WO2013000178A1 - 枯草芽孢杆菌突变株及其在印染废水快速高效脱色处理中的用途 - Google Patents

枯草芽孢杆菌突变株及其在印染废水快速高效脱色处理中的用途 Download PDF

Info

Publication number
WO2013000178A1
WO2013000178A1 PCT/CN2011/076880 CN2011076880W WO2013000178A1 WO 2013000178 A1 WO2013000178 A1 WO 2013000178A1 CN 2011076880 W CN2011076880 W CN 2011076880W WO 2013000178 A1 WO2013000178 A1 WO 2013000178A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
decolorization
dyeing wastewater
rapid
direct blue
Prior art date
Application number
PCT/CN2011/076880
Other languages
English (en)
French (fr)
Inventor
祝伟
曹霞
察冬梅
陈胜慧
李步海
孙小梅
Original Assignee
中南民族大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南民族大学 filed Critical 中南民族大学
Publication of WO2013000178A1 publication Critical patent/WO2013000178A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Definitions

  • the invention belongs to the field of printing and dyeing wastewater treatment, and particularly relates to a new technology for rapidly and efficiently treating dyeing wastewater by a mutant strain.
  • the textile industry is an important part of China's economy and plays a decisive role in the development of the national economy and the improvement of people's living standards.
  • the printing and dyeing industry is a high-consumption water and high-pollution industry.
  • the “First National Pollution Source Survey Bulletin” shows that the annual water consumption of China's printing and dyeing industry in 2007 exceeded 10 billion tons, which is about 3 times that of developed countries, of which 80%-90%. It is discharged by printing and dyeing wastewater.
  • the textile printing and dyeing industry ranks fourth in terms of COD emissions, and wastewater discharge ranks fifth.
  • Reactive orange 78, Reactive Yellow 145, Reactive Yellow MS, Reactive Yellow 160, Reactive Black KN-B and other reactive dyes also have good high-efficiency and rapid decolorization effect, and the decolorization rate has reached: Reactive Red 195 is 100%, active Orange 78 was 69%, active yellow 145 was 78.8%, active yellow MS was 80.69%, active yellow 160 was 93.67%, and active black KN-B was 96.2%.
  • the Bacillus subtilis of the present invention is a mutant strain ZN0871vl l, which is a mutant strain of Bacillus subtilis ZN0871 strain which has been screened by ultraviolet mutagenesis, and is classified as Bacillus subtilis mutant strain ZN0871vl l , which was on June 23, 2011. It is deposited in the China Center for Type Culture Collection, CCTCC, and the deposit address is Wuhan University, Wuhan, China. The deposit number is CCTCC NO: M2011208.
  • an object of the present invention is to improve the time-consuming and energy-consuming problems of the existing printing and dyeing wastewater treatment technology, and to provide a mutant ZN0871vl l capable of rapidly and efficiently treating printing and dyeing wastewater, which has a good high affinity for direct blue dyes and the like. Fast decolorization effect, the decolorization rate reaches 100%.
  • Another object of the present invention is to provide a use of the above mutant strain for rapid treatment of printing and dyeing wastewater.
  • the mutant ZN0871vl l was activated and cultured, and the cells were washed 3 times, then resuspended in sterile water, and the cell density was 109 /mL.
  • the bacterial suspension was inoculated into a variety of dye liquid media at a ratio of 100 ⁇ M suspension per 100 mL of liquid medium.
  • the mutant ZN0871 vl l cells Under the condition of ⁇ 5.0, temperature of 37 °C, and final concentration of metal ion Fe 2+ of 20 mg/100 mL, the mutant ZN0871 vl l cells were added and mixed, and within 10 minutes, the mutant ZN0871 vl l was decolorized by direct blue. The rate was 100%, and the COD caused by the dye was measured to fall to "0".
  • the mutant ZN0871vl l completely decolorizes the direct blue dye, reaching the maximum within 5-10 minutes.
  • the elimination rate, the elimination rate of the direct blue dye was 100%, and the COD caused by the dye was measured to fall to "0".
  • the mutant ZN0871 vl l completely decolorizes the direct blue dye, reaching 100 in 5-10 minutes.
  • the elimination rate of %, and the COD caused by the dye is measured to fall to "0".
  • the elimination rate of the mutant ZN0871vl l to direct blue was 37 ° C and 42 ° C. It can reach 100% (see Figure 1). Different temperatures do not have much effect on the decolorization of the cells. It indicates that the temperature of the mutant strain ZN0871vl l is strong.
  • the adsorption degradation experiment was carried out at pH 5.0, temperature of 37 ° C, and metal ion Fe 2+ concentration of 20 mg/100 mL.
  • the decolorization rates of mutant ZN0871vl l on Reactive Red 195, Reactive Orange 78, Reactive Yellow 145, Reactive Yellow MS and Reactive Yellow 160 were: active red 195 100%, active orange 78 69%, active yellow 145 78.8%, active yellow MS 80.69%, active yellow 160 93.67%.
  • the decolorization rate of the mutant KN-B by the mutant ZN0871vl l was 45.63%, and the decolorization rate of Reactive Red 195 was 59.27%, the decolorization rate of Reactive Orange 78 was 69%, the decolorization rate of Reactive Yellow 145 was 78.8%, and the decolorization rate of Reactive Yellow MS was 80.69%.
  • the decolorization rate of sex yellow 160 was 62.24%.
  • Figure 1 shows the effect of temperature on the direct blue decolorization effect.
  • Figure 1 shows that at the five temperatures of 20 ° C, 25 ° C, 30 ° C, 37 ° C, and 42 ° C, when no ions are added, the elimination rate of the mutant ZN0871 vl l to direct blue is 37 ° C and 100% at 42 °C.
  • Figure 2 shows the effect of pH on the direct blue decolorization effect.
  • Figure 2 shows the decolorization of direct blue dye by mutant ZN0871vl l cells at 10 gradients with pH values of 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 10.3, respectively. The effect varies greatly. Among them, direct blue has the best decolorization effect at pH 5.0. detailed description
  • Embodiment 1 Operation steps of the present invention
  • the strain is activated.
  • the starting strain ZN0871 isolated from the Nanhu water sample was inoculated to a liquid LB medium (peptone 10 g/L, yeast extract 5 g/L, NaCl 5 g/L, pH 7.0) at a 1% inoculation amount.
  • Activated for 10 h then transferred to fresh liquid LB medium for 10 ho
  • the second step mutagenesis. Open the UV lamp (15 W) for 20 min, add 3 mL of the activated bacterial solution to a small Petri dish with a diameter of 6 cm (put a pin before sterilizing in the dish, and place a magnetic stirrer). Place it under ultraviolet light at a distance of 18 cm. Cover the entire clean bench with a blackout cloth, then open the cover for 15 s, 30 s, 45 s, l min, lmin 15 s, lmin 30 s, and illuminate under stirring. Cover the lid on the back and turn off the UV lamp. The mucus after the mutagenesis was first placed in the dark for more than 20 min, and then diluted and coated.
  • the bacterial suspension was diluted 10 times to 10-5, 10-6, each taken from 10-56 and 10- 0.1 mL was added to the plates screening medium (tryptone 10 g / L, yeast extract 5 g / L , NaCl g / L, direct blue 500 mg / L, agar powder 18 g / L, pH 7.0) coated, allowed to stand until the bacterial solution infiltrated into the medium, inverted, and cultured at 37 constant temperature for about 12 h.
  • the plates screening medium tryptone 10 g / L, yeast extract 5 g / L , NaCl g / L, direct blue 500 mg / L, agar powder 18 g / L, pH 7.0
  • the third step the initial screening. After incubating at 37 °C for 12 h, first observe the size of the transparent circle around the colony on the blue plate, and measure the ratio of the diameter of the colony to the diameter of the transparent circle (HC value), and select the colony with a large HC value. The cells were picked up in liquid LB medium for 12 h under aseptic conditions, and then stored at a concentration of 20% glycerol-4 V, and were subjected to liquid rescreening.
  • the fourth step is to rescreen. After the strain obtained by the initial screening is activated and cultured, the cultured strain is transferred from the test tube to the two centrifuged tubes on the ultra-clean bench, and after balancing, the frozen high-speed centrifuge is 11000 r/miti. Centrifuge at 10 °C for 2 minutes, remove and discard the supernatant, add appropriate amount of sterile water, and mix and wash on the shaker. Then level on the electronic balance and repeat the centrifugation.
  • the cell density is 10 9 , and inoculate 50 ⁇ L into 100 mL direct blue liquid medium by sterile inoculation operation (formulation: 250 mg direct blue dissolved in 1000 mL distilled water)
  • the control was placed in a 37 V shaker. After 12 h of culture, the direct blue liquid medium without inoculation was used as a reference, and 5 mL of the bacterial solution was centrifuged, and the absorbance at 545 nm was measured to calculate the decolorization rate.
  • Results The mutant strain ZN0871vl l was removed from the original starting strain. The color rate is over 80% higher and reaches 100%.
  • Decolorization rate of dye (OD value of control group - OD value of experimental group) / control group ODx l00%
  • Step 5 Different pH gradient buffers, or different concentrations of metal ions on the decolorization effect of 7 dyes: First, dissolve 500 mg of 7 dyes in 1000 mL of distilled water, then use different gradients of pH. Buffer, or different concentrations of metal ions to adjust the dye solution, control the final concentration of 7 dyes at 250 mg / 1000 mL, Fe 2+ , Cu 2+ , Zn 2+ , Ca 2+ , Mg 2+ , K + The final concentration of Na+ was 15, 20 mg/100 mL.
  • the sixth step is the rapid and efficient decolorization of printing and dyeing wastewater.
  • the mutant strain ZN0871vl l was activated and cultured, the cells were washed three times in the above manner, and then resuspended in sterile water with a cell density of 109 /mL.
  • the sterile inoculation operation method was used to take 100 ⁇ l of the suspension respectively. Inoculate 100 mL of various dye liquid medium, leave the corresponding dye liquid medium without inoculation liquid as control, mix and let stand for 5-10 min.
  • the centrifugation supernatant of 5 mL of the bacterial liquid was used to measure the light absorption value, and the decolorization rate was calculated.
  • the wavelengths of the photometric absorption values are: direct blue is 545 nm, active yellow 160 is 415 nm, active yellow 145 is 419 nm, active orange 78 is 464 nm, active black R-B is 571 nm, and active red 195 is 510.
  • Nm, active yellow MS is 415 nm.
  • the mutant ZN0871 vl l cells were mixed for 10 minutes, and the decolorization rate of the mutant ZN0871 vl l to direct blue was 100%, the COD caused by the dye was measured to fall to "0".
  • the mutant ZN0871vl l completely decolorizes the direct blue dye, and reaches the maximum elimination rate within 5-10 minutes.
  • the decolorization rate for direct blue was 100%, and the COD caused by the dye was measured to fall to "0".
  • the mutant ZN0871vl l completely decolorizes the direct blue dye, and the decolorization rate reaches 100% within 5-10 minutes. And measured the COD caused by the dye to fall to "0".
  • the mutant ZN0871vl l completely decolorizes the direct blue dye, and the decolorization rate reaches 100% within 5-10 minutes. And measured the COD caused by the dye to fall to "0".
  • Example 2-5 At 37 ° C, 42 ° C, when no ions were added, the decolorization rate of the mutant ZN0871 vl l to direct blue at 37 ° C and 42 ° C can reach 100%, and the decolorization effect of the dye remains the same. Different temperatures have little effect on the decolorization and adsorption of cells. It shows that the temperature of the mutant strain ZN0871vl l is strong.
  • Example 2-8 At a pH of 5.0, a temperature of 37 ° C, and a concentration of Zn 2+ of 20 mg / 100 mL, the mutant ZN0871 vl l cells were mixed for 10 minutes, and the decolorization rate of the direct blue dye was determined by the mutant ZN0871 vl l. 89.73%.
  • Example 2-8 At a pH of 5.0, a temperature of 37 ° C, and a concentration of Zn 2+ of 20 mg / 100 mL, the mutant ZN0871 vl l cells were mixed for 10 minutes, and the decolorization rate of the direct blue dye was determined by the mutant ZN0871 vl l. 89.73%.
  • Example 2-8 Example 2-8
  • the mutant ZN0871 vl l cells were mixed for 10 minutes.
  • the decolorization rate of the mutant ZN0871 vl l to the direct blue dye was 66.25. %.
  • the mutant ZN0871vl l cells were mixed for 10 minutes, and the decolorization rate of the active black KN-B by the mutant ZN0871vl l was obtained. It is 45.63%.
  • the mutant ZN0871vl l was added at a concentration of Cu 2+ of 20 mg/100 mL, pH 5.0, and room temperature of 20 °C.
  • the decolorization rate of the mutant ZN0871vl to Reactive Red 195 was 59.27% within 10 minutes of cell mixing.
  • the mutant ZN0871 vl l cells were mixed for 10 minutes, and the decolorization rate of the mutant ZN0871 vl l against the active orange 78 was 69. %.
  • the mutant ZN0871vl l cells were mixed for 10 minutes, and the decolorization rate of the mutant ZN0871vl l to Reactive Yellow 145 was 78.8. %.
  • the mutant ZN0871 vl l cells were mixed for 10 minutes, and the decolorization rate of the mutant ZN087 11 to active yellow MS was 80.69. %.
  • the concentration of Cu 2+ was 20 mg/100 mL, pH 5.0, and room temperature 20 °C, and the mutant ZN0871vl l cells were mixed for 10 minutes.
  • the decolorization rate of the mutant ZN0871vl l to Reactive Yellow 160 was 62.24. %.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一株用于印染废水快速脱色处理的突变株ZN0871v11诱变筛选的方法以及突变株ZN0871v11对印染废水快速高效脱色处理的新技术方法。原始菌株经过基因突变后,筛选到了突变株ZN0871v11,其对直接蓝等染料具有快速高效突出的脱色效果,脱色率提高了80%,使脱色率达到了100%。

Description

枯草芽孢杆菌突变株及其在印染废水快速高效脱色処理中的用途 技术领域
本发明属于印染废水处理领域, 具体涉及一种突变株对印染废水快速高效处理的新 技术。
背景技术
纺织工业是我国经济的重要组成部分, 对国民经济的发展和人民生活水平的提高, 起着举足轻重的作用。可是, 纺织工业在增加 GDP的同时, 也产生了大量的难以处理的 印染废水。 印染业属于高耗水和高污染行业, 《第一次全国污染源普查公报》显示: 2007 年度我国印染行业的年耗水量超过 100亿吨, 是发达国家的 3倍左右, 其中 80 %— 90 %以印染废水排出。 在我国工业的各行业中, 纺织印染业的 COD排放量位居第四位, 废水排放量位居第五位。 印染废水的有机污染物含量增高、 色度变深、 碱性变大、 成分 变复杂, 废水的处理难度增加。 另外, 随着新型的染料应用、 印染工艺和产品结构的变 化, 印染废水的成分也发生了变化, 更进一步加大了废水的处理难度。 而印染废水治理 不当将会引起江河湖泊的水体污染和生态环境的破坏。 可是, 目前所利用的废水处理工 艺运行时间长、 费用较高、 出水往往难以达标, 尤其是水量大时。 研发高效快速的印染 废水脱色处理的生物新材料、 新技术, 即可节省印染废水处理的时间, 减少污染, 实现 零排放; 又提高了水的回收利用率, 解决了缺水的难题; 能回收废水中的染料等有机物; 还能縮小废水处理厂的规模, 节省土地。 因此, 进一步加强对含难降解有机物的印染废 水的新型微生物处理工艺对保护环境具有重要的意义。
发明内容
我们从典型的环境中分离到一株细菌 Bacillus subtilis ZN0871, 并对该出发菌株进行 了紫外线诱变。 这株菌经过基因突变后, 筛选到了突变株 ZN0871vl l, 其对直接蓝等染 料具有良好的脱色效果, 脱色率提高了 80%, 达到了 100 %。 在 Fe2+或 Cu2+浓度为 20 mg/100 mL, 在 5-10分钟内, 对直接蓝、 活性红 195的消除率均为 100%, 并测得由染 料引起的 COD降为" 0"; 对活性橙 78、 活性黄 145、 活性黄 MS、 活性黄 160、 活性黑 KN-B等活性染料也具有良好的高效快速脱色效果, 脱色率分别达到了: 活性红 195为 100%、活性橙 78为 69%、活性黄 145 为 78.8%、活性黄 MS为 80.69%、活性黄 160 为 93.67%、 活性黑 KN-B 为 96.2%。
本发明所述的枯草芽孢杆菌为突变株 ZN0871vl l,是 Bacillus subtilis ZN0871菌株经 过紫外线诱变筛选出来的突变株, 分类命名为枯草芽孢杆菌 Bacillus subtilis 突变株 ZN0871vl l , 已于 2011年 6月 23日保藏于中国典型培养物保藏中心, 简称 CCTCC, 保 藏地址中国武汉武汉大学, 其保藏号为 CCTCC NO: M2011208。
因此, 本发明的一个目的在于改善现有印染废水处理技术耗时、 耗能等问题, 提供 一种能够快速高效处理印染废水的突变株 ZN0871vl l, 其对直接蓝等染料具有良好的高 效快速脱色效果, 脱色率达到了 100%。
本发明的目的还在于提供一种微生物絮凝剂, 所述生物絮凝剂包含突变株
ZN0871vl l o
本发明的另一个目的在于提供上述突变株在快速处理印染废水中的应用。 在对印染 废水的快速高效脱色处理时, 将突变株 ZN0871vl l活化培养后, 将细胞洗涤 3次后, 加 无菌水重悬, 细胞密度为 109个 /mL, 以无菌接种操作方式, 以每 100 mL液体培养基接 种 100 μΐ菌悬液的比例取菌悬液分别接种到各类染料液体培养基中。
在 ρΗ5.0、温度为 37°C、 金属离子 Fe2+终浓度为 20 mg/100 mL条件下, 加入突变株 ZN0871vl l细胞混匀, 在 10分钟内, 突变株 ZN0871vl l对直接蓝的脱色率为 100%, 测 得由染料引起的 COD降为 "0"。
在 pH7.0, 温度为 25 °C, Fe2+的浓度分别为 15、 20 mg/100 mL的条件下, 突变株 ZN0871vl l对直接蓝染料的脱色完全, 在 5-10分钟内, 达到最大消除率, 对直接蓝染料 的消除率为 100%, 并测得由染料引起的 COD降为 "0"。
在 pH5.0、 温度为 37°C, Cu2+的浓度分别为 15、 20 mg/100 mL的条件下, 突变株 ZN0871vl l对直接蓝染料的脱色彻底, 在 5-10分钟内, 达到 100%的消除率, 并测得由 染料引起的 COD降为 "0"。
在 20 °C、25 °C、30°C、37°C、42°C这 5种温度下,不加入任何离子时,突变株 ZN0871vl l 对直接蓝的消除率在 37°C和 42°C时能够达到 100% (参见图 1 )。不同的温度对菌体的脱 色吸附并没有太大的影响。 说明突变株 ZN0871vl l的温度适应性较强。
在 pH值分别为 5.0、 5.5、 6.0、 6.5、 7.0、 7.5、 8.0、 8.5、 9.0、 10.3的 10种梯度下, 不加入任何离子时, 突变株 ZN0871vl l细胞对直接蓝染料的脱色效果变化较大。 其中, 直接蓝在 PH5.0下的脱色效果最佳 (参见图 2)。 在 pH5.0的条件下, 对直接蓝染料的消 除百分比达到了 92.8%。
在 Zn2+、 Ca2+、 Mg2+、 K+、 Na+的浓度为 20 mg/100 mL的条件下,突变株 ZN0871vl l 对直接蓝染料的脱色效果为 Zn2+ ( 89.73% ) >Ca2+ ( 66.25% ) >Mg2+ ( 55.59%) >K+ ( 30%) >Na+ ( 18%)。
在 pH5.0、温度为 37°C、金属离子 Fe2+浓度为 20 mg/100 mL时,进行吸附降解实验。 突变株 ZN0871vl l对活性红 195、 活性橙 78、 活性黄 145、 活性黄 MS、 活性黄 160的 脱色率分别为:活性红 195 100%、活性橙 78 69%、活性黄 145 78.8%、活性黄 MS 80.69%、 活性黄 160 93.67%。
在 pH6.0、温度为 37°C、金属离子 Fe2+浓度为 20 mg/100 mL时, 突变株 ZN0871vl l 对于活性黑 KN-B的脱色率为 96.2%。
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、 室温 20°C的条件下, 突变株 ZN0871vl l对 活性黑 KN-B的脱色率为 45.63%, 对活性红 195的脱色率为 59.27%, 对活性橙 78的脱 色率为 69%, 对活性黄 145的脱色率为 78.8%, 对活性黄 MS的脱色率为 80.69%, 对活 性黄 160的脱色率为 62.24%。
附图说明
图 1显示了温度对直接蓝脱色效果影响。图 1显示在 20°C、 25 °C、 30°C、 37°C、 42 °C 这 5种温度下,不加入任何离子时,突变株 ZN0871vl l对直接蓝的消除率在 37°C和 42°C 时能够达到 100%。
图 2显示了 pH对直接蓝脱色效果影响。图 2显示在 pH值分别为 5.0、 5.5、 6.0、 6.5、 7.0、 7.5、 8.0、 8.5、 9.0、 10.3的 10种梯度下, 不加入任何离子时, 突变株 ZN0871vl l 细胞对直接蓝染料的脱色效果变化较大。 其中, 直接蓝在 pH5.0下的脱色效果最佳。 具体实施方式
以下结合附图对本发明的优选实施方式进行说明, 应当理解, 以下具体实施方式仅 是用于说明本发明, 而非对本发明的限制。
实施例 1 本发明的操作步骤
第一步, 菌株活化。将从南湖水样分离得到的出发菌株 ZN0871以 1%的接种量接种 到液体 LB培养基 (蛋白胨 10 g/L, 酵母提取物 5 g/L, NaCl 5 g/L, pH7.0) 中培养 10 h 进行活化, 之后再转接到新鲜的液体 LB培养基中培养 10 ho
第二步, 诱变。 打开紫外灯 (15 W)预热 20 min, 将活化后的菌液 3 mL加入直径为 6 cm的小培养皿内 (皿内灭菌前放一曲别针,下为磁力搅拌器),将培养皿放在紫外光灯下, 距离 18 cm, 用遮光布将整个净化工作台遮住, 然后开盖在搅拌条件下分别照射 15 s, 30 s, 45 s, l min, lmin 15s, lmin 30s, 照射后盖上皿盖, 再关紫外灯。 诱变后的菌液 先在黑暗条件下放置 20 min以上,再进行稀释涂布。将菌悬液按 10倍稀释至 10—5、 10—6, 从 10—5 和 10—6中各取出 0.1 mL加入到筛选培养基平板(蛋白胨 10 g/L,酵母提取物 5 g/L, NaCl g/L, 直接蓝 500 mg/L, 琼脂粉 18 g/L, pH7.0) 上涂布, 静置至菌液渗入培养基后 倒置, 于 37 恒温培养 12 h左右。
第三步, 初筛。 在 37 °C恒温培养 12 h左右后, 首先观察在蓝色平板上, 菌落周围 出现的透明圈大小, 并测量其菌落直径与透明圈直径之比(HC值), 选择其 HC值大的 菌落,在无菌条件下将其挑取到液体 LB培养基中培养 12 h后,用浓度为 20%的甘油 -4 V 保存, 并待液态复筛。
第四步, 复筛。 将初筛得到的菌株活化培养后, 在超净工作台上将培养好的菌种从 试管中转移至两个灭过菌的离心管中, 平衡后在冷冻高速离心机上以 11000 r/miti, 10 °C 环境下离心 2分钟, 取出后弃上清, 加适量无菌水, 于震荡器上混匀洗涤。 之后在电子 天平上调平, 再次重复离心操作。 洗涤 3次后, 加无菌水重悬, 细胞密度为 109, 以无 菌接种操作方式, 取 50 μL接种到 100 mL直接蓝液体培养基 (配方: 250 mg直接蓝溶 于 1000 mL蒸馏水中) 中, 留未接种菌液的直接蓝液体培养基为对照, 均放置于 37 V 摇床培养。 在培养 12 h之后, 以未接种菌液的直接蓝液体培养基为参比, 取 5 mL菌液 离心后测 545 nm光吸收值, 计算脱色率。 结果突变株 ZN0871vl l比原来的出发菌株脱 色率高出了 80%以上, 达到了 100%。
染料的脱色率 = (对照组 OD值一实验组 OD值) /对照组 ODx l00%
第五步, 不同梯度的 pH缓冲液、 或不同浓度的金属离子对 7种染料脱色效果影响 的培养基配方: 先将 500 mg 7种染料分别溶于 1000 mL蒸馏水中, 然后用不同梯度的 pH 缓冲液、 或不同浓度的金属离子来调节染料溶液, 控制 7 种染料的终浓度在 250 mg/1000 mL, Fe2+、 Cu2+、 Zn2+、 Ca2+、 Mg2+、 K+、 Na+的终浓度分别为 15、 20 mg/100 mL。
121 °C高温灭菌 30 min。
第六步, 对印染废水的快速高效脱色处理。 将突变株 ZN0871vl l活化培养后, 以上 述方式将细胞洗涤 3次后,加无菌水重悬,细胞密度为 109个 /mL, 以无菌接种操作方式, 各取 100 μΐ菌悬液分别接种到 100 mL各类染料液体培养基中, 留未接种菌液的相应染 料液体培养基为对照, 混匀后放置 5-10 min。 随后, 以未接种菌液的相应染料液体培养 基为参比, 取 5 mL菌液的离心上清液测光吸收值, 计算脱色率。 测光吸收值的波长分 别是: 直接蓝为 545 nm, 活性黄 160为 415 nm, 活性黄 145为 419 nm, 活性橙 78为 464 nm, 活性黑 R -B为 571 nm, 活性红 195为 510 nm, 活性黄 MS为 415 nm。
实施例 2在各种条件下对印染废水的快速高效脱色处理
在本实施例中, 根据上述实施例 1所描述的方法, 验证了在各种 pH、 金属离子、温 度等条件下, 突变株 ZN0871vl l细胞对不同染料的快速高效脱色处理效果。应当理解的 是, 以下所述的各种条件仅是示例性的, 而不应理解为对本发明范围的限制。
实施例 2-1
在 pH5.0、温度为 37°C、 金属离子 Fe2+终浓度为 20 mg/100 mL条件下, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对直接蓝的脱色率为 100%,测得由 染料引起的 COD降为 "0"。
实施例 2-2
在 pH7.0, 温度为 25 °C, Fe2+的浓度为 15 mg/100 mL的条件下, 突变株 ZN0871vl l 对直接蓝染料的脱色完全,在 5-10分钟内,达到最大消除率,对直接蓝的脱色率为 100%, 并测得由染料引起的 COD降为 "0"。
实施例 2-3
在 pH5.0、温度为 37°C, Cu2+的浓度为 15 mg/100 mL的条件下, 突变株 ZN0871vl l 对直接蓝染料的脱色彻底,在 5-10分钟内,脱色率达到 100%,并测得由染料引起的 COD 降为 "0"。
实施例 2-4
在 pH5.0、温度为 37°C, Cu2+的浓度为 20 mg/100 mL的条件下, 突变株 ZN0871vl l 对直接蓝染料的脱色彻底,在 5-10分钟内,脱色率达到 100%,并测得由染料引起的 COD 降为 "0"。
实施例 2-5 在 37°C、 42°C温度下, 不加入任何离子时, 突变株 ZN0871vl l对直接蓝在 37°C和 42°C时的脱色率能够达到 100%, 染料的脱色效果保持一致。 不同的温度对菌体的脱色 吸附效果影响较小。 说明突变株 ZN0871vl l的温度适应性强。
实施例 2-6
在 pH值 5.0, 不加入任何离子时, 加入突变株 ZN0871vl l细胞细胞混匀。 突变株 ZN0871vl l对直接蓝染料的脱色率达到了 92.8%。
实施例 2-7
在 pH5.0、 温度为 37°C、 Zn2+的浓度为 20 mg/100 mL 的条件下, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对直接蓝染料的脱色率为 89.73%。 实施例 2-8
在 pH5.0、温度为 37°C、 Ca2+浓度为 20 mg/100 mL的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对直接蓝染料的脱色率为 66.25%。
实施例 2-9
在 pH5.0、 温度为 37°C、 金属离子 Fe2+浓度为 20 mg/100 mL 时, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对活性红 195的脱色率为 100%。 实施例 2-10
在 pH5.0、 温度为 37°C、 金属离子 Fe2+浓度为 20 mg/100 mL 时, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对活性橙 78的脱色率为 69%。 实施例 2-11
在 pH5.0、 温度为 37°C、 金属离子 Fe2+浓度为 20 mg/100 mL 时, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黄 145的脱色率为 78.8%。 实施例 2-12
在 pH5.0、 温度为 37°C、 金属离子 Fe2+浓度为 20 mg/100 mL 时, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黄 MS的脱色率为 80.69%。 实施例 2-13
在 pH5.0、 温度为 37°C、 金属离子 Fe2+浓度为 20 mg/100 mL 时, 加入突变株 ZN0871vl l细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黄 160的脱色率为 93.67%。 实施例 2-14
在 pH6.0、温度为 37°C、金属离子 Fe2+浓度为 20 mg/100 mL时, 突变株 ZN0871vl l 对于活性黑 KN-B的脱色率为 96.2%。
实施例 2-15
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黑 KN-B的脱色率为 45.63%。
实施例 2-16
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对活性红 195的脱色率为 59.27%。 实施例 2-17
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对活性橙 78的脱色率为 69%。
实施例 2-18
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黄 145的脱色率为 78.8%。
实施例 2-19
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN087 11对活性黄 MS的脱色率为 80.69%。
实施例 2-20
在 Cu2+的浓度为 20 mg/100 mL、 pH5.0、室温 20 °C的条件下,加入突变株 ZN0871vl l 细胞混匀 10分钟内, 突变株 ZN0871vl l对活性黄 160的脱色率为 62.24%。

Claims

权利 要求书
1. 枯草芽孢杆菌 (Bfld/Z ^ fc) 突变株 ZN0871vll, 其保藏号为 CCTCC NO: M2011208。
2. 一种微生物絮凝剂, 其包含权利要求 1所述的枯草芽孢杆菌突变株 ZN0871vll。
3. 权利要求 1所述的枯草芽孢杆菌突变株 ZN0871vll在印染废水快速脱色处理中 的用途。
4. 权利要求 3所述的用途, 其特征在于, 所述印染废水中含有直接蓝、活性红 195、 活性橙 78、 活性黄 145、 活性黄 MS、 活性黄 160和 /或活性黑 KN-B。
5. 权利要求 3或 4的用途, 其特征在于在金属离子 Fe2+的存在下进行所述处理。
6. 权利要求 5的用途, 其特征在于金属离子 Fe2+浓度为 20 mg/100 mL。
7. 权利要求 3或 4的用途, 其特征在于在金属离子 Cu2+的存在下进行所述处理。
8. 权利要求 7的用途, 其特征在于金属离子 Cu2+浓度为 20 mg/100 mL。
9. 权利要求 3-8任一项所述的用途, 其特征在于处理温度为 15— 42°C。
10. 权利要求 3-8任一项所述的用途, 其特征在于在 pH4.5— 9.0进行所述处理。
PCT/CN2011/076880 2011-06-27 2011-07-05 枯草芽孢杆菌突变株及其在印染废水快速高效脱色处理中的用途 WO2013000178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110173958.7 2011-06-27
CN201110173958A CN102352325B (zh) 2011-06-27 2011-06-27 突变株ZN0871v11及其在印染废水快速高效脱色处理中的用途

Publications (1)

Publication Number Publication Date
WO2013000178A1 true WO2013000178A1 (zh) 2013-01-03

Family

ID=45575964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076880 WO2013000178A1 (zh) 2011-06-27 2011-07-05 枯草芽孢杆菌突变株及其在印染废水快速高效脱色处理中的用途

Country Status (2)

Country Link
CN (1) CN102352325B (zh)
WO (1) WO2013000178A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113481B (zh) * 2012-08-16 2014-12-10 中南民族大学 突变株ZN0871v11细胞壁肽聚糖及其制备方法
CN103173382B (zh) * 2012-12-28 2015-03-25 中南民族大学 突变株ZN0871v11在有机废水处理后的再生及有机物回收方法
CN103910435B (zh) * 2014-01-14 2015-09-30 暨南大学 赖氨酸芽孢杆菌fs1在染料降解方面的应用
CN103937697B (zh) * 2014-01-14 2017-01-25 暨南大学 一株高效降解染料的菌株
CN106830357A (zh) * 2017-02-14 2017-06-13 厦门大学 一种用生物絮凝剂处理刚果红废水的方法
CN107841478B (zh) * 2017-12-18 2020-05-12 黄冈师范学院 一种活性染料高效广谱脱色降解的芽孢杆菌菌株及其应用
CN110951641B (zh) * 2019-12-11 2022-01-07 中国农业科学院植物保护研究所 一种枯草芽孢杆菌、微生物菌剂及其应用
JP2022117758A (ja) * 2021-02-01 2022-08-12 株式会社東芝 廃水処理装置および廃水処理方法
CN117925475B (zh) * 2024-01-30 2024-08-09 重庆港力环保股份有限公司 一种降色度的产絮芽孢杆菌及其选育方法和复配菌剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013915A (ja) * 2003-06-27 2005-01-20 Miki Riken Kogyo Kk 廃水処理方法
CN101463338A (zh) * 2009-01-06 2009-06-24 东北农业大学 一株枯草芽孢杆菌及其在降解咪唑乙烟酸中的应用
CN101967459A (zh) * 2010-10-21 2011-02-09 西北农林科技大学 一种降解联苯菊酯的菌株及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234847C (zh) * 2003-11-28 2006-01-04 广东省微生物研究所 脱色希瓦氏菌(Shewanella decolorationis)
CN101845411A (zh) * 2010-03-25 2010-09-29 东华大学 一种活性黑5染料高效脱色菌的提取方法
CN101948778B (zh) * 2010-08-30 2012-04-11 中国农业大学 一种巨大芽孢杆菌及其在处理印染废水中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013915A (ja) * 2003-06-27 2005-01-20 Miki Riken Kogyo Kk 廃水処理方法
CN101463338A (zh) * 2009-01-06 2009-06-24 东北农业大学 一株枯草芽孢杆菌及其在降解咪唑乙烟酸中的应用
CN101967459A (zh) * 2010-10-21 2011-02-09 西北农林科技大学 一种降解联苯菊酯的菌株及其应用

Also Published As

Publication number Publication date
CN102352325B (zh) 2012-10-24
CN102352325A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2013000178A1 (zh) 枯草芽孢杆菌突变株及其在印染废水快速高效脱色处理中的用途
Wang et al. Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches
Chen et al. Decolorization of the textile dyes by newly isolated bacterial strains
Bustard et al. Biosorption of textile dyes by biomass derived from Kluyveromyces marxianus IMB3
Sadettin et al. Bioaccumulation of reactive dyes by thermophilic cyanobacteria
CN108865908B (zh) 一种高耐锑胶红酵母菌djhn070401及其分离筛选方法和应用
CN102321729B (zh) 一种检测土壤和沉积物中细菌数量的荧光显微计数方法
CN101880639B (zh) 一株巴斯德葡萄球菌及其在脱色中的应用
CN110563132A (zh) 一种好氧颗粒污泥培养方法
Saratale et al. Decolorization and degradation of reactive azo dyes by fixed bed bioreactors containing immobilized cells of Proteus vulgaris NCIM-2027
CN102059100B (zh) 一种磁性酿酒酵母菌的制备方法及其处理印染废水技术
CN109504642B (zh) 一株反硝化菌及其应用
WO2022179073A1 (zh) 一种解硫胺素芽孢杆菌及其在染料废水脱色中的应用
CN110846254A (zh) 用于脱氮的复合微生物菌剂及其制备方法和应用
CN110684688B (zh) 一株希瓦氏菌st2及其在偶氮染料降解中的应用
CN109762774A (zh) 一株高效除磷的不动杆菌根瘤菌及其应用
CN113604407A (zh) 一种复合微生物除藻菌剂及其制备方法和应用
CN107043729A (zh) 一种用于处理印染污水的菌剂及其制备方法
CN106987616A (zh) 一种沙门氏菌快速检测方法
CN104046677B (zh) 一种微生物厌氧降解染料的高通量检测方法
CN114702141B (zh) 一株苯胺降解菌雷氏普罗维登斯菌在染料脱色中的应用
CN110684687B (zh) 一株粪肠球菌st5及其在偶氮染料降解中的应用
CN102517231A (zh) 锰氧化微生物的分离、筛选方法
Boukef et al. Survival of Escherichia coli strains in mediterranean brackish water in the Bizerte lagoon in Northern Tunisia
CN114774322A (zh) 一种芽孢杆菌及其制备高效铅锌废水絮凝剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868468

Country of ref document: EP

Kind code of ref document: A1