WO2013005575A1 - 直流き電電源の制御装置 - Google Patents

直流き電電源の制御装置 Download PDF

Info

Publication number
WO2013005575A1
WO2013005575A1 PCT/JP2012/065876 JP2012065876W WO2013005575A1 WO 2013005575 A1 WO2013005575 A1 WO 2013005575A1 JP 2012065876 W JP2012065876 W JP 2012065876W WO 2013005575 A1 WO2013005575 A1 WO 2013005575A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
regenerative
power
output voltage
command value
Prior art date
Application number
PCT/JP2012/065876
Other languages
English (en)
French (fr)
Inventor
英伸 楠本
顕 紫垣
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2013005575A1 publication Critical patent/WO2013005575A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power

Definitions

  • the present invention relates to a control device for a DC feeder that supplies power to a DC electric vehicle, and more particularly to output voltage control of a converter (forward converter) in which regenerative inverters are connected in parallel.
  • a converter forward converter
  • Fig. 4 shows the main circuit of a DC feeder.
  • the thyristor rectifier 1 is a converter that converts AC power guided from an AC power source (not shown) through a transformer 2 into DC power whose voltage is controlled by phase control of the thyristor, and this DC output via a feeder line (overhead wire). And supplied to the electric vehicle 3 as a load.
  • the regenerative inverter 4 converts the regenerative power generated during the regenerative operation of the electric vehicle 3 into AC power by on / off control of a self-extinguishing element such as an IGBT, and this AC power is not shown via the transformer 5. Regenerate to AC power source.
  • the regenerative inverter 4 performs synchronous control for matching the voltage, frequency, and phase with the AC power supply on the regeneration side.
  • Reference numeral 6 denotes a diode for introducing regenerative power from the electric vehicle 3 to the DC side of the regenerative inverter 4. The anode is connected to the feeder line side and the cathode is connected to the regenerative inverter side.
  • Reference numeral 7 denotes a current detector that detects a regenerative current on the cathode side of the diode 6, and reference numeral 8 denotes a voltage detector that detects a voltage generated on the feeder line side (see, for example, Patent Document 1).
  • the thyristor rectifier 1 uses a constant voltage Vd1 set in advance as a target value, performs proportional integration (PI) calculation of the deviation from the wire voltage, performs constant voltage control (AVR), and uses the voltage Vd1 as a control output voltage. Electric power is supplied to the electric car 3 through.
  • the regenerative inverter 4 starts a regenerative operation when the feeder voltage exceeds a voltage Vd2 that is higher than the feeder control voltage Vd1 and slightly lower than the overvoltage detection level due to regenerative energy when the electric vehicle 3 is braked. Then, voltage control (AVR) is performed so that the feeder voltage can be suppressed in the vicinity of the voltage Vd2 (see, for example, Patent Document 2).
  • the thyristor rectifier (converter) 1 controls the output voltage so that the feeding voltage does not fall below the set voltage Vd1, and feeds the electric vehicle 3 with a direct current.
  • the regenerative inverter 4 is always in a standby state in which the operation is stopped, and when the feeder voltage rises due to the regenerative energy when the electric vehicle 3 is braked and exceeds the set voltage Vd2, the feeder voltage is Regenerative control is performed so as not to exceed the set voltage Vd2.
  • the feeder voltage is controlled in the vicinity of the set voltage Vd2.
  • the thyristor rectifier 1 is AVR controlled to the set voltage Vd1 lower than the voltage Vd2
  • the AVR control voltage feeder voltage of the thyristor rectifier 1 is The PI control state in which the control amount is narrowed down to the minimum (lower limit value) so as to be Vd1 is maintained. For this reason, the regenerative operation of the electric vehicle 3 is finished, and the response delay of the AVR function when power is supplied from the thyristor rectifier 1, until the target voltage Vd1 is established from the lowest voltage control output of the thyristor rectifier 1.
  • acceleration response is poor due to insufficient feeder voltage at the start of powering operation.
  • Patent Document 3 Japanese Patent Laid-Open No. 55-3180
  • the regenerative operation start voltage Vd2 of the regenerative inverter 4 is set slightly lower than the control voltage Vd1 of the thyristor rectifier (converter) 1. It has been proposed that a circulating current flow from the thyristor rectifier 1 to the regenerative inverter 4 in a no-load state (small current region). According to this method, the output voltage of the thyristor rectifier 1 is maintained at a value close to the voltage Vd1 even during the regenerative operation of the electric vehicle. At the end of the regenerative operation, the output of the thyristor rectifier 1 has good responsiveness from the value close to the voltage Vd1. , Power feeding can be resumed.
  • An object of the present invention is to provide a control device for a DC feeder that eliminates power loss due to circulating current and can stably supply power with good responsiveness at the end of regenerative operation.
  • the present invention provides a switching control means for switching the output voltage command value Vd1 of the forward converter to the regeneration start voltage Vd2 during the regenerative operation of the regenerative inverter or when a regenerative operation is expected, or It comprises switching control means for switching the output voltage detection value to be compared with the output voltage command value Vd1 of the forward converter from the feeder voltage detection value to a voltage Vd1 ′ lower than the output voltage command value Vd1 and close thereto. It is characterized by the configuration of
  • a forward converter that feeds DC power, which is controlled from AC power to a voltage that matches the output voltage command value Vd1, to an electric vehicle via a feeder line;
  • the forward converter is connected in parallel on the direct current side and can generate regenerative power during regenerative operation of the electric vehicle.
  • the electric wire voltage exceeds the regenerative start voltage Vd2 higher than the output voltage command value Vd1, the regenerative power is exchanged with AC.
  • the regenerative inverter is provided with switching control means for switching the output voltage command value Vd1 of the forward converter to the regeneration start voltage Vd2 when the regenerative inverter is in a regenerative operation or when a regenerative operation is expected.
  • a forward converter that feeds DC power, which is controlled from AC power to a voltage that matches the output voltage command value Vd1, to the electric vehicle via a feeder line;
  • the forward converter is connected in parallel on the DC side and can generate regenerative power during regenerative operation of the electric vehicle.
  • the electric wire voltage exceeds the regenerative start voltage Vd2 higher than the output voltage command value Vd1, the regenerative power is exchanged.
  • the output voltage command value Vd1 of the forward converter is switched to the regeneration start voltage Vd2, or the forward converter Since the output voltage detection value to be compared with the output voltage command value Vd1 is switched from the feeder voltage detection value to the voltage Vd1 ′ lower than the output voltage command value Vd1 and close thereto, the circulating current from the forward converter to the regenerative inverter The power loss due to the power can be eliminated, and at the end of the regenerative operation, power can be stably supplied with good responsiveness.
  • FIG. 3 is a circuit diagram of a main part of the DC feeder power supply according to the first embodiment.
  • FIG. 3 is a voltage-current characteristic diagram in switching control according to the first embodiment.
  • FIG. 3 is a circuit diagram of a main part of a DC feeder power supply according to a second embodiment. The main circuit diagram of DC feeding power supply.
  • FIG. 1 is a main part circuit diagram of a DC feeding power source showing the present embodiment, and circuits equivalent to those in FIG. 4 are denoted by the same reference numerals.
  • the control circuit of the regenerative inverter 4 is set with a regenerative operation start voltage Vd2, and the voltage controller 11 performs a proportional integral (PI) calculation on the deviation between the voltage Vd2 and the feeder voltage detected by the voltage detector 8, and this calculation is performed.
  • PI proportional integral
  • the voltage Vd1 or Vd2 switched by the changeover switch 21 is set as a target value, and the voltage controller 22 proportionally integrates the deviation between this voltage and the feeder voltage detected by the voltage detector 8 ( PI) is calculated, and the result of this calculation is used as a phase control command for the phase controller 23 to control the firing phase of the thyristor of the thyristor rectifier 1.
  • the voltage controller 22 proportionally integrates the deviation between this voltage and the feeder voltage detected by the voltage detector 8 ( PI) is calculated, and the result of this calculation is used as a phase control command for the phase controller 23 to control the firing phase of the thyristor of the thyristor rectifier 1.
  • the voltage switching control unit 24 controls the output of the selector switch 21 to the voltage Vd1 or Vd2, and the switching condition at this time is the regenerative current value detected by the regenerative current detector 7 or the feeder voltage detected by the voltage detector 8. Decide on.
  • This switching condition is the switching condition (B) based on the electric wire voltage when the switching condition (A) is based on the regenerative current.
  • the switching condition (A) is the switching condition during the regenerative operation.
  • the output of the changeover switch 21 is switched from the voltage Vd2 to the voltage Vd1, and when the feeder voltage increases and the regenerative current is generated, the changeover switch 21 is switched. Is switched from the voltage Vd1 to the voltage Vd2.
  • the switching condition (B) is a switching condition when a regenerative operation is expected.
  • the output of the changeover switch 21 is changed from voltage Vd2 to voltage.
  • the output of the changeover switch 21 is switched from the voltage Vd1 to the voltage Vd2.
  • FIG. 2 is a voltage-current characteristic diagram in the switching control of the thyristor rectifier shown in FIG.
  • the voltage Vd1 in FIG. 1 is an output voltage command value of the thyristor rectifier 1 in the no-load or power running operation of the electric vehicle
  • the voltage Vd2 is a voltage at the start of the regenerative operation of the regenerative inverter 4, and is set to Vd1 ⁇ Vd2.
  • the condition (A) is set and the voltage switching control unit 24 switches the voltages Vd1 and Vd2 depending on whether the regenerative current is zero or not.
  • the feeder voltage control under this condition (A) continues to control the thyristor rectifier 1 so that the output voltage is maintained at Vd1 with the voltage Vd1 as a voltage command value when there is no load or the electric vehicle 3 is in power running.
  • the regenerative inverter 4 starts the regenerative operation and supplies the regenerative current to the AC power supply side.
  • the switching control unit 24 switches the changeover switch 21 to the voltage Vd2 side and controls the output voltage of the thyristor rectifier 1 to Vd2.
  • the output voltage control of the thyristor rectifier 1 is less than the voltage Vd2 or the voltage controller (AVR) by setting the voltage equal to or lower than the voltage Vd2 at which the regenerative inverter 4 performs the regenerative operation by a constant voltage (for example, 10V). Therefore, the circulating current from the thyristor rectifier 1 to the regenerative inverter 4 does not flow, and no power loss due to the circulating current occurs.
  • the same switching control can be performed in the case of the switching condition (B) based on the voltage Vd3, power loss due to the circulating current is eliminated, and power can be stably and responsively supplied at the end of the regenerative operation.
  • FIG. 3 is a circuit diagram of a main part of the DC feeder power supply showing the present embodiment.
  • the portion different from FIG. 1 is that the voltage command value Vd1 is substituted for the feeder voltage detection value to the thyristor rectifier 1 during the regenerative operation.
  • the voltage Vd1 ' is low and close to that.
  • the voltage Vd1 ′ is set to a voltage lower by 10V than the voltage Vd1.
  • the changeover switch 25 switches between the feeder voltage detection value detected by the voltage detector 8 and the set voltage Vd1 ', and the switching control unit 24 performs this switching according to the switching conditions (A) and (B).
  • the feeder voltage control continues to control the thyristor rectifier 1 so that the output voltage is maintained at Vd1 using the voltage Vd1 as a voltage command value when there is no load or the electric vehicle 3 is in power running.
  • the regenerative inverter 4 starts the regenerative operation and supplies the regenerative current to the AC power supply side.
  • the switching control unit 24 switches the changeover switch 25 to the voltage Vd1 'side, and controls the output voltage control of the thyristor rectifier 1 to the upper limit value of the voltage controller (AVR) 22.
  • the voltage is lower than the voltage Vd2 at which the regenerative inverter 4 performs the regenerative operation, the circulating current from the thyristor rectifier 1 to the regenerative inverter 4 does not flow, and no power loss due to the circulating current occurs.
  • the switching control unit 24 changes the feedback voltage from Vd1 ′ to the voltage detection value. Switch. By this switching, the output voltage control of the thyristor rectifier 1 is at a value close to the voltage VD2 or at the upper limit value, and decreases from that value toward the voltage Vd1.
  • the output voltage of the thyristor rectifier 1 is controlled from a value close to the voltage Vd2 or the upper limiter value due to a control delay of the voltage controller 22 and the like, without causing an extreme undershoot, and at the end of the regenerative operation, the thyristor rectifier From 1, power can be supplied stably and with good responsiveness toward the voltage Vd ⁇ b> 1 during powering operation.
  • this embodiment can control the output voltage of the thyristor rectifier 1 during power running and regenerative operation, eliminates power loss due to circulating current, and is stable and responsive at the end of the regenerative operation. Power can be supplied.
  • the switching based on the determination of the condition (A) or (B) eliminates the vibrational switching of the control state by providing a hysteresis, thereby enabling stable switching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

順変換器から回生インバータへの循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる。 電圧切換制御部24は、条件(A)によって回生電流検出器7で検出する回生電流を基に回生インバータ4の回生動作中を判定し、または条件(B)によって電圧検出器8で検出するき電線電圧の上昇を基に回生運転を予想し、切換スイッチ21でサイリスタ整流器(順変換器)1の出力電圧指令値Vd1を回生開始電圧Vd2に切換える。 他の電圧切換制御方式として、順変換器の出力電圧指令値Vd1と比較する出力電圧検出値をき電線電圧検出値から出力電圧指令値Vd1よりも低くそれに近い電圧Vd1'に切り換える。

Description

直流き電電源の制御装置
 本発明は、直流電気車に給電する直流き電電源の制御装置に係り、特に回生インバータを並列接続したコンバータ(順変換器)の出力電圧制御に関する。
 図4は、直流き電電源の主回路を示す。サイリスタ整流器1は、図示省略する交流電源から変圧器2を介して導かれる交流電力をサイリスタの位相制御で電圧を制御した直流電力に変換するコンバータであり、この直流出力がき電線(架線)を介して負荷となる電気車3に供給される。回生インバータ4は、電気車3が回生運転時に発生する回生電力をIGBT等の自己消弧型素子のオン・オフ制御で交流電力に変換し、この交流電力を変圧器5を介して図示省略する交流電源に回生する。この変換に際し、回生インバータ4は、電圧・周波数・位相を回生側の交流電源と一致させる同期制御を行う。6は電気車3からの回生電力を回生インバータ4の直流側に導入するダイオードであり、そのアノードをき電線側に接続し、カソードを回生インバータ側に接続する。7はダイオード6のカソード側で回生電流を検出する電流検出器、8はき電線側でき電電圧を検出する電圧検出器である(例えば、特許文献1参照)。
 この直流き電電源によるき電電圧制御を説明する。サイリスタ整流器1は、予め設定された一定電圧Vd1を目標値としてき電線電圧との偏差を比例積分(PI)演算して電圧一定制御(AVR)を行い、この電圧Vd1を制御出力電圧としてき電線を通して電気車3に電力を供給する。回生インバータ4は、電気車3がブレーキをかけた際の回生エネルギーによって、き電線電圧がき電線制御電圧Vd1よりも高く、過電圧検出レベルよりも少し低い電圧Vd2を超過したときに回生動作を開始し、き電線電圧を電圧Vd2近辺に抑制できるよう電圧制御(AVR)をする(例えば、特許文献2参照)。
特開昭59-50826号公報 特開昭61-94833号公報
 図4において、サイリスタ整流器(コンバータ)1は、き電電圧が設定電圧Vd1よりも低下しないように出力電圧を制御し、電気車3に直流き電する。回生インバータ4は、常時は運転を停止した待機状態にしておき、電気車3がブレーキをかけた際の回生エネルギーによりき電線電圧が上昇して設定電圧Vd2を超過したときにき電線電圧が該設定電圧Vd2を超えないよう回生制御する。
 この回生制御中、き電線電圧は設定電圧Vd2近辺に制御されるが、サイリスタ整流器1は電圧Vd2よりも低い設定電圧Vd1にAVR制御されるため、サイリスタ整流器1のAVR制御電圧はき電線電圧がVd1になるように制御量を最小限(下限リミッタ値)に絞り込んだPI制御状態に保持されている。そのため、電気車3の回生動作が終わり、サイリスタ整流器1から給電する状態になったときのAVR機能の応答遅れにより、サイリスタ整流器1の電圧制御出力が最も低い状態から目標電圧Vd1を確立するまでの遅れが生じ、電気車が回生運転終了から短時間で力行運転に移行するときは力行運転開始時のき電線電圧不足で加速応答性が悪い場合が生じる。
 このような不都合を無くすため、特許文献3(特開昭55-3180号公報)では、回生インバータ4の回生動作開始電圧Vd2を、サイリスタ整流器(コンバータ)1の制御電圧Vd1よりも若干低く設定しておき、無負荷の状態(小電流の領域)でサイリスタ整流器1から回生インバータ4に循環電流を流しておくことを提案している。この方式によれば、サイリスタ整流器1の出力電圧は電気車の回生動作中も電圧Vd1に近い値に保持されており、回生動作終了時にはサイリスタ整流器1の出力が電圧Vd1に近い値から応答性よく、給電を再開することができる。
 しかし、無負荷状態においても、サイリスタ整流器1から回生インバータ4に循環電流が流れ続け、この循環電流によるスイッチング素子等での損失が発生するという問題がある。
 本発明の目的は、循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる直流き電電源の制御装置を提供することにある。
 本発明は、前記の課題を解決するため、回生インバータの回生動作中または回生運転が予想されるときには、順変換器の出力電圧指令値Vd1を回生開始電圧Vd2に切換えておく切換制御手段、または順変換器の出力電圧指令値Vd1と比較する出力電圧検出値をき電線電圧検出値から出力電圧指令値Vd1よりも低くそれに近い電圧Vd1’に切り換えておく切換制御手段を備えたもので、以下の構成を特徴とする。
 (1)交流電力から出力電圧指令値Vd1に一致する電圧に制御した直流電力をき電線を介して電気車に給電する順変換器と、
 前記順変換器とは直流側で並列接続され、電気車の回生運転時に発生する回生電力でき電線電圧が前記出力電圧指令値Vd1よりも高い回生開始電圧Vd2を超えたときに該回生電力を交流電力に変換して交流電源側に回生する回生インバータを備えた直流き電電源において、
 前記回生インバータの回生動作中または回生運転が予想されるときには、前記順変換器の出力電圧指令値Vd1を回生開始電圧Vd2に切換えておく切換制御手段を備えたことを特徴とする。
 (2)交流電力から出力電圧指令値Vd1に一致する電圧に制御した直流電力をき電線を介して電気車に給電する順変換器と、
 前記順変換器とは直流側で並列接続され、電気車の回生運転時に発生する回生電力でき電線電圧が前記出力電圧指令値Vd1よりも高い回生開始電圧Vd2を超えたときに該回生電力を交流電力に変換して交流電源側に回生する回生インバータを備えた直流き電電源において、
 前記回生インバータの回生動作中または回生運転が予想されるときには、前記順変換器の出力電圧指令値Vd1と比較する出力電圧検出値をき電線電圧検出値から出力電圧指令値Vd1よりも低くそれに近い電圧Vd1’に切り換えておく切換制御手段を備えたことを特徴とする。
 以上のとおり、本発明によれば、回生インバータの回生動作中または回生運転が予想されるときには、順変換器の出力電圧指令値Vd1を回生開始電圧Vd2に切換えておくこと、または順変換器の出力電圧指令値Vd1と比較する出力電圧検出値をき電線電圧検出値から出力電圧指令値Vd1よりも低くそれに近い電圧Vd1’に切り換えておくこととしたため、順変換器から回生インバータへの循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる。
実施形態1の直流き電電源の要部回路図。 実施形態1の切換制御における電圧-電流特性図。 実施形態2の直流き電電源の要部回路図。 直流き電電源の主回路図。
 (実施形態1)
 図1は、本実施形態を示す直流き電電源の要部回路図であり、図4と同等の回路は同一符号で示す。
 回生インバータ4の制御回路は、回生動作開始電圧Vd2が設定され、この電圧Vd2と電圧検出器8で検出するき電線電圧との偏差を電圧制御器11で比例積分(PI)演算し、この演算結果でPWM制御部12のPWMパルス出力(周波数、位相が同期)のパルス幅を制御し、電気車3からの回生電力でき電線電圧が電圧Vd2を超えた場合に回生動作を開始し、交流電源側に回生する。
 サイリスタ整流器1の制御回路は、切換スイッチ21で切換えられる電圧Vd1またはVd2が目標値として設定され、この電圧と電圧検出器8で検出するき電線電圧との偏差を電圧制御器22で比例積分(PI)演算し、この演算結果を位相制御器23の位相制御指令とすることでサイリスタ整流器1のサイリスタの点弧位相を制御し、き電線電圧が電圧Vd1以下またはVd2以下になるときにそれぞれ電圧Vd1またはVd2まで高める。
 電圧切換制御部24は、切換スイッチ21の出力を電圧Vd1またはVd2に切換制御し、このときの切換条件は回生電流検出器7で検出する回生電流値または電圧検出器8で検出するき電線電圧で決める。この切換条件は、回生電流を基にした切換条件(A)とき電線電圧を基にした切換条件(B)とされる。
 切換条件(A)は、回生動作中を切換条件とし、回生電流ゼロでは切換スイッチ21の出力を電圧Vd2→電圧Vd1に切換え、き電線電圧が上昇して回生電流が発生したときに切換スイッチ21の出力を電圧Vd1→電圧Vd2に切換える。
 切換え条件(B)は、回生運転が予想される場合を切換条件とし、き電線電圧がVd2以下でVd1以上の所定の電圧値Vd3以下になったときに切換スイッチ21の出力を電圧Vd2→電圧Vd1に切換え、き電線電圧が電圧値Vd3を超えたときに切換スイッチ21の出力を電圧Vd1→電圧Vd2に切換える。
 図2は、図1に示すサイリスタ整流器の切換制御における電圧-電流特性図である。図1における電圧Vd1は無負荷または電気車の力行運転におけるサイリスタ整流器1の出力電圧指令値であり、電圧Vd2は回生インバータ4の回生運転開始時の電圧であり、Vd1<Vd2に設定される。電圧切換制御部24は、例えば前記の条件(A)が設定され、回生電流がゼロか有りの違いで電圧Vd1とVd2を切換える。
 この条件(A)によるき電線電圧制御は、無負荷または電気車3が力行運転時にはサイリスタ整流器1は電圧Vd1を電圧指令値として出力電圧がVd1に維持されるよう制御し続ける。そして、電気車3が回生運転に入り、電気車3からの回生でき電線電圧がVd2まで上昇したとき、回生インバータ4が回生動作を開始し、回生電流を交流電源側に供給する。
 この回生電流の発生で、切換制御部24は、切換スイッチ21を電圧Vd2側に切換え、サイリスタ整流器1の出力電圧をVd2に制御する。この制御状態では回生インバータ4が回生動作する電圧Vd2と同じ、または一定電圧(例えば10V)だけ低い値とすることで、サイリスタ整流器1の出力電圧制御は電圧Vd2未満、または電圧制御器(AVR)22に設定される上限リミッタ値に制限され、サイリスタ整流器1から回生インバータ4側への循環電流が流れることはなく、循環電流による電力損失も発生しない。
 次に、電気車3の回生運転が終了または無負荷状態になり、き電線電圧がVd2から低下したとき、回生電流がゼロになることで、切換制御部24は電圧指令をVd2からVd1に切換える。この切換えにより、サイリスタ整流器1の出力電圧制御はVd2からVd1に向かって降下する。このとき、電圧制御器22等の制御遅れによって、サイリスタ整流器1の出力電圧はVd1よりも低い値に落ちるアンダーシュートが発生することが想定されるが、回生電流のゼロ判定を早期に検出すること、すなわち回生インバータの運転終了をその直流電圧が回生動作中から一定電圧だけ低下したときに終了と判定することでアンダーシュートを低く抑え、回生動作終了時にはサイリスタ整流器1からは力行運転時の電圧Vd1に向けて安定して応答性よく制御して給電できる。
 なお、電圧Vd3を基にした前記の切換条件(B)の場合も同様の切換制御ができ、循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる。この場合、電圧Vd1とVd2の差が100V程度などにあっても、電圧Vd3をその中間値{=(Vd1+Vd2)/2}に設定するなど、適宜設定することによって同様の作用効果を得ることができる。
 (実施形態2)
 図3は、本実施形態を示す直流き電電源の要部回路図であり、図1と異なる部分は回生動作中はサイリスタ整流器1へのき電線電圧検出値に代えて電圧指令値Vd1よりも低くそれに近い電圧Vd1’に切換える点にある。例えば、電圧Vd1’は電圧Vd1よりも10Vだけ低い電圧に設定される。
 切換スイッチ25は、電圧検出器8で検出するき電線電圧検出値と設定電圧Vd1’を切換え、この切換えを切換制御部24が前記の切換条件(A),(B)に応じて行う。
 例えば、条件(A)によるき電線電圧制御は、無負荷または電気車3が力行運転時にはサイリスタ整流器1は電圧Vd1を電圧指令値として出力電圧がVd1に維持されるよう制御し続ける。そして、電気車3が回生運転に入り、電気車3からの回生でき電線電圧がVd2まで上昇したとき、回生インバータ4が回生動作を開始し、回生電流を交流電源側に供給する。
 この回生電流の発生で、切換制御部24は、切換スイッチ25を電圧Vd1’側に切換え、サイリスタ整流器1の出力電圧制御を電圧制御器(AVR)22の上限リミッタ値に制御する。この制御状態では回生インバータ4が回生動作する電圧Vd2に比べて低い電圧となり、サイリスタ整流器1から回生インバータ4側への循環電流が流れることはなく、循環電流による電力損失も発生しない。
 次に、電気車3の回生運転が終了または無負荷状態になり、き電線電圧がVd2から低下したとき、回生電流がゼロになり、切換制御部24はフィードバック電圧をVd1’から電圧検出値に切換える。この切換えにより、サイリスタ整流器1の出力電圧制御は電圧VD2に近い値または上限リミッタ値にあって、その値から電圧Vd1に向けて低下させる。このとき、電圧制御器22等の制御遅れにも、サイリスタ整流器1の出力電圧は電圧Vd2に近い値または上限リミッタ値から制御され、極端なアンダーシュートが発生することなく、回生動作終了時にはサイリスタ整流器1からは力行運転時の電圧Vd1に向けて安定して応答性よく制御して給電できる。
 なお、電圧Vd2とVd1の範囲内の電圧Vd3を基にした前記の切換条件(B)の場合も同様の切換制御ができ、循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる。
 本実施形態は、実施形態1と同様に、力行運転時と回生動作時のサイリスタ整流器1の出力電圧切換制御ができ、循環電流による電力損失を無くし、しかも回生動作終了時には安定して応答性よく給電できる。
 (変形例)
 実施形態1,2において、条件(A)または(B)の判定による切換えには、ヒステリシスを持たせることで制御状態の振動的な切換えを無くし、安定した切換えができる。
 また、サイリスタ整流器1に代えて、IGBTなどをスイッチング制御素子とした順変換器(コンバータ)とする装置に適用して同等の作用効果を得ることができる。

Claims (2)

  1.  交流電力から出力電圧指令値Vd1に一致する電圧に制御した直流電力をき電線を介して電気車に給電する順変換器と、
     前記順変換器とは直流側で並列接続され、電気車の回生運転時に発生する回生電力でき電線電圧が前記出力電圧指令値Vd1よりも高い回生開始電圧Vd2を超えたときに該回生電力を交流電力に変換して交流電源側に回生する回生インバータを備えた直流き電電源において、
     前記回生インバータの回生動作中または回生運転が予想されるときには、前記順変換器の出力電圧指令値Vd1を回生開始電圧Vd2に切換えておく切換制御手段を備えたことを特徴とする直流き電電源の制御装置。
  2.  交流電力から出力電圧指令値Vd1に一致する電圧に制御した直流電力をき電線を介して電気車に給電する順変換器と、
     前記順変換器とは直流側で並列接続され、電気車の回生運転時に発生する回生電力でき電線電圧が前記出力電圧指令値Vd1よりも高い回生開始電圧Vd2を超えたときに該回生電力を交流電力に変換して交流電源側に回生する回生インバータを備えた直流き電電源において、
     前記回生インバータの回生動作中または回生運転が予想されるときには、前記順変換器の出力電圧指令値Vd1と比較する出力電圧検出値をき電線電圧検出値から出力電圧指令値Vd1よりも低くそれに近い電圧Vd1’に切り換えておく切換制御手段を備えたことを特徴とする直流き電電源の制御装置。
PCT/JP2012/065876 2011-07-01 2012-06-21 直流き電電源の制御装置 WO2013005575A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011146964A JP5760761B2 (ja) 2011-07-01 2011-07-01 直流き電電源の制御装置
JP2011-146964 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013005575A1 true WO2013005575A1 (ja) 2013-01-10

Family

ID=47436931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065876 WO2013005575A1 (ja) 2011-07-01 2012-06-21 直流き電電源の制御装置

Country Status (2)

Country Link
JP (1) JP5760761B2 (ja)
WO (1) WO2013005575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351018B2 (en) 2015-02-19 2019-07-16 Mitsubishi Electric Corporation Station-building power-supply device and method of calculating regeneration determining voltage value

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556428A (en) * 1978-10-20 1980-04-25 Fuji Electric Co Ltd Method of controlling regenerative substation converter
JPS61102344A (ja) * 1984-10-23 1986-05-21 Mitsubishi Electric Corp 回生インバ−タ運転方法
JPS6288629A (ja) * 1985-10-15 1987-04-23 Meidensha Electric Mfg Co Ltd 電気鉄道の変電所制御方法
JP2004351952A (ja) * 2003-05-27 2004-12-16 Meidensha Corp 直流き電システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556428A (en) * 1978-10-20 1980-04-25 Fuji Electric Co Ltd Method of controlling regenerative substation converter
JPS61102344A (ja) * 1984-10-23 1986-05-21 Mitsubishi Electric Corp 回生インバ−タ運転方法
JPS6288629A (ja) * 1985-10-15 1987-04-23 Meidensha Electric Mfg Co Ltd 電気鉄道の変電所制御方法
JP2004351952A (ja) * 2003-05-27 2004-12-16 Meidensha Corp 直流き電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351018B2 (en) 2015-02-19 2019-07-16 Mitsubishi Electric Corporation Station-building power-supply device and method of calculating regeneration determining voltage value

Also Published As

Publication number Publication date
JP2013014184A (ja) 2013-01-24
JP5760761B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
US9882466B2 (en) Power conversion device including an AC/DC converter and a DC/DC converter
US9236760B2 (en) Charging device for electromotive vehicle
US8319480B2 (en) Apparatus and method of power control
JP6090275B2 (ja) 電力変換装置
JP2009232537A (ja) モータ制御装置
JP2006101600A (ja) モータ駆動装置
JP6185860B2 (ja) 双方向コンバータ
JP2008022625A (ja) 交流−直流変換装置
KR20180071965A (ko) 전기 자동차용의 전원 시스템
JP2008023586A (ja) 溶接用電源装置
US11050353B2 (en) Power conversion device that generates switching signals
JP2009241677A (ja) 直流電気鉄道の電力貯蔵装置の制御システム
JP6983289B1 (ja) 電力変換装置
JP5760761B2 (ja) 直流き電電源の制御装置
JP4937895B2 (ja) 昇降圧コンバータの駆動制御装置
JP5458613B2 (ja) 回生対策装置と回生対策装置の制御方法
JP2012100374A (ja) 充電器の電流制御装置
JP2009303423A (ja) 昇降圧コンバータの駆動制御装置
US11613444B2 (en) Decentralized power management in an elevator system
US10637367B2 (en) Converter system and method for operating a converter system
JP2010058565A (ja) 電力変換装置及び電気鉄道システム
JP5404099B2 (ja) 交流電動機の駆動装置
JP5313493B2 (ja) モータ駆動装置
JP2010068683A (ja) 電源装置および空気調和機
JP2023168882A (ja) 電力貯蔵装置、電力貯蔵制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807252

Country of ref document: EP

Kind code of ref document: A1