WO2019071865A1 - 波长转换装置 - Google Patents

波长转换装置 Download PDF

Info

Publication number
WO2019071865A1
WO2019071865A1 PCT/CN2018/071412 CN2018071412W WO2019071865A1 WO 2019071865 A1 WO2019071865 A1 WO 2019071865A1 CN 2018071412 W CN2018071412 W CN 2018071412W WO 2019071865 A1 WO2019071865 A1 WO 2019071865A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
module
substrate
light
wavelength
Prior art date
Application number
PCT/CN2018/071412
Other languages
English (en)
French (fr)
Inventor
李乾
王艳刚
陈雨叁
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019071865A1 publication Critical patent/WO2019071865A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to a wavelength conversion device.
  • laser source technology is the most promising and most promising technology research direction.
  • a technique in which a remote excitation light illuminates a rotating phosphor is generally employed.
  • the blue laser light emitted from the excitation source is concentrated and focused onto a turntable containing phosphor on the surface to excite the phosphor material to emit light.
  • the turntable rotates at a high speed under the driving of the motor. Therefore, the area containing the phosphor and excited by the laser is constantly changed, but the spot position of the laser irradiated on the turntable does not change, thereby causing periodicity with the rotation of the turntable.
  • the sequence of shades of light is generally employed.
  • the wavelength conversion device is a core device, and its main form is a light-emitting color wheel.
  • silica gel is usually used to mix the phosphor, and then coated on the metal substrate, thereby obtaining a color wheel structure which can be used for rotation and which includes the light-emitting layer and the substrate in which the phosphor is packaged.
  • the design for the light source will be based on DMD (digital Micromirror device, digital micromirror chip) Different types of light machines are used to select different color wheel patterns. For example, 3DMD optical machines generally match single color color wheels, while single DMD optical machines generally use color wheels with multiple color segments. Program.
  • DMD digital Micromirror device, digital micromirror chip
  • the color wheel used in the light source of a single DMD optome is complicated in design due to the inclusion of multiple color segments.
  • the different characteristics of each color segment can significantly affect the preparation method and overall performance of the color wheel. Therefore, how to obtain a multi-color segment color wheel with high performance is a major problem faced by a single DMD light source.
  • the present invention is intended to provide a wavelength conversion device having a multi-color segment color wheel that is targeted in performance design and has high performance, and a method of fabricating the same.
  • the invention provides a high-performance multi-color segment color wheel with modular structure as a wavelength conversion device, each color segment is separately prepared as a single module, and finally the color segments are spliced and combined on one bottom plate.
  • the resulting modular stitching color wheel can be used in ultra-high brightness single DMD laser sources, as well as in light sources for other applications.
  • a wavelength conversion device comprising: a bottom plate; at least one wavelength conversion module for converting excitation light into emitted light, the wavelength of the emitted light being different from the excitation light a wavelength; and at least one light reflecting module for reflecting the excitation light, wherein at least one of the wavelength conversion module and at least one of the light reflecting modules are assembled on one side surface of the bottom plate, wherein each The wavelength conversion module includes a substrate, a diffuse reflection layer, and a light-emitting layer stacked in this order from the bottom plate, and the light reflection module includes a substrate and a diffuse reflection layer sequentially stacked from the bottom plate, and the wavelength conversion module
  • the diffuse reflection layer and the light-emitting layer and the diffuse reflection layer in the light reflection module both comprise glass frit, wherein the substrate in the at least one wavelength conversion module and the other wavelength conversion module and the light reflection module
  • the material of the substrate is different, wherein in the wavelength conversion module or the light reflection module, the expansion coefficient of the glass powder is higher,
  • the wavelength conversion device has at least the following advantages:
  • a higher rate of yield can be achieved by a modular wavelength conversion device
  • each wavelength conversion module can be designed and prepared separately, the performance requirements of each module can be improved, and suitable and matched substrates, glass powders and phosphors can be used for different requirements of each module, thereby achieving better performance.
  • the glass powder having a high expansion coefficient corresponds to a substrate having a high expansion coefficient
  • the glass powder having a low expansion coefficient has a low expansion coefficient.
  • the substrate solves the problem that in the prior art a wavelength conversion device uses only the same or the same type of glass frit or substrate.
  • FIG. 1 is a schematic structural view showing a wavelength conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic exploded view showing the modules of the wavelength conversion device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view showing the splicing of each module of the wavelength conversion device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view showing a front surface of a bottom plate of a wavelength conversion device according to the present invention.
  • Figure 5 is a plan view showing an annular groove on the surface of the bottom plate
  • Fig. 6 is a view showing the structure of the back surface of the bottom plate of the wavelength conversion device according to the present invention.
  • Figure 7 is a plan view showing a wavelength conversion device in Embodiment 2 of the present invention.
  • the wavelength conversion device 100 includes a bottom plate 105 and color patch modules 101, 102, 103, 104 as wavelength conversion modules.
  • FIG. 2 is a schematic exploded perspective view showing each module of the wavelength conversion device 100 according to Embodiment 1 of the present invention.
  • the modules 101, 102, 103 have a stacked three-layer structure.
  • the stacked three-layer structure is a substrate 201 laminated on the bottom plate 105, a diffuse reflection layer 301 on the substrate 201, and a light-emitting layer 401 on the diffuse reflection layer 301, and the structures of the modules 102 and 103. Similar to the structure of the module 101.
  • Module 104 has only two layers of structure, substrate 204 and diffuse reflective layer 304, respectively.
  • the module 101 is a yellow segment module
  • the module 102 is a red segment module
  • the module 103 is a green segment module
  • the module 104 is a blue segment module, that is, the entire wavelength conversion device 100 includes RGBY four colors.
  • the present invention is not limited thereto, and each of the modules 101, 102, 103, and 104 may have other colors.
  • the modules 101, 102, and 103 are color segment modules having colors different from those of the excitation light.
  • the modules 101, 102, 103 receive the excitation light and excite the phosphors disposed in the luminescent layer by the excitation light to perform wavelength conversion, thereby generating laser light corresponding to the color of each color segment module. Therefore, the modules 101, 102, 103 have a three-layer structure of a substrate, a diffuse reflection layer, and a light-emitting layer which are sequentially stacked.
  • the module 104 is a color segment module that emits light having the same color as the luminescent color of the excitation light.
  • the module 104 receives the excitation light and generates the same color as the excitation light by means of reflection. Therefore, the process of wavelength conversion is not required in the module 104, that is, the luminescent layer containing the phosphor is not included, and thus has a layer cascading from the bottom plate 105.
  • the module 104 is a blue segment module
  • the modules 101, 102, 103 are yellow, red, and green color segment modules, respectively.
  • the bottom plate 105 has a disk shape and is made of a metal, a metal alloy or a metal-inorganic composite material, such as aluminum and copper.
  • the bottom plate 105 needs to carry the weight of the entire wavelength conversion device and is rotated at a high speed by the motor, and therefore requires a minimum thickness of 0.5 to 2 mm, preferably a thickness of 1.5 mm.
  • the bottom plate 105 has a disk shape in the drawings and embodiments of the present invention, the shape of the bottom plate 105 is not limited thereto, and may be, for example, a semicircular shape or a fan shape.
  • the wavelength conversion module is also used as the shape of the color wheel.
  • the surface of the bottom plate 105 may be provided with an annular groove.
  • the groove is formed along the outer circumference of the bottom plate 105 to have a groove portion having a thickness smaller than the inner circumference of the bottom plate 105, that is, the thickness of the outer circumferential portion of the bottom plate 105 in the radial direction is formed to be smaller than
  • the thickness of the inner circumferential portion is such that a groove is formed on the outer circumferential portion.
  • the groove is sized and shaped to match each wavelength conversion module. 1 and 5, when the wavelength conversion device is assembled, at least a portion of the wavelength conversion module in the thickness direction is embedded in the groove to facilitate fixing and positioning the modules through the groove. Since it is usually necessary to apply an adhesive such as a bonding glue to the contact surface when the wavelength conversion module is embedded in the groove, the groove can also prevent the bonding glue from flowing around during the heating process.
  • each module 101, 102, 103, 104 is detailed below in conjunction with FIG.
  • the module 101 is a yellow segment module including a substrate 201, a diffuse reflection layer 301, and a phosphor layer 401, wherein the phosphor layer 401 is a light-emitting layer.
  • the substrate 201 is a ceramic plate having a dense structure, such as an alumina substrate, a sapphire substrate, an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, a boron nitride substrate, or a ruthenium oxide substrate, and does not have a porous structure.
  • These ceramic materials have a thermal conductivity above 80 W/(m•K) and a melting point of substantially above 2000 °C, so they can withstand higher temperatures while achieving thermal conduction.
  • the thermal conductivity of the ceramic substrate is not very high, the ceramic substrate can also be made of other kinds of ceramic plates.
  • an aluminum nitride substrate is preferred, and the thickness is preferably 0.7 mm.
  • the diffuse reflection layer 301 is disposed on a surface of the substrate 201 opposite to the bottom plate 105.
  • the diffuse reflection layer 301 includes white scattering particles for reflecting incident excitation light.
  • the white scattering particles are usually salt or oxide powders, such as ultra-white monomer powder particles such as alumina, titania, aluminum nitride, magnesium oxide, boron nitride, zinc oxide, zirconium oxide, barium sulfate, or at least two. A mixture of the above powder particles.
  • the white scattering particles typically have a particle size in the range of 20 nanometers to 5 micrometers.
  • these white scattering materials do not substantially absorb light and are stable in nature and do not oxidize or decompose at high temperatures.
  • the light emitting layer 401 includes a phosphor, and the light emitting layer 401 is disposed on the surface of the diffuse reflection layer 301.
  • the phosphor is used to absorb excitation light and thereby be excited to generate light having a wavelength different from that of the excitation light.
  • the phosphor can be YAG (yttrium aluminum garnet), LuAG (yttrium aluminum garnet) phosphor, wherein the YAG phosphor can absorb blue light, ultraviolet light, etc. to produce a yellow laser, and LuAG can emit a green laser.
  • each color segment module In the method of making each color segment module, the preparation processes of color segments of different colors are often different, such as the temperature and process of preparation. In terms of performance, the specific properties of each color segment module, such as thermal conductivity, thermal expansion coefficient, etc. are also different. Therefore, in order to optimize the overall performance of each color segment module, it is necessary to select the substrate, the diffuse reflection layer, and the light-emitting layer according to actual needs (for example, heat dissipation performance).
  • the calorific value of the yellow light is smaller than that of the red light, but larger than the blue light and the green light. Therefore, a substrate having a thermal conductivity coefficient lower than that of the red light but higher than the blue light and the green light should be selected in the module. .
  • the diffuse reflection layer selected in this module should have the best light reflection effect in the wavelength range between 540 nm and 580 nm.
  • the thickness relationship of each diffuse reflection layer is: red ⁇ yellow ⁇ green.
  • the thickness of the diffuse reflection layer of the red segment module is set to be relatively small in order to facilitate the derivation of heat.
  • the phosphor in the yellow segment module is configured to emit yellow light by absorbing the excitation light, thereby being able to be distinguished from other color patch modules.
  • the phosphor layer 401 of the module 101 is made of a yellow YAG phosphor.
  • the glass powder is used as a packaging matrix for the binder and the luminescent material. Therefore, it is necessary to consider parameters such as the light transmittance, refractive index, and thermal expansion coefficient of the glass powder, and match different types of glass powder according to different types of phosphors. For example, in view of the coefficient of thermal expansion, a glass frit having a large coefficient of thermal expansion matches a phosphor having a large coefficient of thermal expansion. Meanwhile, when a glass frit having a large thermal expansion coefficient is contained in a certain color segment module, the substrate used in the module should also have a large thermal expansion coefficient. There are also corresponding considerations for parameters such as light transmittance and refractive index.
  • the preparation process of the module 101 is as follows: for example, alumina, titanium oxide particles are uniformly mixed with the glass powder 1A and the organic carrier in a certain ratio, for example, by screen or stencil printing.
  • the coating operation can also be carried out in other ways.
  • pre-baking is performed at a temperature of 50 to 130 ° C to obtain a green body of the diffuse reflection layer 301.
  • the phosphor Y is uniformly mixed with the glass frit 1B and the organic vehicle, and then coated on the surface of the green body of the diffuse reflection layer 301, and pre-baked at a temperature of 50 to 130 ° C to obtain a green body of the phosphor layer 401.
  • a sample containing an aluminum nitride substrate, a diffuse green layer, and a green layer of the light-emitting layer is placed in a muffle furnace (Muffer)
  • the furnace 101 is sintered at a temperature of 500 to 1200 ° C to obtain a module 101.
  • the thickness of the diffuse reflection layer is between 30 and 200 ⁇ m, preferably 50 to 90 ⁇ m, and the thickness of the light-emitting layer (phosphor layer) is from 100 to 250 ⁇ m, preferably from 130 to 180 ⁇ m.
  • the process of sintering the glass frit 1B and the phosphor allows the bonding force between the phosphor layer 401 and the diffuse reflection layer 301 to be very strong, and can withstand higher temperatures.
  • white scattering particles also need to be bonded together as a whole with an adhesive.
  • the adhesive may be silica gel, water glass or the like.
  • the white scattering particles are bonded by the glass frit 1A.
  • the glass frit 1A may be the same glass frit as the glass frit 1B, or may be a different glass frit.
  • the glass powder code 1 indicates the glass frit for the module 101, A indicates the glass frit for the diffuse reflection layer, and B indicates the glass frit for the luminescent layer, as will be hereinafter.
  • the glass frit 1A and the glass frit 1B are the same kind of glass frit, preferably having a particle diameter of 1 ⁇ m and a thermal expansion coefficient of about 3.0 ⁇ 10 -6 /°C.
  • Phosphor Y is a YAG yellow phosphor having a particle size ranging from 10 to 25 ⁇ m, preferably from 15 to 20 ⁇ m.
  • the glass frit 1A and 1B may also be selected from glass frits having other coefficients of thermal expansion and particle size, and it is in accordance with the spirit of the present invention to employ a substrate having a thermal expansion coefficient, a thermal conductivity, and the like in the module.
  • the configuration of the red segment module 102 and the green segment module 103 is similar to the three-layer laminated configuration of the above-described yellow segment 101, but the glass frit, the phosphor, and the substrate material used therein may be different from each other. Specifically, the higher the expansion coefficient of the glass powder contained in the module, the higher the expansion coefficient of the substrate in the module, that is, the glass powder having a high expansion coefficient corresponding to a substrate having a high expansion coefficient, and the glass powder having a low expansion coefficient. A substrate corresponding to a low expansion coefficient.
  • the substrate in the red segment module 102 may be, for example, aluminum nitride. Since the heat generation amount of the red light is the highest, the substrate having a high thermal conductivity coefficient should be selected first.
  • the diffuse reflection layer in the red segment module has a better light reflection effect for wavelengths between 580 nm and 650 nm.
  • the reflective layer corresponding to the red light should be made relatively thin to facilitate the heat extraction.
  • the respective color modules can individually select the desired substrate and the glass frit according to actual needs, which solves the problem that only the same or the same type of glass frit is used in the same wavelength conversion device in the prior art. Since in the present invention, the modules for the respective colors are separately manufactured, and since different substrates and glass frits can be selected according to the needs of the respective colors, it is possible to make each module have superior performance without considering all the colors. A compromised material or preparation process is employed.
  • the expansion coefficient of the glass frit matches the expansion coefficient of the corresponding substrate, the adhesion of the glass frit in the module, the thermal conductivity of the module as a whole, and the like can be improved.
  • the preparation process of the module 102 (red) in the first embodiment is detailed as follows: for example, alumina, titanium oxide particles are uniformly mixed with the glass powder 2A and the organic vehicle in a certain ratio, using, for example, a wire mesh or The stencil printing method is applied to the aluminum nitride substrate 202, and pre-baked at a temperature of 50 to 130 ° C to obtain a green body of the diffuse reflection layer 302.
  • the phosphor R is uniformly mixed with the glass frit 2B and the organic vehicle, and then coated on the surface of the green body of the diffuse reflection layer 302, and pre-baked at a temperature of 50 to 130 ° C to obtain a green body of the light-emitting layer 402.
  • a sample containing an aluminum nitride substrate, a diffuse reflection layer green body, and a green layer of a light-emitting layer was placed in a muffle furnace and sintered at a temperature of 500 to 1200 ° C to obtain a module 102.
  • the thickness of the diffuse reflection layer is between 30 and 200 ⁇ m, preferably 50 to 90 ⁇ m, and the thickness of the light-emitting layer is from 100 to 250 ⁇ m, preferably from 130 to 180 ⁇ m.
  • the phosphor in the red light segment module 102 and the phosphor in the yellow light segment module 101 can be simply distinguished by color.
  • the phosphor in the red segment module 102 can be a red phosphor for absorbing the excitation light. Produces a red laser.
  • the phosphor R used by the red segment module 102 may be the same type of yellow YAG phosphor as the phosphor Y used by the module 101, and then split by the filter to separate the red light. . You can also use a longer wavelength yellow phosphor to get more red, or use a red phosphor.
  • the specific choice of phosphor is related to parameters such as power, calorific value, and module thermal performance.
  • the phosphor R and the phosphor Y are the same type of yellow YAG phosphor.
  • the amount of heat generated by the green light is relatively low, the influence of the heat effect is small, and a substrate having a low thermal conductivity coefficient can be used.
  • a substrate having a low thermal conductivity coefficient can be used.
  • a sapphire substrate or other type of substrate having a low thermal conductivity can be selected according to cost and process.
  • the diffuse reflection layer in the green segment module 103 may use a diffuse reflection layer specifically for the green light segment, and the reflective particles are mainly composed of Al 2 O 3 particles, and supplemented by other reflective particles, for the purpose of wavelength range.
  • the light reflectance is higher at around 510 ⁇ 520nm.
  • the phosphor in the green segment module can be a green phosphor.
  • phosphors that generate laser light of other colors may also be included in other color color segment modules.
  • the green segment module 103 adopts the green phosphor G, and the glass powder 3B having the best match with the phosphor G has a thermal expansion coefficient greater than 5.0 ⁇ 10 -6 /° C., and the thermal expansion coefficient is less than 5.0 ⁇ 10 -6 .
  • the substrate of °C such as aluminum nitride
  • the glass powder cannot be firmly adhered. Therefore, it is necessary to select a substrate having a thermal expansion coefficient similar to that of the green segment module of the first embodiment, that is, a thermal expansion coefficient of not less than 5.0 ⁇ 10 -6 is selected. / ° C substrate.
  • sapphire is preferable as the substrate 301.
  • the green segment module 103 of the present invention can also employ glass frits having a different coefficient of thermal expansion and a substrate, as long as the properties of the phosphor, the glass frit and the substrate match, which is in accordance with the spirit of the present invention.
  • the preparation process of the module 103 is as follows: for example, alumina, titanium oxide particles are uniformly mixed with the glass powder 3A and the organic vehicle in a certain ratio, and coated by, for example, screen printing or stencil printing. Pre-baking is performed on the sapphire substrate 203 at a temperature of 50 to 130 ° C to obtain a green body of the diffuse reflection layer 303. Then, the phosphor R is uniformly mixed with the glass frit 3B and the organic vehicle, and then coated on the surface of the green body of the diffuse reflection layer 303, and pre-baked at a temperature of 50 to 130 ° C to obtain a green body of the light-emitting layer 403.
  • a sample containing an aluminum nitride substrate, a diffuse reflection layer green body, and a green layer of a light-emitting layer was placed in a muffle furnace and sintered at a temperature of 500 to 1200 ° C to obtain a module 103.
  • the thickness of the diffuse reflection layer is between 30 and 200 ⁇ m, preferably between 50 and 90 ⁇ m, and the thickness of the light-emitting layer is from 100 to 250 ⁇ m, preferably from 130 to 180 ⁇ m.
  • Phosphor G is a LuAG green phosphor, and the particle diameter is preferably 15 to 25 ⁇ m.
  • the specific parameters described above for the substrate, diffuse reflection layer and luminescent layer of each color segment module are only used to illustrate the present invention and are not intended to limit the effects of the present invention.
  • the substrates may have the same thickness or may have different thicknesses.
  • the thickness of the diffuse reflection layer may also have the same thickness or may have a different thickness.
  • each substrate and diffuse reflective layer should be combined with the choice of thermal dissipation properties, optical properties, and thermal expansion coefficients of the various layers of the module.
  • the substrates having different thermal conductivity coefficients are selected according to the calorific value of each color, and the thickness of the diffuse reflection layer matching the calorific value is selected so that the planes of the light-emitting surfaces of the respective color segment modules are kept uniform.
  • the primary function of the blue segment module 104 is to scatter and reflect incident blue excitation light, thus having a two-layer structure comprising only the substrate 204 and the diffuse reflective layer 304. Since the module 104 has only a two-layer structure, it is necessary to thicken the substrate 204 or thicken the diffuse reflection layer 304 in order to maintain the same thickness as other modules having a three-layer structure.
  • the manner adopted in this embodiment is to thicken the diffuse reflection layer.
  • the process selected for the diffuse reflection layer 304 layer is different from the diffuse reflection layer process of other modules.
  • the substrate 204 may be thickened in order to keep the blue segment module matched with the thickness of other light emitting modules.
  • the sapphire substrate or other low thermal conductivity substrate having a low thermal conductivity can be selected according to cost and process considerations.
  • the preparation process of the module 104 is as follows: the alumina powder, the glass powder 4A, and the organic carrier are uniformly mixed and coated on the sapphire substrate, and the thickness is preferably 120-200 ⁇ m at 50 After pre-baking at a temperature of ⁇ 150 ° C, the module 104 is obtained by sintering in a muffle furnace at a temperature of 500-1200 ° C.
  • the particle size of the appropriate amount of the alumina powder particles is preferably 0.2 ⁇ m
  • the organic vehicle is preferably silicone oil
  • the particle diameter of the glass powder 4A is preferably 1 ⁇ m.
  • the mass ratio of the alumina powder to the glass powder powder is preferably from 3:1 to 5:1.
  • the present invention is not limited to the specific data range and specific materials in the foregoing specific embodiments, and may be changed according to the specific needs of the module, including specific heat dissipation performance, optical performance, and modules.
  • the thermal expansion coefficients of the layers are matched and the like.
  • the substrates of the respective modules 101, 102, 103, 104 may be substrates of the same type, or may be the same two or two substrates.
  • the thickness of the diffuse reflection layer of each module is described above as being, for example, different from each other depending on the amount of heat generation of each color segment, the thickness may be the same. Since the diffuse reflection layer is a porous type of sintered layer, its thickness has the greatest influence on the thermal conductivity of the diffuse reflection layer. Therefore, based on the thickness setting for the diffuse reflection layer, the thermal conductivity of the diffuse reflection layer of each module may be equal or may be sequentially increased or decreased along the arrangement of the bottom plate.
  • the present invention is not limited thereto, and the diffuse reflection layer in each color segment module may also adopt a material having the same structure and composition, so that the reflectances at the same wavelength are the same.
  • the reflectance of each diffuse reflection layer for light of the same wavelength may also be sequentially increased or decreased along the arrangement of the bottom plate.
  • each color segment module it can be known that the light transmittance, the refractive index and the thermal expansion coefficient of each glass powder included in each module can be selected to sequentially increase the arrangement of the glass powders along the bottom plate or Reduce, but you can also choose to use the same glass powder.
  • the sintering process for each module depends primarily on the softening temperature of the glass frit. When it is chosen to use different types of glass frits in each module, the sintering process for each module is naturally different.
  • an adhesive such as a thermally conductive adhesive glue is applied to the bottom of the groove on the surface of the bottom plate 105, and then the modules 101, 102, 103, and 104 are assembled on one side surface of the bottom plate 105, and the temperature is 50 ° C.
  • the pre-curing is further subjected to a curing process at a temperature of 150 ° C to obtain a modular wavelength conversion device 100.
  • the back surface of the bottom plate 105 may increase the heat dissipation fins.
  • the back surface of the bottom plate has heat dissipation fins, and the heat dissipation fins may be formed as a sheet having a curved curvature, and the plurality of heat dissipation fins are arranged at intervals along the circumference of the back surface of the bottom plate, as shown by the heat dissipation fins 105a in FIG.
  • the shape and arrangement of the heat dissipation fins may also be set to other forms, for example, the heat dissipation fins have a flat shape, a wave shape, and the like.
  • wavelength conversion device 100 comprising four modules 101, 102, 103, 104, but the wavelength conversion device of another embodiment of the present invention may comprise more than four colors. Modules.
  • Fig. 7 is a plan view showing a wavelength conversion device in Embodiment 2 of the present invention.
  • the wavelength conversion device in the second embodiment may include seven modules, specifically, two yellow segment modules, two red segment modules, two green segment modules, and one blue segment module, and then each color The modules are alternately assembled such that the seven color segment modules form a color sequence of RGRGYBY.
  • angles are the same, but the present invention is not limited thereto, that is, the red segment modules R1 and R2.
  • the angle can also be different.
  • the angle is half the angle of the red segment module as in the case shown in FIG. 1 (ie, the wavelength conversion device includes four wavelength conversion modules RGBY).
  • angles of the green segment modules G1, G2 and the angles of the yellow segment modules Y1, Y2 shown in Fig. 7 have the same characteristics as those of the red segment modules R1, R2, respectively.
  • the entire wavelength conversion device 100 can also include six modules of RGYBRG.
  • Embodiment 2 As shown in FIG. 7 or a wavelength conversion device including six modules, the manufacturing process of each color segment is the same as in Embodiment 1.
  • the substrates constituting each of the wavelength conversion modules may be the same type of substrate, or may be the same two or two substrates, or may be different substrates.
  • the substrate required by each wavelength conversion module is selected according to actual needs, and the actual needs may include thermal dissipation performance of the module, optical performance, and thermal expansion coefficient matching of each layer of the module.
  • a metal material can also be used. Matching the substrate of the metal material is a diffuse reflection layer and a light-emitting layer having a silica gel system using silica gel as a binder.
  • the materials and types of the substrates are the same or different from each other, at least one of the substrates may be a ceramic/single crystal substrate, and the remaining substrate may be a metal substrate.
  • the matching glass frit and the substrate are selected according to the thermal expansion coefficients of the glass frit and the substrate of each module, and the substrate of each module may be selected according to the heat dissipation performance.
  • the substrate corresponding to each color segment module is selected in consideration of the heat dissipation performance. It can be seen that the longer the wavelength of the reflected light emitted by the excitation light, the higher the thermal conductivity coefficient of the substrate selected in the module.
  • the substrate in each module can also be selected to have the same thickness or different thickness according to actual needs.
  • This practical need mainly refers to the problem of weight matching due to the use of different materials for each module, and the problem that the plane of the light-emitting surface is expected to be flush even though the number of structural layers of each module is different.
  • the diffuse reflection layer of each module may adopt a diffuse reflection layer having the same structure and composition, or different diffuse reflection layers may be selected according to actual needs, and the main difference is the type and amount of the reflective particles.
  • a wavelength conversion module splicable on a substrate is used.
  • Such a configuration enables each module to individually select a respective substrate and a matching glass frit, phosphor, and a separate sintering preparation process. This enables each module to achieve higher performance and yield. Then, a suitable wavelength conversion module is selected for splicing and packaging, so that the process of the entire wavelength conversion device is simple and the yield is high.
  • each module can be individually designed and prepared, and a suitable and matched substrate, glass powder and phosphor are respectively selected, and various types can be selected when splicing the wavelength conversion module.
  • the combination of the wavelength conversion modules makes the assembly of the wavelength conversion device more flexible and convenient, and the design and preparation process of each wavelength conversion device can be targeted for the requirements of each color segment module, thereby improving the performance of each module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)

Abstract

一种波长转换装置(100),包括:底板(105);至少一个波长转换模块(101,102,103),用于将激发光转换为出射光,出射光的波长不同于激发光的波长;以及至少一个光反射模块(104),用于反射激发光,其中,至少一个波长转换模块(101,102,103)和至少一个光反射模块(104)拼装在底板(105)的一侧表面上,每个波长转换模块(101,102,103)包括从底板(105)依次层叠的基板(201,202,203)、漫反射层(301,302,303)和发光层(401,402,403),光反射模块(104)包括从底板(105)依次层叠的基板(204)和漫反射层(304),波长转换模块(101,102,103)中的漫反射层(301,302,303)和发光层(401,402,403)与光反射模块(104)中的漫反射层(304)都包含玻璃粉(1A,1B,2A,2B,3A,3B,4A),至少一个波长转换模块(101,102,103)中的基板(201,202,203)与其他波长转换模块(101,102,103)以及光反射模块(104)中的基板(201,202,203,204)的材料不同,玻璃粉(1A,1B,2A,2B,3A,3B,4A)的膨胀系数越高,对应基板(201,202,203,204)的膨胀系数越高。

Description

波长转换装置 技术领域
本发明涉及一种波长转换装置。
背景技术
在当前的显示领域中,对所显示的亮度要求越来越高,因此,传统的灯泡和LED技术已经无法满足对于高亮度光源的要求了。在此情况下,激光光源技术是最有希望也最有发展潜力的技术研究方向。
技术问题
在激光光源的技术领域中,通常采用远程激发光照射旋转的荧光粉的技术。在该技术中,将激发光源发出的蓝色激光汇聚并聚焦到一个表面含有荧光粉的转盘上,从而激发荧光粉材料发光。该转盘在电动机的驱动下高速旋转,因此,含有荧光粉并受到激光激发的区域不断改变,但该转盘上的该激光照射的光斑位置不变,由此可随着转盘的转动而产生周期性的色光序列。
在上述采用远程激发光照射色轮转盘的技术中,波长转换装置是核心器件,其主要形式为发光色轮。在该波长转换装置中通常使用硅胶来混合荧光粉,然后涂覆在金属底板上,从而获得可用于旋转的、包含有封装有荧光粉的发光层和基板的色轮结构。
针对光源的设计会根据DMD(digital micromirror device,数字微镜芯片)光机的类型不同而选择不同的色轮样式,例如,3DMD光机一般会匹配单颜色色轮,而单DMD光机则一般采用具有多种颜色段的色轮的方案。
单DMD光机的光源所用的色轮由于包含多种颜色段,在设计上比较复杂。各颜色段的不同特性会显著地影响色轮的制备方法和整体性能,因此如何获得具有高性能的多色段色轮是单DMD光机光源所面临的主要问题。
技术解决方案
针对上述问题,本发明期望提供一种在性能设计上有针对性从而具有高性能的多色段色轮的波长转换装置及其制造方法。
本发明提供了一种具有模块化结构的高性能多色段色轮作为波长转换装置,每一种色段作为一个单独的模块进行单独制备,最后将各色段拼接组合在一个底板之上。由此获得的模块化拼接色轮可用于超高亮度的单DMD激光光源中,也可以扩展应用到其他应用场景的光源。
根据本发明的实施例,公开了一种波长转换装置,其包括:底板;至少一个波长转换模块,其用于将激发光转换为出射光,所述出射光的波长不同于所述激发光的波长;以及至少一个光反射模块,其用于反射所述激发光,其中,至少一个所述波长转换模块和至少一个所述光反射模块拼装在所述底板的一侧表面上,其中,每个所述波长转换模块包括从所述底板依次层叠的基板、漫反射层和发光层,所述光反射模块包括从所述底板依次层叠的基板和漫反射层,所述波长转换模块中的所述漫反射层和所述发光层与所述光反射模块中的所述漫反射层都包含玻璃粉,其中,至少一个波长转换模块中的所述基板与其他波长转换模块以及所述光反射模块中的所述基板的材料不同,其中,在所述波长转换模块或所述光反射模块中,所述玻璃粉的膨胀系数越高,对应的所述基板的膨胀系数越高。
有益效果
如上所述,根据本发明的波长转换装置至少具有如下优点:
(1) 通过模块化的波长转换装置,能够使良品率更高;
(2) 由于各波长转换模块能够单独设计并制备,可提高各模块的性能需求的针对性,针对各模块的不同需求采用合适且相匹配的基板、玻璃粉和荧光粉,从而能够获得更优秀的性能;
(3) 由于在各模块中根据热膨胀系数采用不同且相匹配的玻璃粉和基板,即具有高膨胀系数的玻璃粉对应具有高膨胀系数的基板,具有低膨胀系数的玻璃粉对应具有低膨胀系数的基板,这解决了在先技术中一个波长转换装置只使用同一种或同一类型的玻璃粉或基板的问题。
(4) 由于各模块中的玻璃粉和基板的热膨胀系数相匹配,能够减少含有该玻璃粉的层在烧结时从基板脱落的现象。
(5) 通过修正和匹配各模块的基板厚度、漫反射层厚度等对导热性能影响显著的参数,提高了波长转换装置整体的导热能力。
应当理解,本发明的有益效果不限于上述效果,而可以是本文中说明的任何有益效果。
附图说明
图1是示出了根据本发明实施例1的波长转换装置的结构示意图;
图2是示出了根据本发明实施例1的波长转换装置的各模块分解结构示意图;
图3是示出了根据本发明实施例1的波长转换装置的各模块拼接后获得的结构示意图。
图4是示出了根据本发明中波长转换装置的底板正面的结构示意图;
图5是示出了底板的表面上环状的凹槽的俯视图;
图6是示出了根据本发明中波长转换装置的底板背面的结构示意图。
图7是示出了本发明实施例2中波长转换装置的俯视图。
本发明的实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示中的各层结构中各层的尺寸、厚度、厚度比例以及角度并不是按照实际的尺寸和比例示出的,仅是为了图示方便。此外,本发明实施例中各模块的组合及颜色仅用于说明本发明的精神,而不是用于限定本发明的具体范围。本领域技术人员可以根据本领域中的常识而想到可以替代各模块组合及颜色的其他替代实施例。
图1是示出了根据本发明实施例1的波长转换装置的结构示意图。如图1所示,波长转换装置100包括底板105以及作为波长转换模块的各色段模块101、102、103、104。
图2是示出了根据本发明实施例1的波长转换装置100的各模块分解结构示意图。如图2所示,模块101、102、103具有层叠的三层结构。以模块101为例,其层叠的三层结构分别为层叠在底板105上的基板201、位于基板201上的漫反射层301和位于漫反射层301上的发光层401,模块102和103的结构与模块101的结构类似。模块104只有两层结构,分别为基板204和漫反射层304。
在下述详述的具体实施例中,为便于说明,模块101为黄色段模块,模块102为红色段模块,模块103为绿色段模块,模块104为蓝色段模块,即整个波长转换装置100包含RGBY四色。但本发明并不限于此,各模块101、102、103、104也可以采用其他颜色。
在上述各色段模块中,模块101、102、103是具有与激发光的发光颜色不同颜色的色段模块。该模块101、102、103接收激发光,并通过激发光激发设置在发光层中的荧光粉进行波长转换,从而产生与各色段模块的颜色相对应的受激光。因此,模块101、102、103具有依次层叠的基板、漫反射层和发光层的三层结构。
此外,模块104是出射具有与激发光的发光颜色相同颜色的光的色段模块。该模块104接收激发光,并通过反射的方式产生与激发光颜色相同的光,因此模块104中不需要进行波长转换的过程,即不包含含有荧光粉的发光层,因此具有从底板105依次层叠的基板与漫反射层的两层结构。
例如,如上所述,在本发明中示例性地使用蓝光作为激发光,因此,模块104为蓝色段模块,模块101、102、103分别为黄色、红色和绿色色段模块。
如图1、图4和图5所示,底板105具有圆盘形状,并由金属、金属合金或者金属-无机复合材料制成,其中金属材料例如为铝和铜。该底板105需要承载整个波长转换装置的重量,并在电动机驱动下进行高速转动,因此需要最少0.5~2mm的厚度,优选厚度为1.5mm。
需要说明的是,虽然在本案的图示和实施例中记载了底板105具有圆盘形状,但该底板105的形状并不限于此,例如也可以是半圆形、扇形等任意适于安装各波长转换模块并用作色轮的形状。
底板105的表面可配置有环状的凹槽。如图5中阴影部分所示,该凹槽沿着底板105的外圆周形成为厚度小于该底板105的内圆周的槽部,即底板105在径向方向上的外圆周部分的厚度形成为小于内圆周部分的厚度,使得在外圆周部分上形成凹槽。该凹槽的大小和形状与各波长转换模块相匹配。结合图1和图5可知,在组装波长转换装置时,使波长转换模块在厚度方向上的至少一部分嵌入到该凹槽中,以便于通过该凹槽固定并定位各模块。由于在使波长转换模块嵌入凹槽时,通常需要在接触面上涂敷粘结胶水等粘结剂,因此该凹槽此时也可以防止粘接胶水在加热过程中四处流淌。
在下文中结合图2详述每一模块101、102、103、104的具体结构和组成。
模块101为黄色段模块,其包括基板201、漫反射层301和荧光粉层401,其中,荧光粉层401为发光层。
基板201为具有致密结构的陶瓷板,例如氧化铝基板、蓝宝石基板、氮化铝基板、氮化硅基板、碳化硅基板、氮化硼基板或者氧化铍基板等,并不具有多孔结构。这些陶瓷材料的热导率在80W/(m•K)以上,且熔点基本上在2000摄氏度以上,因此它们在实现导热的同时,还可以耐受较高的温度。当然,在对陶瓷基板的热导率要求不是很高的场合中,陶瓷基板也可以采用其他种类的陶瓷板制成。本实施例中优选为氮化铝基板,厚度优选为0.7mm。
漫反射层301设置在基板201的与底板105相反的面上。该漫反射层301包括白色散射粒子,用于对入射的激发光进行反射。白色散射粒子通常为盐类或者氧化物类粉末,例如氧化铝、氧化钛、氮化铝、氧化镁、氮化硼、氧化锌、氧化锆、硫酸钡等超白单体粉末颗粒,或者至少两种以上粉末颗粒的混合体。该白色散射粒子的粒径通常在20纳米到5微米范围内。此外,这些白色散射材料基本上不会对光进行吸收,并且性质稳定,不会在高温下氧化或分解。本实施例中优选使用氧化铝和氧化钛两种散射粒子粉末,粉末粒径为0.02~1μm。
发光层401包括荧光粉,发光层401设置于漫反射层301的表面上。该荧光粉用于吸收激发光并由此受到激发以产生波长不同于激发光的波长的光。例如荧光粉可采用YAG(钇铝石榴石)、LuAG(镥铝石榴石)荧光粉,其中YAG荧光粉可以吸收蓝光、紫外光等而产生黄色受激光,LuAG可发出绿色受激光。
在制作各色段模块的方法中,不同颜色的色段的制备工艺往往是不相同的,如制备的温度和工序等。在性能上,各色段模块的具体性能如导热性能、热膨胀系数等也是不同的。因此,为使得各色段模块的整体性能最优化,需要根据实际需要(例如散热性能)对基板、漫反射层和发光层进行选择。
如上构造的黄色段模块中,黄光的发热量小于红光,但大于蓝光和绿光,因此,在该模块中应当选择热导率系数低于红光、但高于蓝光和绿光的基板。
在该模块中所选择的的漫反射层应当对波长范围在540nm~580nm之间的光反射效果最好。此外,由于各模块的发热量不同,即红光>黄光>绿光,在同样具有三层结构的黄色、红色和绿色色段模块中,各漫反射层的厚度关系为:红色<黄色<绿色。在此,将红色段模块的漫反射层的厚度设置为相对最小是为了便于热量的导出。
由于发光层中的主要构成组分为荧光粉和玻璃粉,在黄色段模块中的荧光粉构成为通过吸收激发光而发出黄光,从而能够与其他颜色色段模块区分开。例如,在本实施例中,模块101的荧光粉层401选用黄色YAG荧光粉制作。
在各模块中,玻璃粉用作粘结剂和发光材料的封装基质,因此需要考虑玻璃粉的透光率、折射率、热膨胀系数等参数,根据不同类型的荧光粉匹配不同类型的玻璃粉。例如,考虑到热膨胀系数方面,具有较大热膨胀系数的玻璃粉匹配同样具有较大热膨胀系数的荧光粉。同时,当在某一色段模块中包含有具有较大热膨胀系数的玻璃粉时,该模块中所使用的基板也应当具有较大的热膨胀系数。针对透光率、折射率等参数也有相应的考量。
在本实施例1中,模块101(黄色)的制备工艺如下:将例如氧化铝、氧化钛颗粒按一定比例与玻璃粉1A、有机载体混合均匀,例如采用丝网或钢网印刷的方式涂覆于氮化铝基板201上,但也可以采用其他方式进行涂覆操作。然后在50~130℃温度下进行预烘干,获得漫反射层301的生坯。然后,将荧光粉Y与玻璃粉1B、有机载体混合均匀,再涂覆于漫反射层301的生坯表面上,在50~130℃温度下进行预烘干,获得荧光粉层401的生坯。然后,将含有氮化铝基板、漫反射层生坯、发光层生坯的样品放入马弗炉(Muffer furnace)中在500-1200℃的温度下烧结,从而获得模块101。
在本实施例1中,漫反射层的厚度在30~200μm之间,优选为50-90μm,发光层(荧光粉层)的厚度为100~250μm,优选为130~180μm。
玻璃粉1B和荧光粉可以通过烧结成型的过程使得荧光粉层401与漫反射层301之间的结合力非常强,并且可以耐受较高的温度。类似地,白色散射粒子也需要用粘接剂粘接成一个整体。粘接剂可以是硅胶、水玻璃等。优选地,白色散射粒子通过玻璃粉1A粘接。玻璃粉1A可以是和玻璃粉1B相同的玻璃粉,也可以是不同的玻璃粉。玻璃粉代号1表示用于模块101的玻璃粉,A表示用于漫反射层的玻璃粉,B表示用于发光层的玻璃粉,下文同理。
在本实施例中,玻璃粉1A和玻璃粉1B为同一种玻璃粉,粒径优选为1μm,热膨胀系数约为3.0×10 -6/℃。荧光粉Y为YAG黄色荧光粉,粒径范围10~25μm,优选15~20μm。但玻璃粉1A和1B也可以选用具有其他热膨胀系数和粒径的玻璃粉,只要在模块中采用与该玻璃粉在热膨胀系数、导热系数等性能上相匹配的基板,就符合本发明的精神。
红色段模块102和绿色段模块103的构造与上述黄色段101的三层层叠构造类似,但其中使用的玻璃粉、荧光粉和基板材料可以彼此不同。具体来说,在该模块中所含的玻璃粉的膨胀系数越高,该模块中的基板的膨胀系数越高,即高膨胀系数的玻璃粉对应高膨胀系数的基板,低膨胀系数的玻璃粉对应低膨胀系数的基板。
此外,红色段模块102中的基板例如可以采用氮化铝,因为红光的发热量最高,则应当首先选择热导率系数高的基板。该红色段模块中的漫反射层对于波长范围在580nm~650nm之间的光反射效果更好。而且由于红光的发热量最高,则对应于红光的反射层应当做的相对薄一些,以便于热量的导出。
由此,各色模块能够根据实际需要来分别选定所需的基板和玻璃粉,这就解决了在先技术中同一个波长转换装置中只使用同一种或同一类型的玻璃粉的问题。由于在本发明中,针对各颜色的模块被分别制造,且由于可根据各颜色的需要选择不同的基板和玻璃粉,由此能够使各模块具有更优秀的性能,而不需要考虑到所有颜色的需求而采取折衷的材料或制备工艺。
尤其是当玻璃粉的膨胀系数与其对应的基板的膨胀系数相匹配时,能够提高该模块中玻璃粉的附着能力、模块整体的导热性能等。
为便于理解本发明,将本实施例1中模块102(红色)的制备工艺详述如下:将例如氧化铝、氧化钛颗粒按一定比例与玻璃粉2A、有机载体混合均匀,采用例如丝网或钢网印刷的方式涂覆于氮化铝基板202上,在50~130℃温度下进行预烘干,获得漫反射层302的生坯。将荧光粉R与玻璃粉2B、有机载体混合均匀,再涂覆于漫反射层302的生坯表面上,在50~130℃温度下进行预烘干,获得发光层402的生坯。将含有氮化铝基板、漫反射层生坯、发光层生坯的样品放入马弗炉中在500-1200℃温度下烧结,获得模块102。
在本实施例1中,漫反射层的厚度在30~200μm之间,优选为50-90μm,发光层的厚度为100~250μm,优选为130~180μm。
红光段模块102中的荧光粉与例如黄光段模块101中的荧光粉可以通过颜色进行简单区分,例如在红色段模块102中的荧光粉可以是红光荧光粉,用于吸收激发光以产生红色受激光。
与黄色段模块101相比,红色段模块102使用的荧光粉R可以是与模块101使用的荧光粉Y为同一类型的黄色YAG荧光粉,然后后期通过滤光片进行分光而将红光分出。也可以使用波长更长的黄色荧光粉以获得更多红色,或者使用红色荧光粉。对于荧光粉的具体选择与功率、发热量、模块热性能等参数有关系。在本实施例1中,荧光粉R和荧光粉Y为同一种类型的黄色YAG荧光粉。
在绿色段模块103中,由于绿光的发热量比较低,因此受热效应的影响较小,可以采用热导率系数低的基板。例如可以根据成本和工艺选用热导率低的蓝宝石基板或其他类型的基板。
另外,在绿色段模块103中的漫反射层可使用专门针对绿光段的漫反射层,其反射粒子例如以Al 2O 3颗粒为主,并以其他反射颗粒为辅,目的是对波长范围在510~520nm左右的光反射率更高。
在绿色段模块中的荧光粉可以是绿光荧光粉。另外,在其他颜色色段模块中还可以包含产生其他颜色受激光的荧光粉。
在本实施例1中,绿色段模块103采用绿色荧光粉G,与荧光粉G具有最佳匹配的玻璃粉3B的热膨胀系数大于5.0×10 -6/℃,在热膨胀系数小于5.0×10 -6/℃的基板如氮化铝上,这种玻璃粉无法牢固附着,因此需要选用热膨胀系数与之相近的基板,即在本实施例1的绿色段模块中选用热膨胀系数不小于5.0×10 -6/℃的基板。本实施例中优选蓝宝石作为基板301。如上所述,本发明中的绿色段模块103也可以采用具有其他热膨胀系数的玻璃粉和基板,只要该荧光粉、玻璃粉和基板的性能相匹配,就符合本发明的精神。
在本实施例1中,模块103(绿色)的制备工艺如下:将例如氧化铝、氧化钛颗粒按一定比例与玻璃粉3A、有机载体混合均匀,采用例如丝网或钢网印刷的方式涂覆于蓝宝石基板203上,在50~130℃温度下进行预烘干,获得漫反射层303的生坯。然后,将荧光粉R与玻璃粉3B、有机载体混合均匀,再涂覆于漫反射层303的生坯表面上,在50~130℃温度下进行预烘干,获得发光层403的生坯。将含有氮化铝基板、漫反射层生坯、发光层生坯的样品放入马弗炉中在500-1200℃温度下烧结,获得模块103。
在本实施例1的绿色段模块中,漫反射层的厚度在30~200μm之间,优选为50-90μm,发光层的厚度为100~250μm,优选为130~180μm。荧光粉G为LuAG绿色荧光粉,粒径优选为15~25μm。
然而上述对于各色段模块的基板、漫反射层和发光层的具体参数都仅用于对本发明进行说明,而不用于限制本发明的作用。例如,在同样具有三层层叠结构的黄色段、红色段和绿色段模块中,基板可以具有相同的厚度,也可以具有不同厚度。而且漫反射层的厚度也可以具有相同厚度,或也可以具有不同厚度。
对于各基板和漫反射层的厚度选择的考虑应当结合对于散热性能、光学性能、模块各层的热膨胀系数的选择。例如如前文所述,根据各色的发热量选择热导率系数不同的基板,同时选择与发热量相匹配的漫反射层的厚度,使得各色段模块的发光面的平面保持一致。
另外,还需要考虑各色段模块由于采用不同的材质而导致的重量匹配问题来设计各层的厚度,使得设置在底板上的色段模块在整个底板的范围内重量均匀,从而避免整个波长转换装置在作为色轮旋转时对旋转轴造成过大的磨损等问题。
蓝色段模块104的主要功能是将入射的蓝色激发光散射和反射,因此其具有仅包括基板204和漫反射层304的两层结构。由于模块104只有2层结构,为了与其他具有三层结构的模块保持厚度相同需要将基板204加厚或者漫反射层304加厚。
由于蓝色段模块需要对蓝光具有高反射率,同时也要使得该模块与其他具有三层结构的模块的厚度相匹配,因此在本实施例中采用的方式是将漫反射层加厚。此外,由于厚度增加会对结构有更高的要求,因此漫反射层304层选用的工艺与其他模块的漫反射层工艺有所不同。需要说明的是,在其他实施方式中,为保持蓝色段模块与其他发光模块的厚度相匹配,也可以将基板204加厚。
在蓝色段模块中,由于蓝光的发热率很低,因此受到热效应的影响较小,同样可以根据成本和工艺的考虑选择热导率低的蓝宝石基板或者其他低热导率的基板。
在本实施例1中,模块104(蓝色)的制备工艺如下:将氧化铝粉末、玻璃粉4A、有机载体混合均匀后,涂覆于蓝宝石基板之上,厚度优选为120~200μm,在50~150℃温度下预烘干后,在马弗炉中在500-1200℃温度下烧结获得模块104。
在本实施例1中,适量的氧化铝粉末颗粒的粒径大小优选为0.2μm,有机载体优选为硅油,玻璃粉4A的粒径优选为1μm。其中,氧化铝粉末与玻璃粉粉末的质量比优选为3:1~5:1。
需要说明的是,对于上述各模块,本发明并不限于上述具体实施例中的具体数据范围和具体材料等,可以根据模块的具体需要进行改变,该具体需要例如包括散热性能、光学性能、模块各层的热膨胀系数匹配等。
虽然在上文中描述了根据不同色段的发热量等因素选择彼此不同的基板,但各模块101、102、103、104的基板可以是具有相同类型的基板,也可以是两两相同的基板。
虽然在上文中描述了各模块的漫反射层的厚度例如可根据各色段的发热量而选择为彼此各不相同,然而其厚度也可以是相同的。由于漫反射层是一个多孔类型的烧结层,其厚度对漫反射层的导热系数影响最大。因此,基于对于漫反射层的厚度设定,各模块的漫反射层的导热系数可以是相等的,也可以沿着底板的排列依次增大或减小。
另外,在上述针对绿色段模块、黄色段模块和红色段模块的说明中记载了,针对每一不同色段使用不同漫反射层,从而针对具有不同波长范围的光具有最高反射率。然而本发明并不限于此,各色段模块中的漫反射层也可以采用结构和成分完全相同的材料,从而在同一波长下的反射率是相同的。但各漫反射层针对同一波长的光的反射率也可以沿着底板的排列依次升高或降低。
参见上述对于各色段模块的结构和制备过程的描述可知,基于各模块中包括的各玻璃粉的透光率、折射率和热膨胀系数,可以选择使各玻璃粉沿着底板的排列依次增大或减小,但也可以选择使用完全相同的玻璃粉。
对于各模块的烧结工艺主要取决于玻璃粉的软化温度。当选择在各模块中使用不同类型的玻璃粉时,则针对各模块的烧结工艺自然也是不同的。
参见图3,在底板105表面的凹槽底部例如涂覆导热粘接胶水等粘结剂,然后将各模块101、102、103和104拼装在底板105的一侧表面,经过50℃温度下的预固化,再经过150℃温度下的固化过程,从而得到模块式的波长转换装置100。
如图6所示,为了增强波长转换装置的散热效果,底板105的背面可增加散热鳍片。例如,底板背面具有散热鳍片,该散热鳍片可形成为具有弯曲弧度的薄片,多个该散热鳍片以一定间隔沿着底板背面的圆周布置,如图6中散热鳍片105a所示。
然而,该散热鳍片的形状和布置也可以设置为其他形式,例如散热鳍片具有平板状、波浪形等等。
在上述实施例1中提供了一种波长转换装置100,其包括四个模块101、102、103、104,但本发明中另一实施例的波长转换装置可以包括具有四个以上颜色的更多个模块。
例如,图7是示出了本发明实施例2中波长转换装置的俯视图。该实施例2中的波长转换装置可包括七个模块,具体来说,包括2个黄色段模块,2个红色段模块,2个绿色段模块和1个蓝色段模块,然后将各颜色的模块交替组装,使得该七个色段模块形成RGRGYBY的颜色顺序。
如图7所示,红色段模块R1和R2的相对于圆盘状底板105的轴心的角度(在下文中简称为角度)是相同的,但本发明不限于此,即红色段模块R1和R2的角度也可以是不同的。当红色段模块R1和R2的角度相同时,其角度为如图1中所示情况下(即波长转换装置包括四个波长转换模块RGBY的情况下)的红色段模块的角度的一半。
此外,图7中所示的绿色段模块G1、G2的角度和黄色段模块Y1、Y2的角度分别具有与红色段模块R1、R2相同的上述特性。
例如,在另一实施例中,整个波长转换装置100还可包括RGYBRG六个模块。
无论是如图7所示的实施例2还是包括六个模块的波长转换装置,其各色段的制造工艺与实施例1中相同。
在本发明中,构成各波长转换模块的基板可以是具有相同类型的基板,也可以是两两相同的基板,也可以是各自不同的基板。根据实际需要来选定各波长转换模块需要的基板,该实际需要可包括模块的散热性能、光学性能、模块各层的热膨胀系数匹配。
除了采用陶瓷基板作为波长转换模块中的基板,还可以采用金属材料。与金属材料的基板相匹配的是具有使用硅胶作为粘结剂的硅胶体系的漫反射层和发光层。当各基板的材料和类型两两相同或彼此不同时,可以使得其中的至少一块基板选用陶瓷/单晶基板,剩余的基板选择金属基板。
在上述内容中记载了根据各模块的玻璃粉和基板的热膨胀系数选择匹配的玻璃粉和基板,也可以根据散热性能来选择各模块的基板。根据上述实施例中考虑到散热性能来选择各色段模块对应的基板可以看出,在激发光的照射下发出的反射光波长越长,该模块中选用的基板的热导率系数越高。
各模块中的基板也可以根据实际需要选用同一种厚度,或者不同的厚度。这个实际需要主要是指各模块由于采用不同材质而导致的重量匹配问题、以及虽然各模块的结构层数不同但期望发光面的平面平齐的问题等。
此外,各模块的漫反射层可以采用结构和成分完全相同的漫反射层,也可以根据实际需要选择不同的漫反射层,其主要区别在于反射粒子的类型和用量。
在本发明中采用可在底板上拼接的波长转换模块,这样的构造使得各模块能够分别选择各自的基板以及与其匹配的玻璃粉、荧光粉,并进行单独烧结制备工艺。这样能够使得各模块获得更高的性能以及成品率。然后再选取合适的波长转换模块进行拼接并封装,使得整个波长转换装置的工艺制程简单,良品率高。
根据本发明中模块化的波长转换装置,每个模块都可以进行单独的设计和制备,并分别选用合适且相匹配的基板、玻璃粉和荧光粉,能够在拼接波长转换模块时选择各种类型波长转换模块的组合,使得波长转换装置的组装更灵活方便,且各波长转换装置的设计以及制备工艺能够对于各色段模块的需求具有针对性,从而能够提高各模块的性能。
本领域技术人员应当理解,依据设计要求和其他因素,可以在本发明随附的权利要求或其等同物的范围内进行各种修改、组合、次组合以及改变。
 

Claims (10)

  1. 一种波长转换装置,其包括:
    底板;
    至少一个波长转换模块,其用于将激发光转换为出射光,所述出射光的波长不同于所述激发光的波长;以及
    至少一个光反射模块,其用于反射所述激发光,
    其中,至少一个所述波长转换模块和至少一个所述光反射模块拼装在所述底板的一侧表面上,
    其中,所述波长转换模块包括从所述底板依次层叠的基板、漫反射层和发光层,所述光反射模块包括从所述底板依次层叠的基板和漫反射层,所述波长转换模块中的所述漫反射层和所述发光层与所述光反射模块中的所述漫反射层都包含玻璃粉,
    其中,至少一个所述波长转换模块中的所述基板与其他波长转换模块以及所述光反射模块中的所述基板的材料不同,
    其中,在所述波长转换模块或所述光反射模块中,所述玻璃粉的膨胀系数越高,对应的所述基板的膨胀系数越高。
     
  2. 根据权利要求1所述的波长转换装置,其中,在所述波长转换模块中,反射光的波长越长,所述波长转换模块的发热量越高,所述波长转换模块中的漫反射层的厚度越小。
     
  3. 根据权利要求1所述的波长转换装置,其中,在所述波长转换模块中,反射光的波长越长,所述波长转换模块的发热量越高,所述波长转换模块中的基板的热导率系数越高。
     
  4. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,在至少一个所述波长转换模块中,所述漫反射层中的所述玻璃粉为第一玻璃粉,所述发光层中的所述玻璃粉为第二玻璃粉,所述第一玻璃粉和所述第二玻璃粉的热膨胀系数约为3.0×10 -6/℃,且至少一个所述波长转换模块中的所述基板为陶瓷基板。
     
  5. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,在至少一个所述波长转换模块中,所述玻璃粉的热膨胀系数大于5.0×10 -6/℃,且所述基板的热膨胀系数不小于5.0×10 -6/℃。
     
  6. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,至少一个所述波长转换模块中的所述基板为陶瓷基板或单晶基板。
     
  7. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,至少一个所述波长转换模块中的所述基板为陶瓷基板,所述陶瓷基板为氧化铝基板、蓝宝石基板、氮化铝基板、氮化硅基板、碳化硅基板、氮化硼基板或者氧化铍基板。
     
  8. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,所述波长转换模块中的所述基板和所述光反射模块中的所述基板彼此不同;或者
    所述波长转换模块的所述基板与所述光反射模块的所述基板中的至少两个所述基板相同。
     
  9. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,所述波长转换模块和所述光反射模块的厚度相同。
     
  10. 根据权利要求1-3中任一权利要求所述的波长转换装置,其中,所述波长转换模块包括黄色段模块、红色段模块和绿色段模块,所述绿色段模块中的所述漫反射层对波长为510~520nm的光的反射率高于对其他波长范围的光反射率,所述黄色段模块中的所述漫反射层对波长为540nm~580nm的光的反射率高于对其他波长范围的的光的反射率,所述红色段模块中的所述漫反射层对波长为580~650nm的光的反射率高于对其他波长范围的光的反射率。
     
     
PCT/CN2018/071412 2017-10-10 2018-01-04 波长转换装置 WO2019071865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936096.6A CN109654391B (zh) 2017-10-10 2017-10-10 波长转换装置
CN201710936096.6 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071865A1 true WO2019071865A1 (zh) 2019-04-18

Family

ID=66100352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071412 WO2019071865A1 (zh) 2017-10-10 2018-01-04 波长转换装置

Country Status (2)

Country Link
CN (1) CN109654391B (zh)
WO (1) WO2019071865A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390821A1 (en) * 2021-06-04 2022-12-08 Coretronic Corporation Wavelength conversion module and projection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856863B (zh) 2019-04-30 2022-06-24 中强光电股份有限公司 波长转换模块、波长转换模块的形成方法、照明系统以及投影装置
CN113970872A (zh) 2020-07-24 2022-01-25 中强光电股份有限公司 波长转换元件及投影机
CN215297926U (zh) 2021-07-26 2021-12-24 中强光电股份有限公司 波长转换模块与投影装置
CN114296166A (zh) * 2021-12-03 2022-04-08 中山大学 一种反射转轮装置及其在激光散斑消除中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138020A1 (en) * 2011-04-04 2012-10-11 Lg Electronics Inc. Light source apparatus and method for manufacturing the same
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104566230A (zh) * 2013-10-15 2015-04-29 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105716039A (zh) * 2016-04-12 2016-06-29 杨阳 光转换装置及其制备方法和应用
CN205720746U (zh) * 2016-04-22 2016-11-23 深圳市绎立锐光科技开发有限公司 一种反射装置及相关波长转换装置、色轮和光源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243624A (ja) * 2011-05-20 2012-12-10 Stanley Electric Co Ltd 光源装置および照明装置
CN106195924B (zh) * 2013-06-08 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置及其制作方法、相关发光装置
CN106287580A (zh) * 2015-06-02 2017-01-04 深圳市光峰光电技术有限公司 波长转换装置及其制备方法、相关发光装置和投影系统
JP2017111176A (ja) * 2015-12-14 2017-06-22 セイコーエプソン株式会社 波長変換素子、照明装置、プロジェクター、および波長変換素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138020A1 (en) * 2011-04-04 2012-10-11 Lg Electronics Inc. Light source apparatus and method for manufacturing the same
CN203489181U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 色轮及其光源系统、投影系统
CN104566230A (zh) * 2013-10-15 2015-04-29 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN105278225A (zh) * 2014-07-21 2016-01-27 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105716039A (zh) * 2016-04-12 2016-06-29 杨阳 光转换装置及其制备方法和应用
CN205720746U (zh) * 2016-04-22 2016-11-23 深圳市绎立锐光科技开发有限公司 一种反射装置及相关波长转换装置、色轮和光源系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390821A1 (en) * 2021-06-04 2022-12-08 Coretronic Corporation Wavelength conversion module and projection device
US11762269B2 (en) * 2021-06-04 2023-09-19 Coretronic Corporation Wavelength conversion module and projection device

Also Published As

Publication number Publication date
CN109654391A (zh) 2019-04-19
CN109654391B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2019071865A1 (zh) 波长转换装置
CN203489181U (zh) 色轮及其光源系统、投影系统
TWI546499B (zh) 一種波長轉換裝置
TWI617874B (zh) Projector with fluorescent wheel and projector lighting device
US20180158995A1 (en) Wavelength coinventor, fluorescent color wheel, and light-emitting device
WO2019104829A1 (zh) 波长转换装置
CN104566229A (zh) 波长转换装置的制造方法
CN110737085B (zh) 波长转换装置
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
JP7271516B2 (ja) 無機結合剤を伴う蛍光体ホイール
JP7369724B2 (ja) 蛍光体照明システムのための反射色補正
WO2020052228A1 (zh) 波长转换装置及光源系统
JP2022069537A (ja) 改良された無機結合剤を伴う光変換デバイス
US11962125B2 (en) Wavelength conversion device and light source system
WO2019153620A1 (zh) 波长转换装置
CN112534314B (zh) 颜色转换元件
WO2019136831A1 (zh) 波长转换装置及其光源
CN109282169B (zh) 波长转换装置、包含其的光源及投影装置
WO2019153638A1 (zh) 波长转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866311

Country of ref document: EP

Kind code of ref document: A1