WO2013000337A1 - 荧光粉层、器件及相应光源和投影系统、及相应制作方法 - Google Patents

荧光粉层、器件及相应光源和投影系统、及相应制作方法 Download PDF

Info

Publication number
WO2013000337A1
WO2013000337A1 PCT/CN2012/075061 CN2012075061W WO2013000337A1 WO 2013000337 A1 WO2013000337 A1 WO 2013000337A1 CN 2012075061 W CN2012075061 W CN 2012075061W WO 2013000337 A1 WO2013000337 A1 WO 2013000337A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
fluorescent sheet
fluorescent
phosphor layer
sheet
Prior art date
Application number
PCT/CN2012/075061
Other languages
English (en)
French (fr)
Inventor
杨毅
李屹
唐怀
吴希亮
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to EP12804869.1A priority Critical patent/EP2725419B1/en
Priority to US14/122,628 priority patent/US9696010B2/en
Publication of WO2013000337A1 publication Critical patent/WO2013000337A1/zh
Priority to US15/625,411 priority patent/US10775024B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24413Metal or metal compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24909Free metal or mineral containing

Definitions

  • This invention relates to the field of excited light and, more particularly, to a phosphor layer, a device and corresponding light source and projection system, and a corresponding method of fabrication.
  • U.S. Patent No. 7,547,114 teaches a method of producing high-brightness time-series color light that collects and focuses an excitation source on a phosphor turntable to excite the phosphor material to illuminate and to produce a periodic sequence of color light sequences as the turntable rotates.
  • the phosphor turntable is the core component that directly affects the brightness of the light source.
  • the phosphor layer is attached to a transparent substrate, which may also be a two-phase filter for transmitting the excitation light to reflect the excited light and to increase the brightness of the light source. Further research on the phosphor turntable structure in Chinese Patent Publication No.
  • 200810065895 shows that there should be a low refractive index medium between the phosphor layer and its substrate, and air is the most ideal material, that is, the phosphor layer and its lining There is an air gap between the bottoms, and the patent limits the thickness of the air gap. Studies have shown that the thinner the thickness of the air gap, the higher the brightness of the light source.
  • the phosphor material layer is difficult to fabricate.
  • the fluorescent material is in the form of powder, that is, the so-called phosphor, there is no adhesion between the particles and the particles, or the adhesion is weak and cannot be used to form a layer, so it is necessary to use an adhesive.
  • the phosphor is adhered to the inner wall of the fluorescent tube by a metal oxide such as alumina particles and forms a thin layer; the phosphor layer can be formed on the surface of the flat glass by using this technique, but the phosphor layer is difficult to peel off.
  • Down that is, must rely on the glass substrate to apply, which obviously does not conform to the aforementioned phosphor layer does not adhere to the substrate (and There is a requirement for an air gap between the substrates.
  • organic binders Classification from the nature of the adhesive can be divided into organic binders and inorganic binders.
  • the organic binder may be an easy-to-handle material such as silica gel or epoxy resin, and the inorganic binder may be a metal oxide as a binder, and mixed with the phosphor to form a ceramic under high temperature and high pressure.
  • the latter process is complex and costly, and only a few companies have been able to make it, and the types of phosphors are limited. Therefore, organic binders are the first choice for phosphor layer fabrication. First, the phosphor is mixed with an organic binder, and then formed on a substrate by printing, extrusion molding, etc., and then peeled off from the substrate, which is a mature industrial processing method, without Narration.
  • organic binders first requires meeting the reliability requirements. Due to the long-term exposure to high-intensity excitation light and the high temperature of phosphor heating, the reliability of epoxy resin is generally difficult to meet, and silica gel is a possible choice because of its relatively stable silicon-oxygen bond.
  • the organic binder selected In order to satisfy the aforementioned requirement that the phosphor layer not adhere to the substrate, the organic binder selected must have sufficient hardness, such as higher than Shore D 40. However, due to the need to remove from the substrate, the material is required to have considerable elasticity and cannot be too brittle, that is, the hardness of the material cannot be too hard, such as lower than the Shore D 85. By selecting, a material having a suitable hardness can be selected, and the material is mixed with the phosphor to form a sheet, and then placed in the sandwich structure to be non-adhered to the holding substrates on both sides.
  • the phosphor layer 3 expands, and the expansion causes the phosphor layer 3 to be attracted to one side (such as the substrate 1).
  • the stress of the arching causes the pressure between the phosphor layer 3 and the substrate 1 to increase; at the same time, the organic binder softens and the hardness decreases at a high temperature, and under the joint action of the two, the phosphor layer 3 It will adhere to the substrate 1 on the side subject to the arch stress, causing the light source to severely reduce the brightness.
  • the technical problem to be solved by the present invention is to provide a phosphor layer, a device and a corresponding light source and projection system capable of avoiding adhesion to a substrate at a high temperature, and a corresponding manufacturing method.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a phosphor layer, comprising a fluorescent sheet formed by bonding a phosphor and an adhesive, the fluorescent sheet comprising a front side and a back side, the phosphor
  • the layer further includes at least one particle fixedly attached to the front side or/and the reverse side of the fluorescent sheet.
  • the hardness of the particles is greater than or equal to Shore D75.
  • the particles are metal oxide particles, mixed crystal particles or phosphor particles.
  • the thickness of the particles is smaller than the thickness of the fluorescent sheet. In the phosphor layer of the present invention, the thickness of the particles is greater than or less equal O.lum 50um o
  • the particles are bonded to the front side or/and the back side of the fluorescent sheet.
  • the at least one particle is hooked on the front side or/and the back side of the fluorescent sheet.
  • the binder is an organic binder.
  • the invention further relates to a fluorescent device comprising a first substrate, a second substrate and a phosphor layer, the phosphor layer being disposed on the first substrate, the second substrate being disposed on the phosphor layer,
  • the phosphor layer is any one of the aforementioned phosphor layers.
  • the invention also relates to a light source structure, the light source structure comprising:
  • the color wheel includes at least one partition disposed on a propagation path of the excitation light, and at least one of all the partitions is provided with the above fluorescent device.
  • the invention further relates to a projection system comprising the aforementioned light source structure.
  • the invention also relates to a method for fabricating a phosphor layer, comprising:
  • Step A bonding the phosphor to a fluorescent sheet by an adhesive, the fluorescent sheet comprising a front side and a reverse side;
  • Step B Attaching at least one particle to the front side or/and the back side of the fluorescent sheet.
  • the step B comprises: bonding at least one particle to the front side and the back side of the fluorescent sheet.
  • the step B includes: The fluorescent sheet is placed in a solution having a certain viscosity;
  • a plurality of particles are distributed in the solution above the fluorescent sheet to uniformly precipitate the particles on the surface of the fluorescent sheet after a certain period of time.
  • the step B is specifically: spraying a plurality of particles onto the front side and the back side of the fluorescent sheet using a spray gun.
  • the method further includes: electrostatically charging the particles to cause the fluorescent
  • the sheet is grounded or electrostatically charged, and the electrostatic charge of the particle strip is opposite to the polarity of the electrostatic charge of the fluorescent strip.
  • the phosphor layer, the device and the corresponding light source and projection system embodying the invention, and the corresponding fabrication method have the following beneficial effects: Since the phosphor layer comprises a fluorescent sheet, at least one particle is disposed on the front or back surface of the fluorescent sheet, when fluorescent When the fluorescent sheet in the powder layer is deformed at a high temperature, the deformed fluorescent sheet is embedded in the particles having a certain hardness, releasing the deformation stress thereof; thus maintaining a certain distance between the fluorescent sheet and the substrate on the side of the particle. The air gap between the fluorescent sheet and the substrate is maintained. Therefore, the adhesion of the phosphor layer to the substrate at a high temperature can be avoided.
  • FIG. 1 is a schematic structural view of a fluorescent material in the prior art
  • FIG. 2 is a schematic view showing the prior art in which the fluorescent sheet is thermally deformed and adhered to the substrate;
  • FIG. 3 is a schematic structural view of an embodiment of a phosphor layer in an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a phosphor layer in an embodiment of the present invention.
  • Figure 5 is a schematic structural view of an embodiment of a fluorescent device in an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of another embodiment of a fluorescent device according to an embodiment of the present invention.
  • Figure 7 is a schematic view showing the position of the fluorescent sheet and the substrate after the fluorescent device is assembled in the embodiment shown in Figure 5;
  • Figure 8 is a schematic view showing the position of the fluorescent sheet and the substrate after the fluorescent device is heated in the embodiment shown in Figure 5;
  • 6 is a schematic structural view of a fluorescent device in which a phosphor layer is heated in the embodiment shown in FIG. 6;
  • FIG. 10 is a schematic structural view of an embodiment of a projection system according to an embodiment of the present invention;
  • FIG. 11 is a flow chart of one embodiment of a method for fabricating a phosphor layer in an embodiment of the present invention
  • FIG. 12 is a flow chart showing another embodiment of a method for fabricating a phosphor layer according to an embodiment of the present invention
  • Figure 13 is a flow chart showing another embodiment of a method of fabricating a phosphor layer in an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an embodiment of a phosphor layer in an embodiment of the present invention.
  • the phosphor layer comprises a fluorescent sheet 3 formed by bonding a phosphor and an adhesive.
  • the fluorescent sheet 3 includes a front surface 32 and a reverse surface 33, and the phosphor layer further includes at least one particle 31 fixedly attached to the front surface 32 or/and the reverse surface 33 of the fluorescent sheet 3.
  • a plurality of particles 31 connected to the front surface 32 of the above-mentioned fluorescent sheet 3 are shown.
  • the particles 31 have a certain hardness so as not to change under high temperature conditions, when fluorescent When the sheet 3 is deformed, it can function to eliminate the stress generated by the deformation of the sheet 3, thereby preventing the fluorescent sheet 3 from adhering to the substrate.
  • the hardness of the above particles 31 is greater than or equal to Shore D75; and the particles 31 are metal oxide particles, mixed crystal particles or phosphor particles.
  • the embodiment can prevent the fluorescent sheet 3 from being connected to the side on which the phosphor layer is attached by the plurality of particles 31 (ie, the plurality of particles 31 are connected to each other).
  • the problem that the brightness of the light source is lowered due to the adhesion of the substrate of the front surface 32 of the fluorescent sheet 3 is caused.
  • FIG. 4 is a schematic structural view of another embodiment of a phosphor layer in an embodiment of the present invention.
  • the embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 3 in that a plurality of particles 31 are adhered to the front surface 32 and the reverse surface 33 of the fluorescent sheet 3 to ensure that the fluorescent sheet 3 is prevented from appearing at a high temperature and is respectively disposed at The substrates of the front surface 32 and the reverse surface 33 described above are adhered.
  • the thickness of the particles 31 is preferably smaller than the thickness of the fluorescent sheet 3.
  • the thickness of the particles 31 is 10 um or more and 20 um or less, and it has been experimentally confirmed that such an arrangement can achieve both the occurrence of adhesion and the effect on the optical performance of the fluorescent sheet 3.
  • the particles 31 can scatter the excitation light, thereby reducing the optical power density of the excitation light on the fluorescent sheet, and improving the light conversion efficiency of the fluorescent sheet.
  • the particles 31 are bonded to the front surface 32 and the reverse surface 33 of the fluorescent sheet 3, and the particles 31 may be provided only on the front surface 32 or the reverse surface 33 of the fluorescent sheet 3 to reduce the complexity of the product.
  • the at least one particle is uniformly distributed on the front surface 32 or/and the reverse surface 33 of the fluorescent sheet, and the arrangement can ensure the adhesion phenomenon and the fluorescent sheet 3 can be ensured. The effect of optical performance is reduced.
  • the above-mentioned adhesive for bonding the phosphor to obtain the fluorescent sheet 3 is preferably an organic binder.
  • FIG. 5 is a schematic structural view of an embodiment of a fluorescent device in an embodiment of the present invention.
  • the fluorescent device includes a phosphor layer disposed on the first substrate 1 and the second substrate 2 on the upper and lower sides of the phosphor layer, wherein the phosphor layer is disposed on the first substrate 1.
  • the fluorescent sheet 3 includes a front surface 32 and a reverse surface 33 (ie, the above fluorescent sheet 3 is mounted between the first substrate 1 and the second substrate 2, respectively adjacent to the first substrate 1 and the second On the surface of the substrate 2, particles 31 are provided on the front surface 32 of the above-mentioned fluorescent sheet 3. The particles 31 are bonded to the front surface of the above-mentioned fluorescent sheet 3, and do not cause a significant change in the thickness of the above-mentioned fluorescent sheet 3, and does not affect the optical properties of the fluorescent sheet 3.
  • FIG. 6 is a schematic structural view of another embodiment of a fluorescent device according to an embodiment of the present invention.
  • the fluorescent device 3 includes a plurality of particles 31 in the fluorescent sheet 3, and is evenly distributed.
  • Such an arrangement (a plurality of particles 31 and uniformly distributed on the front surface 32 and the reverse surface 33 described above) can further prevent the occurrence of adhesion of the fluorescent sheet 3 to the first substrate 1 and the second substrate 2 described above, and at the same time, the fluorescent sheet
  • the effect of the optical properties of 3 is small; the fluorescent device thus obtained also has the above advantages.
  • the above particles 31 are inorganic particles having a hardness higher than that of Shore D75.
  • the particles 31 are silica particles, and in other embodiments, the particles 31 may also be metal oxide particles, mixed crystal particles or phosphor particles.
  • the particle diameter ranges from 0.1um ⁇ 50um.
  • the change in the optical properties of a fluorescent device is related to two factors. The first is the thickness of the air gap between the fluorescent sheet 3 and the two side substrates produced by the particles 31, and the greater the thickness, the more unfavorable the brightness. The second is the determination of the distribution density p of the particles 31 on the front side or the back side of the fluorescent sheet 3.
  • the particles 31 are phosphor particles, since the irradiation of the light is not blocked, the influence of p is not large; if the particles 31 do not emit light , because the particle 31 itself blocks the light, the larger the p, the lower the brightness, and the p is too small to avoid the sticking effect. Specifically, it is also related to the size of the particle size of the particles 31, and the larger the particle size, the lower the particle density allowed. The thickness of the air gap is not completely determined by the size of the particles.
  • the particle size is not necessarily large, and the air gap is large, which is related to the expansion coefficient of the organic material.
  • the particle size is preferably 10 to 20 ⁇ m, and the distribution density is preferably 100 to 10,000 particles 31 per square millimeter.
  • FIG. 7 is a schematic view showing the position of the fluorescent sheet and the substrate after the fluorescent device is assembled in the embodiment shown in FIG. 5; exemplarily, a particle is used as an example to show the particle 31 when the fluorescent sheet 3 is not thermally deformed. a fluorescent sheet 3, a second substrate 2, and a positional relationship between the second air gap 21 between the fluorescent sheet 3 and the second substrate 2; and FIG. 8 is a fluorescent device in the embodiment shown in FIG. 5.
  • Schematic diagram of the position of the fluorescent sheet and the substrate after heating exemplarily taking a particle as an example to show the stress generated by the deformation of the fluorescent sheet 3 after being inserted into the particle 31 after the fluorescent sheet 3 is thermally deformed, the particles 31 and the fluorescent sheet 3.
  • FIG. 9 is a schematic view showing the position of the fluorescent sheet and the substrate after the fluorescent device is heated in the embodiment shown in FIG. 6, which is exemplarily represented by a plurality of particles 31 uniformly distributed on the front surface 32 and the bottom surface 33 of the fluorescent sheet 3 as an example.
  • the fluorescent sheet 3 When the fluorescent sheet 3 is deformed by heat, the fluorescent sheet 3 is embedded in the particles 31 to release the stress generated by the deformation thereof, the particles 31, the fluorescent sheet 3, the first substrate 1, the second substrate 2, the first air gap 11, and the second The positional relationship between the air gaps 21. It can also be seen from Fig. 9 that the first air gap 11 and the second air gap 21 which are still present when the fluorescent sheet 3 is thermally deformed by the action of the plurality of particles 31.
  • FIG. 10 is a schematic structural diagram of an embodiment of a projection system in an embodiment of the present invention.
  • the projection system mainly includes an excitation light source 10, a shaping lens 20, a relay lens 21, a color wheel 30, a detecting unit 40, a light modulating unit 50, a prism 60, and a lens 70.
  • the excitation light source 10 is used to generate an excitation light.
  • the excitation light generated by the excitation light source 10 is preferably incident on the color wheel 30 after being shaped by the shaping lens 20 or other optical elements.
  • the color wheel 30 includes at least two partitions, each of which is provided with the above-described fluorescent device having different wavelength conversion characteristics, or a partial partition is provided with the above fluorescent device and at least one of the partitions is set as a transparent partition.
  • the color wheel when the excitation light source is a blue LED or a blue laser, the color wheel includes a first partition, a second partition, and a third partition, and the first partition and the second partition are respectively provided with a red fluorescent device and a green fluorescent device.
  • the blue light emitted by the excitation light source is converted into red light and green light, respectively, and the third partition is a transparent partition provided with the astigmatism sheet, and transmits the blue light emitted by the excitation light source.
  • the partitions of the color wheel 30 are alternately disposed on the propagation path of the excitation light by a motor (not shown) or other driving mechanism, the color wheel 30 will emit a periodicity consisting of red, green, and blue light. Colored light sequence.
  • the color light sequence emitted from the color wheel 30 rounds is incident on the light modulation unit 50 via the relay lens 21 and the prism 60.
  • the light modulating unit 50 may be any suitable light modulating device such as a microelectromechanical system (MEMS) and a liquid crystal display (LCD or LCos).
  • MEMS microelectromechanical system
  • LCD liquid crystal display
  • the light modulating unit 50 performs image modulation on the first received laser light and the excitation light received in response to the synchronization signal, thereby synchronizing the light modulating unit 50 with the color wheel 30.
  • the light modulated by the light modulation unit 50 is further incident on the lens 70 and projected by the lens 70 to the screen 80.
  • the color wheel 30 can also include only one partition, and the partition is provided with the fluorescent device in the embodiment shown in FIG. 5 or FIG. 6, for example, only the green fluorescent device is included, and the red light and the blue light are respectively composed of the red LED.
  • the blue LED is directly generated, and the combined light, the red light, and the blue light are combined by the light combining device, and the combined light is incident on the light modulation unit.
  • the light source in the embodiment of the present invention may comprise an excitation light source and a color wheel, which can be emitted. Multicolor lighting device for color light sequences.
  • FIG. 11 is a flow chart of an embodiment of a method for fabricating a phosphor layer according to an embodiment of the present invention, comprising: Step S10: bonding a fluorescent sheet with a phosphor and an adhesive;
  • the adhesive is preferably an organic binder, and the technique of bonding the phosphor to the binder may be a conventionally known technique, and will not be described herein.
  • Step S11 At least one particle is fixedly attached to the front side or/and the reverse side of the fluorescent sheet.
  • the particles have a certain hardness so as not to change under high temperature conditions, and can be eliminated when the fluorescent sheet is deformed.
  • the particles are preferably particles having a hardness of greater than or equal to Shore D75; in addition, the particles are preferably metal oxide particles, mixed crystal particles or phosphor particles.
  • the particles preferably have a thickness smaller than the thickness of the fluorescent sheet 3, and further Preferably, the particles are particles having a thickness of 10 ⁇ m or more and 20 ⁇ m or less. Experiments have shown that such an arrangement can avoid the occurrence of adhesion and reduce the influence on the optical properties of the fluorescent sheet.
  • At least one of the particles may be fixedly attached to the front side or/and the back side of the fluorescent sheet by bonding or other joining means. At least one of the particles may be bonded to the front and back sides of the fluorescent sheet to achieve a better effect.
  • the particles since at least one of the above-mentioned particles is disposed on the front side or the back side or the front side and the back side of the fluorescent sheet, and the particles have a certain hardness, when the fluorescent sheet is deformed by heat, the uniformly distributed particles make the fluorescent sheet An air gap is maintained between the substrates adjacent to the faces to which the particles are attached; at the same time, the size of the particles is such that their presence has no or minimal effect on the optical properties of the phosphor layer.
  • FIG. 12 is a flowchart of another embodiment of a method for fabricating a phosphor layer according to an embodiment of the present invention, including:
  • Step S20 forming a fluorescent sheet by bonding with a phosphor and an adhesive;
  • step S20 please refer to the description of step S10.
  • Step S211 placing the fluorescent sheet in a solution having a certain viscosity
  • liquids are readily volatile, and the liquid contains an organic medium which increases the viscosity of the solution and reduces the rate of precipitation of the particles in the solution; this causes the particles to precipitate more uniformly in the solution.
  • the particles are fixedly attached to the fluorescent sheet through steps S211, S212, and S213.
  • Step S212 distributing a plurality of particles in the solution above the fluorescent sheet, so that the particles are uniformly deposited on the surface of the fluorescent sheet after a certain time;
  • the particles are distributed in the above-mentioned solution containing the organic medium, that is, the particles are distributed in the liquid at a certain distribution density; the particles are precipitated in the above solution and uniformly distributed on the surface of the fluorescent sheet after a certain period of time.
  • Step S213 The fluorescent sheet having a plurality of particles precipitated is subjected to a drying treatment.
  • the above-mentioned fluorescent sheet having precipitated particles is dried to volatilize the solution and the organic medium, and the usual means is drying.
  • the particles dissolved in the solution remain on the surface of the above-mentioned fluorescent sheet, and the distribution is uniform and the bonding is relatively firm.
  • the method for attaching the particles to the surface of the fluorescent sheet used in the present embodiment is a precipitation method in which the particles are dissolved in a certain solution, uniformly deposited on the surface of the fluorescent sheet, and then dried.
  • an organic medium can be added to the solution to increase the viscosity and reduce the sedimentation speed of the particles, which is beneficial to improve the uniformity of the distribution of the particles; after the precipitation is completed, it is baked in a baking oven to remove the residual organic medium.
  • the advantage of the precipitation method is that the film formation uniformity is good, the amount of particles is easy to control, and the repeatability is good.
  • FIG. 13 is a flowchart of another embodiment of a method for fabricating a phosphor layer according to an embodiment of the present invention, including:
  • Step S30 bonding a fluorescent sheet with a phosphor and an adhesive
  • Step S30 Please refer to the description of step S10.
  • the particles are fixedly attached to the fluorescent sheet through steps S311 and S312.
  • Step S311 The particles are electrostatically charged, and the fluorescent sheet is grounded or electrostatically charged, and the electrostatic charge of the particle strip is opposite to the polarity of the static charge of the fluorescent strip;
  • a method in which a particle is negatively charged and a fluorescent sheet is grounded or positively charged so that the particle and the fluorescent sheet have an electrostatic charge of opposite polarity are known in the art, and will not be described herein.
  • Step S312 Using a spray gun to uniformly spray a plurality of particles onto the fluorescent sheet requires the surface of the particles to be set.
  • These electrostatically charged powder particles are directly sprayed onto the front and back sides of the fluorescent sheet using a spray gun (i.e., the surface on the fluorescent sheet on which the particles are to be placed, either front or back, or both front and back). Since these particles are electrostatically charged before being ejected by the lance, when they are sprayed onto the surface of the luminescent sheet, the combination of these granules and the luminescent sheet is tight due to the action of the electrostatic charge, that is, It adheres well to the surface of the above fluorescent sheet.
  • the advantage of the dusting method is that the operation is relatively simple.
  • the above step of electrostatically charging the particles may also be omitted to simplify the processing, but the particles thus obtained have poor adhesion to the fluorescent sheets.
  • the method for attaching the particles to the surface of the fluorescent sheet taken in the present embodiment is powder coating, and the particles are directly sprayed onto the surface of the fluorescent sheet by using a spray gun, and the particles are adhered to the surface of the fluorescent sheet by the adhesion of the fluorescent sheet itself.
  • the particles and the fluorescent sheet may be electrostatically charged with opposite polarities during the dusting process, and the particles may be distributed on the surface of the powder layer by electrostatic force, which improves the adhesion between the particles and the surface of the fluorescent sheet. , while improving distribution uniformity.
  • the thickness of the layer formed by the particles is smaller than the thickness of the original fluorescent sheet layer.
  • the effect of the particles on the optical properties of the fluorescent sheet is small and negligible; the material of the particles is generally inorganic, including metal oxide particles such as silica particles and titanium dioxide particles, or mixed crystals such as glass powder. Or amorphous particles, which may also be the phosphor particles themselves.
  • the fluorescent sheet forms a large deformation stress with the substrate under the action of expansion, the stress forces the fluorescent sheet to be pressed against one side of the substrate, see FIGS.
  • the material of the particles 31 is uniform and uniform, so that the air gap between the fluorescent sheet 3 and the substrate (including the first substrate 1 and the second substrate 2) is always present, thereby avoiding the adhesion between the fluorescent sheet 3 and the substrate.
  • Attached. 7 shows the positional relationship between the fluorescent sheet 3, the particles 31 and the inner surface of the second substrate 2 with the second air gap 21 therebetween;
  • FIG. 8 schematically shows the fluorescent sheet 3 under stress deformation, The second substrate 2 is close to, and away from the first substrate 1, the hard particles 31 are located between the two (the fluorescent sheet 3 and the second substrate 2), and the deformation pressure causes the particles 31 having higher hardness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种荧光粉层(3),包括由荧光粉和粘接剂粘接形成的荧光片,荧光片包括正面和反面,荧光粉层还包括颗粒(31),固定连接在荧光片的正面和/或反面。本发明还提供一种荧光器件、相应光源、投影系统及其荧光粉层制作方法。该荧光器件在高温情况下可以避免荧光粉层与其衬底(1,2)粘附。

Description

说 明 书 荧光粉层、 器件及相应光源和投影系统、 及相应制作方法 技术领域
本发明涉及受激发光领域, 更具体地说, 涉及一种荧光粉层、 器件及相应 光源和投影系统、 及相应制作方法。
背景技术
美国专利 US7547114提出一种产生高亮度时序色光的方法, 该方法将激 发光源收集并聚焦于一个荧光粉转盘上激发荧光粉材料发光,并随着转盘的转 动产生周期性时序的色光序列。 在该方法中, 荧光粉转盘是核心部件, 直接影 响到光源的发光亮度。 在该专利中提到, 荧光粉层是依附于一个透明衬底的, 该透明衬底同时还可能是一个二相滤光片, 用于透射激发光反射受激发光,提 高光源的亮度。 中国公开专利 200810065895中对荧光粉转盘结构做的进一步 的研究表明, 荧光粉层与其衬底之间应存在一层低折射率介质, 空气是最理想 的材质, 也就是说, 荧光粉层与其衬底之间存在一层空气隙, 且专利中对空气 隙的厚度做出了限制。 研究显示, 空气隙的厚度越薄, 光源的亮度越高。
为了产生空气隙并使得空气隙尽量的小,通常只能使用一个三明治结构来 实现: 请参见图 1 , 在图 1中, 包括两个衬底(1、 2 ) 以及被设置在上述两个 衬底之间的荧光粉层 3。 如图 1示的三明治三层结构中, 荧光粉层 3被两侧的 衬底(1、 2 ) (至少一层是透明衬底) 夹在中间, 只要荧光粉层 3与衬底之间 接触但是不粘附, 夹缝中就会存在微小的空气隙, 也就实现了技术要求。
然而, 该荧光粉材料层的制作却存在困难。 一般来说, 荧光材料是粉状的 形态, 即一般所说的荧光粉, 颗粒与颗粒之间没有粘附力, 或者粘附力很弱不 能用来形成层状, 所以需要使用粘结剂来形成片层。在荧光灯中荧光粉依靠金 属氧化物,如氧化铝颗粒来粘附在荧光灯管的内壁上并形成薄层;应用这种技 术可以实现在平板玻璃的表面形成荧光粉层,但是荧光粉层难以剥离下来, 即 必须依靠玻璃衬底才能应用, 这显然不符合前述的荧光粉层不与衬底粘附(与 衬底间存在空气隙) 的要求。
要形成无需衬底的荧光粉层,必须要某种有一定强度的粘合剂粘接荧光粉 颗粒并成片。从粘合剂性质分类可以分成有机粘合剂和无机粘合剂。有机粘合 剂可以是硅胶、环氧树脂等易于操作的材料,无机粘合剂则可以使用金属氧化 物作为粘合剂, 与荧光粉混合在一起后在高温高压下制成陶瓷。后者的工艺复 杂, 成本高昂, 至今只有少数几家公司可以制作, 同时对荧光粉的种类也有限 制。 因此, 有机粘合剂就成为荧光粉层制作的首选。 先将荧光粉与有机粘合剂 混合在一起, 再使用印刷、 挤压成型等手段在一个衬底上成片, 再将其从衬底 上揭下来, 这是已经成熟的工业加工方法, 无需赘述。
选择有机粘合剂首先需要满足可靠性的要求。由于长期处于高强度激发光 的照射和荧光粉发热的高温中, 环氧树脂的可靠性一般难以满足要求, 而硅胶 由于其硅-氧键比较稳定而成为可能的选择。 而为了满足前述的荧光粉层不与 衬底粘附的要求,所选用的有机粘合剂必须具有足够的硬度,如高于肖氏 D 40。 然而由于需要从衬底上揭下来,又要求这种材料具有相当大的弹性,不能太脆, 也就是说材料的硬度又不能太硬, 如低于肖氏 D 85。 通过选择, 可以选择得 到硬度适合的材料, 该材料与荧光粉混合成片固化后,放置于三明治结构中可 以与两侧的夹持衬底不粘附。
然而, 如图 2所示, 在实际使用中, 随着激发光的照射和荧光粉的发热, 荧光粉层 3会发生膨胀, 膨胀会产生使荧光粉层 3受到向一侧(如衬底 1 )拱 起的应力,使得荧光粉层 3与衬底 1之间的压强加大; 同时在高温下有机粘合 剂会发生软化, 硬度降低, 在这两者的共同作用下, 荧光粉层 3将会和受拱起 应力这一侧的衬底 1粘附在一起, 导致光源严重地降低亮度。
发明内容
本发明要解决的技术问题在于,提供一种能够避免在高温下与衬底粘接的 荧光粉层、 器件及相应光源和投影系统、 及相应制作方法。
本发明解决其技术问题所采用的技术方案是: 构造一种荧光粉层, 包括由 荧光粉和粘接剂粘接形成的荧光片, 所述荧光片包括正面和反面, 所述荧光粉 层还包括至少一个颗粒, 固定连接在所述荧光片的正面或 /和反面。 在本发明所述的荧光粉层中, 所述颗粒的硬度大于等于肖氏 D75。
在本发明所述的荧光粉层中,所述颗粒为金属氧化物颗粒、混合晶体颗粒 或荧光粉颗粒。
在本发明所述的荧光粉层中, 所述颗粒的厚度小于所述荧光片的厚度。 在本发明所述的荧光粉层中,所述颗粒的厚度大于等于 O.lum且小于等于 50umo
在本发明所述的荧光粉层中, 所述颗粒粘接在所述荧光片的正面或 /和反 面。
在本发明所述的荧光粉层中,所述至少一个颗粒均勾分布于所述荧光片的 正面或 /和反面。
在本发明所述的荧光粉层中, 所述粘接剂为有机粘合剂。
本发明还涉及一种荧光器件, 包括第一衬底、 第二衬底以及荧光粉层, 所 述荧光粉层设置在第一衬底上, 第二衬底设置在所述荧光粉层上, 所述荧光粉 层为前述的荧光粉层中的任意一种。
本发明还涉及一种光源结构, 所述光源结构包括:
激发光源, 用于产生一激发光;
色轮, 包括设置于所述激发光的传播路径上的至少一个分区,所有分区中 的至少一个分区设置有上述荧光器件。
本发明还涉及一种投影系统, 所述投影系统包括前述的光源结构。
本发明还涉及一种荧光粉层的制作方法, 包括:
步骤 A: 通过粘接剂将荧光粉粘接形成荧光片, 所述荧光片包括正面和反 面;
步骤 B: 将至少一个颗粒固定连接在所述荧光片的正面或 /和反面。
在本发明所述的荧光粉层的制作方法中, 所述步骤 B 包括: 将至少一个 颗粒均勾地粘接在所述荧光片的正面和反面。
在本发明所述的荧光粉层的制作方法中, 所述步骤 B包括: 将所述荧光片置于具有一定粘度的溶液中;
将多个颗粒分布于所述荧光片上方的所述溶液中 ,使所述颗粒在一定时间 后均匀地沉淀于所述荧光片的表面。
在本发明所述的荧光粉层的制作方法中, 所述步骤 B具体为: 使用喷枪 将多个颗粒均勾地喷到所述荧光片的正面和反面。
在本发明所述的荧光粉层的制作方法中,在使用喷枪将多个颗粒均匀地喷 到所述荧光片的正面和反面之前, 还包括: 使所述颗粒带静电荷, 使所述荧光 片接地或带静电荷,所述颗粒带的静电荷与所述荧光片带的静电荷的极性相反。
实施本发明的荧光粉层、 器件及相应光源和投影系统、 及相应制作方法, 具有以下有益效果: 由于荧光粉层包括荧光片, 而荧光片的正面或反面上设置 有至少一个颗粒, 当荧光粉层中的荧光片在高温下产生形变时, 变形的荧光片 嵌入具有一定硬度的颗粒,释放了其形变应力; 因而使得所述荧光片与上述颗 粒所在一面的衬底之间保持一定距离, 保持了荧光片与该衬底之间的空气隙。 因此可以避免在高温情况下荧光粉层与其衬底的粘附情况。
附图说明
图 1是现有技术中的荧光材料的结构示意图;
图 2是现有技术中荧光片受热变形与衬底粘附的示意图;
图 3是本发明实施例中荧光粉层的一个实施例的结构示意图;
图 4是本发明实施例中荧光粉层的另一实施例的结构示意图;
图 5是本发明实施例中荧光器件的一个实施例的的结构示意图;
图 6是本发明实施例中荧光器件的另一实施例的结构示意图;
图 7是图 5所示实施例中荧光器件装配后荧光片与衬底的位置示意图; 图 8是图 5所示实施例中荧光器件受热后荧光片与衬底的位置示意图; 图 9是图 6所示实施例中荧光粉层受热后的荧光器件的结构示意图; 图 10是本发明实施例中投影系统的一个实施例的结构示意图;
图 11是本发明实施例中荧光粉层制作方法的一个实施例的流程图; 图 12是本发明实施例中荧光粉层制作方法的另一实施例的流程图; 图 13是本发明实施例中荧光粉层制作方法的另一实施例的流程图。
具体实施方式
下面将结合附图对本发明实施例作进一步说明。
请参阅图 3 ,图 3是本发明实施例中荧光粉层的一个实施例的结构示意图。 如图 3所示, 在本发明荧光粉层、 器件及相应光源和投影系统、 及相应制作方 法的实施例中, 其荧光粉层包括由荧光粉和粘接剂粘接形成的荧光片 3 , 荧光 片 3包括正面 32和反面 33 , 荧光粉层还包括至少一个颗粒 31 , 固定连接在荧 光片 3的正面 32或 /和反面 33。 在图 3 中, 示出了多个连接在上述荧光片 3 正面 32的颗粒 31。
在本实施例中,为了保证在高温时起到避免荧光片 3与其衬底粘附的效果, 一个关键的因素是颗粒 31具有一定的硬度, 以不会在高温情况下变化为优, 当荧光片 3发生形变时可以起到消除其形变而产生的应力的作用,进而阻止荧 光片 3粘附到衬底上。 优选地, 上述颗粒 31的硬度大于等于肖氏 D75; 颗粒 31为金属氧化物颗粒、混合晶体颗粒或荧光粉颗粒。 因此,相对于现有技术, 在荧光片 3处于高温且发生形变时, 本实施例可通过多个颗粒 31避免荧光片 3与安装该荧光粉层的一面(即上述多个颗粒 31所连接的荧光片 3的正面 32 ) 的衬底粘附而引起的光源亮度降低的问题。
请参阅图 4,图 4是本发明实施例中荧光粉层的另一实施例的结构示意图。 图 4所示实施例与图 3所示实施例的区别之处在于: 多个颗粒 31粘接在荧光 片 3的正面 32和反面 33 , 以保证避免荧光片 3出现在高温时与分别设置在上 述正面 32和反面 33的衬底粘附。
上述颗粒 31的存在不能对荧光片 3的光学性能产生影响或不能产生太大 的影响使得其发光强度变小, 故在本实施例中, 颗粒 31的厚度以小于荧光片 3的厚度为宜。 优选地, 颗粒 31的厚度为大于等于 10um且小于等于 20um, 试验证明,这样的设置可以兼顾避免粘附现象的出现及减少对荧光片 3的光学 性能的影响。 并且, 颗粒 31可对激发光起到散射的作用, 从而降低激发光在 荧光片上的光功率密度, 提高荧光片的光转换效率。 如上所述, 颗粒 31粘接在荧光片 3的正面 32和反面 33 , 颗粒 31也可以 只设置在荧光片 3的正面 32或反面 33 , 以降低产品的复杂程度。 优选地, 如 图 4所示, 上述至少一个颗粒在荧光片的正面 32或 /和反面 33上是均勾分布 的, 这种设置既可以保证避免出现粘附现象, 又可以使得对荧光片 3的光学性 能的影响降低。
此外, 出于成本和操作方便的考虑, 上述用于粘接荧光粉得到荧光片 3 的粘接剂优选为有机粘合剂。
此外, 在本实施例中, 还涉及一种荧光器件。 请参阅图 5 , 图 5是本发明 实施例中荧光器件的一个实施例的结构示意图。如图 5所示, 该荧光器件包括 荧光粉层, 设置在荧光粉层上、 下两侧的第一衬底 1和第二衬底 2, 其中, 荧 光粉层设置在第一衬底 1上, 第二衬底 2设置在荧光粉层上,在荧光粉层与上 述第一衬底 1和第二衬底 2之间, 分别有第一空气隙 11和第二空气隙 21 ; 荧 光粉层包括荧光片 3和颗粒 31 , 荧光片 3包括正面 32和反面 33 (即上述荧光 片 3在安装在第一衬底 1和第二衬底 2之间,分别接近第一衬底 1和第二衬底 2的表面), 颗粒 31设置在上述荧光片 3的正面 32。 颗粒 31粘接在上述荧光 片 3的正面, 并且不会带来上述荧光片 3厚度的明显改变,也不会影响荧光片 3的光学性能。
请参阅图 6,图 6是本发明实施例中荧光器件的另一实施例的结构示意图, 在图 6中, 该荧光器件所包括的荧光片 3中的颗粒 31是多个, 并且均匀分布 在上述荧光片 3的正面 32和反面 33。 这样的设置 (多个颗粒 31且均匀分布 在上述正面 32和反面 33 )可以进一步避免发生荧光片 3与上述第一衬底 1和 第二衬底 2发生粘附的情况, 同时, 对荧光片 3的光学性能的影响较小; 这样 得到的荧光器件同样具有上述优点。
在图 5和图 6所示出的荧光器件中, 上述颗粒 31为无机物颗粒, 其硬度 高于肖氏 D75。 具体而言, 颗粒 31是二氧化硅颗粒、 在其他实施例中, 上述 颗粒 31也可以是金属氧化物颗粒、 混合晶体颗粒或荧光粉颗粒。
在图 5 和图 6 所示出的实施例中的荧光器件中, 所述颗粒直径范围为 0.1um〜50um。 荧光器件的光学性能的改变与两个因素有关。 第一是由于颗粒 31产生的荧光片 3与两侧衬底之间的空气隙的厚度, 厚度越大对于亮度越不 利。 第二是颗粒 31在荧光片 3的正面或反面的分布密度 p的确定, 在颗粒 31 就是荧光粉颗粒的情况下, 由于不会阻挡光的照射, p的影响不大; 若颗粒 31 不发光, 则由于颗粒 31 本身对光线的阻挡作用, p越大亮度越低, 而 p太小 则不能起到避免粘贴的作用。 具体来讲, 也与颗粒 31的颗粒度的尺寸有关, 颗粒度越大允许的颗粒密度越低。 空气隙的厚度则不完全由颗粒的尺寸决定。 设荧光片 3在工作中由于形变所产生的力是 F, 荧光片 3在工作下的弹性模量 是 E, 则其垂直形变 d=F/E, 必须使得颗粒度的直径大于 d才能有效防止颗粒 被完全压进荧光片中而失效。 而由于颗粒被压进荧光片情况的存在, 并不一定 颗粒度大,空气隙就一定大,这与有机材料的膨胀系数的因素有关。总的来说, 在本实施例中,颗粒度优选为 10〜20um,分布密度优选为每平方毫米 100〜10000 个颗粒 31。
请参阅图 7, 图 7是图 5所示实施例中荧光器件装配后荧光片与衬底的位 置示意图;其示例性地以一个颗粒为例表示了在荧光片 3没有受热变形时颗粒 31、 荧光片 3、 第二衬底 2以及存在与上述荧光片 3和第二衬底 2之间的第二 空气隙 21之间的位置关系; 而图 8是是图 5所示实施例中荧光器件受热后荧 光片与衬底的位置示意图,其示例性地以一个颗粒为例表示了在荧光片 3在受 热变形时, 荧光片 3嵌入颗粒 31后释放其形变产生的应力, 颗粒 31、 荧光片 3、 第二衬底 2 以及存在与上述荧光片 3和第二衬底 2之间的第二空气隙 21 之间的位置关系。 从图 8中可以看出, 虽然荧光片 3产生形变, 其与第二衬底 2之间的第二空气隙 21也变得较小, 但是, 在颗粒 31的支撑下, 荧光片 3与 第二衬底 2之间还是保持了第二空气隙 21 , 避免了粘附。 而图 9是图 6所示 实施例中荧光器件受热后荧光片与衬底的位置示意图,其示例性地以均匀分布 于荧光片 3的正面 32和底面 33的多个颗粒 31为例表示了在荧光片 3在受热 变形时,荧光片 3嵌入颗粒 31后释放其形变产生的应力,颗粒 31、荧光片 3、 第一衬底 1、第二衬底 2、第一空气隙 11以及第二空气隙 21之间的位置关系。 从图 9中也可以看到在多个颗粒 31的作用下, 荧光片 3受热变形时依旧存在 的第一空气隙 11以及第二空气隙 21。
上述荧光器件应用于投影系统中。 请参阅图 10, 图 10是本发明实施例中 投影系统的一个实施例的结构示意图。
如图 10所示,投影系统主要包括激发光源 10、整形透镜 20、中继透镜 21、 色轮 30、 探测单元 40、 光调制单元 50、 棱镜 60以及镜头 70。
激发光源 10用于产生一激发光。激发光源 10所产生的激发光优选经整形 透镜 20或其他光学元件整形后入射到色轮 30上。
色轮 30至少包括两个分区, 各个分区设置不同波长转换特性的上述荧光 器件, 或者部分分区设置有上述荧光器件且至少有一个分区设置为透明分区。
例如, 当激发光源为蓝色 LED或蓝色激光时, 色轮包括第一分区、 第二 分区及第三分区, 第一分区与第二分区分别设置有红光荧光器件、绿光荧光器 件, 分别将激发光源发出的蓝光转换为红光与绿光, 第三分区为设置有散光片 的透明分区,透射激发光源发出的蓝光。当色轮 30的各分区在马达(未图示) 或其他驱动机构的作用下轮流设置于激发光的传播路径上时, 色轮 30会出射 轮流由红光、 绿光和蓝光组成的周期性的彩色光序列。
色轮 30轮流出射的彩色光序列经由中继透镜 21以及棱镜 60入射到光调 制单元 50。光调制单元 50可以是微机电系统( MEMS )以及液晶显示器( LCD 或 LCos )等各种适当的光调制装置。 光调制单元 50根据同步信号对其接收的 第一受激光以及激发光轮流进行图像调制, 由此实现光调制单元 50与色轮 30 的同步。 经光调制单元 50调制后的光进一步入射到镜头 70, 并由镜头 70投 射至屏幕 80。
可以理解的是, 色轮 30也可以只包括一个分区, 该分区设置图 5或图 6 所示实施例中的荧光器件, 例如, 只包括绿光荧光器件, 而红光与蓝光分别由 红色 LED和蓝色 LED直接产生, 通过合光装置将绿光、 红光与蓝光合光后, 将该合光入射到光调制单元。
本发明实施例中的光源可以包括由上述激发光源与色轮组成的,能够出射 彩色光序列的多色照明装置。
在本发明实施例中还涉及一种制作上述荧光粉层的方法。 请参阅图 11 , 图 11是本发明实施例中荧光粉层制作方法的一个实施例的流程图, 包括: 步骤 S10: 使用荧光粉和粘接剂粘接形成荧光片;
粘接剂优选采用有机粘合剂,粘接荧光粉与粘接剂的技术可采用现有公知 技术, 此处不作赘述。
步骤 S 11: 将至少一个颗粒固定连接在荧光片的正面或 /和反面。
为了保证在高温时起到避免荧光片与其衬底粘附的效果,一个关键的因素 是颗粒具有一定的硬度, 以不会在高温情况下变化为优, 当荧光片发生形变时 可以起到消除其形变而产生的应力的作用, 进而阻止荧光片粘附到衬底上。颗 粒优选采用硬度大于等于肖氏 D75 的颗粒; 另, 颗粒优选采用金属氧化物颗 粒、 混合晶体颗粒或荧光粉颗粒。
上述颗粒的存在不能对荧光片的光学性能产生影响或不能产生太大的影 响使得其发光强度变小, 故在本实施例中, 颗粒优选采用厚度以小于荧光片 3 的厚度为宜,进一步地,颗粒优选采用厚度为大于等于 lOum且小于等于 20um 的颗粒, 试验证明, 这样的设置可以兼顾避免粘附现象的出现及减少对荧光片 的光学性能的影响。
可以通过粘接或其他连接方式,将至少一个颗粒固定连接在荧光片的正面 或 /和反面。 可以将至少一个颗粒均勾地粘接在所述荧光片的正面和反面, 以 达到较好地效果。
本实施例中,由于在荧光片的正面或反面或正反面均设置有上述的至少一 个颗粒, 而颗粒又具有一定的硬度, 所以, 当荧光片受热产生形变时, 均匀分 布的颗粒使得荧光片与颗粒连接的面所相邻的衬底之间保持了空气隙; 同时, 颗粒的尺寸使得其存在对于荧光粉层的光学性能没有影响或影响极小。
请参阅图 12, 图 12是本发明实施例中荧光粉层制作方法的另一实施例的 流程图, 包括:
步骤 S20: 使用荧光粉和粘接剂粘接形成荧光片; 步骤 S20请参照对步骤 S10的描述。
步骤 S211 : 将荧光片置于具有一定粘度的溶液中;
这些液体是易于挥发的, 而且, 该液体中含有有机介质, 有机介质可以提 高溶液的粘度, 并减小颗粒在溶液中的沉淀速度; 这使得颗粒在该溶液中沉淀 变得较为均匀。
本实施例中通过步骤 S211、 S212、 S213将颗粒固定连接在荧光片上。 步骤 S212: 将多个颗粒分布于所述荧光片上方的所述溶液中, 使所述颗 粒在一定时间后均匀地沉淀于所述荧光片的表面;
在本步骤中,使颗粒分布于上述含有有机介质的溶液中, 即将上述颗粒按 照一定的分布密度分布于液体中;颗粒在上述溶液中沉淀, 并在一段时间后均 匀分布在荧光片表面。
步骤 S213: 将沉淀有多个颗粒的荧光片进行干燥处理。
在本步骤中,对上述已经沉淀有颗粒的荧光片干燥,使所述溶液和有机介 质挥发, 通常采用的手段是烘干。 这样, 溶于溶液中的颗粒就留在上述荧光片 的表面, 分布均匀且结合的较为牢固。本实施例中所采用的将颗粒连接在荧光 片表面的方法为沉淀法, 即将颗粒溶于某种溶液中, 均匀沉淀于荧光片表面, 再进行干燥。 这种方法中, 可以在溶液中加入某种有机介质提高粘度、 降低颗 粒的沉降速度, 这样有利于改善颗粒的分布均勾性; 沉淀完取出后再在烘烤箱 中烘烤去除有机介质残留。沉淀法的优点是成膜均匀性好,颗粒的量容易控制, 可重复性好。
请参阅图 13 , 图 13是本发明实施例中荧光粉层制作方法的另一实施例的 流程图, 包括:
步骤 S30: 使用荧光粉和粘接剂粘接形成荧光片;
步骤 S30请参照对步骤 S10的描述。
本实施例中通过步骤 S311、 S312将颗粒固定连接在荧光片上。
步骤 S311 : 使颗粒带静电荷, 使荧光片接地或带静电荷, 颗粒带的静电 荷与荧光片带的静电荷的极性相反; 例如, 使颗粒带负电荷, 且使荧光片接地或带正电荷, 使得颗粒与荧光片 带有极性相反的静电荷的方法均为现有技术, 在此不再赘述。
步骤 S312: 使用喷枪将多个颗粒均匀地喷到荧光片需要设置颗粒的面。 使用喷枪直接将这些带有静电荷的粉状颗粒喷到荧光片的正面和反面(即 需要设置颗粒的荧光片上的面, 可以是正面或反面,也可以是正面或反面均包 括在内)。 由于这些颗粒在由喷枪喷出之前就带有静电荷, 所以, 当其被喷到 上述荧光片的表面时, 由于静电荷的作用,使得这些颗粒与荧光片的结合较为 紧密,也就是可以较好地附着在上述荧光片表面上。喷粉法的优点在于操作较 为简单。 当然, 在一些实施例中, 也可以不要上述使颗粒带有静电荷的步骤, 以简化加工过程, 但是, 这样得到的颗粒与荧光片的粘附性能较差。
本实施例中采取的将颗粒连接在荧光片表面上的方法为粉体喷涂,直接使 用喷枪将颗粒喷到荧光片表面,颗粒利用荧光片本身的粘附力粘在荧光片表面。 这个方法中,也可以在喷粉的过程中使颗粒与荧光片带极性相反的静电荷, 利 用静电力使颗粒分布于粉层表面,这样会提高颗粒与荧光片表面之间的粘附力 , 同时改善分布均匀度。
总之, 在上述实施例中, 通过在已经加工完成的荧光片层的两面, 均匀 形成硬度艮高(高于肖氏 D75 )的颗粒, 颗粒所形成的层的厚度小于原荧光片 层的厚度, 使得颗粒对荧光片的光学性能的影响很小, 基本可以忽略不计; 颗 粒的材质一般来说是无机物, 包括二氧化硅颗粒、二氧化钛颗粒等金属氧化物 颗粒, 也可以是玻璃粉等混合晶体或非晶体颗粒, 也可以是荧光粉颗粒本身。 在工作中, 虽然荧光片在膨胀的作用下与衬底之间形成较大的形变应力, 该应 力会迫使荧光片向一侧衬底压紧, 参见图 7、 图 8和图 9, 但由于颗粒 31材质 和均匀的特点, 使得荧光片 3与衬底 (包括第一衬底 1和第二衬底 2 )之间的 空气隙一直存在, 因而避免了荧光片 3与衬底之间的粘附。 其中, 图 7表示了 在荧光片 3、 颗粒 31与第二衬底 2内表面之间的位置关系, 其间存在第二空 气隙 21 ; 图 8示意性地表示了荧光片 3受力变形, 向第二衬底 2靠近, 而远 离第一衬底 1 , 硬质的颗粒 31则位于两者(荧光片 3及第二衬底 2 )之间, 形 变的压力会使具有较高硬度的颗粒 31压进带有一定弹性的荧光片 3从而释放 了该应力, 同时又阻止了荧光片 3与第二衬底 2的直接接触, 即避免了粘附, 确保了第二空气隙 21的存在;而图 9则表示了多个颗粒 31均匀分布在荧光片 3的正面 32和反面 33时, 荧光片 3形变时的情况。
经过实验证明,本实施例中的荧光粉层及其制作方法可以很好的克服有机 胶质荧光粉层与衬底粘附的问题。 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本 领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变 形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以 所附权利要求为准。

Claims

权 利 要 求 书
1、 一种荧光粉层, 包括由荧光粉和粘接剂粘接形成的荧光片, 所述荧光 片包括正面和反面, 其特征在于, 所述荧光粉层还包括至少一个颗粒, 固定连 接在所述荧光片的正面或 /和反面。
2、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述颗粒的硬度大于 等于肖氏 D75。
3、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述颗粒为金属氧化 物颗粒、 混合晶体颗粒或荧光粉颗粒。
4、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述颗粒的厚度小于 所述荧光片的厚度。
5、 根据权利要求 4所述的荧光粉层, 其特征在于, 所述颗粒的厚度大于 等于 O.lum且小于等于 50um。
6、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述颗粒粘接在所述 荧光片的正面或 /和反面。
7、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述至少一个颗粒均 匀分布于所述荧光片的正面或 /和反面。
8、 根据权利要求 1所述的荧光粉层, 其特征在于, 所述粘接剂为有机粘 合剂。
9、 一种荧光器件, 包括第一衬底、 第二村底以及荧光粉层, 所述荧光粉 层设置在第一衬底上, 第二衬底设置在所述荧光粉层上, 其特征在于, 所述荧 光粉层为如权利要求 1至 8中任一项所述的荧光粉层。
10、 一种光源结构, 其特征在于, 所述光源结构包括:
激发光源, 用于产生一激发光;
色轮, 包括设置于所述激发光的传播路径上的至少一个分区,所有分区中 的至少一个分区设置有如权利要求 9所述的荧光器件。
11、 一种投影系统, 其特征在于, 包括如权利要求 10所述的光源结构。
12、 一种荧光粉层的制作方法, 其特征在于, 包括: 步骤 A:通过粘接剂将荧光粉粘接形成荧光片,所述荧光片包括正面和反 面;
步骤 B: 将至少一个颗粒固定连接在所述荧光片的正面或 /和反面。
13、 根据权利要求 12所述的方法, 其特征在于, 所述步骤 B包括: 将至 少一个颗粒均 地粘接在所述荧光片的正面和反面。
14、 根据权利要求 13所述的方法, 其特征在于, 所述步骤 B包括: 将所述荧光片置于具有一定粘度的溶液中;
将多个颗粒分布于所述荧光片上方的所述溶液中,使所述颗粒在一定时间 后均匀地沉淀于所述荧光片的表面。
15、 根据权利要求 13所述的方法, 其特征在于, 所述步骤 B具体为: 使 用喷枪将多个颗粒均匀地喷到所述荧光片的正面和反面。
16、 根据权利要求 15所述的方法, 其特征在于, 在使用喷枪将多个颗粒 均匀地喷到所述荧光片的正面和反面之前,还包括: 使所述颗粒带静电荷,使 所述荧光片接地或带静电荷,所述颗粒带的静电荷与所述荧光片带的静电荷的 极性相反。
PCT/CN2012/075061 2011-06-27 2012-05-04 荧光粉层、器件及相应光源和投影系统、及相应制作方法 WO2013000337A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12804869.1A EP2725419B1 (en) 2011-06-27 2012-05-04 Fluorescent powder layer, component, corresponding light source, projection system, and corresponding manufacturing method
US14/122,628 US9696010B2 (en) 2011-06-27 2012-05-04 Phosphor layer, component, corresponding light source, projection system and corresponding manufacturing method
US15/625,411 US10775024B2 (en) 2011-06-27 2017-06-16 Phosphor layer, component, corresponding light source, projection system and corresponding manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110175052.9 2011-06-27
CN201110175052.9A CN102854726B (zh) 2011-06-27 2011-06-27 荧光粉层、器件及相应光源和投影系统、及相应制作方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/122,628 A-371-Of-International US9696010B2 (en) 2011-06-27 2012-05-04 Phosphor layer, component, corresponding light source, projection system and corresponding manufacturing method
US15/625,411 Division US10775024B2 (en) 2011-06-27 2017-06-16 Phosphor layer, component, corresponding light source, projection system and corresponding manufacturing method

Publications (1)

Publication Number Publication Date
WO2013000337A1 true WO2013000337A1 (zh) 2013-01-03

Family

ID=47401429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075061 WO2013000337A1 (zh) 2011-06-27 2012-05-04 荧光粉层、器件及相应光源和投影系统、及相应制作方法

Country Status (4)

Country Link
US (2) US9696010B2 (zh)
EP (1) EP2725419B1 (zh)
CN (3) CN102854726B (zh)
WO (1) WO2013000337A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955573B8 (en) * 2014-04-25 2019-03-20 Delta Electronics, Inc. Illumination system and wavelength-converting device thereof
CN105423238B (zh) * 2014-09-11 2017-05-10 松下知识产权经营株式会社 波长变换部件、发光装置、投影机、以及波长变换部件的制造方法
US10132478B2 (en) 2016-03-06 2018-11-20 Svv Technology Innovations, Inc. Flexible solid-state illumination devices
CN106711313B (zh) * 2016-12-29 2019-05-14 浙江瑞丰光电有限公司 一种荧光片的封装方法及一种led封装器件
CN106597791A (zh) * 2017-02-14 2017-04-26 上海晟智电子科技有限公司 一种双向荧光激发结构
US10364962B2 (en) * 2017-02-23 2019-07-30 Osram Gmbh Laser activated remote phosphor target with low index coating on phosphor, method of manufacture and method for re-directing emissions
CN109217100B (zh) * 2017-07-05 2021-03-05 深圳光峰科技股份有限公司 荧光芯片及其制造方法
CN110579933B (zh) 2018-06-11 2022-06-14 中强光电股份有限公司 波长转换元件、投影装置及波长转换元件的制作方法
CN110579932B (zh) 2018-06-11 2023-12-05 中强光电股份有限公司 波长转换元件、投影装置及波长转换元件的制作方法
JP7332896B2 (ja) * 2020-09-30 2023-08-24 日亜化学工業株式会社 発光装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207599A (ja) * 2002-01-16 2003-07-25 Konica Corp 放射線画像変換パネル及び放射線画像変換パネルの作製方法
EP1939892A2 (en) * 2006-12-21 2008-07-02 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel
US7547114B2 (en) 2007-07-30 2009-06-16 Ylx Corp. Multicolor illumination device using moving plate with wavelength conversion materials
CN101943374A (zh) * 2009-07-03 2011-01-12 索尼公司 荧光片、漫射板、照明装置以及显示单元
CN101539270B (zh) * 2008-03-17 2011-06-08 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
JP2011154168A (ja) * 2010-01-27 2011-08-11 Casio Computer Co Ltd 光源ユニット及びプロジェクタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014813A (en) * 1955-01-17 1961-12-26 Sylvania Electric Prod Electroluminescent lamp
US20040166234A1 (en) 2003-02-26 2004-08-26 Chua Bee Yin Janet Apparatus and method for coating a light source to provide a modified output spectrum
CN1299155C (zh) * 2003-03-13 2007-02-07 友达光电股份有限公司 背光模块及液晶显示器
DE102004060358A1 (de) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen von Lumineszenzdiodenchips und Lumineszenzdiodenchip
DE102006054331A1 (de) * 2006-11-17 2008-05-21 Merck Patent Gmbh Leuchtstoffkörper basierend auf plättchenförmigen Substraten
EP1947653A1 (en) 2007-01-17 2008-07-23 Agfa HealthCare NV X-Ray imaging cassette for use in radiotherapy
US7988311B2 (en) * 2008-06-30 2011-08-02 Bridgelux, Inc. Light emitting device having a phosphor layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207599A (ja) * 2002-01-16 2003-07-25 Konica Corp 放射線画像変換パネル及び放射線画像変換パネルの作製方法
EP1939892A2 (en) * 2006-12-21 2008-07-02 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel
US7547114B2 (en) 2007-07-30 2009-06-16 Ylx Corp. Multicolor illumination device using moving plate with wavelength conversion materials
CN101539270B (zh) * 2008-03-17 2011-06-08 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
CN101943374A (zh) * 2009-07-03 2011-01-12 索尼公司 荧光片、漫射板、照明装置以及显示单元
JP2011154168A (ja) * 2010-01-27 2011-08-11 Casio Computer Co Ltd 光源ユニット及びプロジェクタ

Also Published As

Publication number Publication date
EP2725419B1 (en) 2018-07-11
CN104991411A (zh) 2015-10-21
CN105140376B (zh) 2018-07-24
CN104991411B (zh) 2017-03-29
EP2725419A1 (en) 2014-04-30
US9696010B2 (en) 2017-07-04
CN105140376A (zh) 2015-12-09
US20170284632A1 (en) 2017-10-05
CN102854726A (zh) 2013-01-02
US10775024B2 (en) 2020-09-15
CN102854726B (zh) 2015-07-29
EP2725419A4 (en) 2015-04-29
US20140111776A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2013029370A1 (zh) 荧光粉层、器件及相应光源和投影系统、及相应制作方法
WO2013000337A1 (zh) 荧光粉层、器件及相应光源和投影系统、及相应制作方法
US10495957B2 (en) Wavelength conversion device and projector
TWI461821B (zh) 色輪、其組裝方法及應用該色輪的光源
TWI694133B (zh) 藉由使用表面奈米結構來強化光泵磷光體的輸出
TWI380088B (en) Optical sheet, backlight unit, and liquid crystal display
CN105676543A (zh) 用于制造液晶显示设备的方法
US20160139401A1 (en) Glass phosphor color wheel and methods for producing the same
WO2019071865A1 (zh) 波长转换装置
CN105629572B (zh) 一种背光模组及其制造工艺
US11143943B2 (en) Wavelength conversion element, projection device and manufacturing method of wavelength conversion element
CN207704179U (zh) 一种散热高效的荧光轮
JP6970868B2 (ja) 蛍光体基板、蛍光体ホイール、光源装置、投写型映像表示装置、及び蛍光体基板の製造方法
CN101620302B (zh) 色轮
US11199762B2 (en) Wavelength conversion element having anti-reflective layer with pores and manufacturing method thereof
JPH02165188A (ja) 表示素子
JP2001290062A (ja) 光学部品の作製方法
JP2018138949A (ja) 波長変換部材及び画像形成装置
US6885505B2 (en) Integrally bonded gobo
JP5377543B2 (ja) 色変換シートおよびその製造方法並びにそれを用いた発光ダイオード照明器具
JP5239120B2 (ja) 透過型スクリーン
JP2007280682A5 (zh)
JP5522847B2 (ja) プラズマディスプレイパネルの製造方法
KR100807186B1 (ko) 도광판 사출성형용 일체형 스템퍼 금형 제조 방법
JP2002333504A (ja) 光学素子、及びそれを有する液晶表示素子、投射型表示装置、撮像素子及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14122628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012804869

Country of ref document: EP