WO2013001657A1 - 風検出装置 - Google Patents

風検出装置 Download PDF

Info

Publication number
WO2013001657A1
WO2013001657A1 PCT/JP2011/065122 JP2011065122W WO2013001657A1 WO 2013001657 A1 WO2013001657 A1 WO 2013001657A1 JP 2011065122 W JP2011065122 W JP 2011065122W WO 2013001657 A1 WO2013001657 A1 WO 2013001657A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
wind
fluid
dynamic
dynamic pressure
Prior art date
Application number
PCT/JP2011/065122
Other languages
English (en)
French (fr)
Inventor
千尋 川端
吉和 竹内
加藤 正浩
橋本 和信
和俊 北野
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/065122 priority Critical patent/WO2013001657A1/ja
Priority to JP2011553645A priority patent/JP4955132B1/ja
Publication of WO2013001657A1 publication Critical patent/WO2013001657A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/0006Indicating or recording presence, absence, or direction, of movement of fluids or of granulous or powder-like substances

Definitions

  • the present invention relates to a wind detection device that detects a wind direction and a wind pressure.
  • utilization of this invention is not restricted to a wind detection apparatus.
  • a wind detecting device includes a first pressure gauge for detecting the total pressure of the fluid and a second pressure gauge for detecting the static pressure of the fluid.
  • First pressure detecting means having first dynamic pressure calculating means for calculating the dynamic pressure of the fluid based on the total pressure and the static pressure detected by the first pressure detecting means, and detecting the total pressure of the fluid
  • a second pressure detecting means having a third pressure gauge for detecting and a fourth pressure gauge for detecting the static pressure of the fluid, and the movement of the fluid based on the total pressure and the static pressure detected by the second pressure detecting means.
  • the dynamic pressure calculating means for calculating the pressure Based on the second dynamic pressure calculating means for calculating the pressure, the dynamic pressure calculated by the first dynamic pressure calculating means and the dynamic pressure calculated by the second dynamic pressure calculating means, The wind pressure of the direction component and the first orthogonal to the first direction component Wind calculating means for calculating the wind pressure of the direction component, and each of the first pressure detecting means and the second pressure detecting means is covered with a hollow member having an open portion, and the first pressure detecting means In addition, the second pressure detection means are arranged in directions orthogonal to each other.
  • FIG. 1 is a block diagram illustrating a functional configuration of the wind detection device according to the embodiment.
  • FIG. 2 is a flowchart showing a procedure of wind detection processing by the wind detection device.
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • FIG. 4 is a conceptual diagram illustrating the configuration of the pressure sensor according to the embodiment.
  • FIG. 5 is a conceptual diagram illustrating the configuration of the pressure sensor group according to the embodiment.
  • FIG. 6 is an explanatory diagram showing wind detection by the navigation device.
  • FIG. 7 is an explanatory diagram showing wind detection by the navigation device.
  • FIG. 8 is an explanatory diagram showing wind detection by the navigation device.
  • FIG. 9 is an explanatory diagram illustrating the arrangement of the pressure sensor group according to the embodiment.
  • FIG. 10 is an explanatory diagram illustrating the arrangement of the pressure sensor group according to the embodiment.
  • FIG. 11 is an explanatory diagram illustrating the arrangement of the pressure sensor group according to the embodiment.
  • FIG. 1 is a block diagram illustrating a functional configuration of the wind detection device according to the embodiment.
  • the wind detection device 100 detects the wind direction and the wind pressure with respect to the moving body.
  • the wind detection device 100 includes at least a first pressure detection unit 101, a second pressure detection unit 102, a first dynamic pressure calculation unit 111, a second dynamic pressure calculation unit 112, and a wind calculation unit 121.
  • the wind detection device 100 may further include a third pressure detector 103, a fourth pressure detector 104, a third dynamic pressure calculator 113, and a fourth dynamic pressure calculator 114. Good.
  • the first pressure detection unit 101 includes a first pressure gauge that detects the total pressure of the fluid and a second pressure gauge that detects the static pressure of the fluid. And the 1st pressure detection part 101 is installed in the front part of a moving body, and detects the total pressure and static pressure of the 1st direction component of a fluid.
  • the front part of the moving body is a front portion of the moving body such as a bonnet, a front bumper, a front spoiler, or the like.
  • the first direction is, for example, the traveling direction of the moving body.
  • the first pressure detection unit 101 is constituted by, for example, a Pitot tube that measures the total pressure and static pressure of the fluid.
  • the Pitot tube consists of a total pressure tube that measures the total pressure of the fluid and a static pressure tube that measures the static pressure of the fluid.
  • the first pressure gauge is connected to the total pressure pipe of the Pitot tube and detects the total pressure measured by the Pitot tube.
  • the second pressure gauge is connected to the static pressure tube of the Pitot tube and detects the static pressure measured by the Pitot tube.
  • the first pressure detection unit 101 is installed so that the hole (total pressure measurement hole) at the tip of the total pressure tube of the Pitot tube faces the traveling direction of the moving body. Then, the first pressure detection unit 101, for example, the total pressure of the first direction component of the wind blowing from the moving direction of the moving body (head wind) or the wind blowing from the diagonally forward with respect to the moving direction of the moving body And detect static pressure.
  • the first pressure detection unit 101 is covered with a hollow member having an open part. Specifically, it is sufficient that at least the Pitot tube constituting the first pressure detection unit 101 is covered with a hollow member having an open portion.
  • the fluid flow direction is parallel to the central axis of the Pitot tube when the flow field vortex changes or when the shear field is large. Can be. Thereby, the error of the dynamic pressure of the fluid detected by the 1st pressure detection part 101 can be made small.
  • the second pressure detection unit 102 includes a third pressure gauge that detects the total pressure of the fluid and a fourth pressure gauge that detects the static pressure of the fluid.
  • the 2nd pressure detection part 102 is installed in the direction which becomes orthogonal to the 1st pressure detection part 101 in the front part or side part of a moving body, and detects the total pressure and static pressure of the 2nd direction component of a fluid.
  • the side part of the moving body is a side part of the moving body such as a side bumper or a side spoiler.
  • a 2nd direction is a direction orthogonal to a 1st direction, for example, is a direction orthogonal to the advancing direction of a mobile body.
  • the second pressure detection unit 102 is constituted by, for example, a Pitot tube, and the total pressure measurement of the Pitot tube is performed such that the total pressure measurement hole of the Pitot tube faces a direction orthogonal to the traveling direction of the moving body. It is installed so that the hole faces the outside of the moving body. Then, the second pressure detection unit 102 is, for example, a wind blowing from a direction perpendicular to the moving direction of the moving body (a cross wind) or a wind blowing from the diagonally forward or diagonally backward with respect to the moving direction of the moving body. The total pressure and static pressure of the second direction component are detected. More specifically, the second pressure detection unit 102 detects, for example, the total pressure and static pressure of the wind blowing from the left side with respect to the traveling direction of the moving body.
  • the second pressure detection unit 102 is covered with a hollow member having an open part. Specifically, it is sufficient that at least the Pitot tube constituting the second pressure detection unit 102 is covered with a hollow member having an open portion. The effect obtained by covering the second pressure detection unit 102 with the hollow member is the same as the effect obtained by covering the first pressure detection unit 101 with the hollow member.
  • the third pressure detection unit 103 has a fifth pressure gauge that detects the total pressure of the fluid and a sixth pressure gauge that detects the static pressure of the fluid. And the 3rd pressure detection part 103 is installed in the direction which opposes the 1st pressure detection part 101, and detects the total pressure and static pressure of the 1st direction component of a fluid. Specifically, the third pressure detection unit 103 is installed at the rear of the moving body and detects the total pressure and the static pressure of the first direction component of the fluid.
  • the rear part of the moving body is, for example, a rear portion of the moving body such as a rear bumper or a rear spoiler.
  • the third pressure detection unit 103 is constituted by, for example, a Pitot tube, and the total pressure measurement hole of the Pitot tube is opposite to the direction of the total pressure measurement hole of the Pitot tube of the first pressure detection unit 101. It is installed to face the side.
  • the 3rd pressure detection part 103 for example, the total pressure and static pressure of the 1st direction component of the wind (following wind) which blows in the advancing direction of a moving body, or the wind blown from diagonally back with respect to the advancing direction of a moving body. To detect.
  • the third pressure detection unit 103 is covered with a hollow member having an open part. Specifically, it is sufficient that at least the Pitot tube constituting the third pressure detection unit 103 is covered with a hollow member having an open part.
  • the effect obtained by covering the third pressure detection unit 103 with the hollow member is the same as the effect obtained by covering the first pressure detection unit 101 with the hollow member.
  • the fourth pressure detection unit 104 includes a seventh pressure gauge that detects the total pressure of the fluid and an eighth pressure gauge that detects the static pressure of the fluid.
  • the fourth pressure detection unit 104 is installed in a direction orthogonal to the first pressure detection unit 101 and in a direction facing the second pressure detection unit 102, and the total pressure and static pressure of the second direction component of the fluid Is detected.
  • the fourth pressure detection unit 104 is installed at the front part or the side part of the moving body, and all of the second direction components of the fluid that flows in a direction opposite to the fluid detected by the second pressure detection unit 102. Detect pressure and static pressure.
  • the fourth pressure detection unit 104 is composed of, for example, a Pitot tube, and the second pressure detection unit is configured such that the total pressure measurement hole of the Pitot tube faces a direction orthogonal to the traveling direction of the moving body. It is installed so as to face the opposite side to the direction of the total pressure measurement hole of the Pitot tube 102.
  • the 4th pressure detection part 104 is the wind (cross wind) which blows from the direction orthogonal to the advancing direction of a mobile body, for example, the wind which blows from the diagonally forward and diagonally back with respect to the advancing direction of a mobile body.
  • the total pressure and static pressure of the second direction component are detected.
  • the 4th pressure detection part 104 detects the total pressure and static pressure of the wind which blow from the right side with respect to the advancing direction of a moving body, for example.
  • the fourth pressure detection unit 104 is covered with a hollow member having an open part. Specifically, it is sufficient that at least the Pitot tube constituting the fourth pressure detection unit 104 is covered with a hollow member having an open part. The effect obtained by covering the fourth pressure detection unit 104 with the hollow member is the same as the effect obtained by covering the first pressure detection unit 101 with the hollow member.
  • the first dynamic pressure calculation unit 111 calculates the dynamic pressure of the first direction component of the fluid based on the total pressure and static pressure of the fluid detected by the first pressure detection unit 101. Specifically, the first dynamic pressure calculation unit 111 uses the total pressure of the fluid detected by the first pressure gauge of the first pressure detection unit 101 and the second pressure gauge as the dynamic pressure of the first direction component of the fluid. The differential pressure from the static pressure of the fluid detected by is calculated.
  • the second dynamic pressure calculation unit 112 calculates the dynamic pressure of the second direction component of the fluid based on the total pressure and static pressure of the fluid detected by the second pressure detection unit 102. Specifically, the second dynamic pressure calculation unit 112 uses the total pressure of the fluid detected by the third pressure gauge of the second pressure detection unit 102 and the fourth pressure gauge as the dynamic pressure of the second direction component of the fluid. The differential pressure from the static pressure of the fluid detected by is calculated.
  • the third dynamic pressure calculation unit 113 calculates the dynamic pressure of the first direction component of the fluid based on the total pressure and static pressure of the fluid detected by the third pressure detection unit 103. Specifically, the third dynamic pressure calculation unit 113 uses the total pressure of the fluid detected by the fifth pressure gauge of the third pressure detection unit 103 and the sixth pressure gauge as the dynamic pressure of the fluid in the first direction. The differential pressure from the static pressure of the fluid detected by is calculated.
  • the fourth dynamic pressure calculation unit 114 calculates the dynamic pressure of the second direction component of the fluid based on the total pressure and the static pressure of the fluid detected by the fourth pressure detection unit 104. Specifically, the fourth dynamic pressure calculation unit 114 uses the total pressure of the fluid detected by the seventh pressure gauge of the fourth pressure detection unit 104 and the eighth pressure gauge as the dynamic pressure of the second direction component of the fluid. The differential pressure from the static pressure of the fluid detected by is calculated.
  • the first to fourth dynamic pressure calculating units 111 to 114 calculate the differential pressure between the total pressure of the fluid and the static pressure measured by the Pitot tube instead of calculating the differential pressure between the total pressure of the fluid and the static pressure.
  • the structure to detect may be sufficient (a fine differential pressure sensor).
  • the wind calculation unit 121 is based on the dynamic pressure of the fluid in the first direction component calculated by the first dynamic pressure calculation unit 111 and the dynamic pressure of the fluid in the second direction component calculated by the second dynamic pressure calculation unit 112.
  • the wind direction, the total wind pressure, the wind pressure of the first direction component, and the wind pressure of the second direction component are calculated.
  • the wind direction is, for example, the direction of fluid flow relative to the traveling direction of the moving body. Specifically, the wind direction is an angle formed by the moving direction of the moving body and the direction of fluid flow.
  • the total wind pressure is, for example, the dynamic pressure of the fluid in the first direction calculated by the first dynamic pressure calculator 111 and the dynamic pressure of the fluid in the second direction calculated by the second dynamic pressure calculator 112. Is the sum of
  • the wind pressure of the first direction component is the wind pressure with respect to the moving direction of the moving body.
  • the wind pressure of the first direction component is, for example, the first direction component of the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111.
  • the wind pressure of the second direction component is the wind pressure in the direction orthogonal to the traveling direction of the moving body.
  • the wind pressure of the second direction component is, for example, the second direction component of the fluid dynamic pressure calculated by the second dynamic pressure calculation unit 112.
  • the wind calculation unit 121 applies, for example, Bernoulli's theorem to the fluid flow forming a streamline along the Pitot tube of the pressure detection unit, and the first and second dynamic pressure calculation units 111 and 112.
  • the wind direction, the total wind pressure, the wind pressure of the first direction component, and the wind pressure of the second direction component orthogonal to the first direction component are calculated based on the dynamic pressures of the first and second direction components of the fluid respectively detected by.
  • the wind calculation unit 121 can acquire the dynamic pressure of the fluid detected by the first to third dynamic pressure calculation units 111 to 113, respectively, the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111 and Based on the dynamic pressure that is greater than the dynamic pressure of the fluid calculated by the third dynamic pressure calculation unit 113 and the dynamic pressure of the fluid calculated by the second dynamic pressure calculation unit 112, the wind direction, the total wind pressure, and the first The wind pressure of the direction component and the wind pressure of the second direction component are calculated.
  • the total wind pressure is calculated by the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111 and the third dynamic pressure calculation. This is the sum of the larger dynamic pressure of the fluid dynamic pressure calculated by the unit 113 and the fluid dynamic pressure calculated by the second dynamic pressure calculation unit 112.
  • the wind pressure of the first direction component is, for example, the first dynamic pressure that is larger of the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111 and the fluid dynamic pressure calculated by the third dynamic pressure calculation unit 113. It is a direction component.
  • the wind pressure calculation unit 121 can acquire the dynamic pressure of the fluid detected by the first, second, and fourth dynamic pressure calculation units 111, 112, and 114, the dynamic pressure calculated by the first dynamic pressure calculation unit 111 and Based on the fluid dynamic pressure calculated by the second dynamic pressure calculator 112 and the fluid dynamic pressure calculated by the fourth dynamic pressure calculator 114, whichever is larger, the wind direction, the total wind pressure, The wind pressure of the direction component and the wind pressure of the second direction component are calculated.
  • the total wind pressure is calculated based on the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111 and the second dynamic pressure. This is the sum of the fluid dynamic pressure calculated by the calculation unit 112 and the fluid dynamic pressure calculated by the fourth dynamic pressure calculation unit 114, whichever is greater.
  • the wind pressure of the second direction component is, for example, the second dynamic pressure that is larger of the fluid dynamic pressure calculated by the second dynamic pressure calculation unit 112 and the fluid dynamic pressure calculated by the fourth dynamic pressure calculation unit 114. It is a direction component.
  • the wind calculation unit 121 can acquire the dynamic pressure of the fluid detected by the first to fourth dynamic pressure calculation units 111 to 114, respectively, the fluid dynamic pressure calculated by the first dynamic pressure calculation unit 111 and The larger dynamic pressure of the fluid dynamic pressure calculated by the third dynamic pressure calculation unit 113, the fluid dynamic pressure calculated by the second dynamic pressure calculation unit 112, and the fourth dynamic pressure calculation unit 114
  • the wind direction, total wind pressure, wind pressure of the first direction component, and wind pressure of the second direction component are calculated on the basis of any one of the fluid dynamic pressures.
  • the wind calculation unit 121 can acquire the calculated values by the first to fourth dynamic pressure calculation units 111 to 114, the total wind pressure is calculated by calculating the fluid dynamic pressure and the third dynamic pressure calculated by the first dynamic pressure calculation unit 111.
  • the fluid dynamic pressure calculated by the unit 113 the fluid dynamic pressure calculated by the second dynamic pressure calculator 112, and the fluid dynamic pressure calculated by the fourth dynamic pressure calculator 114. It is the sum of the larger dynamic pressure.
  • the wind pressure of the first direction component is, for example, the fluid pressure calculated by the first dynamic pressure calculation unit 111.
  • the wind pressure of the second direction component is, for example, the second dynamic pressure that is larger of the fluid dynamic pressure calculated by the second dynamic pressure calculation unit 112 and the fluid dynamic pressure calculated by the fourth dynamic pressure calculation unit 114. It is a direction component.
  • FIG. 2 is a flowchart showing a procedure of wind detection processing by the wind detection device.
  • the wind detection device 100 first calculates the dynamic pressure of the first direction component of the fluid by the first dynamic pressure calculation unit 111 (step S201).
  • the first direction is, for example, the traveling direction of the moving body.
  • the wind detection apparatus 100 calculates the dynamic pressure of the second direction component of the fluid by the second dynamic pressure calculation unit 112 (step S202).
  • the second direction is a direction orthogonal to the first direction.
  • the wind detection apparatus 100 is based on the dynamic pressure of the 1st direction component of the fluid and the dynamic pressure of the 2nd direction component of the fluid which were calculated in step S201, S202 by the wind calculation part 121, a wind direction, a total wind pressure, The wind pressure of the first direction component and the wind pressure of the second direction component are calculated (step S203), and the processing according to this flowchart ends. Thereafter, the wind detection device 100 calculates, for example, the power consumption amount of the mobile body based on the wind direction, the total wind pressure, the wind pressure of the first direction component, and the wind pressure of the second direction component detected in step S203. May be.
  • the wind detection device 100 may further calculate the dynamic pressure of the first direction component of the fluid by the third dynamic pressure calculation unit 113.
  • the wind detection device 100 calculates the first direction component of the fluid detected by the first dynamic pressure calculation unit 111 in step S203. The larger dynamic pressure of the dynamic pressure and the dynamic pressure of the first direction component of the fluid detected by the third dynamic pressure calculation unit 113 is used.
  • the wind detection device 100 may further calculate the dynamic pressure of the fluid in the second direction component by the fourth dynamic pressure calculation unit 114.
  • the wind detection device 100 determines the second direction component of the fluid detected by the second dynamic pressure calculation unit 112 in step S203. The larger dynamic pressure of the dynamic pressure and the dynamic pressure of the second direction component of the fluid detected by the fourth dynamic pressure calculation unit 114 is used.
  • the wind detection device 100 includes a plurality of pressure detection units installed in directions orthogonal to each other. More specifically, the wind detection device 100 includes a first pressure detection unit 101 installed such that the total pressure measurement hole of the Pitot tube faces the traveling direction (first direction) of the moving body, and the total pressure measurement of the Pitot tube. And a second pressure detection unit 102 installed so that the hole faces a direction (second direction) orthogonal to the traveling direction of the moving body. Accordingly, the wind detection device 100 can detect the first direction component and the second direction component of the fluid by the first and second pressure detection units 101 and 102 installed in directions orthogonal to each other. However, it is possible to accurately detect the wind direction and pressure even when the fluid flow is deviated.
  • the wind detection device 100 includes a plurality of pressure detection units installed in parallel with the traveling direction of the moving body. More specifically, the wind detection device 100 includes a first pressure detection unit 101 installed such that the total pressure measurement hole of the Pitot tube faces the front of the moving body, and the total pressure measurement hole of the Pitot tube is located behind the moving body. And a third pressure detector 103 installed so as to face. Thereby, since the wind detection apparatus 100 can detect the fluid which flows from the front and back of a moving body by the 1st, 3rd pressure detection parts 101 and 103, it can detect a wind direction and a wind pressure more correctly.
  • the wind detection device 100 includes a plurality of pressure detection units installed in parallel to a direction orthogonal to the traveling direction of the moving body. More specifically, the wind detection device 100 includes a second pressure detection unit 102 installed so that the total pressure measurement hole of the Pitot tube faces the left side outside the movable body, and the total pressure measurement hole of the Pitot tube is movable. 4th pressure detection part 104 installed so that it may face the right outside of the. Thereby, since the wind detection apparatus 100 can detect the fluid flowing from the left side and the right side of the moving body by the second and fourth pressure detection units 102 and 104, it can detect the wind direction and the wind pressure more accurately.
  • the wind direction and the wind pressure with respect to the moving body can be accurately calculated, for example, an EV (Electric Vehicle) vehicle, an HV (Hybrid Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) that runs using electricity as a power source. ) Power consumption in a car or the like can be accurately calculated. Thereby, the safety measure and power consumption reduction in a mobile body can be aimed at.
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • PHV Plug-in Hybrid Vehicle
  • FIG. 3 is a block diagram illustrating a hardware configuration of the navigation apparatus.
  • a navigation device 300 includes a CPU 301, ROM 302, RAM 303, magnetic disk drive 304, magnetic disk 305, optical disk drive 306, optical disk 307, audio I / F (interface) 308, microphone 309, speaker 310, input device 311, A video I / F 312, a display 313, a camera 314, a communication I / F 315, a GPS unit 316, and various sensors 317 are provided.
  • Each component 301 to 317 is connected by a bus 320.
  • the CPU 301 governs overall control of the navigation device 300.
  • the ROM 302 records programs such as a boot program, a data update program, and a wind detection program.
  • the RAM 303 is used as a work area for the CPU 301. That is, the CPU 301 controls the entire navigation device 300 by executing various programs recorded in the ROM 302 while using the RAM 303 as a work area.
  • the dynamic pressure of the fluid is calculated based on the total pressure and static pressure of the fluid respectively detected by the plurality of pressure sensors (various sensors 317), and then the wind direction and the wind pressure are calculated based on the dynamic pressure of the fluid.
  • a processing procedure to be detected is described.
  • the differential pressure between the total pressure of the fluid in the first direction component and the static pressure (dynamic pressure of the fluid in the first direction component) and the fluid in the second direction component A differential pressure between the total pressure and the static pressure (dynamic pressure of the second direction component of the fluid) is calculated, and based on the dynamic pressure of the first and second direction components of the fluid, the wind direction, the total wind pressure, the wind pressure of the first direction component and The wind pressure of the second direction component is calculated.
  • the magnetic disk drive 304 controls the reading / writing of the data with respect to the magnetic disk 305 according to control of CPU301.
  • the magnetic disk 305 records data written under the control of the magnetic disk drive 304.
  • an HD hard disk
  • FD flexible disk
  • the optical disk drive 306 controls reading / writing of data with respect to the optical disk 307 according to the control of the CPU 301.
  • the optical disk 307 is a detachable recording medium from which data is read according to the control of the optical disk drive 306.
  • a writable recording medium can be used as the optical disc 307.
  • an MO, a memory card, or the like can be used as a removable recording medium.
  • Examples of information recorded on the magnetic disk 305 and the optical disk 307 include map data.
  • Map data is used for route search processing and route guidance processing in car navigation systems.
  • Background data that represents features (features) such as buildings, rivers, and the ground surface, and road shape data that represents road shapes with links and nodes. Etc.
  • the voice I / F 308 is connected to a microphone 309 for voice input and a speaker 310 for voice output.
  • the sound received by the microphone 309 is A / D converted in the sound I / F 308.
  • the microphone 309 is installed in a dashboard portion of a vehicle, and the number thereof may be one or more. From the speaker 310, a sound obtained by D / A converting a predetermined sound signal in the sound I / F 308 is output.
  • the input device 311 includes a remote controller, a keyboard, a touch panel, and the like provided with a plurality of keys for inputting characters, numerical values, various instructions, and the like.
  • the input device 311 may be realized by any one form of a remote control, a keyboard, and a touch panel, but can also be realized by a plurality of forms.
  • the video I / F 312 is connected to the display 313. Specifically, the video I / F 312 is output from, for example, a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller. And a control IC for controlling the display 313 based on the image data to be processed.
  • a graphic controller that controls the entire display 313, a buffer memory such as a VRAM (Video RAM) that temporarily records image information that can be displayed immediately, and a graphic controller.
  • VRAM Video RAM
  • the display 313 displays icons, cursors, menus, windows, or various data such as characters and images.
  • a TFT liquid crystal display, an organic EL display, or the like can be used as the display 313, for example.
  • the camera 314 captures images inside or outside the vehicle.
  • the image may be either a still image or a moving image.
  • the outside of the vehicle is photographed by the camera 314, and the photographed image is analyzed by the CPU 301, or a recording medium such as the magnetic disk 305 or the optical disk 307 via the image I / F 312. Or output to
  • the communication I / F 315 is connected to a network via wireless and functions as an interface between the navigation device 300 and the CPU 301.
  • Communication networks that function as networks include in-vehicle communication networks such as CAN (Controller Area Network) and LIN (Local Interconnect Network), public line networks and mobile phone networks, DSRC (Dedicated Short Range Communication), LAN, and WAN. is there.
  • the communication I / F 315 is, for example, a public line connection module, an ETC (non-stop automatic fee payment system) unit, an FM tuner, a VICS (Vehicle Information and Communication System) / beacon receiver, or the like.
  • the GPS unit 316 receives radio waves from GPS satellites and outputs information indicating the current position of the vehicle.
  • the output information of the GPS unit 316 is used when the CPU 301 calculates the current position of the vehicle together with output values of various sensors 317 described later.
  • the information indicating the current position is information for specifying one point on the map data, such as latitude / longitude and altitude.
  • the various sensors 317 output information for determining the position and behavior of the vehicle, such as a vehicle speed sensor, a pressure sensor, and an angular velocity sensor, and information for determining the wind direction and the wind pressure with respect to the vehicle.
  • the pressure sensors are installed at a plurality of locations such as bumpers and spoilers at the front, side and rear of the vehicle, for example.
  • the output values of the various sensors 317 are used by the CPU 301 to calculate the current position of the vehicle, to calculate the amount of change in speed and direction, and to calculate the wind direction and wind pressure for the vehicle.
  • the pressure sensor includes, for example, a Pitot tube and two pressure gauges.
  • the Pitot tube includes a total pressure tube that measures the total pressure of the fluid and a static pressure tube that measures the static pressure of the fluid.
  • the first pressure gauge is connected to the total pressure pipe of the Pitot tube and detects the total pressure of the fluid measured by the Pitot tube.
  • the second pressure gauge is connected to the static pressure tube of the Pitot tube, and detects the static pressure of the fluid measured by the Pitot tube.
  • the calculation unit 112, the third dynamic pressure calculation unit 113, the fourth dynamic pressure calculation unit 114, and the wind calculation unit 121 are programs and data recorded in the ROM 302, RAM 303, magnetic disk 305, optical disk 307, etc. in the navigation device 300 described above.
  • the CPU 301 executes a predetermined program and controls each part in the navigation device 300 to realize the function.
  • FIG. 4 is a conceptual diagram illustrating the configuration of the pressure sensor according to the embodiment.
  • the pressure sensor 400 includes a Pitot tube 401, a first pressure gauge 402, and a second pressure gauge 403.
  • the pressure sensor 400 is installed, for example, at the front portion and the rear portion of the vehicle so that the axial center of the Pitot tube 401 and the traveling direction of the vehicle are equal.
  • the pressure sensor 400 is installed, for example, on the side surface of the vehicle so that the axial center of the Pitot tube 401 is equal to the direction orthogonal to the traveling direction of the vehicle.
  • the pressure sensor 400 detects the total pressure and static pressure of the fluid 430.
  • the Pitot tube 401 includes a total pressure tube 411 that measures the total pressure of the fluid 430 and a static pressure tube 421 that measures the static pressure of the fluid 430.
  • a hole (total pressure measurement hole) 412 for measuring the total pressure of the fluid 430 is provided at the tip of the total pressure pipe 411.
  • a hole (static pressure measurement hole) 422 for measuring the static pressure of the fluid 430 is provided in the side wall portion of the static pressure pipe 421.
  • the Pitot tube 401 has, for example, a configuration in which a total pressure tube 411 and a static pressure tube 421 are arranged in parallel.
  • the total pressure measurement hole 412 and the static pressure measurement hole 422 are opened in directions orthogonal to each other.
  • the Pitot tube 401 may have an L-shaped cross-sectional shape.
  • a static pressure measurement hole 422 is provided in a linear portion of the pitot tube 401 on the total pressure measurement hole 412 side.
  • the first pressure gauge 402 is connected to the total pressure tube 411 and detects the total pressure of the fluid 430 measured by the Pitot tube 401. Specifically, the first pressure gauge 402 is connected to the hole at the end opposite to the end where the total pressure measurement hole 412 of the total pressure pipe 411 is provided.
  • the second pressure gauge 403 is connected to the static pressure tube 421 of the Pitot tube 401 and detects the static pressure of the fluid 430 measured by the Pitot tube. Specifically, the second pressure gauge 403 is connected to a hole different from the static pressure measurement hole 422 of the static pressure pipe 421.
  • Such a pressure sensor 400 is installed in the flow of the fluid 430. Then, Bernoulli's theorem is applied to the flow of the fluid 430 that forms a streamline along the Pitot tube 401, whereby the dynamic pressure of the fluid 430 is calculated.
  • the flow of the fluid 430 that forms a streamline along the Pitot tube 401 is indicated by an arrow from an arbitrary point 423 toward the apex 413 of the tip portion on the side where the total pressure measurement hole 412 of the Pitot tube 401 is provided.
  • the arbitrary point 423 is a point located on the extension line of the central axis of the Pitot tube 401.
  • the flow of the fluid 430 is shown as a flow parallel to the central axis of the Pitot tube 401, when the flow of the fluid 430 is inclined with respect to the central axis of the Pitot tube 401, the Pitot tube 401 The component in the direction parallel to the central axis of the Pitot tube 401 is measured.
  • the wind pressure and wind speed with respect to the vehicle are substantially equal to the wind pressure and wind speed at the arbitrary point 423 located on the extension line of the central axis of the Pitot tube 401 described above. For this reason, the pressure sensor 400 is installed in the flow of the fluid 430, and the wind pressure and the wind speed at the arbitrary point 423 are calculated to detect the wind pressure and the wind speed with respect to the vehicle.
  • the pressure sensor 400 By installing the pressure sensor 400 in the flow of the fluid 430, the flow of the fluid 430 is blocked by the pressure sensor 400, and the velocity (wind velocity) of the fluid 430 is zero on the surface of the pressure sensor 400 (stagnation point) ) Occurs. Specifically, since the flow of the fluid 430 is blocked by the tip of the Pitot tube 401 on the side where the total pressure measurement hole 412 is provided, the apex 413 of the tip of the Pitot tube 401 becomes a stagnation point (hereinafter referred to as stagnation). Point 413).
  • the first term on the left side is the static pressure of the fluid 430 at the stagnation point 413.
  • the second term on the left side is the dynamic pressure of the fluid 430 at the stagnation point 413. That is, the left side of the above formula (1) is the total pressure of the fluid 430 at the stagnation point 413.
  • the first term on the right side is the static pressure of the fluid 430 at the arbitrary point 423.
  • the second term on the right side is the dynamic pressure of the fluid 430 at the arbitrary point 423. That is, the right side of the above formula (1) is the total pressure of the fluid 430 at the arbitrary point 423.
  • is the density of the fluid 430.
  • the dynamic pressure of the fluid 430 at the arbitrary point 423 is the differential pressure ⁇ P between the total pressure P 1 of the fluid 430 at the stagnation point 413 and the static pressure P 2 of the fluid 430 at the arbitrary point 423. Will be equal. Therefore, by calculating the differential pressure ⁇ P between the total pressure P 1 of the fluid 430 at the stagnation point 413 and the static pressure P 2 of the fluid 430 at the arbitrary point 423, the dynamic pressure of the fluid 430 at the arbitrary point 423, that is, the wind pressure against the vehicle. Is detected.
  • the total pressure P 1 of the fluid 430 at the stagnation point 413 is detected by the first pressure gauge 402. Since the Pitot tube 401 is installed in parallel to the flow of the fluid 430, the wind speed V 2 at the arbitrary point 423 is substantially equal to the wind speed in the static pressure measurement hole 422. For this reason, the static pressure P 2 of the fluid 430 at the arbitrary point 423 is substantially equal to the static pressure of the fluid 430 in the static pressure measurement hole 422. Accordingly, the static pressure P 2 of the fluid 430 at the arbitrary point 423 is detected by the second pressure gauge 403.
  • the density ⁇ of the fluid 430 may be treated as a constant, or may be calculated based on temperature or atmospheric pressure.
  • the density ⁇ of the fluid 430 is calculated using the following equation (4), for example.
  • P 0 is atmospheric pressure and t is temperature.
  • a plurality of pressure sensors 400 including a Pitot tube 401 shown in FIG. 4 are installed in a vehicle on which the navigation device 300 according to the embodiment is mounted.
  • a plurality of pressure sensors installed in the vehicle will be referred to as a pressure sensor group.
  • one pressure sensor is installed at each of the front part and the side part of the vehicle. These two pressure sensors are arranged in directions orthogonal to each other.
  • FIG. 5 is a conceptual diagram showing the configuration of the pressure sensor group according to the example.
  • one pressure sensor (hereinafter referred to as a first pressure sensor) 500a in the pressure sensor group is installed so that the axis center of the Pitot tube 501a is parallel to the traveling direction x0 of the vehicle.
  • the total pressure measurement hole 502a of the Pitot tube 501a faces, for example, the traveling direction x0 of the vehicle.
  • Pitot tube 501a has, for example, an I-shaped cross-sectional shape.
  • the end of the Pitot tube 501a on the total pressure measurement hole 502a side is covered with an outer cylinder (hollow member) 503a having an open portion.
  • a cross-sectional view of the end portion on the total pressure measurement hole 502a side of the Pitot tube 501a of the first pressure sensor 500a is shown in the upper right side of FIG.
  • a differential pressure sensor 504a is connected to the end of the pitot tube 501a opposite to the side where the total pressure measurement hole 502a is provided. Specifically, the differential pressure sensor 504a is connected to the total pressure tube of the Pitot tube 501a via the tube 505a, and is connected to the static pressure tube of the Pitot tube 501a via the tube 506a.
  • the other pressure sensor (hereinafter referred to as a second pressure sensor) 500b in the pressure sensor group is installed such that the axis center of the Pitot tube 501b is parallel to a direction y0 orthogonal to the traveling direction of the vehicle.
  • the total pressure measurement hole 502b of the Pitot tube 501b is, for example, in a direction y0 orthogonal to the traveling direction of the vehicle and facing, for example, the left side outside the vehicle.
  • Pitot tube 501b has, for example, an L-shaped cross-sectional shape.
  • the end of the Pitot tube 501b on the total pressure measurement hole 502b side is covered with an outer cylinder 503b having an open portion. Specifically, although not shown, it is the same as the cross-sectional structure of the end portion of the pitot tube 501a of the first pressure sensor 500a on the total pressure measurement hole 502a side.
  • a differential pressure sensor 504b is connected to the end of the pitot tube 501b opposite to the side where the total pressure measurement hole 502b is provided. Specifically, the differential pressure sensor 504b is connected to the total pressure tube of the Pitot tube 501b via the tube 505b, and is connected to the static pressure tube of the Pitot tube 501b via the tube 506b.
  • FIG. 6 to 8 are explanatory diagrams showing wind detection by the navigation device. 6 and 7, the pressure sensor group is installed in a vehicle (not shown).
  • the fluid flows from the direction (direction of fluid flow) x1 deviated by an angle ⁇ with respect to the traveling direction x0 of the vehicle toward the vehicle.
  • An angle ⁇ with respect to the traveling direction x0 of the vehicle is a wind direction with respect to the vehicle.
  • Streamlines forming flow tubes 600 and 700 passing through the outer cylinder are indicated by solid arrows.
  • FIG. 8 shows the total wind pressure P, the wind pressure P x of the first direction component of the total wind pressure P, and the wind pressure P y of the second direction component of the total wind pressure P.
  • the Pitot tube 501a measures the total pressure and static pressure of the flow tube 600, which is a bundle of streamlines (fluid shown by a solid line) passing through the outer cylinder 503a covering the Pitot tube 501a.
  • the cross-sectional area A 1 at an arbitrary point 601 of the flow tube 600 is A 0 ⁇ cos ⁇ when the cross-sectional area A 0 of the outer cylinder 503a is taken.
  • the arbitrary point 601 is located outside the outer cylinder 503a.
  • the flow rate at the arbitrary point 601 of the flow tube 600 is equal to the flow rate in the outer cylinder 503a. Therefore, the wind speed V at any point 601, when the wind speed V x in the outer cylinder 503a, the following formula (5) holds. From the following formula (5), the wind speed V x in the outer cylinder 503a is represented by the following formula (6).
  • the Pitot tube 501b measures the total pressure and static pressure of the flow tube 700, which is a bundle of streamlines (fluid shown by a solid line) passing through the outer cylinder 503b covering the Pitot tube 501b.
  • the cross-sectional area A 2 at the arbitrary point 701 of the flow tube 700 is A 0 ⁇ sin ⁇ when the cross-sectional area A 0 of the outer cylinder 503b is taken.
  • the arbitrary point 701 is located outside the outer cylinder 503b.
  • the flow rate at the arbitrary point 701 of the flow tube 700 is equal to the flow rate in the outer cylinder 503b. Therefore, the wind speed V at any point 701, when the wind speed V y of the outer cylinder 503b, the following equation (8) holds. And from the following formula (8), the wind speed V y in the outer cylinder 503b is represented by the following formula (9).
  • the differential pressure (dynamic pressure of the second direction component) ⁇ P 2 between the total pressure and the static pressure of the fluid detected by the second pressure sensor 500b is expressed as 10).
  • the fluid flow direction in the outer cylinder 503b is assumed to be parallel to the central axis of the Pitot tube 501b, and the pressure coefficient is 1.
  • the total wind pressure P received by the vehicle by the fluid having the wind direction ⁇ with respect to the vehicle is expressed by the following equation (13).
  • the wind pressure P x in the first direction component of the total wind pressure P is expressed by the following equation (14).
  • the wind pressure P y in the second direction component of the total wind pressure P is expressed by the following equation (15).
  • one first pressure sensor 500a and two second pressure sensors 500b may be arranged at the front of the vehicle 900.
  • the first pressure sensor 500a is configured such that the axial center of the Pitot tube constituting the first pressure sensor 500a is parallel to the traveling direction x0 of the vehicle, and the total pressure measurement hole of the Pitot tube is advanced by the vehicle. It is installed so as to face the direction x0.
  • the second pressure sensor 500b is installed so that the axial center of the Pitot tube constituting the second pressure sensor 500b is parallel to a direction y0 perpendicular to the traveling direction of the vehicle.
  • the second pressure sensor 500b_left of the two second pressure sensors 500b is configured such that the total pressure measurement hole of the Pitot tube constituting the second pressure sensor 500b_left is directed to the left with respect to the vehicle traveling direction x0.
  • the other second pressure sensor 500b_right of the two second pressure sensors 500b is installed such that the total pressure measurement hole of the Pitot tube constituting the second pressure sensor 500b_right is directed to the right side with respect to the traveling direction x0 of the vehicle.
  • one first pressure sensor 500a is arranged at the front of the vehicle 1000, and the second pressure sensor 500b_left and the second pressure sensor 500b_left and second are respectively located on the left and right sides with respect to the traveling direction x0 of the vehicle 1000.
  • a pressure sensor 500b_right may be arranged.
  • the directions of the first pressure sensor 500a, the second pressure sensor 500b_left, and the second pressure sensor 500b_right are the same as those of the pressure sensors of the vehicle 900 shown in FIG.
  • a wind calculation method in the case where the first pressure sensor 500a, the second pressure sensor 500b_left, and the second pressure sensor 500b_right are thus installed will be described.
  • a vehicle 1000 shown in FIG. 10 will be described as an example.
  • the wind direction ⁇ with respect to the vehicle is the same as the wind direction shown in FIGS.
  • the fluid 1010 flows toward the vehicle 1000 from an obliquely left front shifted by an angle ⁇ with respect to the vehicle direction x0 of the vehicle 1000.
  • a flow tube 1001 which is a bundle of streamlines of the fluid 1010, passes through the outer cylinder 503 b_left of the second pressure sensor 500 b_left arranged on the left side of the vehicle 1000. Therefore, the dynamic pressure ⁇ P 2 _ left of the second direction component is calculated using the above equation (10).
  • the flow line 1002 of the fluid 1010 on the right side of the vehicle 1000 is blocked by the vehicle body of the vehicle 1000 and is orthogonal to the second pressure sensor 500b_right disposed on the right side of the vehicle 1000 along the vehicle body surface. Flowing into. For this reason, the flow line 1002 of the fluid 1010 hardly flows into the outer cylinder of the second pressure sensor 500b_right, and the dynamic pressure ⁇ P 2 _ right of the second direction component calculated using the above equation (10) is the second direction. It becomes smaller than the dynamic pressure ⁇ P 2 — left of the component.
  • the second The directional component dynamic pressure ⁇ P 2 is calculated. Further, since the dynamic pressure ⁇ P 2 _ left of the second direction component detected by the second pressure sensor 500b_left is selected, the wind direction ⁇ with respect to the vehicle 1000 is a value inclined to the left with respect to the traveling direction x0 of the vehicle 1000. Is calculated as
  • the dynamic pressure ⁇ P 2 — left of the second direction component and the dynamic pressure ⁇ P 2 — right of the second direction component are calculated by the above equation (10). Then, as shown in the following formula (16), whichever is greater dynamic pressure of the dynamic pressure [Delta] P 2 _. Right of the dynamic pressure [Delta] P 2 _ left and a second direction component of the second direction component is the dynamic pressure [Delta] P in the second direction component Selected as 2 . Thereafter, the wind direction ⁇ , the total wind pressure P, the wind pressure P x of the first direction component, and the wind pressure P y of the second direction component with respect to the vehicle 1000 are detected by the above formulas (12) to (15).
  • one first pressure sensor 500a_rear may be arranged at the rear of the vehicle 1100.
  • the first pressure sensor 500a_rear is such that the axial center of the Pitot tube constituting the first pressure sensor 500a_rear is parallel to the vehicle traveling direction x0, and the total pressure measurement hole of the Pitot tube is relative to the vehicle traveling direction x0. Installed to face the other side.
  • the arrangement positions and orientations of the first pressure sensor 500a_front arranged at the front of the vehicle 1100, the second pressure sensor 500b_left arranged at the side of the vehicle 1100, and the second pressure sensor 500b_right are shown in FIG. It is the same as the pressure sensor.
  • the dynamic pressure [Delta] P of the dynamic pressure [Delta] P 1 _ front and the first direction component of the first direction component by selecting a large dynamic pressure of any value of 1 _ rear, the dynamic pressure [Delta] P 1 in the first direction component is detected.
  • the dynamic pressure [Delta] P 1 _ rear of the dynamic pressure [Delta] P 1 _ front and the first direction component of the first direction component is calculated.
  • the wind direction ⁇ , the total wind pressure P, the wind pressure P x of the first direction component, and the wind pressure P y of the second direction component with respect to the vehicle 1000 are calculated by the above formulas (12) to (15).
  • the above formulas (1) to (17) are incorporated in the wind detection program recorded in the ROM 302 of the navigation device 300, for example. Then, the navigation apparatus 300 executes the wind detection program and calculates the wind direction ⁇ , the total wind pressure P, the wind pressure P x of the first direction component, and the wind pressure P y of the second direction component with respect to the vehicle.
  • the navigation apparatus 300 includes a plurality of pressure detection units installed in directions orthogonal to each other. More specifically, the navigation device 300 includes a first pressure sensor installed so that the total pressure measurement hole of the Pitot tube faces the traveling direction (first direction) of the vehicle, and the total pressure measurement hole of the Pitot tube is provided in the vehicle. A second pressure sensor installed to face a direction (second direction) orthogonal to the traveling direction. As a result, the navigation device 300 can detect the first direction component and the second direction component of the fluid by the first and second pressure sensors installed in directions orthogonal to each other. Even when there is a deviation, it is possible to accurately detect the wind direction and the wind pressure.
  • the navigation device 300 includes a plurality of pressure sensors installed in parallel with the traveling direction of the vehicle.
  • the navigation device 300 is installed such that the total pressure measurement hole of the Pitot tube faces the front of the vehicle, and the total pressure measurement hole of the Pitot tube faces the rear of the vehicle.
  • a third pressure sensor is installed. Therefore, since the navigation apparatus 300 can detect the fluid which flows from the front and back of a vehicle with the 1st, 3rd pressure sensor, it can detect a wind direction and a wind pressure more correctly.
  • the navigation device 300 includes a plurality of pressure detection units installed in parallel to a direction orthogonal to the traveling direction of the vehicle. More specifically, the navigation device 300 includes a second pressure sensor installed so that the total pressure measurement hole of the Pitot tube faces the left side outside the vehicle, and the total pressure measurement hole of the Pitot tube connects the right side outside the vehicle. And a fourth pressure sensor installed to face. Thereby, since the navigation apparatus 300 can detect the fluid flowing from the left side and the right side of the vehicle by the second and fourth pressure sensors, it can detect the wind direction and the wind pressure more accurately.
  • the wind direction and the wind pressure with respect to the vehicle can be accurately calculated, for example, an EV (Electric Vehicle) vehicle, an HV (Hybrid Vehicle) vehicle, a PHV (Plug-in Hybrid Vehicle) that runs using electricity as a power source. Power consumption in a car or the like can be accurately calculated. Thereby, safety measures and power consumption reduction in the vehicle can be achieved.
  • EV Electric Vehicle
  • HV Hybrid Vehicle
  • PHV Plug-in Hybrid Vehicle
  • the wind detection method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 風検出装置(100)は、移動体に対する風向および風圧を検出する。第1圧力検出部(101)は、流体の第1方向成分の全圧および静圧を検出する。第1方向は、移動体の進行方向である。第2圧力検出部(102)は、流体の第2方向成分の全圧および静圧を検出する。第2方向は、第1方向に直交する方向である。第1動圧算出部(111)は、第1圧力検出部(101)によって検出された流体の全圧および静圧に基づいて、流体の第1方向成分の動圧を算出する。第2動圧算出部(112)は、第2圧力検出部(102)によって検出された流体の全圧および静圧に基づいて、流体の第2方向成分の動圧を算出する。風算出部(121)は、第1動圧算出部(111)によって算出された流体の動圧および第2動圧算出部(112)によって算出された流体の動圧に基づいて、移動体の進行方向に対する風向、全風圧、第1方向成分の風圧、第2方向成分の風圧を算出する。

Description

風検出装置
 この発明は、風向および風圧を検出する風検出装置に関する。ただし、この発明の利用は、風検出装置に限らない。
 従来、流体の全圧および静圧を測定するピトー管を複数設置し、複数のピトー管の測定値に基づいて移動体に対する風圧を検出する風検出装置が知られている(たとえば、下記特許文献1~4参照。)。下記特許文献1~4では、各ピトー管に沿った流線を形成する流体の流れにそれぞれベルヌーイの定理を適用し、各ピトー管によって測定された流体の全圧と静圧との差圧(動圧)に基づいて移動体に対する風圧を検出している。
特開平9-176937号公報 特表2007-532407号公報 特開2010-106838号公報 特表2010-516998号公報
 しかしながら、上述した各特許文献の技術では、たとえば移動体の進行方向からずれた方向から流体が流れている場合(横風)、流体の流れがピトー管の中心軸に平行にならないので、ピトー管によって測定された流体の全圧および静圧に誤差が生じ、流体の動圧を正確に算出することができない。このため、移動体に対する風圧を正確に検出することができないという問題点が一例として挙げられる。
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる風検出装置は、流体の全圧を検出する第1圧力計および当該流体の静圧を検出する第2圧力計を有する第1圧力検出手段と、前記第1圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第1動圧算出手段と、前記流体の全圧を検出する第3圧力計および当該流体の静圧を検出する第4圧力計を有する第2圧力検出手段と、前記第2圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第2動圧算出手段と、前記第1動圧算出手段によって算出された動圧および前記第2動圧算出手段によって算出された動圧に基づいて、風向、全風圧、第1方向成分の風圧、および前記第1方向成分に直交する第2方向成分の風圧を算出する風算出手段と、を備え、前記第1圧力検出手段および前記第2圧力検出手段のそれぞれは、開放部を有する中空部材で覆われており、前記第1圧力検出手段および前記第2圧力検出手段は互いに直交となる向きに配置されていることを特徴とする。
図1は、実施の形態にかかる風検出装置の機能的構成を示すブロック図である。 図2は、風検出装置による風検出処理の手順を示すフローチャートである。 図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。 図4は、実施例にかかる圧力センサの構成について示す概念図である。 図5は、実施例にかかる圧力センサ群の構成について示す概念図である。 図6は、ナビゲーション装置による風検出について示す説明図である。 図7は、ナビゲーション装置による風検出について示す説明図である。 図8は、ナビゲーション装置による風検出について示す説明図である。 図9は、実施例にかかる圧力センサ群の配置について示す説明図である。 図10は、実施例にかかる圧力センサ群の配置について示す説明図である。 図11は、実施例にかかる圧力センサ群の配置について示す説明図である。
 以下に添付図面を参照して、この発明に係る風検出装置の好適な実施の形態を詳細に説明する。
(実施の形態)
 図1は、実施の形態にかかる風検出装置の機能的構成を示すブロック図である。実施の形態にかかる風検出装置100は、移動体に対する風向および風圧を検出する。風検出装置100は、少なくとも第1圧力検出部101、第2圧力検出部102、第1動圧算出部111、第2動圧算出部112、風算出部121によって構成される。また、風検出装置100は、上記構成部に加えて、さらに第3圧力検出部103、第4圧力検出部104、第3動圧算出部113、第4動圧算出部114によって構成されてもよい。
 第1圧力検出部101は、流体の全圧を検出する第1圧力計と、流体の静圧を検出する第2圧力計と、を有する。そして、第1圧力検出部101は、移動体の前部に設置され、流体の第1方向成分の全圧および静圧を検出する。移動体の前部とは、たとえば、ボンネットや、フロントバンパー、フロントスポイラーなど、移動体の正面部分である。第1方向とは、たとえば、移動体の進行方向である。
 具体的には、第1圧力検出部101は、たとえば、流体の全圧および静圧を測定するピトー管で構成される。ピトー管は、流体の全圧を測定する全圧管と、流体の静圧を測定する静圧管とからなる。第1圧力計は、ピトー管の全圧管に接続され、ピトー管によって測定された全圧を検出する。第2圧力計は、ピトー管の静圧管に接続され、ピトー管によって測定された静圧を検出する。
 より具体的には、第1圧力検出部101は、ピトー管の全圧管の先端部の孔(全圧測定孔)が移動体の進行方向を向くように設置される。そして、第1圧力検出部101は、たとえば、移動体の進行方向から吹いてくる風(向かい風)や、移動体の進行方向に対して斜め前方から吹いてくる風の第1方向成分の全圧および静圧を検出する。
 また、第1圧力検出部101は、開放部を有する中空部材で覆われている。具体的には、少なくとも第1圧力検出部101を構成するピトー管が、開放部を有する中空部材で覆われていればよい。第1圧力検出部101を中空部材で覆うことによって、流れ場の流れの渦が変化する場合や、せん断の大きな流れ場の場合に、流体の流れの方向をピトー管の中心軸に対して平行にすることができる。これにより、第1圧力検出部101によって検出される流体の動圧の誤差を小さくすることができる。
 第2圧力検出部102は、流体の全圧を検出する第3圧力計と、流体の静圧を検出する第4圧力計と、を有する。そして、第2圧力検出部102は、移動体の前部または側部に、第1圧力検出部101と直交となる向きで設置され、流体の第2方向成分の全圧および静圧を検出する。移動体の側部とは、たとえば、サイドバンパー、サイドスポイラーなど、移動体の側面部分である。第2方向とは、第1方向に直交する方向であり、たとえば、移動体の進行方向に直交する方向である。
 具体的には、第2圧力検出部102は、たとえば、ピトー管で構成され、ピトー管の全圧測定孔が移動体の進行方向に直交する方向を向くように、かつピトー管の全圧測定孔が移動体の外部側を向くように設置される。そして、第2圧力検出部102は、たとえば、移動体の進行方向に直交する方向から吹いてくる風(横風)や、移動体の進行方向に対して斜め前方や斜め後方から吹いてくる風の第2方向成分の全圧および静圧を検出する。より詳細には、第2圧力検出部102は、たとえば、移動体の進行方向に対して左側から吹いてくる風の全圧および静圧を検出する。
 また、第2圧力検出部102は、開放部を有する中空部材で覆われている。具体的には、少なくとも第2圧力検出部102を構成するピトー管が、開放部を有する中空部材で覆われていればよい。第2圧力検出部102を中空部材で覆うことによって得られる効果は、第1圧力検出部101を中空部材で覆うことによって得られる効果と同様である。
 第3圧力検出部103は、流体の全圧を検出する第5圧力計と、流体の静圧を検出する第6圧力計と、を有する。そして、第3圧力検出部103は、第1圧力検出部101と対向する向きで設置され、流体の第1方向成分の全圧および静圧を検出する。具体的には、第3圧力検出部103は、移動体の後部に設置され、流体の第1方向成分の全圧および静圧を検出する。移動体の後部とは、たとえば、リアバンパー、リアスポイラーなど、移動体の背面部分である。
 より具体的には、第3圧力検出部103は、たとえば、ピトー管で構成され、ピトー管の全圧測定孔が第1圧力検出部101のピトー管の全圧測定孔の向きに対して反対側を向くように設置される。そして、第3圧力検出部103は、たとえば、移動体の進行方向に吹く風(追い風)や、移動体の進行方向に対して斜め後方から吹く風の第1方向成分の全圧および静圧を検出する。
 また、第3圧力検出部103は、開放部を有する中空部材で覆われている。具体的には、少なくとも第3圧力検出部103を構成するピトー管が、開放部を有する中空部材で覆われていればよい。第3圧力検出部103を中空部材で覆うことによって得られる効果は、第1圧力検出部101を中空部材で覆うことによって得られる効果と同様である。
 第4圧力検出部104は、流体の全圧を検出する第7圧力計と、流体の静圧を検出する第8圧力計と、を有する。そして、第4圧力検出部104は、第1圧力検出部101と直交となる向きで、かつ第2圧力検出部102と対向する向きで設置され、流体の第2方向成分の全圧および静圧を検出する。具体的には、第4圧力検出部104は、移動体の前部または側部に設置され、第2圧力検出部102によって検出される流体と対向する向きに流れる流体の第2方向成分の全圧および静圧を検出する。
 より具体的には、第4圧力検出部104は、たとえば、ピトー管で構成され、ピトー管の全圧測定孔が移動体の進行方向に直交する方向を向くように、かつ第2圧力検出部102のピトー管の全圧測定孔の向きに対して反対側を向くように設置される。そして、第4圧力検出部104は、たとえば、移動体の進行方向に直交する方向から吹いてくる風(横風)や、移動体の進行方向に対して斜め前方や斜め後方から吹いてくる風の第2方向成分の全圧および静圧を検出する。より詳細には、第4圧力検出部104は、たとえば、移動体の進行方向に対して右側から吹いてくる風の全圧および静圧を検出する。
 また、第4圧力検出部104は、開放部を有する中空部材で覆われている。具体的には、少なくとも第4圧力検出部104を構成するピトー管が、開放部を有する中空部材で覆われていればよい。第4圧力検出部104を中空部材で覆うことによって得られる効果は、第1圧力検出部101を中空部材で覆うことによって得られる効果と同様である。
 第1動圧算出部111は、第1圧力検出部101によって検出された流体の全圧および静圧に基づいて、流体の第1方向成分の動圧を算出する。具体的には、第1動圧算出部111は、流体の第1方向成分の動圧として、第1圧力検出部101の、第1圧力計によって検出された流体の全圧と第2圧力計によって検出された流体の静圧との差圧を算出する。
 第2動圧算出部112は、第2圧力検出部102によって検出された流体の全圧および静圧に基づいて、流体の第2方向成分の動圧を算出する。具体的には、第2動圧算出部112は、流体の第2方向成分の動圧として、第2圧力検出部102の、第3圧力計によって検出された流体の全圧と第4圧力計によって検出された流体の静圧との差圧を算出する。
 第3動圧算出部113は、第3圧力検出部103によって検出された流体の全圧および静圧に基づいて、流体の第1方向成分の動圧を算出する。具体的には、第3動圧算出部113は、流体の第1方向成分の動圧として、第3圧力検出部103の、第5圧力計によって検出された流体の全圧と第6圧力計によって検出された流体の静圧との差圧を算出する。
 第4動圧算出部114は、第4圧力検出部104によって検出された流体の全圧および静圧に基づいて、流体の第2方向成分の動圧を算出する。具体的には、第4動圧算出部114は、流体の第2方向成分の動圧として、第4圧力検出部104の、第7圧力計によって検出された流体の全圧と第8圧力計によって検出された流体の静圧との差圧を算出する。
 第1~4動圧算出部111~114は、流体の全圧と静圧との差圧を算出する構成に代えて、ピトー管によって測定された流体の全圧と静圧との差圧を検出する構成であってもよい(微差圧センサ)。
 風算出部121は、第1動圧算出部111によって算出された流体の第1方向成分の動圧および第2動圧算出部112によって算出された流体の第2方向成分の動圧に基づいて、風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧を算出する。風向とは、たとえば、移動体の進行方向に対する流体の流れの方向である。具体的には、風向とは、移動体の進行方向と流体の流れの方向とのなす角度である。全風圧とは、たとえば、第1動圧算出部111によって算出された流体の第1方向成分の動圧と、第2動圧算出部112によって算出された流体の第2方向成分の動圧との総和である。
 第1方向成分の風圧とは、移動体の進行方向に対する風圧である。具体的には、第1方向成分の風圧とは、たとえば、第1動圧算出部111によって算出された流体の動圧の第1方向成分である。第2方向成分の風圧とは、移動体の進行方向に直交する方向に対する風圧である。具体的には、第2方向成分の風圧とは、たとえば、第2動圧算出部112によって算出された流体の動圧の第2方向成分である。
 より具体的には、風算出部121は、たとえば、圧力検出部のピトー管に沿った流線を形成する流体の流れにベルヌーイの定理を適用し、第1,2動圧算出部111,112によってそれぞれ検出された流体の第1,2方向成分の動圧に基づいて、風向、全風圧、第1方向成分の風圧、および第1方向成分に直交する第2方向成分の風圧を算出する。
 さらに、風算出部121は、第1~3動圧算出部111~113によって検出された流体の動圧をそれぞれ取得可能な場合、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧と、第2動圧算出部112によって算出された流体の動圧とに基づいて、風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧を算出する。
 風算出部121が第1,3動圧算出部111,113による算出値を取得可能な場合、全風圧は、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧と、第2動圧算出部112によって算出された流体の動圧との総和である。第1方向成分の風圧は、たとえば、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧の第1方向成分である。
 風算出部121は、第1,2,4動圧算出部111,112,114によって検出された流体の動圧をそれぞれ取得可能な場合、第1動圧算出部111によって算出された動圧と、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧とに基づいて、風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧を算出する。
 風算出部121が第2,4動圧算出部112,114による算出値を取得可能な場合、全風圧は、第1動圧算出部111によって算出された流体の動圧と、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧との総和である。第2方向成分の風圧は、たとえば、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧の第2方向成分である。
 また、風算出部121は、第1~4動圧算出部111~114によって検出された流体の動圧をそれぞれ取得可能な場合、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧と、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧とに基づいて、風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧を算出する。
 風算出部121が第1~4動圧算出部111~114による算出値を取得可能な場合、全風圧は、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧と、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧との総和である。
 また、風算出部121が第1~4動圧算出部111~114による算出値を取得可能な場合、第1方向成分の風圧は、たとえば、第1動圧算出部111によって算出された流体の動圧および第3動圧算出部113によって算出された流体の動圧のいずれか大きい動圧の第1方向成分である。第2方向成分の風圧は、たとえば、第2動圧算出部112によって算出された流体の動圧および第4動圧算出部114によって算出された流体の動圧のいずれか大きい動圧の第2方向成分である。
 つぎに、風検出装置100による風検出処理について説明する。図2は、風検出装置による風検出処理の手順を示すフローチャートである。図2のフローチャートにおいて、風検出装置100は、まず、第1動圧算出部111によって、流体の第1方向成分の動圧を算出する(ステップS201)。第1方向とは、たとえば、移動体の進行方向である。つぎに、風検出装置100は、第2動圧算出部112によって、流体の第2方向成分の動圧を算出する(ステップS202)。第2方向とは、第1方向に直交する方向である。
 そして、風検出装置100は、風算出部121によって、ステップS201,S202において算出された流体の第1方向成分の動圧および流体の第2方向成分の動圧に基づいて、風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧を算出し(ステップS203)、本フローチャートによる処理を終了する。その後、風検出装置100は、たとえば、ステップS203において検出した移動体に対する風向、全風圧、第1方向成分の風圧、および第2方向成分の風圧に基づいて、移動体の電力消費量などを算出してもよい。
 また、風検出装置100は、ステップS201において、さらに、第3動圧算出部113によって流体の第1方向成分の動圧を算出してもよい。風検出装置100は、第3動圧算出部113によって流体の第1方向成分の動圧を算出した場合、ステップS203において、第1動圧算出部111によって検出された流体の第1方向成分の動圧と第3動圧算出部113によって検出された流体の第1方向成分の動圧とのいずれか大きい動圧を用いる。
 風検出装置100は、ステップS202において、さらに、第4動圧算出部114によって流体の第2方向成分の動圧を算出してもよい。風検出装置100は、第4動圧算出部114によって流体の第2方向成分の動圧を算出した場合、ステップS203において、第2動圧算出部112によって検出された流体の第2方向成分の動圧と第4動圧算出部114によって検出された流体の第2方向成分の動圧とのいずれか大きい動圧を用いる。
 以上説明したように、実施の形態にかかる風検出装置100は、互いに直交する向きで設置された複数の圧力検出部を備える。より詳細には、風検出装置100は、ピトー管の全圧測定孔が移動体の進行方向(第1方向)を向くように設置された第1圧力検出部101と、ピトー管の全圧測定孔が移動体の進行方向に直交する方向(第2方向)を向くように設置された第2圧力検出部102と、を備える。これにより、風検出装置100は、互いに直交する向きで設置した第1,2圧力検出部101,102によって流体の第1方向成分および第2方向成分を検出可能であるので、移動体の進行方向に対して流体の流れがずれている場合でも正確に風向および風圧を検出することができる。
 また、風検出装置100は、移動体の進行方向に平行に設置された複数の圧力検出部を備える。より詳細には、風検出装置100は、ピトー管の全圧測定孔が移動体の前方を向くように設置された第1圧力検出部101と、ピトー管の全圧測定孔が移動体の後方を向くように設置された第3圧力検出部103と、を備える。これにより、風検出装置100は、第1,3圧力検出部101,103によって移動体の前方および後方から流れる流体を検出可能であるので、より正確に風向および風圧を検出することができる。
 さらに、風検出装置100は、移動体の進行方向に直交する方向に平行に設置された複数の圧力検出部を備える。より詳細には、風検出装置100は、ピトー管の全圧測定孔が移動体の外部の左側を向くように設置された第2圧力検出部102と、ピトー管の全圧測定孔が移動体の外部の右側を向くように設置された第4圧力検出部104と、を備える。これにより、風検出装置100は、第2,4圧力検出部102,104によって移動体の左側および右側から流れる流体を検出可能であるので、より正確に風向および風圧を検出することができる。
 このように、移動体に対する風向および風圧を正確に算出することができるため、たとえば、電気を動力源として走行するEV(Electric Vehicle)車やHV(Hybrid Vehicle)車、PHV(Plug-in Hybrid Vehicle)車などにおける消費電力を正確に算出することができる。これにより、移動体における安全対策や消費電力低減を図ることができる。
 以下に、本発明の実施例について説明する。本実施例では、車両などの移動体に搭載されるナビゲーション装置によって、本発明の風検出装置を実施した場合の一例について説明する。
(ナビゲーション装置のハードウェア構成)
 つぎに、ナビゲーション装置300のハードウェア構成について説明する。図3は、ナビゲーション装置のハードウェア構成を示すブロック図である。図3において、ナビゲーション装置300は、CPU301、ROM302、RAM303、磁気ディスクドライブ304、磁気ディスク305、光ディスクドライブ306、光ディスク307、音声I/F(インターフェース)308、マイク309、スピーカ310、入力デバイス311、映像I/F312、ディスプレイ313、カメラ314、通信I/F315、GPSユニット316および各種センサ317を備えている。各構成部301~317は、バス320によってそれぞれ接続されている。
 まず、CPU301は、ナビゲーション装置300の全体の制御を司る。ROM302は、ブートプログラム、データ更新プログラム、風検出プログラムなどのプログラムを記録している。また、RAM303は、CPU301のワークエリアとして使用される。すなわち、CPU301は、RAM303をワークエリアとして使用しながら、ROM302に記録された各種プログラムを実行することによって、ナビゲーション装置300の全体の制御を司る。
 風検出プログラムには、複数の圧力センサ(各種センサ317)によってそれぞれ検出された流体の全圧および静圧に基づいて流体の動圧を算出した後、流体の動圧に基づいて風向および風圧を検出する処理手順が記述されている。具体的には、風検出プログラムが実行されることにより、流体の第1方向成分の全圧と静圧との差圧(流体の第1方向成分の動圧)および流体の第2方向成分の全圧と静圧との差圧(流体の第2方向成分の動圧)が算出され、流体の第1,2方向成分の動圧に基づいて風向、全風圧、第1方向成分の風圧および第2方向成分の風圧が算出される。
 磁気ディスクドライブ304は、CPU301の制御にしたがって磁気ディスク305に対するデータの読み取り/書き込みを制御する。磁気ディスク305は、磁気ディスクドライブ304の制御で書き込まれたデータを記録する。磁気ディスク305としては、たとえば、HD(ハードディスク)やFD(フレキシブルディスク)を用いることができる。
 また、光ディスクドライブ306は、CPU301の制御にしたがって光ディスク307に対するデータの読み取り/書き込みを制御する。光ディスク307は、光ディスクドライブ306の制御にしたがってデータが読み出される着脱自在な記録媒体である。光ディスク307は、書き込み可能な記録媒体を利用することもできる。着脱可能な記録媒体として、光ディスク307のほか、MO、メモリカードなどを用いることができる。
 磁気ディスク305および光ディスク307に記録される情報の一例としては、地図データなどが挙げられる。地図データは、カーナビゲーションシステムにおいて経路探索処理や経路誘導処理に用いられ、建物、河川、地表面などの地物(フィーチャ)をあらわす背景データ、道路の形状をリンクやノードなどであらわす道路形状データなどを含んでいる。
 音声I/F308は、音声入力用のマイク309および音声出力用のスピーカ310に接続される。マイク309に受音された音声は、音声I/F308内でA/D変換される。マイク309は、たとえば、車両のダッシュボード部などに設置され、その数は単数でも複数でもよい。スピーカ310からは、所定の音声信号を音声I/F308内でD/A変換した音声が出力される。
 入力デバイス311は、文字、数値、各種指示などの入力のための複数のキーを備えたリモコン、キーボード、タッチパネルなどが挙げられる。入力デバイス311は、リモコン、キーボード、タッチパネルのうちいずれか1つの形態によって実現されてもよいが、複数の形態によって実現することも可能である。
 映像I/F312は、ディスプレイ313に接続される。映像I/F312は、具体的には、たとえば、ディスプレイ313全体を制御するグラフィックコントローラと、即時表示可能な画像情報を一時的に記録するVRAM(Video RAM)などのバッファメモリと、グラフィックコントローラから出力される画像データに基づいてディスプレイ313を制御する制御ICなどによって構成される。
 ディスプレイ313には、アイコン、カーソル、メニュー、ウインドウ、あるいは文字や画像などの各種データが表示される。ディスプレイ313としては、たとえば、TFT液晶ディスプレイ、有機ELディスプレイなどを用いることができる。
 カメラ314は、車両内部あるいは外部の映像を撮影する。映像は静止画あるいは動画のどちらでもよく、たとえば、カメラ314によって車両外部を撮影し、撮影した画像をCPU301において画像解析したり、映像I/F312を介して磁気ディスク305や光ディスク307などの記録媒体に出力したりする。
 通信I/F315は、無線を介してネットワークに接続され、ナビゲーション装置300およびCPU301のインターフェースとして機能する。ネットワークとして機能する通信網には、CAN(Controller Area Network)やLIN(Local Interconnect Network)などの車内通信網や、公衆回線網や携帯電話網、DSRC(Dedicated Short Range Communication)、LAN、WANなどがある。通信I/F315は、たとえば、公衆回線用接続モジュールやETC(ノンストップ自動料金支払いシステム)ユニット、FMチューナー、VICS(Vehicle Information and Communication System)/ビーコンレシーバなどである。
 GPSユニット316は、GPS衛星からの電波を受信し、車両の現在位置を示す情報を出力する。GPSユニット316の出力情報は、後述する各種センサ317の出力値とともに、CPU301による車両の現在位置の算出に際して利用される。現在位置を示す情報は、たとえば緯度・経度、高度などの、地図データ上の1点を特定する情報である。
 各種センサ317は、車速センサ、圧力センサ、角速度センサなどの、車両の位置や挙動を判断するための情報や、車両に対する風向および風圧を判断するための情報を出力する。圧力センサは、たとえば車両の前部、側部および後部のバンパーやスポイラーなど、複数箇所にそれぞれ設置される。各種センサ317の出力値は、CPU301による車両の現在位置の算出や、速度や方位の変化量の算出、車両に対する風向および風圧の算出に用いられる。
 圧力センサは、たとえば、ピトー管および2つの圧力計を備えている。ピトー管は、流体の全圧を測定する全圧管と、流体の静圧を測定する静圧管とを備えている。第1圧力計は、ピトー管の全圧管に接続され、ピトー管によって測定された流体の全圧を検出する。第2圧力計は、ピトー管の静圧管に接続され、ピトー管によって測定された流体の静圧を検出する。
 図1に示した風検出装置100の第1圧力検出部101、第2圧力検出部102、第3圧力検出部103、第4圧力検出部104、第1動圧算出部111、第2動圧算出部112、第3動圧算出部113、第4動圧算出部114、風算出部121は、上述したナビゲーション装置300におけるROM302、RAM303、磁気ディスク305、光ディスク307などに記録されたプログラムやデータを用いて、CPU301が所定のプログラムを実行し、ナビゲーション装置300における各部を制御することによってその機能を実現する。
(圧力センサの構成)
 まず、車両に設置される圧力センサ(各種センサ317)の構成について説明する。図4は、実施例にかかる圧力センサの構成について示す概念図である。圧力センサ400は、ピトー管401、第1圧力計402、第2圧力計403を備えている。圧力センサ400は、ピトー管401の軸中心と車両の進行方向とが等しくなるように、たとえば車両の正面部分、背面部分に設置される。また、圧力センサ400は、ピトー管401の軸中心と車両の進行方向に直交する方向とが等しくなるように、たとえば車両側面部分に設置される。そして、圧力センサ400は、流体430の全圧および静圧を検出する。
 ピトー管401は、流体430の全圧を測定する全圧管411と、流体430の静圧を測定する静圧管421と、を備えている。全圧管411の先端部には、流体430の全圧を測定するための孔(全圧測定孔)412が設けられている。静圧管421の側壁部には、流体430の静圧を測定するための孔(静圧測定孔)422が設けられている。
 ピトー管401は、たとえば、全圧管411と静圧管421とを平行に配置した構成となっている。全圧測定孔412および静圧測定孔422は互いに直交する方向に開口している。ピトー管401はL字状の断面形状を有していてもよい。L字状のピトー管401の場合、ピトー管401の全圧測定孔412側の直線部分に、静圧測定孔422が設けられる。
 第1圧力計402は、全圧管411に接続され、ピトー管401によって測定された流体430の全圧を検出する。具体的には、第1圧力計402は、全圧管411の全圧測定孔412が設けられた端部に対して反対側の端部の孔に接続されている。第2圧力計403は、ピトー管401の静圧管421に接続され、ピトー管によって測定された流体430の静圧を検出する。具体的には、第2圧力計403は、静圧管421の静圧測定孔422と異なる孔に接続されている。
 このような圧力センサ400は、流体430の流れの中に設置される。そして、ピトー管401に沿った流線を形成する流体430の流れにベルヌーイの定理が適用されることで、流体430の動圧が算出される。図4において、ピトー管401に沿った流線を形成する流体430の流れを、任意点423からピトー管401の全圧測定孔412が設けられた側の先端部の頂点413に向かう矢印で示す。任意点423は、ピトー管401の中心軸の延長線上に位置する点である。また、流体430の流れをピトー管401の中心軸に平行な流れで示しているが、流体430の流れがピトー管401の中心軸に対して傾いている場合、ピトー管401は、流体430の、ピトー管401の中心軸に平行な方向の成分を測定する。
(ナビゲーション装置300による風圧・風速検出の概要)
 つぎに、ナビゲーション装置300による風圧・風速検出方法について説明する。車両に対する風圧および風速は、上述したピトー管401の中心軸の延長線上に位置する任意点423における風圧および風速にほぼ等しい。このため、圧力センサ400を流体430の流れの中に設置し、任意点423における風圧および風速を算出することにより、車両に対する風圧および風速が検出される。
 圧力センサ400が流体430の流れの中に設置されることにより、圧力センサ400によって流体430の流れがせき止められ、圧力センサ400の表面に流体430の速度(風速)がゼロとなる点(よどみ点)が発生する。具体的には、流体430の流れがピトー管401の全圧測定孔412が設けられた側の先端部でせき止められるため、ピトー管401の先端部の頂点413がよどみ点となる(以下、よどみ点413とする)。
 よどみ点413における流体430の全圧は、流体430のエネルギー保存則(静圧+動圧=全圧(一定))により、任意点423における流体430の全圧と等しい。このため、よどみ点413における風速V1とし、任意点423における風速V2とした場合、よどみ点413と任意点423との間に、下記式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000005
 上記式(1)において、左辺第1項は、よどみ点413における流体430の静圧である。左辺第2項は、よどみ点413における流体430の動圧である。すなわち、上記式(1)の左辺は、よどみ点413における流体430の全圧である。右辺第1項は、任意点423における流体430の静圧である。右辺第2項は、任意点423における流体430の動圧である。すなわち、上記式(1)の右辺は、任意点423における流体430の全圧である。ρは、流体430の密度である。
 よどみ点413における風速V1はゼロであるので、上記式(1)において、左辺第2項はゼロとなり、左辺第1項のみが残る。このため、上記式(1)の左辺第1項のP1は、よどみ点413における流体430の全圧である。また、よどみ点413における風速V1がゼロであるので、よどみ点413における流体430の全圧P1と任意点423における流体430の静圧P2との差圧(P1-P2)をΔPとすることにより、上記式(1)は、下記式(2)であらわされる。また、下記式(2)によって、下記式(3)が成り立つ。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 上記式(2)に示すように、任意点423における流体430の動圧は、よどみ点413における流体430の全圧P1と任意点423における流体430の静圧P2との差圧ΔPと等しくなる。したがって、よどみ点413における流体430の全圧P1と任意点423における流体430の静圧P2との差圧ΔPを算出することで、任意点423における流体430の動圧、すなわち車両に対する風圧が検出される。
 よどみ点413における流体430の全圧P1は、第1圧力計402によって検出される。また、ピトー管401は流体430の流れに対して平行に設置されるので、任意点423における風速V2は、静圧測定孔422における風速にほぼ等しい。このため、任意点423における流体430の静圧P2は、静圧測定孔422における流体430の静圧にほぼ等しい。したがって、任意点423における流体430の静圧P2は、第2圧力計403によって検出される。
 流体430の密度ρは、定数として扱われてもよいし、温度や大気圧に基づいて算出されてもよい。流体430の密度ρは、たとえば、下記式(4)を用いて算出される。下記式(4)において、P0は大気圧であり、tは温度である。
Figure JPOXMLDOC01-appb-M000008
(ナビゲーション装置300による風検出の概要)
 つぎに、実施例にかかる圧力センサの構成について説明する。実施例にかかるナビゲーション装置300が搭載された車両には、たとえば、図4に示すピトー管401からなる圧力センサ400が複数設置されている。以下、車両に設置された複数の圧力センサを圧力センサ群とする。たとえば、車両の前部および側部にそれぞれ1つの圧力センサを設置する。これら2つの圧力センサは、互いに直交となる向きに配置される。
 図5は、実施例にかかる圧力センサ群の構成について示す概念図である。図5に示すように、圧力センサ群のうちの一方の圧力センサ(以下、第1圧力センサとする)500aは、ピトー管501aの軸中心が車両の進行方向x0に平行になるように設置されている。ピトー管501aの全圧測定孔502aは、たとえば、車両の進行方向x0を向いている。ピトー管501aは、たとえば、I字状の断面形状を有する。
 ピトー管501aの全圧測定孔502a側の端部は、開放部を有する外筒(中空部材)503aで覆われている。図5の紙面右上に、第1圧力センサ500aのピトー管501aの全圧測定孔502a側の端部の断面図を示す。ピトー管501aの全圧測定孔502aが設けられた側に対して反対側の端部には、差圧センサ504aが接続されている。具体的には、差圧センサ504aは、チューブ505aを介してピトー管501aの全圧管に接続され、チューブ506aを介してピトー管501aの静圧管に接続されている。
 圧力センサ群のうちの他方の圧力センサ(以下、第2圧力センサとする)500bは、ピトー管501bの軸中心が車両の進行方向に直交する方向y0に平行になるように設置されている。ピトー管501bの全圧測定孔502bは、たとえば、車両の進行方向に直交する方向y0で、かつ車両の外部のたとえば左側を向いている。ピトー管501bは、たとえば、L字状の断面形状を有する。
 ピトー管501bの全圧測定孔502b側の端部は、開放部を有する外筒503bで覆われている。具体的には、図示を省略するが、第1圧力センサ500aのピトー管501aの全圧測定孔502a側の端部の断面構造と同様である。ピトー管501bの全圧測定孔502bが設けられた側に対して反対側の端部には、差圧センサ504bが接続されている。具体的には、差圧センサ504bは、チューブ505bを介してピトー管501bの全圧管に接続され、チューブ506bを介してピトー管501bの静圧管に接続されている。
 つぎに、図5に示す圧力センサ群を用いて、車両の進行方向x0に対して斜め方向から流れてくる流体の風算出方法について説明する。図6~8は、ナビゲーション装置による風検出について示す説明図である。図6,7において、圧力センサ群は車両(不図示)に設置されている。流体は、車両の進行方向x0に対して角度θだけずれた方向(流体の流れの方向)x1から車両に向って流れている。車両の進行方向x0に対する角度θは、車両に対する風向である。外筒内を通過する流管600,700を形成する流線を実線の矢印で示す。外筒内を通過しない流線を符号x0,x1の矢印よりも細かい点線の矢印で示す。図8には、全風圧P、全風圧Pの第1方向成分の風圧Pxおよび全風圧Pの第2方向成分の風圧Pyを示す。
 まず、車両の進行方向x0(第1方向)における風圧の算出方法について説明する。図6に示すように、ピトー管501aは、ピトー管501aを覆う外筒503aを通過する流線(実線で示す流体)の束である流管600の全圧および静圧を測定する。流管600の任意点601における断面積A1は、外筒503aの断面積A0としたときにA0・cosθとなる。任意点601は、外筒503aの外部に位置する。
 流管600の、任意点601における流量と外筒503a内における流量とは等しい。このため、任意点601における風速Vとし、外筒503a内における風速Vxとしたときに、下記式(5)が成り立つ。そして、下記式(5)より、外筒503a内における風速Vxは、下記式(6)であらわされる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 したがって、上記式(2)の任意点における風速V2に上記式(6)の外筒503a内における風速Vxを代入することにより、第1圧力センサ500aによって検出される流体の全圧と静圧との差圧(第1方向成分の動圧)ΔP1は、下記式(7)であらわされる。下記式(7)において、外筒503a内における流体の流れの方向はピトー管501aの中心軸に平行であるとし、圧力係数を1とする。
Figure JPOXMLDOC01-appb-M000011
 つぎに、車両の進行方向に直交する方向y0(第2方向)における風圧の算出方法について説明する。図7に示すように、ピトー管501bは、ピトー管501bを覆う外筒503bを通過する流線(実線で示す流体)の束である流管700の全圧および静圧を測定する。流管700の任意点701における断面積A2は、外筒503bの断面積A0としたときにA0・sinθとなる。任意点701は、外筒503bの外部に位置する。
 流管700の、任意点701における流量と外筒503b内における流量とが等しい。このため、任意点701における風速Vとし、外筒503b内における風速Vyとしたときに、下記式(8)が成り立つ。そして、下記式(8)より、外筒503b内における風速Vyは、下記式(9)であらわされる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 したがって、上記式(2),式(9)により、第2圧力センサ500bによって検出される流体の全圧と静圧との差圧(第2方向成分の動圧)ΔP2は、下記式(10)であらわされる。下記式(10)において、外筒503b内における流体の流れの方向はピトー管501bの中心軸に平行であるとし、圧力係数を1とする。
Figure JPOXMLDOC01-appb-M000014
 そして、第2方向の動圧ΔP2を第1方向成分の動圧ΔP1によって除算することにより、上記式(7),式(10)を用いて下記式(11),式(12)に示すように風向θが算出される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 また、車両に対する風向θの流体によって車両が受ける全風圧Pは、下記式(13)であらわされる。そして、全風圧Pの第1方向成分の風圧Pxは、下記式(14)であらわされる。全風圧Pの第2方向成分の風圧Pyは、下記式(15)であらわされる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 つぎに、第1方向成分の動圧ΔP1を検出する第1圧力センサ500a、および第2方向の動圧ΔP2を検出する第2圧力センサ500bをそれぞれ複数設置する場合の風算出方法について説明する。図9~11は、実施例にかかる圧力センサ群の配置について示す説明図である。まず、第1圧力センサ500aおよび第2圧力センサ500bをそれぞれ複数設置する場合の各第1,2圧力センサ500a,500bの配置の一例について説明する。
 図9に示すように、車両900の前部に1つの第1圧力センサ500aおよび2つの第2圧力センサ500bを配置してもよい。具体的には、第1圧力センサ500aは、第1圧力センサ500aを構成するピトー管の軸中心が車両の進行方向x0に平行になるように、かつピトー管の全圧測定孔が車両の進行方向x0を向くように設置される。
 第2圧力センサ500bは、第2圧力センサ500bを構成するピトー管の軸中心が車両の進行方向に直交する方向y0に平行になるように設置される。また、2つの第2圧力センサ500bのうちの一方の第2圧力センサ500b_leftは、第2圧力センサ500b_leftを構成するピトー管の全圧測定孔が車両の進行方向x0に対して左側を向くように設置される。2つの第2圧力センサ500bのうちの他方の第2圧力センサ500b_rightは、第2圧力センサ500b_rightを構成するピトー管の全圧測定孔が車両の進行方向x0に対して右側を向くように設置される。
 また、図10に示すように、車両1000の前部に1つの第1圧力センサ500aを配置し、車両1000の進行方向x0に対して左側部および右側部にそれぞれ第2圧力センサ500b_leftおよび第2圧力センサ500b_rightを配置してもよい。第1圧力センサ500a、第2圧力センサ500b_leftおよび第2圧力センサ500b_rightの向きは、図9に示す車両900の各圧力センサと同様である。
 このように第1圧力センサ500a、第2圧力センサ500b_leftおよび第2圧力センサ500b_rightを設置した場合の風算出方法について説明する。図10に示す車両1000を例に説明する。車両に対する風向θは、図6~8に示す風向と同様である。具体的には、流体1010は、車両1000の車両方向x0に対して角度θだけずれた左斜め前方から車両1000に向かって流れている。
 流体1010の流線の束である流管1001は、車両1000の左側部に配置された第2圧力センサ500b_leftの外筒503b_left内を通過する。したがって、上記式(10)を用いて、第2方向成分の動圧ΔP2_leftが算出される。
 一方、車両1000の右側部における流体1010の流線1002は、車両1000の車体に遮られ、車両1000の車体表面に沿って車両1000の右側部に配置された第2圧力センサ500b_rightに直交する方向に流れる。このため、流体1010の流線1002は第2圧力センサ500b_rightの外筒内にほぼ流れず、上記式(10)を用いて算出される第2方向成分の動圧ΔP2_rightは第2方向成分の動圧ΔP2_leftよりも小さくなる。
 したがって、第2方向成分の動圧ΔP2_leftおよび第2方向成分の動圧ΔP2_rightのうち、値の大きい第2方向成分の動圧ΔP2_leftを選択することで、第2方向成分の動圧ΔP2が算出される。また、第2圧力センサ500b_leftによって検出された第2方向成分の動圧ΔP2_leftが選択されたことで、車両1000に対する風向θは、車両1000の進行方向x0に対して左側に傾いた値として算出される。
 具体的には、上記式(10)により、第2方向成分の動圧ΔP2_leftおよび第2方向成分の動圧ΔP2_rightが算出される。そして、下記式(16)に示すように、第2方向成分の動圧ΔP2_leftおよび第2方向成分の動圧ΔP2_rightのいずれか大きい動圧が第2方向成分の動圧ΔP2として選択される。その後、上記式(12)~式(15)により、車両1000に対する風向θ、全風圧P、第1方向成分の風圧Pxおよび第2方向成分の風圧Pyが検出される。
Figure JPOXMLDOC01-appb-M000020
 また、図11に示すように、車両1100の後部に、1つの第1圧力センサ500a_rearを配置してもよい。第1圧力センサ500a_rearは、第1圧力センサ500a_rearを構成するピトー管の軸中心が車両の進行方向x0に平行になるように、かつピトー管の全圧測定孔が車両の進行方向x0に対して反対側を向くように設置される。車両1100の前部に配置された第1圧力センサ500a_front、車両1100の側部に配置された第2圧力センサ500b_leftおよび第2圧力センサ500b_rightの配置位置および向きは、図10に示す車両1000の各圧力センサと同様である。
 このように車両1100の前部および後部にそれぞれ第1圧力センサ500a_frontおよび第1圧力センサ500a_rearが設置されている場合、第1方向成分の動圧ΔP1_frontおよび第1方向成分の動圧ΔP1_rearのいずれか値の大きい動圧を選択することで、第1方向成分の動圧ΔP1が検出される。
 具体的には、上記式(7)により、第1方向成分の動圧ΔP1_frontおよび第1方向成分の動圧ΔP1_rearが算出される。そして、下記式(17)に示すように、第1方向成分の動圧ΔP1_frontおよび第1方向成分の動圧ΔP1_rearのいずれか大きい風圧が第2方向成分の動圧ΔP1として選択される。その後、上記式(12)~式(15)により、車両1000に対する風向θ、全風圧P、第1方向成分の風圧Pxおよび第2方向成分の風圧Pyが算出される。
Figure JPOXMLDOC01-appb-M000021
 上記式(1)~(17)は、たとえば、ナビゲーション装置300のROM302に記録された風検出プログラムに組み込まれている。そして、ナビゲーション装置300は、風検出プログラムを実行し、車両に対する風向θ、全風圧P、第1方向成分の風圧Pxおよび第2方向成分の風圧Pyを算出する。
 以上説明したように、ナビゲーション装置300によれば、互いに直交する向きで設置された複数の圧力検出部を備える。より詳細には、ナビゲーション装置300は、ピトー管の全圧測定孔が車両の進行方向(第1方向)を向くように設置された第1圧力センサと、ピトー管の全圧測定孔が車両の進行方向に直交する方向(第2方向)を向くように設置された第2圧力センサと、を備える。これにより、ナビゲーション装置300は、互いに直交する向きで設置した第1,2圧力センサによって流体の第1方向成分および第2方向成分を検出可能であるので、車両の進行方向に対して流体の流れがずれている場合でも正確に風向および風圧を検出することができる。
 また、ナビゲーション装置300は、車両の進行方向に平行に設置された複数の圧力センサを備える。より詳細には、ナビゲーション装置300は、ピトー管の全圧測定孔が車両の前方を向くように設置された第1圧力センサと、ピトー管の全圧測定孔が車両の後方を向くように設置された第3圧力センサと、を備える。これにより、ナビゲーション装置300は、第1,3圧力センサによって車両の前方および後方から流れる流体を検出可能であるので、より正確に風向および風圧を検出することができる。
 さらに、ナビゲーション装置300は、車両の進行方向に直交する方向に平行に設置された複数の圧力検出部を備える。より詳細には、ナビゲーション装置300は、ピトー管の全圧測定孔が車両の外部の左側を向くように設置された第2圧力センサと、ピトー管の全圧測定孔が車両の外部の右側を向くように設置された第4圧力センサと、を備える。これにより、ナビゲーション装置300は、第2,4圧力センサによって車両の左側および右側から流れる流体を検出可能であるので、より正確に風向および風圧を検出することができる。
 このように、車両に対する風向および風圧を正確に算出することができるため、たとえば、電気を動力源として走行するEV(Electric Vehicle)車やHV(Hybrid Vehicle)車、PHV(Plug-in Hybrid Vehicle)車などにおける消費電力を正確に算出することができる。これにより、車両における安全対策や消費電力低減を図ることができる。
 なお、本実施の形態で説明した風検出方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。
 100 風検出装置
 101,102,103,104 圧力検出部(第1~4)
 111,112,113,114 動圧算出部(第1~4)
 121 風算出部

Claims (12)

  1.  流体の全圧を検出する第1圧力計および当該流体の静圧を検出する第2圧力計を有する第1圧力検出手段と、
     前記第1圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第1動圧算出手段と、
     前記流体の全圧を検出する第3圧力計および当該流体の静圧を検出する第4圧力計を有する第2圧力検出手段と、
     前記第2圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第2動圧算出手段と、
     前記第1動圧算出手段によって算出された動圧および前記第2動圧算出手段によって算出された動圧に基づいて、風向、全風圧、第1方向成分の風圧、および前記第1方向成分に直交する第2方向成分の風圧を算出する風算出手段と、
     を備え、
     前記第1圧力検出手段および前記第2圧力検出手段のそれぞれは、開放部を有する中空部材で覆われており、
     前記第1圧力検出手段および前記第2圧力検出手段は互いに直交となる向きに配置されていることを特徴とする風検出装置。
  2.  前記第1圧力検出手段および前記第2圧力検出手段はそれぞれピトー管で構成されていることを特徴とする請求項1に記載の風検出装置。
  3.  前記第1動圧算出手段によって算出された動圧をΔP1とし、前記第2動圧算出手段によって算出された動圧をΔP2としたときに、全風圧Pは、下記式(1)を満たすことを特徴とする請求項1または2に記載の風検出装置。
    Figure JPOXMLDOC01-appb-M000001
  4.  前記風向θは、下記式(2)を満たすことを特徴とする請求項3に記載の風検出装置。
    Figure JPOXMLDOC01-appb-M000002
  5.  前記第1方向成分の風圧Pxは、下記式(3)を満たすことを特徴とする請求項4に記載の風検出装置。
    Figure JPOXMLDOC01-appb-M000003
  6.  前記第2方向成分の風圧Pyは、下記式(4)を満たすことを特徴とする請求項4または5に記載の風検出装置。
    Figure JPOXMLDOC01-appb-M000004
  7.  開放部を有する中空部材で覆われ、前記第1圧力検出手段と対向する向きに配置され、かつ、前記流体の全圧を検出する第5圧力計および当該流体の静圧を検出する第6圧力計を有する第3圧力検出手段と、
     前記第3圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第3動圧算出手段と、
     をさらに備えることを特徴とする請求項1に記載の風検出装置。
  8.  前記風算出手段は、前記第1動圧算出手段によって算出された動圧および前記第3動圧算出手段によって算出された動圧のいずれか大きい動圧と、前記第2動圧算出手段によって算出された動圧とに基づいて、前記風向、前記全風圧、前記第1方向成分の風圧、および前記第2方向成分の風圧を算出することを特徴とする請求項7に記載の風検出装置。
  9.  開放部を有する中空部材で覆われ、前記第2圧力検出手段と対向する向きに配置され、かつ、前記流体の全圧を検出する第7圧力計および当該流体の静圧を検出する第8圧力計を有する第4圧力検出手段と、
     前記第4圧力検出手段によって検出された全圧および静圧に基づいて、前記流体の動圧を算出する第4動圧算出手段と、
     をさらに備えることを特徴とする請求項1または7に記載の風検出装置。
  10.  前記風算出手段は、前記第2動圧算出手段によって算出された動圧および前記第4動圧算出手段によって算出された動圧のいずれか大きい動圧と、前記第1動圧算出手段によって算出された動圧とに基づいて、前記風向、前記全風圧、前記第1方向成分の風圧、および前記第2方向成分の風圧を算出することを特徴とする請求項9に記載の風検出装置。
  11.  前記風算出手段は、前記第1動圧算出手段によって算出された動圧および前記第3動圧算出手段によって算出された動圧のいずれか大きい動圧と、前記第2動圧算出手段によって算出された動圧および前記第4動圧算出手段によって算出された動圧のいずれか大きい動圧とに基づいて、前記風向、前記全風圧、前記第1方向成分の風圧、および前記第2方向成分の風圧を算出することを特徴とする請求項9に記載の風検出装置。
  12.  前記第1圧力検出手段および前記第2圧力検出手段は移動体に設置されており、
     前記風向は、前記移動体の進行方向に対する風向であり、
     前記第1方向成分の風圧は、前記移動体の進行方向に対する風圧であり、
     前記第2方向成分の風圧は、前記移動体の進行方向に直交する方向に対する風圧であることを特徴とする請求項1に記載の風検出装置。
PCT/JP2011/065122 2011-06-30 2011-06-30 風検出装置 WO2013001657A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/065122 WO2013001657A1 (ja) 2011-06-30 2011-06-30 風検出装置
JP2011553645A JP4955132B1 (ja) 2011-06-30 2011-06-30 風検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065122 WO2013001657A1 (ja) 2011-06-30 2011-06-30 風検出装置

Publications (1)

Publication Number Publication Date
WO2013001657A1 true WO2013001657A1 (ja) 2013-01-03

Family

ID=46505991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065122 WO2013001657A1 (ja) 2011-06-30 2011-06-30 風検出装置

Country Status (2)

Country Link
JP (1) JP4955132B1 (ja)
WO (1) WO2013001657A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842476A (zh) * 2015-01-30 2016-08-10 英飞凌科技股份有限公司 用于风速计的系统和方法
CN109799361A (zh) * 2017-11-17 2019-05-24 鸿海精密工业股份有限公司 具有风速侦测功能的电子装置及风速侦测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091884B2 (ja) * 2012-12-21 2017-03-08 株式会社日立製作所 地上風計測システム
CN106644251A (zh) * 2016-12-29 2017-05-10 中国科学院长春光学精密机械与物理研究所 一种激光器气体压力检测装置
CN111398624B (zh) * 2020-03-06 2022-05-27 清远市智慧农业研究院 下洗风场冠层穿透性测试装置及方法
CN113238074B (zh) * 2021-05-18 2023-01-06 贵州电网有限责任公司 一种基于六分法皮托管风速风向测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520184A (en) * 1968-11-21 1970-07-14 Bell Aerospace Corp Directional pressure probe
JPS6194772U (ja) * 1984-11-28 1986-06-18
JPH0438469A (ja) * 1990-06-04 1992-02-07 Nissan Motor Co Ltd 運転指示装置
JPH05288761A (ja) * 1992-04-06 1993-11-02 Natl Aerospace Lab 多角錐台型ピトー管型プローブを用いた飛行速度ベクトル検出システム及び多角錐台型ピトー管型プローブ
JPH10115535A (ja) * 1996-10-11 1998-05-06 Mitsubishi Heavy Ind Ltd 流動計測プローブ
JP2001241980A (ja) * 2000-03-02 2001-09-07 Tokyo Gas Co Ltd 流量計
US6571645B1 (en) * 1999-06-02 2003-06-03 Sheldon I. Green Differential pressure velocimeter with probe body having disk shape

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520184A (en) * 1968-11-21 1970-07-14 Bell Aerospace Corp Directional pressure probe
JPS6194772U (ja) * 1984-11-28 1986-06-18
JPH0438469A (ja) * 1990-06-04 1992-02-07 Nissan Motor Co Ltd 運転指示装置
JPH05288761A (ja) * 1992-04-06 1993-11-02 Natl Aerospace Lab 多角錐台型ピトー管型プローブを用いた飛行速度ベクトル検出システム及び多角錐台型ピトー管型プローブ
JPH10115535A (ja) * 1996-10-11 1998-05-06 Mitsubishi Heavy Ind Ltd 流動計測プローブ
US6571645B1 (en) * 1999-06-02 2003-06-03 Sheldon I. Green Differential pressure velocimeter with probe body having disk shape
JP2001241980A (ja) * 2000-03-02 2001-09-07 Tokyo Gas Co Ltd 流量計

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842476A (zh) * 2015-01-30 2016-08-10 英飞凌科技股份有限公司 用于风速计的系统和方法
CN109799361A (zh) * 2017-11-17 2019-05-24 鸿海精密工业股份有限公司 具有风速侦测功能的电子装置及风速侦测方法

Also Published As

Publication number Publication date
JPWO2013001657A1 (ja) 2015-02-23
JP4955132B1 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4955132B1 (ja) 風検出装置
CN102252659B (zh) 基于激光传感器的车载式道路路面坡度测量方法
CN105865461B (zh) 一种基于多传感器融合算法的汽车定位系统及方法
JP3804409B2 (ja) 加速度を利用した処理装置
JP5732377B2 (ja) ナビゲーション装置
CN103791910B (zh) 导航仪根据车内气压变化进行道路匹配的工作方法
JP4955131B1 (ja) 風補正装置、風補正方法、風補正プログラムおよび記録媒体
KR20130035483A (ko) 휴대용 단말기에서 항체의 기수각 변화를 인식하기 위한 장치 및 방법
JP2006227019A (ja) 加速度を利用した処理装置
CN202614240U (zh) 结合车辆诊断系统的航迹推算装置
KR101208717B1 (ko) 차량의 경사각 보정방법 및 그 보정장치
JP2006227018A (ja) 加速度を利用した処理装置
CN108109394A (zh) 基于矢量模型的单地磁车辆交通参数检测系统及方法
CN109115452A (zh) 一种汽车风速测试方法及装置
Hoarau et al. Unsteady wall pressure field of a model A-pillar conical vortex
JP5666017B2 (ja) バンク判定装置、制御方法、プログラム、及び記憶媒体
RU2327956C2 (ru) Способ определения расхода газа или жидкости и устройства для его реализации (варианты)
Trehard et al. Indoor pedestrian localisation solution based on anemometry sensor integration with a smartphone
JP6091884B2 (ja) 地上風計測システム
CN104794323B (zh) 一种基于多模型的火星大气进入容中断估计方法
CN104655115B (zh) 一种角速率测量方法
JP4454442B2 (ja) 角速度センサの感度誤差検出装置
CN103791909B (zh) 一种导航仪的工作方法
CN103791911B (zh) 准确性较高的导航仪的道路匹配的工作方法
JP3530335B2 (ja) 音源相対位置補正機能を有するトラバース装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011553645

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868587

Country of ref document: EP

Kind code of ref document: A1