车重力与下车重 心坐标均为泵车的固有参数。 步骤 S108, 计算泵车的整车重心。 如图 3所示, 以整车重心 5为圆心得到重心回转圆 4, 以回转台 3的中心为坐标 原点, 以车头车尾方向为横轴, 其垂直方向为纵轴构成直角坐标系。 根据泵车的下车 重力、 泵车的臂架重力、 泵车的整车重力、 泵车的臂架重心坐标以及泵车的下车重心 坐标计算泵车的整车重心, 采用以下公式计算泵车的整车重心: X center ~ (^boom X Xboom + ^truck X Xtruck ) ^ ^total y = V X ¾ Y 其中, 为整车重心的横坐标, 为整车重心的纵坐标, G¾。。m为臂架重力, 为下车重力, GTOTA,为整车重力, (x¾ m,_y¾J为臂架重心坐标, (Χ^, Λ^)为下车 重心坐标, 其中, 臂架重力、 下车重力、 整车重力以及下车重心坐标为泵车的固有参 数, 臂架重心坐标通过以下公式计算得到:
= » xsin 其中, 。。m 臂架重心的横坐标, _y¾。。m为臂架重心的纵坐标, 0为臂架的回转角 度, ^ ^^为油缸的力臂。 臂架的回转角度能够通过角度传感器获得。 油缸的力臂与泵车大臂的倾角及结构 尺寸有关, 图 4是根据本发明实施例的泵车的油缸力臂的计算示意图, 如图 4所示, 油缸上铰点 Α, 油缸下铰点 Β、 臂架的回转点 0以及臂架回转点在油缸上下铰点连线 上的垂足 C OC的距离即为油缸的力臂, 在计算油缸力臂时, 利用油缸下铰点 B与 臂架的回转点 0之间的水平距离 LD、 油缸下铰点 B与臂架的回转点 0之间的垂直距 离 LC、 油缸上铰点 A与臂架的回转点 0沿泵车大臂方向的距离 LE、 油缸上铰点 A 与臂架的回转点 0沿垂直泵车大臂方向的距离 LF以及泵车大臂的的倾角, 通过几何 关系计算得到, 计算过程为纯粹的数学几何运算, 此处不再描述。 步骤 S110, 根据安全作业面边界、 整车稳心和整车重心计算泵车的安全系数。 在计算安全系数时, 首先计算整车重心与整车稳心之间的安全距离, 其次计算整 车重心到与安全作业面边界的相对位置最小距离, 利用该最小距离除以安全距离即为 安全系数。 步骤 S112, 根据安全系数控制泵车。 根据安全系数控制泵车包括: 根据安全系数控制泵车锁定泵车的动作; 控制泵车 实施已经锁定动作的相反动作; 以及控制泵车将已经锁定动作解锁。 首先通过危险级 别相应锁定泵车的动作, 然后控制泵车通过实施被锁动作的相反动作, 以安全回转方 向或臂节未锁动作方向动作臂架, 使安全系数变大进入安全区域, 恢复整车防倾翻功 能所限制的动作, 能够及时的防止整车倾翻。 当整车安全系数等于 1时, 整车的倾翻力矩与整车力矩平衡, 此时整车为临界翻 车, 当整车安全系数小于 1时, 整车会出现翻车事故, 为了保障整车不翻车, 安全系 数均应大于 1, 根据整车倾翻的危险程度, 对应 a, b, c三个安全系数, 其中 a>b>c, 分为 a、 b、 c三个危险级别, 安全系数越小, 倾翻危险程度越大, 用不同级别的安全 系数表示整车的倾翻的不同危险程度。 如果安全系数小于 a且大于或等于 b时, 属于 a级危险, 就会在控制器程序中控制: 锁臂架快档, 进入慢档模式, 锁一臂向下动作, 锁危险方向的一边回转; 如果安全系数小于 b且大于或等于 c时, 属于 b级危险, 锁 臂架动作持续若干秒, 可选地, 锁臂架动作 5秒, 锁臂架快档, 进入慢档模式, 锁一、 二节臂的向下动作, 锁危险方向的一边回转; 如果安全系数小于 c且大于或等于 1时, 属于 c级危险, 锁安全回转方向的臂架动作, 锁泵送。 通过分级控制, 确保整车的安 全, 当泵车有危险倾向时, 限制危险方向臂架动作, 可以确保在安全方向操作臂架使 整车的安全回位, 当泵车的危险到最高级别危险时, 限制所有可能的危险整车动作, 确保整车的安全状态。 在整车解除危险后, 可以通过功能屏蔽开关屏蔽整车防倾翻功 能, 则解除了防倾翻功能对整车的所有限制。 需要说明的是, 根据整车安全系数可以对泵车做不同级别的控制, 控制方式不限 于对臂架、 回转、 泵送的控制, 如对遥控器的功能控制等。 图 5是根据本发明实施例的泵车控制方法的示意图, 如图 5所示,在计算过程中, 对参数的测量不局限于一种或多种传感器的测量方式, 也不限于传感器的类型, 如对 支腿开度的测量, 可以是拉线传感器、 角度传感器、 激光传感器等一种或多种方式。 采用该实施例的泵车控制方法, 能够使泵车的防倾翻智能化, 可以动态地计算整 车安全系数, 用来判断整车倾翻的危险程度并做出相应控制, 限制了臂架向倾翻危险 方向的动作, 并同时直接操作臂架使整车重心回到更安全的工作范围, 提高了泵车使 用的灵活性, 在支腿展开空间受限的情况, 仍能自动实现安全范围内的泵送, 保证了 泵车施工的安全性、 稳定性、 连续性。 根据本发明的实施例, 提供了一种泵车控制装置。 图 6是根据本发明实施例的泵车控制装置框图, 如图 6所示, 该控制装置包括: 第一获取模块 10, 用于获取泵车的四个支腿的开度, 可以通过支腿传感器包括拉线、 角度传感器实时测量; 第一确定模块 20, 用于根据开度确定泵车的安全作业面边界, 由支腿端点连线四边形构成泵车的整车安全作业面边界; 第一计算模块 30, 用于根据 泵车的下车重力、 下车重心坐标以及泵车的整车重力计算泵车的整车稳心; 第二计算 模块 40, 用于根据泵车的下车重力、 泵车的臂架重力、 泵车的整车重力、 泵车的臂架 重心坐标以及泵车的下车重心坐标计算泵车的整车重心; 第三计算模块 50, 用于根据 安全作业面边界、 整车稳心和整车重心计算泵车的安全系数; 以及控制模块 60, 用于 根据安全系数控制泵车。 采用该实施例的泵车控制装置, 可以动态地计算整车安全系数, 通过整车的安全 系数判断整车倾翻的危险程度, 并相应限制臂架向倾翻危险方向的动作, 能够使泵车 的防倾翻功能更智能化, 提高了泵车使用的灵活性, 在支腿展开空间受限的情况, 仍 能自动实现安全范围内的泵送, 保证了泵车施工的安全性、 稳定性、 连续性。 第一计算模块 30在计算泵车的稳心时采用以下的计算方法:
X ― Gtmck X ! ― Gtmck X y 其中, JT^为整车稳心的横坐标, 。¾为整车稳心的纵坐标, Gin ^为下车重力, Gtota,为整车重力, (xira£ , _yin^)为下车重心坐标,, 其中, 下车重力、 整车重力与下车重 心坐标均为泵车的固有参数。 第二计算模块 40在计算泵车的整车重心时采用以下的计算方法:
y X ¾ 其中, 为整车重心的横坐标, 为整车重心的纵坐标, G¾。。m为臂架重力, 为下车重力, GTOTA,为整车重力, (x¾ m, _y¾J为臂架重心坐标, (Χ^ , Λ^)为下车 重心坐标, 其中, 臂架重力、 下车重力、 整车重力以及下车重心坐标为泵车的固有参 数, 臂架重心坐标通过以下公式计算得到:
= » xsin 其中, x。。™为臂架重心的横坐标, 。。™为臂架重心的纵坐标, 为臂架的回转角 度, 为油缸的力臂。 臂架的回转角度能够通过角度传感器获得。 油缸的力臂与泵车大臂的倾角及结构 尺寸有关, 图 4是根据本发明实施例的泵车的油缸力臂的计算示意图, 此处不再重复 描述。 优选地, 第三计算模块 50包括: 第一计算子模块, 用于计算第一距离, 第一距离 为整车重心与整车稳心之间的距离; 第二计算子模块, 用于计算第二距离, 第二距离 为整车重心到安全作业面边界的最小距离; 以及第三计算子模块, 用于根据第一距离 和第二距离计算安全系数。 在该实施例中, 整车重心与整车稳心之间的距离为安全距离, 即第一距离; 整车 重心到与安全作业面边界的相对位置最小距离为第二距离, 该最小距离除以安全距离 即为安全系数。 控制模块 60包括:第一控制子模块,用于根据安全系数控制泵车锁定泵车的动作; 第二控制子模块,用于控制泵车实施已经锁定动作的相反动作; 以及第三控制子模块, 用于控制泵车将已经锁定动作解锁。 在该实施例中, 首先通过危险级别相应锁定泵车的动作, 然后控制泵车通过实施 被锁动作的相反动作, 以安全回转方向或臂节未锁动作方向动作臂架, 使安全系数变 大进入安全区域, 恢复整车防倾翻功能所限制的动作。 第一控制子模块在控制泵车锁定泵车的动作时, 参照安全系数的大小: 当安全系 数小于第一安全系数且大于或等于第二安全系数时, 锁臂架快档, 进入慢档模式, 锁 一臂向下动作, 锁危险方向的一边回转; 当小于第二安全系数且大于或等于第三安全 系数时, 锁臂架动作持续预设时间, 锁臂架快档, 进入慢档模式, 锁一、 二节臂的向 下动作, 锁危险方向的一边回转; 以及当所述安全系数小于第三安全系数且大于或等 于 1时, 锁安全方向回转的臂架动作, 锁泵送。 在该实施例中, 根据泵车的情况将危险定义为三个级别并对其进行相应的控制, 使得泵车在不同情况下能够采取最少的措施达到防止倾翻的目的。 根据本发明的实施例, 提供了一种泵车。 该泵车包括: 本发明提供的任意一种泵 车的控制装置; 以及显示界面, 与控制装置相连接, 用于泵车的整车状态。 将支腿坐 标、 重心坐标、 稳心坐标等坐标发送到显示界面形成泵车安全俯视图, 如图 3所示, 结合传感器参数构成安全人机界面, 使机手能及时知道整车状态并作相应调整, 保障 了机手安全, 节约设备, 并提高了泵车的使用寿命。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 能够动态地计算整车 安全系数, 通过整车的安全系数判断整车倾翻的危险程度, 并相应限制臂架向倾翻危 险方向的动作, 提高了泵车控制的灵活性, 尤其在支腿展开空间受限的情况下, 仍能 自动实现安全范围内的泵送, 保证了泵车施工的安全性、 稳定性、 连续性。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种泵车控制方法, 其特征在于, 包括:
获取所述泵车的四个支腿的开度;
根据所述开度确定所述泵车的四个支腿的末端点, 连接所述四个支腿的末 端点确定所述泵车的安全作业面边界;
根据所述泵车的下车重力、 下车重心坐标以及所述泵车的整车重力计算所 述泵车的整车稳心;
根据所述泵车的下车重力、 所述泵车的臂架重力、 所述泵车的整车重力、 所述泵车的臂架重心坐标以及所述泵车的下车重心坐标计算所述泵车的整车重 心;
根据所述安全作业面边界、 所述整车稳心和所述整车重心计算所述泵车的 安全系数; 以及
根据所述安全系数控制所述泵车。
2. 根据权利要求 1所述的泵车控制方法, 其特征在于, 采用以下公式计算所述泵 车的整车稳心:
X ― Gtmck X !
― Gtmck X y
其中, 所述 为所述整车稳心的横坐标, 所述 i fl¾为所述整车稳心的纵 坐标, Gin ^为所述下车重力, 所述 Gtota,为所述整车重力, (xira£ , _yin^)为所述下 车重心坐标。
3. 根据权利要求 1所述的泵车控制方法, 其特征在于, 采用以下公式计算所述泵 车的整车重心:
y X ¾
其中, 所述 ^为所述整车重心的横坐标, 所述 ^^为所述整车重心的 纵坐标, 所述 G¾。。m为所述臂架重力, 所述 Gin ^为所述下车重力, 所述 Gtota,为 所述整车重力, (x¾ m,_y¾。。m)为所述臂架重心坐标, (xira£ , )为所述下车重心 坐标。
4. 根据权利要求 3所述的泵车控制方法, 其特征在于, 所述臂架重心坐标通过以 下公式计算得到:
= » xsin 其中, 所述 x¾。。m为所述臂架重心的横坐标, 所述 _y¾。。m为所述臂架重心的纵 坐标, 0为所述臂架的回转角度, 所述 为所述油缸的力臂。
5. 根据权利要求 1所述的泵车控制方法, 其特征在于, 计算所述安全系数包括: 计算第一距离,所述第一距离为所述整车重心与所述整车稳心之间的距离; 计算第二距离, 所述第二距离为所述整车重心到所述安全作业面边界的最 小距离; 以及
所述第二距离除以所述第一距离得到所述安全系数。
6. 根据权利要求 1所述的泵车控制方法, 其特征在于, 根据所述安全系数控制所 述泵车包括:
根据所述安全系数控制所述泵车锁定所述泵车的动作;
控制所述泵车实施已经锁定动作的相反动作; 以及
控制所述泵车将所述已经锁定动作解锁。
7. 根据权利要求 6所述的泵车控制方法, 其特征在于, 根据所述安全系数控制所 述泵车锁定所述泵车的动作包括:
当所述安全系数小于所述第一安全系数且大于或等于第二安全系数时, 锁 臂架快档, 进入慢档模式, 锁一臂向下动作, 锁危险方向的一边回转;
当所述安全系数小于所述第二安全系数且大于或等于第三安全系数时, 锁 臂架动作持续预设时间, 锁臂架快档, 进入慢档模式, 锁一、 二节臂的向下动 作, 锁危险方向的一边回转; 以及
当所述安全系数小于所述第三安全系数且大于或等于 1时, 锁安全方向回 转的臂架动作, 锁泵送, 其中, 所述第一安全系数大于所述第二安全系数, 所述第二安全系数大于 所述第三安全系数。 一种泵车控制装置, 其特征在于, 包括:
第一获取模块, 用于获取所述泵车的四个支腿的开度;
第一确定模块, 用于根据所述开度确定所述泵车的四个支腿的末端点, 连 接所述四个支腿的末端点确定所述泵车的安全作业面边界;
第一计算模块, 用于根据所述泵车的下车重力、 下车重心坐标以及所述泵 车的整车重力计算所述泵车的整车稳心;
第二计算模块, 用于根据所述泵车的下车重力、 所述泵车的臂架重力、 所 述泵车的整车重力、 所述泵车的臂架重心坐标以及所述泵车的下车重心坐标计 算所述泵车的整车重心;
第三计算模块, 用于根据所述安全作业面边界、 所述整车稳心和所述整车 重心计算所述泵车的安全系数; 以及
控制模块, 用于根据所述安全系数控制所述泵车。 根据权利要求 8所述的泵车控制装置, 其特征在于, 所述第三计算模块包括: 第一计算子模块, 用于计算第一距离, 所述第一距离为所述整车重心与所 述整车稳心之间的距离;
第二计算子模块, 用于计算第二距离, 所述第二距离为所述整车重心到所 述安全作业面边界的最小距离; 以及
第三计算子模块, 用于根据所述第一距离和所述第二距离计算所述安全系 数。 根据权利要求 8所述的泵车控制装置, 其特征在于, 所述控制模块包括: 第一控制子模块, 用于根据所述安全系数控制所述泵车锁定所述泵车的动 作;
第二控制子模块, 用于控制所述泵车实施已经锁定动作的相反动作; 以及 第三控制子模块, 用于控制所述泵车将所述已经锁定动作解锁。 一种泵车, 其特征在于, 包括: 权利要求 8至 10任意一项所述的泵车控制装置; 以及 显示界面, 与所述泵车控制装置相连接, 用于显示所述泵车的整车状态
PCT/CN2011/080899 2011-07-14 2011-10-18 泵车及其控制方法和装置 WO2013007069A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2013115571/03A RU2013115571A (ru) 2011-07-14 2011-10-18 Автомобильная насосная установка, способ управления и устройство управления
BR112013006558-3A BR112013006558B1 (pt) 2011-07-14 2011-10-18 caminhão-bomba e método e dispositivo para controlar o mesmo
EP11869207.8A EP2733281B1 (en) 2011-07-14 2011-10-18 Pump truck and control method and device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110197427A CN102330498B (zh) 2011-07-14 2011-07-14 泵车及其控制方法和装置
CN201110197427.1 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013007069A1 true WO2013007069A1 (zh) 2013-01-17

Family

ID=45482440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080899 WO2013007069A1 (zh) 2011-07-14 2011-10-18 泵车及其控制方法和装置

Country Status (5)

Country Link
EP (1) EP2733281B1 (zh)
CN (1) CN102330498B (zh)
BR (1) BR112013006558B1 (zh)
RU (1) RU2013115571A (zh)
WO (1) WO2013007069A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173524A (zh) * 2021-05-28 2021-07-27 广东工业大学 一种伸缩臂叉车液压动态称重方法、装置、设备和介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588505B (zh) * 2012-02-06 2014-01-15 三一汽车制造有限公司 泵车稳定性控制系统、控制方法及泵车
CN102841566B (zh) * 2012-09-18 2014-07-09 中联重科股份有限公司 混凝土泵车监控方法、混凝土泵车监控系统及混凝土泵车
CN102915045B (zh) * 2012-10-31 2015-01-07 中联重科股份有限公司 一种臂架类工程车辆的控制方法及装置
CN105292082B (zh) * 2014-05-29 2017-09-26 中联重科股份有限公司 一种防工程机械倾翻的控制方法、控制装置及工程机械
DE102014215019A1 (de) * 2014-07-30 2016-02-04 Putzmeister Engineering Gmbh Autobetonpumpe und Verfahren zu deren Arbeitsbetrieb
CN106365046B (zh) * 2015-07-23 2019-04-02 徐工集团工程机械股份有限公司 倾翻控制方法、装置、系统和工程机械
CN106760542B (zh) * 2016-12-12 2019-09-17 三一汽车制造有限公司 臂架控制方法、臂架控制装置和混凝土泵车
CN106706333B (zh) * 2016-12-13 2018-12-25 北汽福田汽车股份有限公司 一种混凝土泵车稳定性测试方法
CN110312674A (zh) * 2017-02-09 2019-10-08 株式会社前田制作所 移动式起重机的安全装置
DE102018204079A1 (de) 2018-03-16 2019-09-19 Putzmeister Engineering Gmbh Autobetonpumpe und Verfahren zur stabilitätsrelevanten Steuerung einer Autobetonpumpe
CN111395767A (zh) * 2020-03-23 2020-07-10 湖南机电职业技术学院 一种臂架泵车防倾翻保护系统
CN111608392B (zh) * 2020-05-08 2022-04-12 中联重科股份有限公司 用于混凝土设备的防倾翻控制方法和系统、混凝土设备
CN112499533A (zh) * 2020-10-30 2021-03-16 徐州海伦哲特种车辆有限公司 一种臂架类作业车动态幅度限制方法
CN112441511B (zh) * 2020-11-17 2021-08-24 中联重科股份有限公司 工程机械及其支撑控制方法、装置、系统及介质
CN112723201B (zh) * 2021-01-08 2022-03-04 中联重科股份有限公司 获取支撑位置的方法、装置及工程机械、可读存储介质
DE102021107142A1 (de) * 2021-03-23 2022-09-29 Putzmeister Engineering Gmbh Standsicherheitsüberwachung für ein Dickstofffördersystem
CN113608464B (zh) * 2021-07-21 2022-11-29 徐州徐工施维英机械有限公司 一种泵车的防倾覆安全控制方法、装置及系统
CN114215362B (zh) * 2021-12-17 2023-04-25 徐州徐工施维英机械有限公司 一种臂架自动避障系统、避障方法及泵车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248094A (ja) * 1992-03-06 1993-09-24 Asahi Chem Ind Co Ltd 成形パネルの仕分装置
US6785597B1 (en) * 2003-02-07 2004-08-31 Wiggins Lift Co., Inc. Hydraulic stabilizer system and process for monitoring load conditions
CN101457589A (zh) * 2008-12-26 2009-06-17 三一重工股份有限公司 一种施工机械
CN101487343A (zh) * 2009-01-14 2009-07-22 三一重工股份有限公司 一种混凝土泵车的控制方法、装置及系统
CN201329855Y (zh) * 2008-12-15 2009-10-21 山东鸿达建工集团有限公司 一种混凝土臂架泵车用油缸驱动“x”弧形支腿
CN101833287A (zh) * 2010-03-30 2010-09-15 三一重工股份有限公司 工程机械及其稳定性控制系统
CN101845892A (zh) * 2009-03-27 2010-09-29 徐工集团工程机械股份有限公司建设机械分公司 单边作业控制方法、控制器及混凝土泵车
CN201647861U (zh) * 2009-09-14 2010-11-24 徐州工程学院 随车起重机防倾翻装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179675A (ja) * 1997-09-02 1999-03-23 Komatsu Ltd アウトリガ付き車両の安全装置
JP5374037B2 (ja) * 2007-12-10 2013-12-25 株式会社タダノ 作業車の総合重心位置表示装置
CN201619959U (zh) * 2010-03-30 2010-11-03 三一重工股份有限公司 工程机械及其稳定性控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248094A (ja) * 1992-03-06 1993-09-24 Asahi Chem Ind Co Ltd 成形パネルの仕分装置
US6785597B1 (en) * 2003-02-07 2004-08-31 Wiggins Lift Co., Inc. Hydraulic stabilizer system and process for monitoring load conditions
CN201329855Y (zh) * 2008-12-15 2009-10-21 山东鸿达建工集团有限公司 一种混凝土臂架泵车用油缸驱动“x”弧形支腿
CN101457589A (zh) * 2008-12-26 2009-06-17 三一重工股份有限公司 一种施工机械
CN101487343A (zh) * 2009-01-14 2009-07-22 三一重工股份有限公司 一种混凝土泵车的控制方法、装置及系统
CN101845892A (zh) * 2009-03-27 2010-09-29 徐工集团工程机械股份有限公司建设机械分公司 单边作业控制方法、控制器及混凝土泵车
CN201647861U (zh) * 2009-09-14 2010-11-24 徐州工程学院 随车起重机防倾翻装置
CN101833287A (zh) * 2010-03-30 2010-09-15 三一重工股份有限公司 工程机械及其稳定性控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173524A (zh) * 2021-05-28 2021-07-27 广东工业大学 一种伸缩臂叉车液压动态称重方法、装置、设备和介质

Also Published As

Publication number Publication date
CN102330498B (zh) 2012-10-17
BR112013006558A2 (pt) 2017-10-24
EP2733281A4 (en) 2015-03-25
CN102330498A (zh) 2012-01-25
RU2013115571A (ru) 2015-11-27
EP2733281A1 (en) 2014-05-21
BR112013006558B1 (pt) 2020-06-30
EP2733281B1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2013007069A1 (zh) 泵车及其控制方法和装置
KR102640120B1 (ko) 콘크리트 펌프차와 콘크리트 펌프차의 안정성 관련 제어 방법
WO2014043997A1 (zh) 混凝土泵车监控方法、混凝土泵车监控系统及混凝土泵车
US20140320293A1 (en) Operator alert and height limitation system for load carrying machines
US6991119B2 (en) Measurement system and method for assessing lift vehicle stability
CN107074511B (zh) 自动混凝土泵和用于其工作运行的方法
US9783397B2 (en) Work state monitoring device for work vehicle
CN102774757B (zh) 工程机械
WO2013091426A1 (zh) 工程机械以及其安全状态确定方法、装置和系统
JP2009269759A (ja) 移動式クレーン及び移動式クレーンの運転方法
JP5374037B2 (ja) 作業車の総合重心位置表示装置
US3327810A (en) Self-supported ladder
US20140332488A1 (en) Crane Access Staircase and Mounting System
US11713222B2 (en) System and method for monitoring crane and crane having same
US20240270174A1 (en) Rotary telescopic boom lift
CN111056449A (zh) 起重机防倾翻方法
JP2007297169A (ja) 荷台を有する移動式クレーンの安定限界監視装置。
JP2002046998A (ja) ブーム作業車の車体傾斜角検出装置
CN118373340B (zh) 一种车辆的防倾覆方法、装置、设备及介质
CN112141895B (zh) 一种起重机的支腿受力测量方法
JP2518360Y2 (ja) 作業車の安全装置
KR20160101236A (ko) 콘크리트 펌프 트럭의 전복 방지를 위한 붐 제어 장치
JPH11157796A (ja) ブームの横方向力算出装置
CN118439547A (zh) 伸缩臂叉装车安全作业控制方法及伸缩臂叉装车
JP2590740Y2 (ja) 軸力検出手段のエラー表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011869207

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013006558

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013115571

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013006558

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013006558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130322