WO2013000168A1 - 液压马达的控制方法与系统 - Google Patents

液压马达的控制方法与系统 Download PDF

Info

Publication number
WO2013000168A1
WO2013000168A1 PCT/CN2011/076730 CN2011076730W WO2013000168A1 WO 2013000168 A1 WO2013000168 A1 WO 2013000168A1 CN 2011076730 W CN2011076730 W CN 2011076730W WO 2013000168 A1 WO2013000168 A1 WO 2013000168A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
variable mechanism
control
handle
hydraulic motor
Prior art date
Application number
PCT/CN2011/076730
Other languages
English (en)
French (fr)
Inventor
何伟
宋建清
刘建华
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/076730 priority Critical patent/WO2013000168A1/zh
Publication of WO2013000168A1 publication Critical patent/WO2013000168A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4148Open loop circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/423Motor capacity control by fluid pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/763Control of torque of the output member by means of a variable capacity motor, i.e. by a secondary control on the motor

Definitions

  • Fig. 1 is a schematic structural view of a control system of a hydraulic motor of a crane hoisting system in the prior art. As shown in Fig. 1, a hydraulic motor 11 of a hoisting system is connected with a variable mechanism 12 for controlling the rotational speed thereof, and a hydraulic motor 11 is also connected to a reversing valve 16 that controls its direction of rotation.
  • the oil inlet X of the variable mechanism 12 is connected to the solenoid valve 13 through an oil passage, the solenoid valve 13 is also connected to the control oil source 14, and the solenoid valve 13 controls the pressure at the oil inlet X of the variable mechanism 12, thereby controlling the hydraulic motor 11 Swing angle.
  • the initial swing angle of the hydraulic motor 11 is a large swing angle, and when the oil supply amount per unit time of the oil pump 15 is constant, the rotational speed of the hydraulic motor 11 is the lowest.
  • the solenoid valve 13 is energized, and the swing angle of the hydraulic motor 11 is minimized when the solenoid valve 13 is energized.
  • the hydraulic motor 11 When the oil supply amount per unit time of the oil pump 15 is constant, the hydraulic motor 11 has the highest rotation speed. Since the solenoid valve 13 belongs to the switching amount, when the solenoid valve 13 is de-energized, the pressure at the oil inlet X of the variable mechanism 12 is OMPa, and when the solenoid valve 13 is energized, the pressure at the inlet port X of the variable mechanism 12 reaches a certain value. Therefore, when the pressure at the oil inlet X of the variable mechanism 12 is controlled by the solenoid valve 13, and thus the swing angle of the hydraulic motor 11 is controlled, the hydraulic motor 11 has only two states, namely, the maximum swing angle and the minimum swing angle, corresponding to The hydraulic motor 11 has only the lowest speed and the highest speed.
  • variable speed mechanism 12 is controlled by the solenoid valve 13 to control the rotational speed of the hydraulic motor 11, and the high idle speed is switched by adjusting the swing angle of the hydraulic motor 11 during operation, and the high idle speed is switched.
  • the swing angle of the hydraulic motor 11 instantaneously changes from a large swing angle to a small swing angle. Since the switching process is extremely short, a hydraulic shock is generated, and the hydraulic motor 11 operates under a working condition such as jtb for a long time, which seriously affects its life.
  • the instantaneous swing angle is changed to the small swing angle, thereby generating a hydraulic shock, which seriously affects the service life thereof.
  • a primary object of the present invention is to provide a control method and system for a hydraulic motor to solve the problem of instantaneously changing from a large swing angle to a small swing angle during high and low speed switching of a hydraulic motor, thereby generating a hydraulic shock. Problems that cause serious damage to their service life.
  • a control method of a hydraulic motor is provided, which is connected to a variable mechanism for controlling the rotational speed thereof.
  • the control method of the hydraulic motor of the present invention comprises: Step A: During the high and low speed switching of the hydraulic motor, the oil inlet of the variable mechanism receives a continuous proportional hydraulic signal for controlling the oil pressure of the oil inlet; Step B: variable mechanism The continuous proportional hydraulic signal controls the speed of the hydraulic motor.
  • the device for providing a continuous proportional hydraulic signal comprises: a controller; a proportional pressure reducing valve connected to the controller, and respectively connected to the oil inlet of the control oil source and the variable mechanism through the oil passage, and the proportional pressure reducing valve is used in Under the control of the controller, a continuous proportional hydraulic signal is output to the oil inlet of the variable mechanism.
  • the device for providing a continuous proportional hydraulic signal comprises: a handle connected to the control oil source through the oil passage; a shuttle valve connected to the inlet of the handle and the variable mechanism through the oil passage, and the shuttle valve is used for controlling the handle
  • the inlet port of the downward variable mechanism outputs a continuous proportional hydraulic signal.
  • the handle is a hydraulic handle or an electronically controlled handle.
  • a control system for a hydraulic motor that is coupled to a variable mechanism for controlling its rotational speed.
  • the control system of the hydraulic motor of the present invention comprises: a continuous proportional hydraulic signal output device connected to the oil inlet of the variable mechanism through an oil passage for outputting a continuous proportional hydraulic pressure signal for controlling the oil pressure to the oil inlet of the variable mechanism.
  • the output device of the continuous proportional hydraulic signal comprises: a controller; a proportional pressure reducing valve connected to the controller, and respectively connected to the oil inlet of the control oil source and the variable mechanism through the oil passage, and the proportional pressure reducing valve is used in Under the control of the controller, a continuous proportional hydraulic signal is output to the oil inlet of the variable mechanism.
  • the output device of the continuous proportional hydraulic signal comprises: a handle connected to the control oil source through the oil passage; the shuttle valve is respectively connected with the handle and the oil inlet of the variable mechanism through the oil passage, and the shuttle valve is used for controlling the handle The inlet port of the downward variable mechanism outputs a continuous proportional hydraulic signal.
  • the handle is a hydraulic handle or an electronically controlled handle.
  • control system further includes a reversing valve, wherein the reversing valve is respectively connected to the motor and the handle through an oil passage, and the reversing valve is used for controlling the rotation direction of the motor by the action of the handle.
  • the hydraulic motor is continuously steplessly shifted between its maximum swing angle and the minimum swing angle by providing a continuous proportional hydraulic pressure signal to the oil inlet of the variable mechanism, because the hydraulic motor is in a continuously variable shifting state. , in the process of its high speed switching, it effectively avoids hydraulic shock and improves the service life of the hydraulic motor.
  • FIG. 1 is a schematic structural view of a control system of a hydraulic motor of a crane hoisting system in the prior art
  • FIG. 2 is a flow chart showing main steps of a control method of a hydraulic motor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of a control system of a hydraulic motor according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a second embodiment of a control system of a hydraulic motor according to an embodiment of the present invention
  • FIG. 1 is a schematic structural view of a control system of a hydraulic motor of a crane hoisting system in the prior art
  • FIG. 2 is a flow chart showing main steps of a control method of a hydraulic motor according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of a control system of a hydraulic motor according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing a second embodiment of a control system of a hydraulic motor according to
  • FIG. 6 is a schematic diagram showing the relationship between the opening degree of the handle and the output pressure of the handle according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • 2 is a flow chart showing the main steps of a control method of a hydraulic motor according to an embodiment of the present invention, wherein the hydraulic motor controlled by the method is connected to a variable mechanism for controlling the rotational speed of the hydraulic motor, as shown in FIG.
  • the method mainly includes the following steps: Step S22: During the high and low speed switching of the hydraulic motor, the oil inlet of the variable mechanism receives a continuous proportional hydraulic signal for controlling the oil pressure of the oil inlet; in this step, the variable mechanism is advanced.
  • the first device that provides a continuous proportional hydraulic signal includes: a controller and a proportional pressure reducing valve, wherein the proportional pressure reducing valve and control The device is connected and connected to the oil inlet of the control oil source and the variable mechanism through the oil passage, and the proportional pressure reducing valve outputs a continuous proportional hydraulic signal to the oil inlet of the variable mechanism under the control of the controller.
  • the second device for providing a continuous proportional hydraulic signal comprises: a hydraulic control handle and a shuttle valve, wherein the hydraulic control handle is connected to the control oil source through the oil passage, and the shuttle valve is respectively connected to the hydraulic control handle and the variable mechanism through the oil passage.
  • the port is connected, and the shuttle valve outputs a continuous proportional hydraulic signal to the inlet port of the variable mechanism under the control of the hydraulic control handle.
  • the third device for providing a continuous proportional hydraulic signal comprises: an electric control handle and a shuttle valve, wherein the electric control handle is connected to the control oil source through the oil passage, and the shuttle valve is respectively connected to the electric control handle and the variable mechanism through the oil passage.
  • Step S24 The variable mechanism controls the speed of the hydraulic motor by a continuous proportional hydraulic signal. In this step, the variable mechanism controls the hydraulic motor to continuously change between its maximum swing angle and minimum swing angle according to the continuous proportional hydraulic signal.
  • FIG. 3 is a schematic structural view of a first embodiment of a control system of a hydraulic motor according to an embodiment of the present invention.
  • the control system includes: a proportional pressure reducing valve 31 and a controller 32, wherein the proportional pressure reducing valve 31 is connected to the controller 32, and respectively controls the oil source 14 and the variable mechanism 12 through the oil passage.
  • the port X is connected, and the proportional pressure reducing valve 31 outputs a continuous proportional hydraulic pressure signal to the oil inlet X of the variable mechanism 12 under the control of the controller 32.
  • the control system of the hydraulic motor in this embodiment is the same as the other components of the control system of the hydraulic motor of the prior art crane hoisting system shown in Fig. 1.
  • the proportional pressure reducing valve 31 capable of outputting a continuous proportional hydraulic signal is substituted for the solenoid valve 13 of FIG. 1, so that the variable mechanism 12 controls the hydraulic motor 11 at its maximum swing angle according to the continuous proportional hydraulic signal.
  • the stepless shifting between the minimum swing angle and the minimum swing angle since the hydraulic motor 11 is in the continuously variable shifting state, the hydraulic shock is effectively avoided during the high and low speed switching, and the service life of the hydraulic motor 11 is improved.
  • the control system includes: a hydraulic control handle 41 connected to the control oil source 14 via an oil passage.
  • the hydraulic control handle 41 can be used in common with the handle of the control switching valve 16 of Fig. 1, or can be used separately.
  • the shuttle valve 42 is connected to the hydraulic control handle 41 and the oil inlet X of the variable mechanism 12 via the oil passage, and the shuttle valve 42 outputs a continuous proportional hydraulic pressure signal to the oil inlet X of the variable mechanism 12 under the control of the hydraulic control handle 41.
  • FIG. 5 is a schematic structural view of a third embodiment of a control system of a hydraulic motor according to an embodiment of the present invention, and the control system of the hydraulic motor of the embodiment of the present invention shown in FIG. 4 is in addition to the following description, FIG. 5 and FIG.
  • the other components of the 4 control system are the same.
  • the hydraulic control handle 41 of FIG. 4 is replaced with an electric control handle 51.
  • the shuttle valve 42 outputs a continuous proportional hydraulic pressure signal to the oil inlet X of the variable mechanism 12 under the control of the electronically controlled handle 51.
  • FIG. 6 is a schematic diagram showing the relationship between the opening degree of the handle and the output pressure of the handle according to an embodiment of the present invention.
  • the output pressure of the handle changes proportionally with the change of the opening degree of the handle, as shown in FIG.
  • the hydraulic control handle 41 is also the electronic control handle 51 in FIG. 5, and both control the shuttle valve 42 to output a continuous proportional hydraulic signal to the oil inlet X of the variable mechanism 12, and the variable mechanism 12 controls the hydraulic motor 11 according to the continuous proportional hydraulic signal.
  • the control method and system of the hydraulic motor of the present invention controls the hydraulic motor to continuously change between its maximum swing angle and minimum swing angle by providing a continuous proportional hydraulic signal to the oil inlet of the variable mechanism,
  • the hydraulic motor is in a continuously variable shifting state, which effectively avoids hydraulic shock during its high and low speed switching and improves the service life of the hydraulic motor.

Abstract

公开了一种液压马达的控制方法,其包括如下步骤:在液压马达的高低速切换过程中,变量机构的进油口接收用于控制其油压的连续比例液压信号;变量机构根据该连续比例液压信号控制液压马达的转速。还公开了一种液压马达的控制系统。该控制方法和系统能够使液压马达在其高低速切换过程中处于无级变速状态,从而有效避免了液压冲击,提高了液压马达的使用寿命。

Description

¾ £马达的控制方法与系统 技术领域 本发明涉及工程机戈领域, 尤其涉及一种液压马达的控制方法与系统。 背景技术 图 1为现有技术中起重机卷扬系统的液压马达的控制系统的结构示意图, 如图 1所示, 卷扬系统的液压马达 11与用于控制其转速的变量机构 12连接, 液压马达 11还与控制其旋转方向的换向阀 16连接。 变量机构 12的进油口 X 通过油路与电磁阀 13连接, 电磁阀 13还与控制油源 14连接, 电磁阀 13控制 变量机构 12的进油口 X处的压力, 进而控制液压马达 11 的摆角。 液压马达 11的初始摆角为大摆角, 在油泵 15单位时间供油量一定的情况下, 液压马达 11 的转速最低。 液压马达 11 如需高速运转, 就要使电磁阀 13 通电, 电磁阀 13通电后液压马达 11的摆角摆到最小,在油泵 15单位时间供油量一定的情况 下, 液压马达 11转速最高。 由于电磁阀 13属于开关量, 电磁阀 13失电时, 变量机构 12的进油口 X处的压力为 OMPa, 电磁阀 13得电时, 变量机构 12 的进油口 X处的压力达到一定值, 因此由电磁阀 13控制变量机构 12的进油口 X处的压力, 进而控制液压马达 11的摆角时, 液压马达 11只有两种^ I 态, 即 最大摆角和最小摆角, 所对应的液压马达 11只有最低转速和最高转速。 按照现有技术中的上述做法, 由电磁阀 13控制变量机构 12进而控制液压 马达 11的转速, 在运行过程中通过调整液压马达 11的摆角来进行高氐速的切 换, 高氐速切换时液压马达 11 的摆角瞬时由大摆角变到小摆角, 由于切换过 程极短, 从而产生液压冲击, 液压马达 11 长时间在如 jtb工况下工作, 会严重 影响其寿命。 在现有技术中, 在液压马达的高氐速切换过程中瞬时由大摆角变到小摆 角, 从而产生液压冲击, 导致严重影响其使用寿命, 对于该问题, 目前尚未提 出有效解决方案。 发明内容 本发明的主要目的是提供一种液压马达的控制方法与系统, 以解决现有技 术中在液压马达的高低速切换过程中瞬时由大摆角变到小摆角, 从而产生液压 冲击, 导致严重影响其使用寿命的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种液压马达的控制 方法, 液压马达与用于控制其转速的变量机构连接。 本发明的液压马达的控制方法包括: 步骤 A: 在液压马达的高低速切换过程中, 变量机构的进油口接收用于控 制该进油口油压的连续比例液压信号; 步骤 B: 变量机构 居连续比例液压信号控制液压马达的转速。 进一步地, 提供连续比例液压信号的装置包括: 控制器; 比例减压阀, 与 控制器连接, 并且通过油路分别与控制油源以及变量机构的进油口连接, 比例 减压阀用于在控制器的控制下向变量机构的进油口输出连续比例液压信号。 进一步地, 提供连续比例液压信号的装置包括: 手柄, 通过油路与控制油 源相连接; 梭阀, 通过油路分别与手柄以及变量机构的进油口连接, 梭阀用于 在手柄的控制下向变量机构的进油口输出连续比例液压信号。 进一步地, 手柄为液控手柄或电控手柄。 才艮据本发明的另一方面, 提供了一种液压马达的控制系统, 液压马达与用 于控制其转速的变量机构连接。 本发明的液压马达的控制系统包括: 连续比例液压信号输出装置, 通过油 路与变量机构的进油口相连接, 用于向变量机构的进油口输出控制油压的连续 比例液压信号。 进一步地, 连续比例液压信号的输出装置包括: 控制器; 比例减压阀, 与 控制器连接, 并且通过油路分别与控制油源以及变量机构的进油口连接, 比例 减压阀用于在控制器的控制下向变量机构的进油口输出连续比例液压信号。 进一步地, 连续比例液压信号的输出装置包括: 手柄, 通过油路与控制油 源相连接; 梭阀, 通过油路分别与手柄以及变量机构的进油口连接, 梭阀用于 在手柄的控制下向变量机构的进油口输出连续比例液压信号。 进一步地, 手柄为液控手柄或电控手柄。 进一步地, 控制系统还包括换向阀, 换向阀通过油路分别与马达以及手柄 连接, 换向阀用于 居手柄的动作控制马达的旋转方向。 才艮据本发明的技术方案, 通过向变量机构的进油口提供连续比例液压信 号, 进而控制液压马达在其最大摆角和最小摆角之间无级变速, 由于液压马达 处于无级变速状态, 在其高氏速切换过程中有效避免了液压冲击, 提高了液压 马达的使用寿命。 附图说明 说明书附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是现有技术中起重机卷扬系统的液压马达的控制系统的结构示意图; 图 2是根据本发明实施例的液压马达的控制方法的主要步骤的流程图; 图 3是 居本发明实施例的液压马达的控制系统实施例一的结构示意图; 图 4是 居本发明实施例的液压马达的控制系统实施例二的结构示意图; 图 5是 居本发明实施例的液压马达的控制系统实施例三的结构示意图; 以及 图 6是根据本发明实施例的手柄开度与手柄输出压力的关系示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征 可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 2是根据本发明实施例的液压马达的控制方法的主要步骤的流程图, 其 中该方法所控制的液压马达与用于控制该液压马达转速的变量机构连接, 如图 2所示, 该方法主要包括如下步骤: 步骤 S22: 在液压马达的高低速切换过程中, 变量机构的进油口接收用于 控制该进油口油压的连续比例液压信号; 在本步骤中, 向变量机构的进油口提供连续比例液压信号的装置可以为多 种, 现举例三种 ¾口下: 第一种提供连续比例液压信号的装置包括: 控制器和比例减压阀, 其中, 比例减压阀与控制器连接, 并通过油路分别与控制油源以及变量机构的进油口 连接, 比例减压阀在控制器的控制下向变量机构的进油口输出连续比例液压信 号。 第二种提供连续比例液压信号的装置包括: 液控手柄和梭阀, 其中, 液控 手柄通过油路与控制油源相连接, 梭阀通过油路分别与液控手柄以及变量机构 的进油口连接, 梭阀在液控手柄的控制下向变量机构的进油口输出连续比例液 压信号。 第三种提供连续比例液压信号的装置包括: 电控手柄和梭阀, 其中, 电控 手柄通过油路与控制油源相连接, 梭阀通过油路分别与电控手柄以及变量机构 的进油口连接, 梭阀在电控手柄的控制下向变量机构的进油口输出连续比例液 压信号。 在本步骤中, 向变量机构的进油口提供连续比例液压信号的装置不局限于 上述三种, 但凡是能产生连续比例液压信号并能够提供给变量机构的进油口的 装置, 都属于本发明的保护范围之内。 步骤 S24: 变量机构 居连续比例液压信号控制液压马达的转速。 在该步骤中, 变量机构根据连续比例液压信号控制液压马达在其最大摆角 和最小摆角之间无级变速, 由于液压马达处于无级变速状态, 在其高低速切换 过程中有效避免了液压冲击, 提高了液压马达的使用寿命。 图 3是 居本发明实施例的液压马达的控制系统实施例一的结构示意图。 如图 3所示, 该控制系统包括: 比例减压阀 31和控制器 32, 其中比例减压阀 31与控制器 32连接, 并通过油路分别与控制油源 14以及变量机构 12的进油 口 X连接, 比例减压阀 31在控制器 32的控制下向变量机构 12的进油口 X输 出连续比例液压信号。 除以上描述外, 本实施例中的液压马达的控制系统与图 1示出的现有技术 中起重机卷扬系统的液压马达的控制系统的其他组成部分相同。 在本实施例中, 用能够输出连续比例液压信号的比例减压阀 31 代替图 1 中的电磁阀 13 , 从而使变量机构 12才艮据该连续比例液压信号控制液压马达 11 在其最大摆角和最小摆角之间无级变速, 由于液压马达 11处于无级变速状态, 在其高低速切换过程中有效避免了液压冲击, 提高了液压马达 11的使用寿命。 图 4是 居本发明实施例的液压马达的控制系统实施例二的结构示意图。 如图 4所示, 该控制系统包括: 液控手柄 41 , 通过油路与控制油源 14连接。 液控手柄 41既可以与图 1中 控制换向阀 16的手柄共用, 也可以分别使用。 梭阀 42, 通过油路分别与液控手柄 41以及变量机构 12的进油口 X连接, 梭阀 42在液控手柄 41的控制下向变量机构 12的进油口 X输出连续比例液压 信号。 除以上描述外, 本实施例中的液压马达的控制系统与图 1示出的现有技术 中起重机卷扬系统的液压马达的控制系统的其他组成部分相同。 图 5是 居本发明实施例的液压马达的控制系统实施例三的结构示意图, 该实施例与图 4示出的本发明实施例的液压马达的控制系统除以下描述之外, 图 5和图 4的控制系统的其他组成部分相同。 用电控手柄 51替换了图 4中的液控手柄 41 , 梭阀 42在电控手柄 51的控 制下向变量机构 12的进油口 X输出连续比例液压信号。 图 6是根据本发明实施例的手柄开度与手柄输出压力的关系示意图, 如图 6所示, 从变化趋势线 61可见, 手柄输出压力随手柄开度的变化而比例变化, 无论是图 4中的液控手柄 41还是图 5中的电控手柄 51 ,都会控制梭阀 42向变 量机构 12的进油口 X输出连续比例液压信号,变量机构 12根据该连续比例液 压信号控制液压马达 11 在其最大摆角和最小摆角之间无级变速, 由于液压马 达 11 处于无级变速状态, 在其高低速切换过程中有效避免了液压冲击, 提高 了液压马达 11的使用寿命。 从以上描述可知, 本发明的液压马达的控制方法与系统, 通过向变量机构 的进油口提供连续比例液压信号, 进而控制液压马达在其最大摆角和最小摆角 之间无级变速, 由于液压马达处于无级变速状态, 在其高低速切换过程中有效 避免了液压冲击, 提高了液压马达的使用寿命。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种液压马达的控制方法, 所述液压马达与用于控制其转速的变量机构 连接, 其特征在于, 所述方法包括:
步骤 A: 在所述液压马达的高氏速切换过程中, 所述变量机构的进 油口接收用于控制该进油口油压的连续比例液压信号; 步骤 B: 所述变量机构 居所述连续比例液压信号控制所述液压马 达的转速。
2. 根据权利要求 1所述的控制方法, 其特征在于, 提供所述连续比例液压 信号的装置包括: 控制器;
比例减压阀, 与所述控制器连接, 并且通过油路分别与控制油源以 及所述变量机构的进油口连接, 所述比例减压阀用于在所述控制器的控 制下向所述变量机构的进油口输出所述连续比例液压信号。
3. 根据权利要求 1所述的控制方法, 其特征在于, 提供所述连续比例液压 信号的装置包括:
手柄, 通过油路与所述控制油源相连接;
梭阀, 通过油路分别与所述手柄以及所述变量机构的进油口连接, 所述梭阀用于在所述手柄的控制下向所述变量机构的进油口输出所述连 续比例液压信号。
4. 根据权利要求 3所述的控制方法, 其特征在于, 所述手柄为液控手柄或 电控手柄。
5. —种液压马达的控制系统, 所述液压马达与用于控制其转速的变量机构 连接, 其特征在于, 所述控制系统还包括:
连续比例液压信号输出装置, 通过油路与所述变量机构的进油口相 连接,用于向所述变量机构的进油口输出控制油压的连续比例液压信号。
6. 根据权利要求 5所述的控制系统, 其特征在于, 所述连续比例液压信号 的输出装置包括: 控制器;
比例减压阀, 与所述控制器连接, 并且通过油路分别与控制油源以 及所述变量机构的进油口连接, 所述比例减压阀用于在所述控制器的控 制下向所述变量机构的进油口输出所述连续比例液压信号。
7. 根据权利要求 5所述的控制系统, 其特征在于, 所述连续比例液压信号 的输出装置包括:
手柄, 通过油路与所述控制油源相连接;
梭阀, 通过油路分别与所述手柄以及所述变量机构的进油口连接, 所述梭阀用于在所述手柄的控制下向所述变量机构的进油口输出所述连 续比例液压信号。
8. 根据权利要求 7所述的控制系统, 其特征在于, 所述手柄为液控手柄或 电控手柄。
9. 根据权利要求 7或 8所述的控制系统, 其特征在于, 所述控制系统还包 括换向阀, 所述换向阀通过油路分别与所述马达以及所述手柄连接, 所 述换向阀用于 居所述手柄的动作控制所述马达的旋转方向。
PCT/CN2011/076730 2011-06-30 2011-06-30 液压马达的控制方法与系统 WO2013000168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076730 WO2013000168A1 (zh) 2011-06-30 2011-06-30 液压马达的控制方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076730 WO2013000168A1 (zh) 2011-06-30 2011-06-30 液压马达的控制方法与系统

Publications (1)

Publication Number Publication Date
WO2013000168A1 true WO2013000168A1 (zh) 2013-01-03

Family

ID=47423406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076730 WO2013000168A1 (zh) 2011-06-30 2011-06-30 液压马达的控制方法与系统

Country Status (1)

Country Link
WO (1) WO2013000168A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762889A (zh) * 2016-12-30 2017-05-31 中铁工程装备集团有限公司 超大直径盾构用螺旋输送机无级调速液压驱动系统
CN108050112A (zh) * 2017-11-10 2018-05-18 西安理工大学 一种阀控非对称缸的压力控制系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2522656Y (zh) * 2002-01-30 2002-11-27 王秋江 清污机液压无级调速装置
CN2769240Y (zh) * 2005-02-27 2006-04-05 江苏永丰机械有限责任公司 港口起重机的液压系统
CN2934769Y (zh) * 2006-08-09 2007-08-15 三一重型装备有限公司 一种行走液压驱动装置
CN201339536Y (zh) * 2009-01-20 2009-11-04 胡世璇 一种轴向柱塞变量液压马达的配流器
JP2009257391A (ja) * 2008-04-14 2009-11-05 Yanmar Co Ltd 作業車両
CN201587407U (zh) * 2009-12-15 2010-09-22 肖公平 采用减压阀调速的索道单动力液压站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2522656Y (zh) * 2002-01-30 2002-11-27 王秋江 清污机液压无级调速装置
CN2769240Y (zh) * 2005-02-27 2006-04-05 江苏永丰机械有限责任公司 港口起重机的液压系统
CN2934769Y (zh) * 2006-08-09 2007-08-15 三一重型装备有限公司 一种行走液压驱动装置
JP2009257391A (ja) * 2008-04-14 2009-11-05 Yanmar Co Ltd 作業車両
CN201339536Y (zh) * 2009-01-20 2009-11-04 胡世璇 一种轴向柱塞变量液压马达的配流器
CN201587407U (zh) * 2009-12-15 2010-09-22 肖公平 采用减压阀调速的索道单动力液压站

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762889A (zh) * 2016-12-30 2017-05-31 中铁工程装备集团有限公司 超大直径盾构用螺旋输送机无级调速液压驱动系统
CN108050112A (zh) * 2017-11-10 2018-05-18 西安理工大学 一种阀控非对称缸的压力控制系统及其控制方法
CN108050112B (zh) * 2017-11-10 2019-07-23 西安理工大学 一种阀控非对称缸的压力控制系统及其控制方法

Similar Documents

Publication Publication Date Title
JP5759072B2 (ja) 建設機械用油圧システム
JP5927302B2 (ja) 建設機械用優先制御システム
WO2015064025A1 (ja) 建設機械の油圧駆動システム
US20140130486A1 (en) Hydraulic drive apparatus for work machine
WO2010074507A3 (ko) 건설기계의 유압펌프 제어장치
WO2016185682A1 (ja) 建設機械の油圧駆動システム
JP2014522953A (ja) 建設機械の圧力制御システム
JP2013545948A (ja) 建設機械の油圧ポンプ制御システム
WO2014110901A1 (zh) 基于合流控制方式的液压装置
JP2010169204A (ja) 油圧作業機の油圧回路
WO2013000168A1 (zh) 液压马达的控制方法与系统
CN208185091U (zh) 正控制负载敏感系统
JP5817311B2 (ja) ハイブリッド型油圧装置
JP2013541683A (ja) 建設機械用油圧システム
KR20160010405A (ko) 건설기계의 스풀 변위 가변 제어장치 및 제어방법
CN103031957A (zh) 一种用于混凝土机械的控制系统及方法
JP2015514942A (ja) 建設機械用油圧システム
JP2019065569A5 (zh)
JP2013019414A (ja) ハイドロスタティック式の駆動システム
CN108909831B (zh) 转向液压系统及装载机
JP6009770B2 (ja) 油圧閉回路システム
JP6043157B2 (ja) ハイブリッド建設機械の制御システム
JP5859322B2 (ja) 油圧制御装置
JP2009257440A (ja) 建設機械の油圧回路
JP2010112493A (ja) 作業機械の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868530

Country of ref document: EP

Kind code of ref document: A1