WO2013000193A1 - 单相超大容量强电流短路试验变压器 - Google Patents

单相超大容量强电流短路试验变压器 Download PDF

Info

Publication number
WO2013000193A1
WO2013000193A1 PCT/CN2011/078734 CN2011078734W WO2013000193A1 WO 2013000193 A1 WO2013000193 A1 WO 2013000193A1 CN 2011078734 W CN2011078734 W CN 2011078734W WO 2013000193 A1 WO2013000193 A1 WO 2013000193A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
core
large capacity
circuit test
current short
Prior art date
Application number
PCT/CN2011/078734
Other languages
English (en)
French (fr)
Inventor
孙树波
方明
冯春玲
Original Assignee
特变电工沈阳变压器集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特变电工沈阳变压器集团有限公司 filed Critical 特变电工沈阳变压器集团有限公司
Publication of WO2013000193A1 publication Critical patent/WO2013000193A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention relates to a current short-circuit test transformer in the technical field of transformer manufacturing, in particular to a single-phase super-capacity high-current short-circuit test transformer for a high-current test station.
  • the short-circuit strength of the transformer is a key indicator to ensure the reliability of the transformer.
  • the voltage level and capacity of transformers continue to increase.
  • the transformer is inevitably subjected to the short-circuit shock caused by the short-circuit of the power grid.
  • the transformer will suffer from an instantaneous short-circuit. A large mechanical force is generated inside the transformer.
  • the transformer designed and manufactured shall have short-circuit resistance to meet the requirements of the power grid.
  • the ultra-large capacity high-current short-circuit test transformer is used as a high-capacity high-voltage transformer for the short-circuit test.
  • the intermediate transformer is used in the high-current test station.
  • the single-phase super-capacity high-current short-circuit test transformer with such performance has not been reported.
  • the technical problem to be solved by the present invention is to provide a safe and reliable single-phase super-large capacity capable of frequently withstanding short-circuit shock.
  • Current short circuit test transformer
  • the technical solution adopted by the present invention is:
  • the invention relates to a single-phase ultra-large capacity high current short-circuit test transformer with a transformer main body, a primary end sleeve, a neutral point sleeve, a secondary head end sleeve, a secondary intermediate A1 sleeve, and a secondary neutral point sleeve.
  • Pipe two oil conservator, upper fuel tank, lower fuel tank, cooling device and tap changer, wherein: two single-phase two-column cores are arranged in the upper fuel tank and the lower fuel tank, and there are four core main columns.
  • Each core main column is respectively provided with windings; two oil storage cabinets are respectively located on both sides of the long axis of the transformer main body, and the connection lines of the two oil conservator centers are parallel to the long axis direction of the transformer, and are hung on both sides of the long axis of the transformer.
  • the cooling device is arranged centrally on the outer side of the upper fuel tank and the lower fuel tank with the secondary casing and the secondary neutral point casing, parallel to the long axis direction of the transformer; one primary end casing and one neutral After the point casing is taken out from the low voltage lead, it is connected to the external power grid; there are a plurality of tap switches, which are respectively located on the high and low voltage sides of the transformer main body.
  • the fuel tank is bell-type; the secondary first-end casing, the secondary intermediate A1 casing, and the secondary neutral point casing are directly drawn from the secondary winding end and the tap changer on the high-pressure side of the upper fuel tank,
  • the secondary head casing, the secondary intermediate A1 casing, and the secondary neutral point casing are all oriented perpendicular to the inclined box cover; the primary end sleeve and the primary neutral sleeve are located on the low pressure side of the upper fuel tank.
  • a primary end bushing, a neutral point bushing is directly connected to the low voltage lead from the low voltage winding.
  • the tap changer is 4-8, located on the high and low voltage sides of the transformer, and connected by different series and parallel connection of the tap changer to output different levels of voltage.
  • the four core main column windings are connected in parallel, and the RI windings and the R II windings in the four core main columns are connected in series or in parallel, and the windings YI located outward in the width direction are outward, and the remaining windings are at the upper and lower ends.
  • the single-phase four-column structure is a two-part transformer closed magnetic circuit composed of two core frames composed of four main columns, two upper yokes, two lower yokes and four side yokes.
  • the core has an upper clamping member, a lower clamping member, an upper clamping member web, a lower clamping member web, an upper beam, a side beam, a footing, an intermediate upper beam, a core threading screw, a beam and an intermediate connecting bolt, and the above components are iron cores Firmly connected as a rigid whole.
  • the four outlets of the primary winding are led in parallel to the outer casing to the grid.
  • the upper part of the transformer main body has an upper pressing plate, and the spring pressing nail on the upper pressing plate is installed in the clamping body limb, and comprises an oil cylinder, an elastic component, a positioning nail, a gland, a pressing nail and a nut, the pressing nail has a nut, and the transformer
  • the upper clamp members are connected, and the lower part of the bolt of the pressing nail is pressed on the elastic member by the gland.
  • the above structure is mounted on the positioning nail in the oil cylinder, and the positioning nail is disposed in the oil cylinder and disposed perpendicularly to the bottom of the oil cylinder.
  • the two core main columns of the two single-phase two-column cores are clamped, and the clamping device comprises I and II column clamps and III, IV column clamps and beams, wherein the I and II columns are clamped.
  • the first high pressure upper clamp member and the first low pressure upper clamp member respectively, and the III and IV column upper clamp members are respectively a second high pressure upper clamp member and a second low pressure upper clamp member, the first high pressure upper clamp member and the second high pressure upper member.
  • Between the clamp members and between the first low pressure upper clamp member and the second low pressure upper clamp member are respectively connected by a cross member to form a rigid integral clamp member.
  • a plurality of fixing plates are reinforcedly connected between the first high pressure upper clamp member and the second high pressure upper clamp member and between the first low pressure upper clamp member and the second low pressure upper clamp member.
  • the two ends of the beam are connecting plates, and the two connecting plates are arranged in parallel and connected by the intermediate reinforcing plate; the intermediate reinforcing plate is a channel-shaped structure which is disposed between the two connecting plates and arranged in parallel and having a spacing.
  • the laminations of the core are provided with holes through which the core can be threaded through the core, and the relative positions of each of the clips are provided with mounting holes for the core threading screws, and the core is clamped by installing a core threading screw on the core.
  • the transformer body has a base that is coupled to the base by insulating pads, insulating gaskets, and bolts with insulation.
  • the invention uses multiple tap-changers to realize voltage output of multiple voltage levels on the secondary side through different series-parallel modes, one (220kV low voltage) casing, neutral point casing, intermediate casing and two
  • the secondary (high pressure) casings are led out perpendicularly to the inclined box cover.
  • the oil conservator is hung on the firewall body on both sides of the long axis of the transformer to fully meet the requirements of the outer insulation distance.
  • the support structure of the oil conservator meets the requirements for on-site installation. .
  • the invention adopts a plurality of tap switches arranged respectively between the phases of the 4-column coils, the lead wires are convenient to be wired, the position is reasonable, and the space inside the fuel tank is fully utilized, the size of the fuel tank is reduced, and the floor space is reduced.
  • the invention utilizes a large-sized through-thread screw on the core clamping structure to ensure the stability of the core in the event of a sudden short circuit.
  • the lower clamp web is a whole structure, the steel property is good, and the upper clamp member is divided into points.
  • the body type is convenient for the operation of the iron core assembly, and then the upper beam and the iron core screw are used to make the upper clamp member a solid whole body, the rigidity of the upper clamp member is ensured, and the structural arrangement is simple.
  • the body pressing device of the invention uses a spring pressing nail structure, which is a key part of the body insulation. Since the transformer is frequently subjected to short-circuit impact, it is guaranteed in the axial direction every moment. Reliable compression, the ordinary nail can not be effectively pressed when the axial height of the body changes. After the spring is pressed, the butterfly spring can be used to ensure the body height regardless of the axial height of the body. Being effectively pressed.
  • the invention can be used for testing and verifying the transformer with short circuit resistance. It is a super large capacity high current short circuit test transformer, which provides a great opportunity for China to vigorously develop a high voltage and large capacity safe and reliable power grid and ensure the safe and stable operation of the power grid. Strong technical support.
  • Figure 1 is a front view of the transformer of the present invention
  • Figure 2 is a left side view of Figure 1;
  • Figure 3 is a plan view of Figure 1;
  • FIG. 4 is a schematic structural view of a core and upper and lower clips in the present invention.
  • Figure 5 is a left side view of Figure 4.
  • Figure 6 is a partial enlarged view of the portion V in Figure 5;
  • Figure 7 is a plan view of Figure 4.
  • Figure 8 is a schematic view showing the structure of the beam connecting member and the spring pressing nail on the core of the present invention.
  • Figure 9 is a structural view of a spring pin;
  • Figure 10 is a schematic diagram of the wiring of the present invention.
  • Figure 11 is a schematic view of the lead connection
  • Figure 12 is a schematic view showing the connection of the lead and the sleeve
  • Figure 13 is a schematic view showing the installation of the middle upper beam
  • Figure 14 is a schematic view showing the structure of the intermediate beam
  • Figure 15 is a schematic view showing the structure of the middle upper beam
  • Figure 16 is a schematic view of the overall assembly of the end insulation
  • Figure 17 is a schematic view showing the fixing of the overall mounting base.
  • the transformer of the invention is a super-capacity high-current short-circuit test transformer for verifying and verifying the short-circuit resistance of the transformer.
  • the single-phase ultra-large capacity high-current short-circuit test transformer of the present invention has a transformer main body 1, a primary end sleeve 2, a neutral point sleeve 3, a secondary head end sleeve 4, and a secondary intermediate A1 sleeve 5, secondary neutral point sleeve 6, double oil storage cabinet 7, lower fuel tank 8, upper fuel tank 9, cooling device 10 and tap changer 11, upper fuel tank 9 and lower fuel tank 8 are arranged
  • Two single-phase two-column (double-mouth) cores have four iron core main columns, and each core main column is respectively provided with RII winding, ⁇ winding, RI winding and YI winding.
  • the Y I and Y II windings are connected in parallel, the R I winding is connected in series with the RII winding, the outer winding is in the forward direction, and the remaining windings are all at the upper and lower ends, and the casing is introduced through the cable.
  • Two oil conservators 7, respectively, are located on both sides of the long axis of the transformer main body 1 and are suspended from the walls of the two fire walls.
  • the fuel tank is a bell-type type, and the secondary casing is directly drawn from the secondary winding end and the tap changer 11 (1#) on the high-voltage side of the upper fuel tank 9, and the secondary casing is led out and the vertical line is 30. °, perpendicular to the slanted box cover.
  • the secondary neutral point sleeve 6 is taken at 30° on the high pressure side and the vertical line; the primary sleeve is located on the low pressure side of the upper fuel tank 9, and the primary sleeve is directly connected to the low voltage lead drawn from the low voltage winding.
  • the cooling device 10 is arranged centrally on the high pressure side, that is, the upper fuel tank 9 and the lower fuel tank 8 have the outer side of the secondary head bushing 4 and the secondary neutral bushing 6 side, parallel to the long axis direction of the transformer body, Save installation space on the premise of ensuring heat dissipation.
  • a primary end sleeve 2, a neutral point sleeve 3 is connected from the low voltage lead, and connected to the external grid overhead line; a secondary head end sleeve 4, a secondary neutral point sleeve 6
  • the power is supplied to the outside; as shown in Fig. 10, the four core main columns YI and Y II are connected in parallel, the RI winding is connected in series with the RII winding, the outer winding is in the forward direction, and the remaining windings are in the upper and lower directions.
  • the sleeve is introduced through the cable.
  • the tap changer 11 of the present embodiment uses a large-scale off-circuit tap-changer, which is located on the high and low-voltage sides of the transformer, four on each side, for a total of eight. Thirty-six different output voltages are achieved by connecting different series and parallel connections of eight switches.
  • two single-phase two-column cores 17 are single-phase four-column structures composed of two square-shaped iron cores, four main columns, two upper yokes and two lower yokes forming two single frames.
  • the transformer closes the magnetic circuit.
  • the above single-phase four-column structure adopts
  • the clamping device comprises I, II column upper clamping members 12 and III, IV column upper clamping member 20 and beam 23 (Fig. 14), wherein the I and II column upper clamping members 12 are respectively the first high pressure upper clamping members.
  • first low pressure upper clamping member, the third and fourth column upper clamping members 20 are respectively a second high pressure upper clamping member and a second low pressure upper clamping member, between the first high pressure upper clamping member and the second high pressure upper clamping member and A low pressure upper clamp member and a second low pressure upper clamp member are respectively connected by a beam 23 to form a rigid integral clamp member; between the first high pressure upper clamp member and the second high pressure upper clamp member and the first low pressure upper clamp member and The second low-pressure upper clips are reinforced by a plurality of fixing plates; the two ends of the beam 23 are connecting plates, and the two connecting plates are arranged in parallel and connected by the intermediate reinforcing plates; the intermediate reinforcing plates are disposed between the two connecting plates, and are opposite Parallel arrangement and spacing of the channel-shaped structure; the laminations of the core are provided with holes through the core threading screw 21, and the relative positions of each of the clamping members are provided with mounting holes of the core threading screw 21, through the core 17 The core screw 21 is mounted on the upper core to clamp
  • the core main column has I, II column upper clamping member 12, lower clamping member 15, III, IV column upper clamping member 20, upper clamping member web, lower clamping member web, upper beam 13, side beam 14.
  • the footer 16 the intermediate upper cross member 19, the core threading screw 21, the cross member 23, and the intermediate connecting bolt 24 (shown in Figure 13).
  • the upper clamp webs are respectively provided for each of the single-frame iron core high and low pressure side clamp members, and the split clamp members are fixed into a steel whole by the cross beam 23 and the iron core pull plate.
  • the lower clamp member 15 has a unitary structure for ensuring the clamping of the core piece, the lifting of the body (through a plurality of clamps 18 disposed on the upper clamp member), and the mechanical strength under compression and short-circuit conditions.
  • the core 17 has an upper clamp member, a lower clamp member, an upper clamp member web, a lower clamp member web, an upper beam 13, a side member 14, a footrest 16, an intermediate upper cross member 19 (Fig. 15), a core threading screw 21, and a beam. 23 and the core bolt 24, each of the above components firmly connects the core 17 to a rigid whole.
  • the upper portion of the transformer main body 1 has a body pressing plate, that is, an upper pressing plate 32.
  • the spring pressing nail 22 on the upper pressing plate 32 is mounted in the clamping member plate and pressed against the upper pressing plate 32, which is effective at all times. Press the body.
  • the spring pin 22 includes a cylinder 2206, an elastic member 2207, a positioning pin 2208 gland 2204, a pressing pin 2202, and a nut 2203.
  • the pressing pin 2202 has a nut 2203 connected to the upper clamping member 2201 of the transformer, and the lower portion of the bolt of the pressing pin 2202
  • the structure is mounted on the positioning member 2208 in the cylinder 2206, the positioning pin 2208 is disposed in the cylinder 2206, perpendicular to the bottom of the cylinder 2206; in this embodiment, the elastic member is a disc spring 2207; A nail pad is provided at the bottom of the cylinder 2207.
  • the spring pin 22 can still effectively compress the transformer coil after the shrinkage of the insulating member and the spacer in the coil of the transformer or the end insulation, and can provide a reliable pressing force when the transformer is short-circuited to generate a large axial force. Thereby, the axial rotation of the transformer coil can be prevented, the safe and normal operation of the transformer and the short circuit resistance can be improved.
  • the lead structure is connected to a plurality of tap-changers 11 by means of cables and special connectors.
  • the secondary coils can be combined in series or in series to form a plurality of different voltage levels.
  • eight tap switches are used to form 36 different voltage levels.
  • Figure 16 shows the overall assembly of the end insulation 25.
  • the transformer main body 1 is the end insulation 25 in the body divided into eight ends.
  • the whole assembly is integrally pressurized, and the end ring is subjected to multiple times of multiple times of pressure treatment, and the applied pressure ensures the design height.
  • the spacers insulated at the ends of the layers are aligned and the openings are in the same direction. This ensures the height balance and concentricity of the end insulation.
  • the end positive angle ring 27 and the end angle ring 26 are used to increase the level of insulation at the ends, reducing the end insulation distance and increasing the end creep distance.
  • FIG 17 is a schematic view showing the fixing of the overall mounting base.
  • the overall mounting base 28 is isolated from the foundation of the transformer body 1 by the overall mounting base 28, the insulating mat 31, the insulating gasket 30, and the insulated bolts 29.
  • the overall mounting base 28 is connected to the base, and then the transformer body 1 is grounded through the tank wall.
  • the grounding copper busbar is reliably grounded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

一种单相超大容量强电流短路试验变压器,包括上节油箱(9)和下节油箱(8)。在上节油箱和下节油箱内设置两个单相二柱式铁心(17),共有四个铁心主柱,每个铁心主柱上分别套设有绕组。两个储油柜(7)分别位于变压器主体(1)长轴两侧上方,两个储油柜的中心的连线平行于变压器长轴方向,挂在变压器长轴两侧的防火墙上。冷却装置(10)集中布置在上节油箱和下节油箱具有二次首端套管(4)和二次中性点套管(6)一侧的外侧。一次首端套管(2)和一次中性点套管(3)从低压引线引出后与外部电网相连。多个分接开关(11)分别位于变压器主体的高、低压两侧。该单相超大容量强电流短路试验变压器用于对具有抗短路能力的变压器进行试验验证,为发展高电压大容量安全可靠的电网、保证电网安全和稳定运行提供技术支撑。

Description

单相超大容量强电流短路试验变压器 技术领域
本发明涉及一种变压器制造技术领域中的电流短路试验变压器, 具体地说是一种 用于强电流试验站的单相超大容量强电流短路试验变压器。
背景技术
变压器的短路强度是保证变压器可靠性的关键指标。 随着我国电力事业的逐渐发 展, 变压器电压等级和容量不断增大。 在系统运行中, 由于各种偶然因素的存在, 要 想完全杜绝短路故障的发生是不可能的, 变压器不可避免地要承受电网短路等情况下 所引起的短路冲击, 变压器遭受瞬间短路时会在变压器内部产生很大的机械作用力。变 压器制造厂为确保变压器能够承受标准规定的短路故障所引起的冲击, 设计制造的变 压器应具有满足电网要求的抗短路能力。 超大容量强电流短路试验变压器做为大容量 高电压变压器做短路试验用的中间变压器应用于强电流试验站中, 而目前, 具备 这种性能的单相超大容量强电流短路试验变压器尚未见报道。
发明内容
针对现有技术中做为大容量高电压变压器做短路试验用的中间变压器尚未见 报道的不足,本发明要解决的技术问题是提供一种能够频繁承受短路冲击的安全可靠的 单相超大容量强电流短路试验变压器。
为解决上述技术问题, 本发明采用的技术方案是:
本发明一种单相超大容量强电流短路试验变压器具有变压器主体、 一次首端套管、 一次中性点套管、 二次首端套管、 二次中间 A1套管、 二次中性点套管、 两个储油柜、 上节油箱、 下节油箱、 冷却装置以及分接开关, 其中: 上节油箱和下节油箱内设置两 个单相二柱式铁心, 共有四个铁心主柱, 每个铁心主柱上分别套置有绕组; 两个储油柜 分别位于变压器主体长轴两侧上方, 两个储油柜中心的连线平行于变压器长轴方向, 挂 在变压器长轴两侧的防火墙上; 冷却装置集中布置在上节油箱和下节油箱具有二次套管 和二次中性点套管一侧的外侧, 与变压器长轴方向平行; 一次首端套管和一次中性点套 管从低压引线引出后, 与外部电网相连; 分接开关为多个, 分别位于变压器主体的高低 压两侧。
油箱为钟罩式; 二次首端套管、二次中间 A1套管、二次中性点套管在上节油箱的高 压侧, 直接从二次绕组端部和分接开关中引出, 二次首端套管、 二次中间 A1套管、 二次 中性点套管引出方向均为垂直于斜箱盖; 一次首端套管、 一次中性点套管位于上节油箱 的低压侧, 一次首端套管、 一次中性点套管直接与低压绕组出头引出的低压引线连接。
所述分接开关为 4-8个,位于变压器的高低压侧,通过分接开关的不同串并联连接, 输出不同等级的电压。
所述四个铁心主柱绕组并联连接, 四个铁心主柱中的 R I绕组 及 R II绕组为串联 连接或并联连接, 在幅向上位于外部的绕组 YI幅向出头, 其余绕组均在上下端部出头。 所述单相四柱结构为由两个铁心框组成四个主柱、 两个上轭、 两个下轭和四个旁轭构成 的两个单独变压器闭合磁路。 铁心具有上夹件、 下夹件、 上夹件腹板、 下夹件腹板, 上 梁、 侧梁、 垫脚、 中间上横梁、 铁心穿心螺杆、 横梁以及中间连接螺栓, 上述各部件将铁 心牢固地连接为一刚性整体。 一次绕组的四个出头平行引出到外部套管接到电网上。 所 述变压器主体的上部具有上压板,该上压板上的弹簧压钉安装在夹件肢板中,包括油缸、 弹性部件、 定位钉、 压盖、 压钉以及螺母, 压钉具有螺母, 与变压器上夹件肢板相连, 压钉的螺栓下段通过压盖压在弹性部件上, 上述结构安装在油缸内的定位钉上, 定位钉 在油缸内, 与油缸底部垂直设置。 两个单相二柱式铁心的四个铁心主柱采用夹紧装置, 该夹紧装置包括 I、 II柱上夹 件和 III、 IV柱上夹件以及横梁, 其中 I、 II柱上夹件分别为第一高压上夹件和第一低压 上夹件, III、 IV柱上夹件分别为第二高压上夹件和第二低压上夹件, 第一高压上夹件和 第二高压上夹件之间以及第一低压上夹件和第二低压上夹件之间分别通过横梁连接, 形 成刚性的整体夹件。
所述第一高压上夹件和第二高压上夹件之间以及第一低压上夹件和第二低压上夹 件之间通过多个固定板加固连接。
所述横梁的两端为连接板, 两连接板平行设置, 通过中间加强板连接; 中间加强板 为设于两连接板之间、 相对平行设置且具有间距的槽钢形结构。
铁心的叠片设有可通过铁心穿心螺杆的孔,每个夹件的相对位置均设有铁心穿心螺 杆的安装孔, 通过在铁心上安装铁心穿心螺杆夹紧铁心。
所述变压器主体具有底座, 通过绝缘垫板、 绝缘垫圈及带绝缘的螺栓将底座与基 础相连。
本发明具有以下有益效果及优点:
1 . 本发明运用多个分接开关通过不同的串并联方式, 实现二次侧提供多种电压等 级的电压输出, 一次 (220kV低压)套管、 中性点套管、 中间套管及两个二次 (高压) 套管均垂直于斜箱盖引出, 储油柜挂于变压器长轴方向的两侧防火墙体上, 充分满足 外绝缘距离要求, 同时使储油柜的支撑结构满足现场安装要求。
2. 本发明采用多个分接开关分别布置在 4柱线圈的相间, 引线接线方便, 位置合 理, 并充分利用油箱内空间, 缩小油箱尺寸, 减小占地面积。
3. 本发明在铁心夹紧结构上运用大规格的穿心螺杆, 可保证铁心在突发短路时的 稳定性, 下夹件腹板为整体结构, 钢性好, 上夹件腹板为分体式, 便于铁心装配的操 作, 然后运用上横梁及铁心螺杆使上夹件成为坚固整体, 保证上夹件的钢性, 而且结 构布置简单。
4. 本发明的器身压紧装置运用弹簧压钉结构, 此弹簧压钉装置是器身绝缘的关键 部位, 由于本变压器要频繁承受短路冲击, 在轴向上要每时每刻都保证有可靠的压紧, 普通的压钉在器身轴向高度发生变化时不能有效压紧, 采用弹簧压钉后在蝶形弹簧的 作用下, 无论器身轴向高度怎样变化, 都能保证器身被有效的压紧。
5. 本发明可为具有抗短路能力的变压器进行试验验证用, 是一种超大容量强电 流短路试验变压器, 为我国大力发展高电压大容量安全可靠的电网、 保证电网的安全 和稳定运行提供了有力的技术支撑。
6. 本发明的研发成功, 在单相超大容量的强电流突发短路试验变压器绕组、 器身 抗短路能力、 多种电压输出等方面的研究有了较大的突破, 可以推动国内短路试验变 压器行业的发展, 满足了我国坚强、 安全电网建设的需求。
附图说明
图 1为本发明变压器主视图;
图 2为图 1的左视图;
图 3为图 1的俯视图;
图 4为本发明中铁心及上下夹件结构示意图;
图 5为图 4的左视图;
图 6为图 5中 V处的局部放大图;
图 7为图 4的俯视图;
图 8为本发明中铁心上夹件横梁连接及弹簧压钉布置的结构示意图;
图 9为弹簧压钉的结构图; 图 10为本发明的接线原理图;
图 11为引线连接示意图;
图 12为引线与套管连接示意图;
图 13为中间上横梁安装示意图;
图 14为中间横梁结构示意图;
图 15为中间上横梁结构示意图;
图 16为端绝缘整体装配示意图;
图 17为总体安装底座固定示意图。
其中: 1为变压器主体; 2为一次首端套管、 3为一次中性点套管、 4为二次首端套 管、 5为二次中间 A1套管、 6为二次中性点套管、 7为储油柜; 8为下节油箱; 9为上节 油箱; 10为冷却装置; 11为分接开关; 12为 I、 II柱上夹件; 13为上梁; 14为侧梁; 15 为下夹件; 16为垫脚; 17为铁心; 18为夹件吊拌; 19为中间上横梁; 20为 III、 IV柱上 夹件; 21为铁心穿心螺杆; 22为弹簧压钉; 23为横梁; 24为中间连接螺栓; 25为端绝缘; 26为反角环; 27为正角环; 28为总体安装底座; 29为螺栓; 30为绝缘垫圈; 31为绝缘 垫板; 32为上压板; 2201为上夹件肢板; 2202为压钉; 2203为螺母; 2204为压盖; 2205 为销子; 2206为油缸; 2207为碟形弹簧; 2208为定位钉。
具体实施方式
下面结合说明书附图对本发明作进一步阐述。
本发明的变压器就是保证验证变压器抗短路能力进行试验验证用的超大容量强电 流短路试验变压器。
如图 1〜3所示, 本发明单相超大容量强电流短路试验变压器具有变压器主体 1、 一 次首端套管 2、 一次中性点套管 3、 二次首端套管 4、 二次中间 A1套管 5、 二次中性点 套管 6、 双储油柜 7、 下节油箱 8、 上节油箱 9、 冷却装置 10以及分接开关 11, 上节油 箱 9和下节油箱 8内设置两个单相二柱式 (双口字)铁心, 共有四个铁心主柱, 每个铁 心主柱上分别套有 RII绕组、 Υ Π绕组、 R I绕组、 Y I绕组。 Y I、 Y II绕组并联连接, R I绕组与 RII绕组串联连接, 外绕组幅向出头, 其余绕组均在上下端部出头, 通过电 缆引入套管。 两只储油柜 7, 分别位于变压器主体 1长轴方向的两侧, 悬挂于两个防火 墙的墙体上。
油箱为钟罩式, 二次套管在上节油箱 9的高压侧, 直接从二次绕组端部和分接开关 11 ( 1#) 中引出, 二次套管引出方向与铅垂线成 30°, 垂直于斜箱盖。 二次中性点套管 6位 于高压侧与铅垂线成 30°引出; 一次套管位于上节油箱 9的低压侧, 一次套管直接与低压 绕组出头引出的低压引线连接。
冷却装置 10集中布置在高压侧, 即上节油箱 9和下节油箱 8具有二次首端套管 4 和二次中性点套管 6—侧的外侧, 与变压器主体长轴方向平行, 在保证散热效果的前提 下节省安装空间。
如图 11、 12所示, 一次首端套管 2、 一次中性点套管 3从低压引线引出后, 与外部 电网架空线相连; 二次首端套管 4、 二次中性点套管 6从高压引线引出后, 向外部提供 电源; 如图 10所示, 四个铁心主柱 Y I、 Y II绕组并联连接, R I绕组与 RII绕组串 联连接, 外绕组幅向出头, 其余绕组均在上下端部出头, 通过电缆引入套管。
如图 11所示, 本实施例分接开关 11采用大型无励磁分接开关, 分别位于变压器的 高、 低压侧, 每侧各四只, 共八只。 通过八只开关的不同串并联连接, 实现三十六种不 同的输出电压。
如图 4〜7所示, 两个单相二柱式铁心 17即单相四柱结构, 由两个口字铁心组成, 四个主柱, 两个上轭和两个下轭构成两个单框变压器闭合磁路。 上述单相四柱结构采用 夹紧装置,该夹紧装置包括 I、 II柱上夹件 12和 III、 IV柱上夹件 20以及横梁 23 (图 14), 其中 I、 II柱上夹件 12分别为第一高压上夹件和第一低压上夹件, III、 IV柱上夹件 20 分别为第二高压上夹件和第二低压上夹件,第一高压上夹件和第二高压上夹件之间以及 第一低压上夹件和第二低压上夹件之间分别通过横梁 23连接, 形成刚性的整体夹件; 第一高压上夹件和第二高压上夹件之间以及第一低压上夹件和第二低压上夹件之间通 过多个固定板加固连接; 横梁 23 的两端为连接板, 两连接板平行设置, 通过中间加强 板连接; 中间加强板为设于两连接板之间、 相对平行设置且具有间距的槽钢形结构; 铁 心的叠片设有可通过铁心穿心螺杆 21 的孔, 每个夹件的相对位置均设有铁心穿心螺杆 21的安装孔, 通过在铁心 17上安装铁心穿心螺杆 21夹紧铁心 17。
本实施例中, 铁心主柱具有 I、 II柱上夹件 12、 下夹件 15、 III、 IV柱上夹件 20、 上 夹件腹板、 下夹件腹板, 上梁 13、 侧梁 14、 垫脚 16、 中间上横梁 19、 铁心穿心螺杆 21、 横梁 23以及中间连接螺栓 24 (如图 13所示)。上夹件腹板为每个单框铁心高低压侧夹件 分别各设一块, 再通过横梁 23、 铁心拉板将分体的夹件固定成一个钢性整体。 下夹件 15为整体结构, 以此来保证铁心片的夹紧、器身起吊(通过多个设于上夹件上的夹件吊 拌 18)、 压紧及短路状态下的机械强度。
铁心 17具有上夹件、 下夹件、 上夹件腹板、 下夹件腹板, 上梁 13、 侧梁 14、 垫脚 16、 中间上横梁 19 (图 15 )、 铁心穿心螺杆 21、 横梁 23以及铁心螺栓 24, 上述各部件将 铁心 17牢固地连接为一刚性整体。
如图 8、 9所示, 变压器主体 1的上部具有器身压板即上压板 32, 该上压板 32上的 弹簧压钉 22安装在夹件肢板中, 压在上压板 32上, 时时有效的压紧器身。 该弹簧压钉 22包括油缸 2206、 弹性部件 2207、 定位钉 2208压盖 2204、 压钉 2202以及螺母 2203, 压钉 2202具有螺母 2203, 与变压器上夹件肢板 2201相连, 压钉 2202的螺栓下段通过 压盖 2204压在弹性部件上,上述结构安装在油缸 2206内的定位钉 2208上,定位钉 2208 在油缸 2206内, 与油缸 2206底部垂直设置; 本实施例中弹性部件采用碟形弹簧 2207; 油缸 2207内底部设有压钉垫块。
弹簧压钉 22在变压器的线圈中或端绝缘中的绝缘件和垫块存在收缩后仍能对变压 器线圈有效压紧, 在变压器发生短路而产生巨大轴向力时也可 提供可靠压紧力, 从而 可防止变压器线圈轴向窜动, 保证变压器的安全正常运行和提高抗短路能力。
引线结构形式为采用电缆及特殊接头与多个分接开关 11 连接。 通过连接, 使二次 线圈可串可并或串并结合,以此构成多种不同的电压等级,本实施例采用 8个分接开关, 可构成 36种不同的电压等级。
图 16为端绝缘 25整体装配。 变压器主体 1即器身中的端绝缘 25分成八个端绝缘 整体装配进行整体加压,端圈经过多次干燥多次加压处理,所加压力确保设计要求高度。 各层端绝缘的垫块对正, 且开口在同一方向。 以此保证端绝缘高度平衡和同心度。
端部正角环 27和端部反角环 26用于提高端部的绝缘水平, 可缩小端绝缘距离和增 加端部爬距。
图 17为总体安装底座固定示意图。 通过总体安装底座 28、 绝缘垫板 31、 绝缘垫圈 30及带绝缘的螺栓 29将总体安装底座 28与变压器主体 1地基隔离, 总体安装底座 28 与基础相连, 然后变压器主体 1通过油箱壁上的接地座经接地铜排可靠接地。

Claims

权 利 要 求 书
1.一种单相超大容量强电流短路试验变压器, 其特征在于: 具有变压器主体(1 )、 一次首端套管 (2)、 一次中性点套管 (3)、 二次首端套管 (4)、 二次中间 A1套管 (5)、 二次中性点套管(6)、 两个储油柜(7)、 上节油箱(9)、 下节油箱(8)、 冷却装置(10) 以及分接开关 (11 ), 其中:
上节油箱 (9) 和下节油箱 (8) 内设置两个单相二柱式铁心 (17), 共有四个铁心 主柱, 每个铁心主柱上分别套置有绕组;
两个储油柜 (7) 分别位于变压器主体 (1 ) 长轴两侧上方, 两个储油柜 (7) 中心 的连线平行于变压器长轴方向, 挂在变压器长轴两侧的防火墙上;
冷却装置 (10) 集中布置在上节油箱 (9) 和下节油箱 (8) 具有二次套管 (4) 和 二次中性点套管 (6) —侧的外侧, 与变压器长轴方向平行;
一次首端套管 (2) 和一次中性点套管 (3) 从低压引线引出后, 与外部电网相连; 分接开关 (11 ) 为多个, 分别位于变压器主体 (1 ) 的高低压两侧。
2. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 油箱为钟罩式; 二次首端套管 (4)、 二次中间 A1套管 (5)、 二次中性点套管 (6) 在上节油箱 (9) 的高压侧, 直接从二次绕组端部和分接开关 (11 ) 中引出, 二次首端套 管 (4)、 二次中间 A1套管 (5)、 二次中性点套管 (6) 引出方向均为垂直于斜箱盖; 一 次首端套管(2)、一次中性点套管(3)位于上节油箱(9)的低压侧, 一次首端套管(2)、 一次中性点套管 (3) 直接与低压绕组出头引出的低压引线连接。
3. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 所述 分接开关 (11 ) 为 4-8个, 位于变压器的高低压侧, 通过分接开关的不同串并联连接, 输出不同等级的电压。
4. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 所述 四个铁心主柱绕组并联连接, 四个铁心主柱中的 R I绕组 及 RII绕组为串联连接或并 联连接, 在幅向上位于外部的绕组 YI幅向出头, 其余绕组均在上下端部出头。
5. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 所述 单相四柱结构为由两个铁心框组成四个主柱、 两个上轭、 两个下轭和四个旁轭构成的两 个单独变压器闭合磁路。
6. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 铁心 具有上夹件、 下夹件、 上夹件腹板、 下夹件腹板、 上梁 (13)、 侧梁 (14)、 垫脚 (16)、 中间上横梁(19)、 铁心穿心螺杆(21 )、 横梁(23) 以及中间连接螺栓(24), 上述各部件 将铁心牢固地连接为一刚性整体。
7. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 一次 绕组的四个出头平行引出到外部套管接到电网上。
8. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 所述 变压器主体 (1 ) 的上部具有上压板 (32), 该上压板 (32) 上的弹簧压钉 (22) 安装在 夹件肢板中, 包括油缸 (2206) 、 弹性部件 (2207) 、 定位钉 (2208) 压盖 (2204) 、 压钉 (2202) 以及螺母 (2203) , 压钉 (2202) 具有螺母 (2203) , 与变压器上夹件肢 板(2201 )相连, 压钉(2202) 的螺栓下段通过压盖(2204)压在弹性部件(2207)上, 上述结构安装在油缸 (2206) 内的定位钉 (2208) 上, 定位钉 (2208) 在油缸 (2206) 内, 与油缸 (2206) 底部垂直设置。
9. 按权利要求 1所述的单相超大容量强电流短路试验变压器, 其特征在于: 两个 单相二柱式铁心 (17) 的四个铁心主柱采用夹紧装置, 该夹紧装置包括 I、 II柱上夹件 ( 12)和 III、 IV柱上夹件(20) 以及横梁 (23), 其中 I、 II柱上夹件(12) 分别为第一 高压上夹件和第一低压上夹件, III、 IV柱上夹件 (20) 分别为第二高压上夹件和第二低 压上夹件,第一高压上夹件和第二高压上夹件之间以及第一低压上夹件和第二低压上夹 件之间分别通过横梁 (23) 连接, 形成刚性的整体夹件。
10. 按权利要求 9所述的变压器铁心夹紧装置, 其特征在于: 所述第一高压上夹件 和第二高压上夹件之间以及第一低压上夹件和第二低压上夹件之间通过多个固定板加 固连接。
11. 按权利要求 9所述的变压器铁心夹紧装置, 其特征在于: 所述横梁 (23) 的两 端为连接板, 两连接板平行设置, 通过中间加强板连接; 中间加强板为设于两连接板之 间、 相对平行设置且具有间距的槽钢形结构。
12. 按权利要求 9所述的变压器铁心夹紧装置, 其特征在于: 铁心的叠片设有可通 过铁心穿心螺杆(21 )的孔, 每个夹件的相对位置均设有铁心穿心螺杆(21 )的安装孔, 通过在铁心上安装铁心穿心螺杆 (21 ) 夹紧铁心。
13. 按权利要求 1 所述的单相超大容量强电流短路试验变压器, 其特征在于: 所 述变压器主体 (1 ) 具有总体安装底座 (28), 通过绝缘垫板 (31 )、 绝缘垫圈 (30) 及 带绝缘的螺栓 (29) 将底座 (28) 与基础相连。
PCT/CN2011/078734 2011-06-30 2011-08-23 单相超大容量强电流短路试验变压器 WO2013000193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110184003.1 2011-06-30
CN201110184003.1A CN102856065B (zh) 2011-06-30 2011-06-30 单相超大容量强电流短路试验变压器

Publications (1)

Publication Number Publication Date
WO2013000193A1 true WO2013000193A1 (zh) 2013-01-03

Family

ID=47402559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078734 WO2013000193A1 (zh) 2011-06-30 2011-08-23 单相超大容量强电流短路试验变压器

Country Status (2)

Country Link
CN (1) CN102856065B (zh)
WO (1) WO2013000193A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205915A1 (de) * 2015-04-01 2016-10-06 Siemens Aktiengesellschaft Verschlussbaugruppe mit einer Wandung
CN109709425A (zh) * 2018-12-29 2019-05-03 国网冀北电力有限公司电力科学研究院 一种配电变压器承受短路能力的试验系统及方法
CN111781534A (zh) * 2020-06-04 2020-10-16 湖南大学 变压器抗短路能力检验方法及装置
CN114141486A (zh) * 2021-11-24 2022-03-04 保定天威保变电气股份有限公司 一种天然酯绝缘油变压器油箱
CN114325475A (zh) * 2021-12-29 2022-04-12 苏州电器科学研究院股份有限公司 特高压变压器短路试验系统的供电电路及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267921B (zh) * 2013-05-14 2015-09-23 国家电网公司 变压器抗短路能力校核方法
CN105047379B (zh) * 2015-08-14 2017-04-12 重庆民生变压器有限责任公司 吊载式变压器
CN111681861A (zh) * 2020-06-19 2020-09-18 山东电力设备有限公司 一种双电压星角转换的低压线圈结构及其分裂变压器
CN112216493A (zh) * 2020-09-27 2021-01-12 山东电力设备有限公司 一种大电流多分接线圈的出头结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2874735Y (zh) * 2006-04-04 2007-02-28 云南变压器电气股份有限公司 用于at供电方式电气化铁道的组合式牵引变压器
CN1989580A (zh) * 2004-07-22 2007-06-27 Abb公司 用于高压电力传输网络的多电压电力变压器(politrafo)
CN201425883Y (zh) * 2009-06-05 2010-03-17 山东达驰电气有限公司 一种大容量组合电力变压器
CN201616328U (zh) * 2010-02-26 2010-10-27 辽宁三川电气设备有限公司 双电压电力变压器
CN201804691U (zh) * 2010-06-30 2011-04-20 特变电工沈阳变压器集团有限公司 单相超大容量核电站变压器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241797B (zh) * 2008-03-07 2010-12-22 国家电网公司 用于换流变压器的降噪装置及方法
CN201222414Y (zh) * 2008-06-30 2009-04-15 宁波新胜中压电器有限公司 一种变压器
CN201262881Y (zh) * 2008-09-16 2009-06-24 保定天威集团有限公司 一种单相试验变压器
CN201829310U (zh) * 2010-08-16 2011-05-11 苏州安泰变压器有限公司 一种试验用变压器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989580A (zh) * 2004-07-22 2007-06-27 Abb公司 用于高压电力传输网络的多电压电力变压器(politrafo)
CN2874735Y (zh) * 2006-04-04 2007-02-28 云南变压器电气股份有限公司 用于at供电方式电气化铁道的组合式牵引变压器
CN201425883Y (zh) * 2009-06-05 2010-03-17 山东达驰电气有限公司 一种大容量组合电力变压器
CN201616328U (zh) * 2010-02-26 2010-10-27 辽宁三川电气设备有限公司 双电压电力变压器
CN201804691U (zh) * 2010-06-30 2011-04-20 特变电工沈阳变压器集团有限公司 单相超大容量核电站变压器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205915A1 (de) * 2015-04-01 2016-10-06 Siemens Aktiengesellschaft Verschlussbaugruppe mit einer Wandung
CN109709425A (zh) * 2018-12-29 2019-05-03 国网冀北电力有限公司电力科学研究院 一种配电变压器承受短路能力的试验系统及方法
CN109709425B (zh) * 2018-12-29 2020-05-22 国网冀北电力有限公司电力科学研究院 一种配电变压器承受短路能力的试验系统及方法
CN111781534A (zh) * 2020-06-04 2020-10-16 湖南大学 变压器抗短路能力检验方法及装置
CN114141486A (zh) * 2021-11-24 2022-03-04 保定天威保变电气股份有限公司 一种天然酯绝缘油变压器油箱
CN114141486B (zh) * 2021-11-24 2024-01-05 保定天威保变电气股份有限公司 一种天然酯绝缘油变压器油箱
CN114325475A (zh) * 2021-12-29 2022-04-12 苏州电器科学研究院股份有限公司 特高压变压器短路试验系统的供电电路及方法
CN114325475B (zh) * 2021-12-29 2024-04-09 苏州电器科学研究院股份有限公司 特高压变压器短路试验系统的供电电路及方法

Also Published As

Publication number Publication date
CN102856065B (zh) 2015-11-18
CN102856065A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2013000193A1 (zh) 单相超大容量强电流短路试验变压器
WO2012163036A1 (zh) 树脂浇注立体卷铁心非晶合金干式变压器
CN204596606U (zh) 有载调容调压变压器及其线圈模块
WO2021031729A1 (zh) 换流阀
CN216749553U (zh) 变压器
CN203242482U (zh) 一种66千伏接地兼站用变压器
CN201075334Y (zh) 三相零序互感器
CN211719403U (zh) 阀套管户外布置的±500kV柔性直流换流变压器
CN103500634A (zh) 一种220kv有载调压单相试验变压器
CN200990282Y (zh) 非包封干式变压器低压大电流相排夹紧装置
CN209929214U (zh) 一种用于户外的柱上液压真空断路器
CN220400389U (zh) 35kV级接地变压器器身绝缘结构
CN201966038U (zh) 复合式组合电器中的变压器
CN105336483A (zh) 一种免维护三相高效节能整流干式变压器
CN217588624U (zh) 一种具有高低压通用结构的变压器
CN2244247Y (zh) 消谐抗接地电压互感器
CN215770791U (zh) 一种稳定性变压器铁芯
CN202373419U (zh) 一种高绝缘性安全水冷电抗器
CN104766711A (zh) 一种有载调容调压变压器及其线圈模块
CN103310960A (zh) 一种66千伏带站用配电输出的接地变压器
CN219349953U (zh) 一种干式变压器铁心结构
CN216818076U (zh) 一种基于真空开关的变压器调压引线结构
CN217361330U (zh) 一种增强油浸配电变压器侧面抗短路能力的结构
CN213752261U (zh) 一种干式变压器
CN221040788U (zh) 一种综合型电磁式电压互感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868660

Country of ref document: EP

Kind code of ref document: A1