WO2013000122A1 - 功能性电刺激系统 - Google Patents

功能性电刺激系统 Download PDF

Info

Publication number
WO2013000122A1
WO2013000122A1 PCT/CN2011/076492 CN2011076492W WO2013000122A1 WO 2013000122 A1 WO2013000122 A1 WO 2013000122A1 CN 2011076492 W CN2011076492 W CN 2011076492W WO 2013000122 A1 WO2013000122 A1 WO 2013000122A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical stimulation
resistor
stimulation system
energy storage
functional
Prior art date
Application number
PCT/CN2011/076492
Other languages
English (en)
French (fr)
Inventor
侯增广
陈翼雄
李鹏峰
谭民
程龙
李庆玲
张峰
胡进
张新超
王洪波
胡国清
洪毅
张军卫
白金柱
吕振
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to PCT/CN2011/076492 priority Critical patent/WO2013000122A1/zh
Priority to CN201180037866.4A priority patent/CN103068440B/zh
Priority to US13/994,051 priority patent/US8983621B2/en
Publication of WO2013000122A1 publication Critical patent/WO2013000122A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3782Electrical supply producing a voltage above the power source level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a functional electrical stimulation system. Background technique
  • Functional electrical stimulation therapy uses low-frequency currents to stimulate muscles that have lost innervation, causing them to contract to replace or correct the function that organs and limbs have lost.
  • the research and application of functional electrical stimulation therapy has been involved in various fields of clinical medicine.
  • Functional electrical stimulation devices are mostly two-channel to four-channel portable electrical stimulators.
  • the diaphragmatic pacemaker used to control and regulate respiratory motion is a functional electrical stimulation system, which is mainly used for cerebrovascular diseases, brain trauma, and respiratory muscle paralysis caused by high spinal cord injury.
  • the controller emits a radio pulse signal by implanting a pair of electrodes on the bilateral phrenic nerve, or by placing the body surface electrode on the bilateral cervical phrenic nerve movement point and connecting to a signal receiver fixed to the chest wall.
  • the receiver turns it into a low-frequency current that excites the phrenic nerve through the electrodes, causing the diaphragm to contract.
  • Functional electrical stimulation has also achieved good results in the treatment of urinary dysfunction.
  • urinary incontinence is caused by lower motor neuron damage, causing weakness of the urethral sphincter and pelvic floor muscles, causing urination to drip, or a slight increase in abdominal pressure to urinate.
  • Clinical use of functional electrical stimulation therapy to stimulate the urethral sphincter and pelvic floor muscles to enhance their muscle strength can significantly improve the degree of urinary incontinence in patients.
  • Another example is when the medullary urinary center injury, bladder detrusor paralysis, urinary retention.
  • the implanted electrode is used clinically to stimulate the detrusor muscle to contract to overcome the pressure of the urethral sphincter and to excrete the urine.
  • Functional electrical stimulation therapy can also help patients with motor neuron injury to perform certain functional activities, such as walking, grasping, coordinating their movements, and accelerating the recovery of autonomic control.
  • Upper motor neuron damage includes cerebrovascular disease, brain trauma, spinal cord injury, cerebral palsy, etc.
  • spinal cord injury For such patients, especially those with spinal cord injury, limb movement is conducive to rehabilitation.
  • electrical signals generated by physical activity can stimulate the spinal cord to achieve partial spinal cord continuity.
  • Some scientists have proposed a functional electrical stimulation-assisted brake training method that not only restores muscle strength, but also promotes local tissue repair of spinal cord injury. Applicants have found that there are many shortcomings in the prior art functional electrical stimulation system: 1.
  • the present invention provides a functional electrical stimulation system to increase the flexibility of its setup, enhance safety and reliability, and avoid danger to the user during use.
  • a functional electrical stimulation system comprises: an initial power supply; a boosting module connected to the initial power supply for boosting an output voltage of the initial power supply to a first predetermined voltage; an energy storage module connected to the boosting module, And storing a power boosted to a first preset voltage; a central control unit for generating an electrical stimulation parameter data packet; an electrical stimulation output channel connected to the energy storage module for receiving an electrical stimulation parameter data packet,
  • the electrical stimulation parameter is parsed in the stimulation parameter data packet; the electrical energy stored in the energy storage module is converted into an electrical stimulation pulse corresponding to the electrical stimulation parameter; and the electrical stimulation pulse is applied to the affected part of the patient.
  • the electrical stimulation output channel comprises: an underlying controller for receiving an electrical stimulation data packet of the central control unit, parsing the electrical stimulation parameter from the electrical stimulation parameter data packet, and outputting the electrical output a forward control signal and a negative control signal corresponding to the stimulation parameter; a constant current source connected to the energy storage module for receiving the forward control signal and the negative control signal; and converting the stored energy stored in the energy storage module to the positive direction a bipolar electrical stimulation pulse corresponding to the control signal and the negative control signal; an electrode patch having positive and negative electrodes respectively connected to the two output ends of the constant current source for applying the bipolar electrical stimulation pulse to the patient's disease Part.
  • the constant current source is a bridge constant current source, and the positive and negative electrodes of the electrode patch are respectively connected to the bridge arms of the bridge constant current source.
  • the constant current source is a bridge constant current source
  • the bridge The constant current source includes: a first operational amplifier UA, a second operational amplifier UB, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, and a sixth resistor R6, first Transistor Ql, second transistor Q2, patient's own equivalent resistance R7; wherein, the first operational amplifier UA, the first resistor R1, the second resistor R2, the third resistor R3 and the patient's own equivalent resistance R7 are negative
  • the positive input terminal of the first operational amplifier UA is connected to the negative amplitude amplitude control signal generated by the bottom controller to control the amplitude of the negative pulse current
  • the first resistor R1 is connected to the first operational amplifier UA.
  • the output terminal and the base of the first transistor Q1, the second resistor R2 is connected to the negative input terminal of the first operational amplifier UA and the emitter of the first transistor Q1, and the third resistor R3 is connected to the first transistor
  • the emitter and ground of Q1, the collector of the first transistor Q1 is connected to the output of the boost module through a forward polarity switch; the second operational amplifier UB, the fourth resistor R4, the fifth resistor R5, and the sixth resistor R6
  • the patient's own equivalent resistance R7 constitutes a positive pulse constant current control circuit, according to the positive input of the second operational amplifier UB
  • the forward amplitude control signal generated by the bottom controller controls the amplitude of the forward pulse current
  • the fourth resistor R4 is connected to the output of the second operational amplifier UB and the base of the second transistor Q2, and the fifth resistor R5 Connecting the negative input terminal of the second operational amplifier UB to the emitter of the second transistor Q2, the sixth resistor R6 is connected to the emitter and ground of the second transistor Q2,
  • the functional electrical stimulation system comprises: n sets of electrical stimulation output channels; a central control unit for generating electrical information with timing information corresponding to n sets of electrical stimulation output channels, respectively
  • the parameter data packet is stimulated, and the electrical stimulation parameter data packet is sent to the corresponding electrical stimulation output channel.
  • n 16.
  • the functional electrical stimulation system further comprises: an active discharge circuit; a central control unit, configured to generate an active discharge signal in a system shutdown, pause or emergency stop state; One end is connected to the energy storage module, and the other end is connected to the ground for receiving an active discharge signal and releasing the electrical energy stored in the energy storage module.
  • the active discharge circuit comprises: a third transistor Q3, an eighth resistor R8, a ninth resistor R9; a collector of the third transistor Q3 is connected to the eighth resistor R8
  • the energy storage module has an emitter terminal connected to the ground and a base through the ninth resistor R9 is connected to the central control unit; when the system is in normal working state, the third transistor Q3 is in the off state; in the system shutdown, pause or emergency stop state, the central control unit sets the active discharge signal to the high level, the third The transistor Q3 is turned on, and the electric energy stored in the energy storage module is released through the eighth resistor R8.
  • the functional electrical stimulation system of the present invention further includes: a power-off discharge circuit, wherein the control end is connected to the initial power source, and is configured to release the storage in the energy storage module when the voltage of the initial power source is lower than the first preset voltage value Electrical energy.
  • a power-off discharge circuit wherein the control end is connected to the initial power source, and is configured to release the storage in the energy storage module when the voltage of the initial power source is lower than the first preset voltage value Electrical energy.
  • the power-off discharge circuit comprises: a fourth transistor Q4, a fifth transistor Q5, a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, a thirteenth resistor R13; the base of the fourth transistor Q4 is connected to the initial power supply voltage signal through the thirteenth resistor R13, and the collector is connected to the energy storage module through the tenth resistor R10, and the emitter thereof is connected to the ground; The base of the fifth transistor Q5 is connected to the collector of the transistor Q4 through the eleventh resistor R11, and the collector thereof is connected to the energy storage module through the resistor R12, and the emitter thereof is connected to the ground;
  • the fourth transistor Q4 is turned on, and the fifth transistor Q5 is not turned on; when the voltage of the initial power source is lower than the first preset voltage value, the fourth transistor Q4 At the end, the fifth transistor Q5 is turned on,
  • the functional electrical stimulation system of the present invention further includes: a fuse connected between the energy storage module and the electrical stimulation output channel, configured to cut off the energy storage module when the output current of the energy storage module is greater than the first preset current value The connection to the electrical stimulation output channel.
  • the fuse is a 25 mA fast blow fuse.
  • the functional electrical stimulation system of the present invention further comprises: a voice-activated emergency stop module, configured to generate a voice-activated emergency stop signal after receiving a sound higher than a preset intensity or frequency; and a central control unit for emergency stop by voice control The signal generates an active discharge signal; the active discharge circuit is configured to release the stored energy stored in the energy storage module after receiving the active discharge signal.
  • a voice-activated emergency stop module configured to generate a voice-activated emergency stop signal after receiving a sound higher than a preset intensity or frequency
  • a central control unit for emergency stop by voice control The signal generates an active discharge signal
  • the active discharge circuit is configured to release the stored energy stored in the energy storage module after receiving the active discharge signal.
  • the central control unit is configured to generate an alarm signal by the voice-activated emergency stop signal;
  • the functional electrical stimulation system further includes: an alarm circuit, configured to generate a sound after receiving the alarm signal / or optical alarm signal.
  • the functional electrical stimulation system of the present invention further comprises: a mechanical emergency stop module, the normally open end of which is connected between the energy storage module and the electrical stimulation output channel; the functional electrical stimulation system is normally enabled In use, the normally open end is turned on; in an emergency, the normally open end is disconnected, and the path between the energy storage module and the electrical stimulation output channel is disconnected.
  • the mechanical emergency stop module is a push button switch; when the functional electrical stimulation system is in normal use, the user presses the switch by holding or stepping on, and the normally open end is turned on; in an emergency, the user releases the switch, often The beginning is broken.
  • the functional electrical stimulation system of the present invention further comprises: a human-computer interaction module, configured to receive an electrical stimulation parameter input by the user; and a central control unit connected to the human-computer interaction module for generating an electrical stimulation parameter input by the user
  • the electrical stimulation parameter data packet is transmitted to the electrical stimulation output channel.
  • the functional electrical stimulation system of the present invention further comprises: a communication interface module, configured to receive an electrical stimulation parameter data packet input from the user terminal; and a central control unit coupled to the communication interface module for using the electrical stimulation parameter data packet Analyze and package the electrical stimulation parameter data packet that can be parsed by the electrical stimulation output channel.
  • the electrical stimulation waveform parameter is modulated by an audio signal, a real-time myoelectric signal of the user, or a fixed waveform sequence.
  • the communication interface module is an RS232 communication interface.
  • the system can be used as a stand-alone device to implement simple fixed-parameter electrical stimulation, and as a computer peripheral to realize complex time-varying parameter electrical stimulation under the control of a computer.
  • Figure 1 is a schematic structural view of a functional electric stimulation system
  • FIG. 2 is a schematic structural view of a functional electrical stimulation system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an electrical stimulation output channel of a functional electrical stimulation system according to an embodiment of the present invention
  • FIG. 4 is a circuit schematic diagram of DC boost, automatic discharge, and overcurrent protection of a functional electrical stimulation system according to an embodiment of the present invention
  • 5 is a schematic structural diagram of a functional electrical stimulation system according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a functional electrical stimulation system according to an embodiment of the present invention
  • FIG. 7 is a waveform diagram showing an output of an electrical stimulation channel in a functional electrical stimulation system according to an embodiment of the present invention.
  • FIG. 8 is a control flow chart of a central controller of a functional electrical stimulation system according to an embodiment of the present invention.
  • FIG. 9 is a control flow chart of a bottom controller of a functional electrical stimulation system according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the structure of a functional electrical stimulation system.
  • the functional electrical stimulation system of the embodiment includes: an initial power supply; a boosting module connected to the initial power source for boosting an output voltage of the initial power source to a first preset voltage; an energy storage module, Connected to the boost module for storing electrical energy boosted to a first predetermined voltage; central control unit for generating electrical stimulation parameter data packets; electrical stimulation output channel connected to the energy storage module for receiving electricity
  • the stimulation parameter data packet parses the electrical stimulation parameter from the electrical stimulation parameter data packet; converts the electrical energy stored in the energy storage module into an electrical stimulation pulse corresponding to the electrical stimulation parameter; and applies the electrical stimulation pulse to the diseased part of the patient .
  • the initial power source is a 12V lithium battery
  • the boost module is a DC boost module
  • the energy storage module is a high withstand voltage (400V) capacitor.
  • the DC boost module boosts the voltage of the lithium battery to 200V to provide power to the electrical stimulation output channel.
  • the electrical stimulation output channel outputs an electrical stimulation pulse according to the electrical stimulation parameter data packet sent by the central control unit, thereby enhancing the selection of the electrical stimulation pulse.
  • the flexibility and autonomy of the punching are beneficial to the user to select the type of personalized electrical stimulation pulse according to their actual situation.
  • the electrical stimulation output channel includes: an underlying controller for receiving an electrical stimulation data packet of the central control unit, The electrical stimulation parameter is parsed from the electrical stimulation parameter data packet, and the forward control signal and the negative direction control signal corresponding to the electrical stimulation parameter are output; the constant current source is connected to the energy storage module for receiving the forward control signal and the negative direction Control signal; convert and store the electric energy stored in the energy storage module into a bipolar electric stimulation pulse corresponding to the forward control signal and the negative control signal; the electrode patch, the positive and negative electrodes are respectively connected to the two output ends of the constant current source , for applying a bipolar electrical stimulation pulse to a diseased part of a patient.
  • the constant current source is a bridge constant current source, and two ends of the electrode patch are respectively connected to both ends of the bridge arm.
  • the functional electrical stimulation system comprises: n sets of electrical stimulation output channels; a central control unit for generating electrical stimulation outputs corresponding to n sets respectively The electrical stimulation parameter data packet of the channel with timing information is sent to the corresponding electrical stimulation output channel.
  • the functional electrical stimulation system includes 16 sets of electrical stimulation output channels.
  • the polarity is controlled by a switch and the current is controlled by an analog quantity.
  • the bridge constant current source includes: op amp UA, op amp UB, resistor Rl, resistor R2, resistor R3, resistor R4, resistor R5, resistor R6, transistor Ql, transistor Q2;
  • the resistor R1, the resistor R2 and the resistor R3 form a constant current control circuit of the negative pulse.
  • the forward input terminal of the UA is connected to the negative amplitude amplitude control signal generated by the bottom controller to control the amplitude of the negative pulse current, and the resistor R1 is connected.
  • the output of UA and the base of Q1 is connected to the negative input of UA and the emitter of Q1
  • the resistor R3 is connected to the emitter of Q1 and the ground
  • the collector of Q1 is connected to the DC boost by the forward polarity switch.
  • the output of the module; the operational amplifier UB, the resistor R4, the resistor R6 and the resistor R7 form a constant-current control circuit of the forward pulse, and the forward amplitude control signal generated by the underlying controller is connected according to the forward input terminal of the UB to control the forward pulse.
  • the resistor R4 is connected to the output of UB and the base of Q2
  • the resistor R5 is connected to the negative input of UB and the emitter of Q2
  • the resistor R6 is connected to the emitter of Q2 and ground, and the collector of Q2
  • the pole is connected to the output of the DC boost module through a negative polarity switch; the constant current control circuit of the negative pulse and the constant current control current of the forward pulse alternate to work to realize the bidirectional electrical stimuli output.
  • the triode in the bridge constant current source circuit can be replaced by a field effect transistor, and the entire constant current source can be realized by the above discrete components or by an integrated chip having a constant current source function, and the same should be within the scope of protection of the present invention.
  • the functional electrical stimulation system may further comprise: an active discharge circuit.
  • the central control unit is configured to generate an active discharge signal in a system shutdown, pause or emergency stop state; the active discharge circuit has one end connected to the energy storage module and the other end connected to the ground for receiving an active discharge signal, releasing The energy stored in the energy storage module.
  • the active discharge circuit includes: transistor Q3, resistor R8, resistor R9; the collector of transistor Q3 is connected to the energy storage module through resistor R8, its emitter terminal is connected to ground, and its base is controlled by resistor R9 and centrally.
  • the unit is connected; in the default state, the triode is in an off state; in the system shutdown, pause or emergency stop state, the central control unit sets the active discharge signal to a high level, the triode is turned on, and the electric energy stored in the energy storage module passes. Resistor R8 is released.
  • the above-mentioned transistors can also be replaced by other switching devices.
  • the functional electrical stimulation system may further include: a power-off discharge circuit, wherein the control end is connected to the battery, and the power-off discharge circuit is not turned on during normal operation, and is used when the voltage of the battery is low.
  • the energy stored in the energy storage module is released at a first predetermined voltage value (eg, 0.7V). Where the battery voltage is lower than the preset voltage value, the most typical case is when the battery is unexpectedly powered down.
  • the power-off discharge circuit includes: a triode Q4, a triode Q5, a resistor R10, a resistor Rl l, a resistor R12, and a resistor R13; the base of the transistor Q4 is connected to the battery signal through a resistor R13, and the collector thereof passes through the resistor.
  • R10 is connected to the energy storage module, and its emitter is connected to the ground; the base of the transistor Q5 is connected to the collector of the transistor Q4 through the resistor R11, The collector is connected to the energy storage module through a resistor R12, and the emitter thereof is connected to the ground; when the voltage of the initial power source is higher than the first preset voltage value (typically, for example, the battery is in a normal working state), the transistor Q4 is turned on, Transistor R5 is non-conducting; when the voltage of the initial power supply is higher than the first preset voltage value (typically, for example, the battery is unexpectedly powered down), transistor Q4 is turned off, Q5 is turned on, and the energy stored in the energy storage module is released through resistor R12.
  • the first preset voltage value typically, for example, the battery is in a normal working state
  • the functional electrical stimulation system may further include: a fuse connected between the energy storage module and the electrical stimulation output channel, when the output current of the energy storage module is greater than the first preset current value , disconnect the energy storage module from the electrical stimulation output channel.
  • the fuse is a 25 mA fast blow fuse.
  • the functional electrical stimulation system may also include an emergency stop protection device.
  • the emergency stop protection device is designed to cope with sudden situations of the user. For example, the electrical stimulation therapy induces a heartbeat abnormality, and the electrical stimulation intensity is too large to cause the user to generate paralysis. When the user cannot turn off the system or get rid of the electrode, the output channel and the power supply are quickly cut off. At the same time, an audible and visual alarm signal is issued to protect the safety of the user.
  • the emergency stop protection device mainly comprises: a voice-activated emergency stop module, a mechanical emergency stop module, and/or an alarm module. Each module will be described in detail below.
  • FIG. 5 is a schematic structural diagram of a functional electrical stimulation system according to an embodiment of the present invention.
  • the functional electrical stimulation system may further include: a voice-activated emergency stop module, configured to generate a voice-activated emergency stop signal after receiving a sound higher than a preset intensity or frequency; a central control unit, configured to The voice-activated emergency stop signal generates an active discharge signal; the active discharge circuit is configured to release the stored energy stored in the energy storage module after receiving the active discharge signal.
  • the functional electrical stimulation system may further include: a mechanical emergency stop module, the normally open end of which is connected between the energy storage module and the electrical stimulation output channel; the functional electrical stimulation system is normally open when normally used. In an emergency, the normally open end is disconnected and the path between the initial power source and the electrical stimulation output channel is disconnected.
  • the mechanical emergency stop module is a push button switch; when the functional electrical stimulation system is in normal use, the user presses the switch by holding or stepping on, and the normally open end is turned on; in an emergency, the user releases the switch, and the normally open end disconnect.
  • any type of switching action will cut off the output of the electrical stimulus and alarm by sound and light.
  • the functional electrical stimulation system can work in both "Stand-alone” and "PC-monitor” modes of operation.
  • the functional electrical stimulation system may further comprise: a human-machine interaction module for receiving electrical stimulation parameters input by the user; a central control unit, connected to the human-machine interaction module, for The electrical stimulation parameter input by the user generates an electrical stimulation parameter data packet, and transmits the electrical stimulation parameter data packet to the electrical stimulation output channel.
  • the functional electrical stimulation system may further include: a communication interface module for receiving an electrical stimulation parameter data packet input from the user terminal; a central control unit, connected to the communication interface module, The electrical stimulation parameter data packet is parsed and packaged into an electrical stimulation parameter data packet that can be parsed by the electrical stimulation output channel.
  • the electrical stimulation waveform parameters are modulated by an audio signal, a real-time myoelectric signal of the user, or a fixed waveform sequence.
  • the communication interface module is an RS232 communication interface.
  • FIG. 6 is a schematic structural diagram of a functional electrical stimulation system according to an embodiment of the present invention.
  • the functional electrical stimulation system includes a central control unit 33, a battery 40, a DC boost module 43, a storage capacitor 44, an active discharge circuit 39, a power-off automatic discharge circuit 41, a bridge constant current source 17-32, and a bottom controller 1 -16, Emergency stop protection module, human-computer interaction module, RS232 interface 37.
  • the bridge constant current source and the bottom controller are paired one by one to form a 16-channel electrical stimulation output module, and the module applies electrical stimulation to the human body through a pair of electrode patches;
  • the emergency stop protection module includes a mechanical emergency stop module 42 and a voice control emergency
  • the human computer interaction module includes a keyboard 35 and a liquid crystal screen 36.
  • the entire system is powered by a 12V lithium battery, and the DC boost module boosts the battery voltage to 200V to provide power to the constant current output circuit.
  • the constant current output circuit uses a voltage controlled constant current source, and the output current is 0-100 mA.
  • the bridge circuit consists of two sets of triodes. Their switching between turn-on and turn-off causes changes in current polarity.
  • the required control signals are provided by the underlying controller.
  • An underlying controller and a set of bridged constant current output circuits form an electrical stimulation output channel, and the underlying controller is controlled by the central control unit via the I2C bus.
  • the system consists of 16 output channels, In order to simultaneously act on multiple muscles, the muscles are stimulated at corresponding timings to allow the user to perform certain actions.
  • the central control unit 33 in FIG. 6 is a C8051F340 single-chip microcomputer, which is the main control chip of the whole system, and its main function is to drive the liquid crystal screen 36, read the information transmitted by the keyboard 35, and integrate the I2C bus and the underlying controller through the chip.
  • the communication is performed; when the system enters the shutdown state and the suspended state, the active discharge circuit 39 is activated to prevent the power from continuously accumulating; in response to the emergency interrupt signal generated by the voice-activated emergency stop 38, and the sound and light alarm module 34 is driven, and the active discharge circuit 39 is also activated. Stop the electrical stimulation; When the system is in the "PC-monitor" state, communicate with the computer through the RS232 interface 37, continuously receive the control signal from the computer, parse and distribute it to the underlying microcontroller 1-16 of the corresponding channel.
  • the electrical stimulation output for each channel in Figure 6 consists of an underlying controller 1-16 and a bridge constant current source 17-32.
  • the underlying controller is a C8051F410 microcontroller, which integrates dual DA functions to facilitate control of the constant current source.
  • the schematic diagram of the bridge constant current source can be seen in Figure 3.
  • the bridge structure is primarily intended to achieve bipolar electrical stimulation output.
  • the load resistance that is, the stimulated muscle of the human body, is connected in series to the bridge arm of the H-bridge through the electrode patch, and the current flows through the direction of the load resistance by controlling the conduction of the polarity switch and the triode.
  • the forward polarity switch and Q2 are on, the negative polarity switch and Q3 are off, the current flows from the left end to the right end of the load resistor R7, and is set to the positive direction; the forward polarity switch and the Q2 cutoff, the negative polarity switch With Q1 turned on 3, the current flows from the right end of the load resistor R7 to the left end, and is set to the negative direction.
  • Transistor Q1 and op amp UA, triode Q2 and op amp UB constitute two sets of constant current sources. Among them, the UA and UB of the operational amplifier use the LM358 universal operational amplifier.
  • the forward amplitude control signal generated by the bottom controller C8051F410 is input through the positive terminal of the operational amplifier UB.
  • the control signal is an analog quantity of 0-3V.
  • the pair of sampling resistor R6 can be considered.
  • the ground voltage is approximately equal to the forward amplitude control signal.
  • the sampling resistor R6 is 30 ohms, the current flowing through R6 is 0-100 mA. Since the current flowing to R6 through R4 and R5 is small, it can be considered that the current flowing through R7 is approximately equal to the current flowing through R6, that is, 0- 100mA.
  • the load resistance R7 is the muscle of the human body that needs stimulation.
  • the resistance value varies with the environment. It is about 1K-2K when it is wiped by alcohol to reduce the contact resistance. It is required to provide 100mA constant current stimulation in the maximum 2K calculation.
  • the voltage is 200V, so the boost module needs to have at least the battery voltage Rose to 200V.
  • the first stage single chip C8051F410 turns on the forward polarity switch, outputs the forward amplitude control signal according to the positive pulse amplitude a, turns off the negative polarity switch, and sets the negative amplitude control signal to zero, thereby realizing the current according to the The amplitude needs to flow forward through the load resistor.
  • the duration of this phase is tl to output a positive pulse with a pulse width of tl.
  • the second phase turns the negative polarity switch on, and outputs a negative amplitude according to the negative pulse amplitude a2.
  • the value control signal turns off the positive polarity switch and sets the forward amplitude control signal to zero, so that the current flows negatively through the load resistor according to the required amplitude.
  • the duration of this phase is t2, and the output pulse width is t2.
  • the positive and negative switches in the third stage are all cut off, the positive and negative amplitude control signals are all zero, no current flows through the load resistor, and the duration is t3, realizing the interval between the two electric stimuli.
  • the sum of the three phases of time T is the time of one pulse period, and the reciprocal is the pulse frequency.
  • the setting parameters of each electrical stimulation channel are: positive pulse width 0-1000 ⁇ 8, negative pulse width 0-3000 ⁇ 8 , positive pulse amplitude 0-100mA, negative pulse amplitude 0-50mA, electrical stimulation frequency 0- 100Hz.
  • the system Since the 200V high voltage required by the bridge constant current output circuit is stored by the high-capacity large-capacity electrolytic capacitor, the system will automatically discharge before the shutdown, the rest period between the two electrical stimulations, and the accidental power failure. The circuit releases the electrical energy stored in the capacitor, preventing the electrical energy from being stored in the capacitor for a long time and causing an accident.
  • FIG. 4 is a circuit schematic diagram of DC boost, automatic discharge, and overcurrent protection of a functional electrical stimulation system according to an embodiment of the present invention.
  • the voltage of the battery is DC boosted to 200V through the inductor, and the rear end is connected with 10 F high-voltage electrolytic capacitor of 400V, so that the voltage is stable when the electrical stimulation pulse is output.
  • the triode Q3 of the active discharge circuit is controlled by the active discharge signal provided by the central control chip, which is usually low, and the transistor Q3 is turned off.
  • the active discharge signal is set high by the central control unit, Q3 is turned on, and the current is formed into the ground loop through R8, thereby releasing the high voltage power stored in the capacitor C1. .
  • the central control unit and the output circuit of the back end cannot work normally because there is no power supply. At this time, the power will be stored in the capacitor and will not be released. Safety hazards, especially the power-off automatic discharge circuit.
  • the battery voltage signal is 12V, which makes Q4 turn on, and the voltage of the collector of Q4 is the turn-on voltage of the three-stage tube is about 0.2V, which is not enough to make Q5 turn on.
  • RIO is a high-impedance resistor. The current flowing is only ⁇ . ⁇ , which will not cause discharge.
  • Q4 is cut off, and the collector of Q4 is pulled up to 200V by R10, which is enough Q5 is turned on, and the stored electric energy is released through the loop formed by R12 to the ground.
  • F1 in Figure 4 is a 25 mA fast-blow fuse.
  • the pulse current is up to 100 mA, because the duty cycle is very small, the average current flowing through the human body is within 1 - 2 mA, lower than the safe current, the fuse Will not blow.
  • a large current continues to flow through the body, and the fuse is quickly blown, cutting off the passage and protecting the user's safety.
  • the average current flowing through the human body is 90-100 mA, the person will have respiratory paralysis. After 3 minutes or more, the heart palsy or the atrium stops beating, and the average current flowing through the human body is 20-25 mA.
  • the finger feels pain, the burning sensation increases, the hand muscles begin to squat, and it does not quickly cause serious life threats. Therefore, the 25 mA fuse has a high safety margin.
  • the emergency stop protection device in the system is designed to cope with the sudden situation of the user.
  • the electrical stimulation therapy induces abnormal heartbeat, and the electrical stimulation intensity is too large, causing the user to generate paralysis.
  • the output channel is quickly cut off.
  • the power supply and at the same time emits an audible and visual alarm signal to protect the safety of the user.
  • the emergency stop protection module of FIG. 6 includes a voice-activated emergency stop 38, a mechanical emergency stop 42 and an audible and visual alarm 34.
  • the voice-activated emergency stop is essentially a voice-activated switch that generates a hopping signal when a certain intensity of sound is emitted.
  • the signal is connected to the interrupt pin of the central control unit 33 to trigger an emergency stop.
  • voice-activated emergency stop is fast. When the user or medical staff finds an emergency, it is often impossible to shut down the device immediately, causing the user to continue to be hurt.
  • the voice-activated emergency stop can be activated only by loud shouting, and the electrical stimulation can be stopped quickly.
  • the voice-activated emergency stop depends on the normal operation of the central control unit. However, when the system is affected by external electromagnetic interference and other uncertainties, the central control unit program will not play a normal role. At this time, the mechanical emergency stop 42 is used to protect the user. Safety.
  • the mechanical emergency stop is a push button switch.
  • the normally open end is connected in series between the energy storage module and the electric excitation output channel, and the normally closed end is connected with the sound and light alarm.
  • the user presses the switch by holding or stepping on.
  • the normally open end is connected, the battery is connected with the DC boost module; the normally closed end is disconnected, and the sound and light alarm does not work.
  • the user releases the button the normally open end is disconnected, the passage of the battery and the DC boost module is cut off, so that the electrical stimulation cannot be output, and the normally closed end is closed, so that the sound and light alarm module obtains a Start signal, sound and light alarm.
  • the system can work in both "stand-alone” and "PC-monitor” modes to suit the needs of different work environments.
  • the two working modes are prepared the same before use.
  • the electrode patches of each channel are attached to the muscles that the user needs to stimulate. If the lower limbs are electrically stimulated, the hand-held mechanical emergency stop switch is used; if the upper limbs are electrically stimulated, the pedal-type mechanical emergency stop switch is used.
  • the system initializes each peripheral and displays the prompt message for selecting the operation mode on the LCD screen. If the user selects the "Stand-alone" operating mode, the system prompts the user to enter the electrical stimulation parameters for each channel.
  • the electrical stimulation parameters including frequency, positive and negative pulse width and positive and negative pulse amplitude according to previous experience. These setting parameters are first generated by the central control unit and sent to the underlying controller of the corresponding channel by connecting the underlying controller data bus. After the underlying controller parses the data packet, it outputs the electrical stimulus according to the corresponding timing. During the operation of the system, if the user feels uncomfortable and needs rest, the output of the electric stimulation can be suspended through the keyboard, and the rest will be continued for a while.
  • the user can yell to activate the voice-activated emergency stop circuit, immediately stop the output of the electrical stimulation and automatically release the stored electrical energy by the system; the user can also make the machine Emergency stop and shut off the action, directly cut off the power to stop the electrical stimulation.
  • the sound and light alarm circuit is activated regardless of the mechanical emergency stop or the voice-activated emergency stop action, which can quickly attract the attention of the surrounding people.
  • the central control unit of the system is a single-chip microcomputer
  • the operation speed and storage space are limited, only a few limited and relatively simple waveforms can be output, which limits the application of the system, so in the "PC-monitor" operation mode, by the computer
  • Real-time electrical stimulation waveform parameters are generated and forwarded by the central control unit to the underlying controller of each channel for complex control.
  • the workflow of "PC-monitor” is as follows. The preparation work before the electric stimulation is the same as the "Stand-alone" operation mode. After the prompt message for selecting the operation mode is displayed on the LCD, the user selects the "PC-excited" mode. The central control unit will wait for packets from the computer.
  • the entire transmission and resolution process is within 100 ⁇ ⁇ , and the reaction time relative to human muscle can be considered as real-time control.
  • the expected waveform of the final output is generated in two ways. The first one is a pulse signal modulated by music. The advantage is that it has a certain randomness, and avoids the sensitivity of the muscle to the electrical stimulation of the parameter after long-term use of fixed electric stimulation. , reducing the therapeutic effect.
  • the second is modulated by myoelectric signals.
  • the pulse signal, the myoelectric signal is collected by the electromyography instrument connected to the computer.
  • the advantage is that the intensity of the electrical stimulation can be controlled by the user's partial autonomic motion. For example, the hemiplegia patient can control the iliac crest on one side of the healthy side. Excitation intensity.
  • FIG. 8 is a control flow chart of a central controller of a functional electrical stimulation system according to an embodiment of the present invention. As shown in FIG. 8, the control flow of the central controller includes - step S802, initializing the peripheral;
  • Step S804 selecting a working mode, that is, selecting whether the mode is independent or controlled by the user terminal;
  • Step S806 determining whether the working mode selected by the user is an independent operation mode, if yes, executing step S808, otherwise, executing step S820;
  • Step S808 obtaining stimulation parameters of each channel through a human-computer interaction module; the central controller sends an instruction to the bottom controller to output electrical stimulation;
  • Step S810 transmitting a stimulation parameter to the bottom controller
  • Step S812 determining whether the keyboard inputs an instruction to suspend operation, and if yes, executing step S804, otherwise, executing step S814;
  • Step S814 it is determined whether a voice-activated emergency stop signal is generated, and if yes, step S816 is performed; otherwise, step S818 is performed;
  • Step S816 issuing an emergency stop alarm signal, issuing an active discharge signal, executing step S832; step S818, determining whether the keyboard inputs an instruction to stop running, and if so, executing step S832; otherwise, executing step S812;
  • Step S820 determining whether the data packet input by the user terminal is received, and if yes, executing step S822; otherwise, repeatedly determining whether the data packet input by the user terminal is received;
  • Step S822 parsing the data packet
  • Step S824 determining whether it is a stop command sent by the upper computer, if yes, executing step S832; otherwise, executing step S826;
  • Step S830 issuing an emergency stop alarm signal, issuing an active discharge signal, executing step S832; step S832, transmitting a stop command to the bottom controller, and the process ends.
  • 9 is a control flow chart of an underlying controller of a functional electrical stimulation system according to an embodiment of the present invention. As shown in Figure 9, the control flow of the underlying controller includes:
  • Step S902 determining whether the data packet transmitted by the user terminal is received, and if yes, executing step S904, otherwise, repeatedly determining whether the data packet transmitted by the user terminal is received;
  • Step S904 parsing the data packet
  • Step S906 determining whether a stop command is received, if yes, performing an exit step, the process ends, otherwise, executing step S908;
  • Step S908 obtaining parameters of an electrical stimulation pulse in a cycle
  • Step S910 output a positive pulse according to the obtained positive pulse parameter
  • Step S912 outputting a negative pulse according to the obtained negative pulse parameter
  • Step S914 stopping outputting
  • Step S916 determining whether a new data packet is received, and if yes, executing step S904, otherwise, executing step S910;
  • the embodiment improves the number of working channels of the electrical stimulation output, increases the safety protection measures, can alleviate the psychological pressure of the user during use, and effectively avoids the user due to the functional electrical stimulation. Secondary injuries, such as abnormal heartbeats and muscle spasms.
  • the two working modes enable the present embodiment to implement both simple fixed parameter electrical stimulation and complex time varying parameter electrical stimulation.

Abstract

公开了一种功能性电刺激系统。该功能性电刺激系统包括:初始电源;升压模块,与初始电源相连接,用于将初始电源的输出电压升压至第一预设电压;储能模块,与升压模块相连接,用于存储升压至第一预设电压的电能;中央控制单元,用于生成电刺激参数数据包;电刺激输出通道,与储能模块相连接,用于接收电刺激参数数据包,从电刺激参数数据包中解析出电刺激参数;将储能模块中存储的电能转换为电刺激参数对应的电刺激脉冲;并将电刺激脉冲作用于患者的患病部位。本申请功能性电刺激系统增强了电刺激脉冲的灵活性和自主度,有利于用户根据自身的实际情况选择个性化的电刺激脉冲类型。

Description

功能性电刺激系统
技术领域
本发明涉及医疗器械技术领域, 尤其涉及一种功能性电刺激系统。 背景技术
功能性电刺激疗法是使用低频电流剌激失去神经支配的肌肉, 使其 收缩, 以替代或矫正器官及肢体已丧失的功能。 目前功能性电刺激疗法 的研究与应用已涉及临床医疗的各个领域。 功能性电刺激设备多为两通 道至四通道的便携性电刺激仪。
用于控制和调节呼吸运动的膈肌起搏器就是一种功能电刺激系统, 该系统主要用于脑血管疾病、 脑外伤、 高位脊髓损伤所致的呼吸肌麻痹。 通过将一对电极植入双侧膈神经上, 或用体表电极置于双侧颈部膈神经 运动点上, 并与固定于胸壁上的信号接收器相连, 控制器发出无线电脉 冲信号, 由接收器将其变为低频电流, 经电极剌激膈神经, 引起膈肌收 缩。 '
功能性电剌激在治疗排尿功能障碍上也取得了很好的效果。 如尿失 禁是由于下运动神经元损伤, 引起尿道括约肌和盆底肌无力, 使得排尿 淋漓不尽, 或腹压轻微增高就排尿。 临床上采用功能性电剌激疗法刺激 尿道括约肌和盆底肌, 以增强其肌力, 可显著改善患者尿失禁的程度。 又如当骶髓排尿中枢损伤后, 膀胱逼尿肌麻痹, 出现尿潴留。 临床上采 用植入式电极刺激逼尿肌, 使其收缩以克服尿道括约肌的压力, 使尿排 出。
功能性电刺激疗法还可帮助上运动神经元损伤患者完成某些功能活 动, 如步行、 抓握, 协调其运动, 加速自主意识控制的恢复。 上运动神 经元损伤包括脑血管疾病、 脑外伤、 脊髓损伤、 脑性瘫痪等, 对于这类 患者, 特别是脊髓损伤患者, 肢体运动有利于康复。 最新的研究发现, 通过肢体活动产生的电信号能对脊髓断端产生刺激, 达到恢复部分脊髓 连续性的作用。 一些科学家提出了功能电刺激辅助蹬车训练方法, 不但 能够恢复肌力, 而且可以促进脊髓损伤的局部组织修复。 申请人发现现有技术功能性电剌激系统存在诸多不足之处: 1、 设置 的灵活性和自主度性差, 不能根据用户需要调整电剌激的频率、 幅度等 参数; 2、 安全性和可靠性低, 紧急情况下, 如用户因为电刺激诱发心脏 跳动异常、 肌肉发生痉挛等, 无法快速切断电剌激并发出报警信号; 3、 工作模式单一, 功能简单, 只能作为一个独立的设备 -按照预先设定的波 形序列输出电刺激。 发明内容
(一) 要解决的技术问题
针对上述问题, 本发明提供了功能性电剌激系统, 以提高其设置的 灵活性, 增强安全性和可靠性, 避免用户在使用过程中发生危险。
(二) 技术方案
根据本发明的一个方面, 本发明公开了一种功能性电剌激系统。 该 功能性电刺激系统包括: 初始电源; 升压模块, 与初始电源相连接, 用 于将初始电源的输出电压升压至第一预设电压; 储能模块, 与升压模块 相连接, 用于存储升压至第一预设电压的电能; 中央控制单元, 用于生 成电刺激参数数据包; 电剌激输出通道, 与储能模块相连接, 用于接收 电刺激参数数据包, 从电刺激参数数据包中解析出电剌激参数; 将储能 模块中存储的电能转换为电剌激参数对应的电剌激脉冲; 并将电刺激脉 冲作用于患者的患病部位。
优选地, 本发明功能性电刺激系统中, 电刺激输出通道包括: 底层 控制器, 用于接收中央控制单元的电刺激数据包, 从电剌激参数数据包 中解析出电刺激参数, 输出电刺激参数对应的正向控制信号和负向控制 信号; 恒流源, 与储能模块相连接, 用于接收正向控制信号和负向控制 信号; 将储能模块中存储的电能转换输出正向控制信号和负向控制信号 对应的双极性电刺激脉冲; 电极贴片, 其正负极分别连接于恒流源的两 输出端, 用于将双极性电刺激脉冲作用于患者的患病部位。 优选地, 恒 流源为桥式恒流源, 电极贴片的正负极分别连接于桥式恒流源的桥臂两 而。
优选地, 本发明功能性电刺激系统中, 恒流源为桥式恒流源, 该桥 式恒流源包括: 第一运放 UA, 第二运放 UB, 第一电阻 Rl, 第二电阻 R2, 第三电阻 R3, 第四电阻 R4, 第五电阻 R5, 第六电阻 R6, 第一三极 管 Ql, 第二三极管 Q2, 患者自身等效电阻 R7; 其中, 第一运放 UA, 第一电阻 Rl, 第二电阻 R2, 第三电阻 R3和患者自身等效电阻 R7组成 负向脉冲的恒流控制电路,第一运放 UA的正向输入端连接由底层控制器 产生的负向幅值控制信号控制负向脉冲电流的幅值,第一电阻 R1连接第 一运放 UA的输出端和第一三极管 Q1的基极, 第二电阻 R2连接第一运 放 UA的负向输入端与第一三极管 Q1的发射极, 第三电阻 R3连接第一 三极管 Q1的发射极和地, 第一三极管 Q1的集电极通过正向极性开关连 接至升压模块的输出; 第二运放 UB, 第四电阻 R4, 第五电阻 R5, 第六 电阻 R6和患者自身等效电阻 R7组成正向脉冲的恒流控制电路, 根据第 二运放 UB 的正向输入端连接由底层控制器产生的正向幅值控制信号控 制正向脉冲电流的幅值, 第四电阻 R4连接第二运放 UB的输出端和第二 三极管 Q2的基极, 第五电阻 R5连接第二运放 UB的负向输入端与第二 三极管 Q2的发射极, 第六电阻 R6连接第二三极管 Q2的发射极和地, 第二三极管 Q2的集电极通过负向极性开关连接至升压模块的输出;负向 脉冲的恒流控制电路和正向脉冲的恒流控制电流交替工作, 实现双向电 刺激输出, 电极贴片的正负极分别连接桥式恒流源的桥臂两端至患者自 身等效电阻 R7。
优选地, 本发明功能性电刺激系统中, 该功能性电刺激系统包括: n 组的电刺激输出通道; 中央控制单元, 用于生成分别对应于 n组电刺激 输出通道的具有时序信息的电刺激参数数据包, 并将电刺激参数数据包 分别发送至对应的电刺激输出通道。 优选地, n=16。
优选地, 本发明功能性电刺激系统中, 该功能性电刺激系统还包括: 主动放电电路; 中央控制单元, 用于在系统关机、 暂停或急停状态下, 生成主动放电信号; 主动放电电路, 其一端与储能模块相连接, 另一端 与地相连接, 用于接收主动放电信号, 释放储能模块中存储的电能。
优选地, 本发明功能性电刺激系统中, 主动放电电路包括: 第三三 极管 Q3, 第八电阻 R8, 第九电阻 R9; 第三三极管 Q3的集电极通过第 八电阻 R8连接至储能模块, 其发射极端与地连接, 其基极通过第九电阻 R9与中央控制单元相连接; 系统正常工作状态时, 第三三极管 Q3为截 止状态; 在系统关机、 暂停或急停状态下, 中央控制单元将主动放电信 号置为高电平, 第三三极管 Q3导通, 存储在储能模块中的电能通过第八 电阻 R8释放。
优选地, 本发明功能性电刺激系统还包括: 断电放电电路, 其控制 端与初始电源相连接, 用于当初始电源的电压低于第一预设电压值时, 释放储能模块中存储的电能。
优选地, 本发明功能性电刺激系统中, 断电放电电路包括: 第四三 极管 Q4、 第五三极管 Q5, 第十电阻 R10、 第十一电阻 Rll、 第十二电阻 R12、 第十三电阻 R13; 第四三极管 Q4的基极通过第十三电阻 R13与初 始电源电压信号相连接,其集电极通过第十电阻 R10与储能模块相连接, 其发射极与地连接;第五三极管 Q5的基极通过第十一电阻 R11与三极管 Q4的集电极相连接, 其集电极通过电阻 R12与储能模块相连接, 其发射 极与地相连接; 当初始电源的电压高于第一预设电压值时, 第四三极管 Q4导通, 第五三极管 Q5不导通; 当初始电源的电压低于第一预设电压 值时, 第四三极管 Q4截止, 第五三极管 Q5导通, 储能模块中存储的电 能通过第十二电阻 R12释放。
优选地, 本发明功能性电刺激系统还包括: 保险丝, 连接于储能模 块和电刺激输出通道之间, 用于在储能模块的输出电流大于第一预设电 流值时, 切断储能模块与电刺激输出通道之间的连接。 优选地, 保险丝 为 25mA的快速熔断保险丝。
优选地, 本发明功能性电刺激系统还包括: 声控急停模块, 用于当 接收到高于预设强度或频率的声音后, 产生声控急停信号; 中央控制单 元, 用于由声控急停信号产生主动放电信号; 主动放电电路, 用于在接 收到主动放电信号后, 释放储能模块中存储的电能。
优选地, 本发明功能性电刺激系统中, 中央控制单元, 用于由声控 急停信号产生报警信号; 功能性电刺激系统还包括: 报警电路, 用于在 接收到报警信号后, 产生声音和 /或光学报警信号。
优选地, 本发明功能性电剌激系统还包括: 机械急停模块, 其常开 端连接于储能模块和电刺激输出通道之间; 功能性电刺激系统在正常使 用时, 常开端接通; 在紧急情况下, 常开端断开, 储能模块和电刺激输 出通道之间的通路断开。 优选地, 机械急停模块为按钮开关; 功能性电 剌激系统在正常使用时, 用户通过握持或踩踏的方式按下开关, 常开端 接通; 在紧急情况下, 用户松开开关, 常开端断开。
优选地, 本发明功能性电刺激系统还包括: 人机交互模块, 用于接 收用户输入的电刺激参数; 中央控制单元, 与人机交互模块相连接, 用 于将用户输入的电刺激参数生成电刺激参数数据包, 并将电剌激参数数 据包传输至电剌激输出通道。
优选地, 本发明功能性电刺激系统还包括: 通信接口模块, 用于接 收从用户终端输入的电刺激参数数据包; 中央控制单元, 与通信接口模 块相连接, 用于将电刺激参数数据包解析并打包为电剌激输出通道可解 析的电刺激参数数据包。 优选地, 由用户终端输出的电刺激参数数据包 中所包含的电刺激参数中, 电刺激波形参数由音频信号、 用户实时肌电 信号或者固定的波形序列调制得到。 优选地, 通信接口模块为 RS232通 信接口。
(三) 有益效果
本发明功能性电刺激系统具有下列有益效果-
1、 增强了电刺激脉冲的灵活性和自主度,. 有利于用户根据自身的实 际情况选择个性化的电刺激脉冲类型;
2、 提供多重安全保护, 增强可靠性, 避免用户在使用过程中发生危 险;
3、 系统既可作为独立设备实现简单地固定参数电刺激, 又可作为电 脑外设在电脑的控制下实现复杂地时变参数电刺激。 附图说明
图 1为功能性电剌激系统的结构示意图;
图 2为本发明实施例功能性电刺激系统的结构示意图;
图 3为本发明实施例功能性电剌激系统电刺激输出通道的原理图; 图 4 为本发明实施例功能性电刺激系统直流升压、 自动放电及过流 保护的电路原理图; 图 5为本发明实施例功能性电刺激系统的结构示意图; 图 6为本发明实施例功能性电刺激系统的结构示意图;
图 7 为本发明实施例功能性电刺激系统中一个电剌激通道输出的波 形图;
图 8为本发明实施例功能性电刺激系统中央控制器的控制流程图; 图 9是本发明实施例功能性电刺激系统底层控制器的控制流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一步详细说明。
需要说明的是, 为避免信息数据信号连接 (弱电信号) 和功能电信 号 (强电信号) 连接的混淆, 在实施例中, 只是描述涉及功能电信号的 连接关系, 而涉及信息数据信号连接的连接关系, 仅用信息数据信号的 流向进行说明。 并且, 本实施例和下述各实施例中, 除部分与现有技术 中设置不同的元件外, 对于大部分元件均没有给出的具体型号和数值。 申请人认为, 对于本领域的普通技术人员, 在知晓上述技术方案后, 可 以合理选择元件的具体型号和数值, 同样应当在本发明的保护范围之内。
在本发明的一个示例性实施例中, 公开了一种功能性电刺激系统。 图 1为功能性电刺激系统的结构示意图。 如图 1所示, 本实施例功能性 电刺激系统包括: 初始电源; 升压模块, 与初始电源相连接, 用于将初 始电源的输出电压升压至第一预设电压; 储能模块, 与升压模块相连接, 用于存储升压至第一预设电压的电能; 中央控制单元, 用于生成电刺激 参数数据包; 电刺激输出通道, 与储能模块相连接, 用于接收电刺激参 数数据包, 从电刺激参数数据包中解析出电剌激参数; 将储能模块中存 储的电能转换为电刺激参数对应的电刺激脉冲; 并将电刺激脉冲作用于 患者的患病部位。 优选地, 初始电源为 12V的锂电池, 升压模块为直流 升压模块, 储能模块为高耐压 (400V) 的电容。 直流升压模块将锂电池 的电压升高至 200V, 从而为电刺激输出通道提供电源。
本实施例功能性电剌激系统中, 电刺激输出通道根据中央控制单元 下发的电刺激参数数据包来输出电刺激脉冲, 从而增强了选择电刺激脉 冲的灵活性和自主度, 有利于用户根据自身的实际情况选择个性化的电 刺激脉冲类型。
如图 2所示, 为了实现电剌激脉冲的稳定、 可靠输出, 在本发明优 选的实施例中, 电刺激输出通道包括: 底层控制器, 用于接收中央控制 单元的电剌激数据包, 从电刺激参数数据包中解析出电刺激参数, 输出 电刺激参数对应的正向控制信号和负向控制信号; 恒流源, 与储能模块 相连接, 用于接收正向控制信号和负向控制信号; 将储能模块中存储的 电能转换输出为正向控制信号和负向控制信号对应的双极性电刺激脉 冲; 电极贴片, 其正负极分别连接于恒流源的两输出端, 用于将双极性 电刺激脉冲作用于患者的患病部位。 优选地, 该恒流源为桥式恒流源, 电极贴片的两端分别连接于桥臂两端。
为了实现电刺激脉冲的多路输出, 在本发明优选的实施例中, 该功 能性电刺激系统包括: n组的电刺激输出通道; 中央控制单元, 用于生成 分别对应于 n组电刺激输出通道的具有时序信息的电刺激参数数据包, 并将电刺激参数数据包分别发送至对应的电刺激输出通道。 优选地, 如 图 6所示, 功能性电刺激系统包括 16组的电刺激输出通道。 对于底层控 制器与桥式恒流源之间的控制信号, 用开关量控制极性, 模拟量控制电 流大小。
图 3 为本发明实施例功能性电刺激系统电刺激输出通道的原理图。 如图 3所示, 桥式恒流源包括: 运放 UA, 运放 UB, 电阻 Rl, 电阻 R2, 电阻 R3, 电阻 R4, 电阻 R5, 电阻 R6, 三极管 Ql, 三极管 Q2; 其中, 运放 UA, 电阻 Rl, 电阻 R2和电阻 R3组成负向脉冲的恒流控制电路, UA 的正向输入端连接由底层控制器产生的负向幅值控制信号控制负向 脉冲电流的幅值, 电阻 R1连接 UA的输出端和 Q1的基极, 电阻 R2连 接 UA的负向输入端与 Q1的发射极, 电阻 R3连接 Q1的发射极和地, Q1 的集电极通过正向极性开关连接至直流升压模块的输出; 运放 UB, 电阻 R4, 电阻 R6和电阻 R7组成正向脉冲的恒流控制电路, 根据 UB的 正向输入端连接由底层控制器产生的正向幅值控制信号控制正向脉冲电 流的幅值, 电阻 R4连接 UB的输出端和 Q2的基极, 电阻 R5连接 UB的 负向输入端与 Q2的发射极, 电阻 R6连接 Q2的发射极和地, Q2的集电 极通过负向极性开关连接至直流升压模块的输出; 负向脉冲的恒流控制 电路和正向脉冲的恒流控制电流交替工作, 实现双向电剌激输出。
需要说明的是, 上述桥式恒流源电路中的三极管可以用场效应管代 替, 同时整个恒流源既可以通过上述分立元件实现, 也可以通过有恒流 源功能的集成芯片实现, 同样应当在本发明的保护范围之内。
在停止运行, 暂停和急停时, 储能单元中还会保存有剩余的电能, 在这种情况下, 电能很可能对患者产生危险。 在本发明优选的实施例中, 功能性电刺激系统还可以包括: 主动放电电路。 中央控制单元, 用于在 系统关机、 暂停或急停状态下, 生成主动放电信号; 主动放电电路, 其 一端与储能模块相连接, 另一端与地相连接, 用于接收主动放电信号, 释放储能模块中存储的电能。
图 4 为本发明实施例功能性电刺激系统直流升压、 自动放电及过流 保护的电路原理图。 如图 4所示, 主动放电电路包括: 三极管 Q3, 电阻 R8, 电阻 R9; 三极管 Q3的集电极通过电阻 R8连接至储能模块, 其发 射极端与地连接, 其基极通过电阻 R9与中央控制单元相连接; 默认状态 时, 三极管为截止状态; 在系统关机、 暂停或急停状态下, 中央控制单 元将主动放电信号置为高电平, 三极管导通, 存储在储能模块中的电能 通过电阻 R8释放。 此外, 上述三极管也可以由其他开关器件代替。
如果初始电源电量过低, 或者由于电池松动等问题造成突然掉电, 中央控制单元以及后端的输出电路由于没有电源供应而无法正常工作, 此时的电能会一直存储在电容中得不到释放, 造成安全隐患。
在本发明优选的实施例中, 功能性电刺激系统还可以包括: 断电放 电电路, 其控制端与电池相连接, 正常工作时断电放电电路不导通, 用 于当上述电池的电压低于第一预设电压值 (例如 0.7V) 时, 释放储能模 块中存储的电能。 其中, 电池电压低于预设电压值最典型的情况为电池 意外掉电时
如图 4所示, 断电放电电路包括:三极管 Q4、三极管 Q5, 电阻 R10、 电阻 Rl l、 电阻 R12、 电阻 R13 ; 三极管 Q4的基极通过电阻 R13与电池 信号相连接, 其集电极通过电阻 R10与储能模块相连接, 其发射极与地 连接; 三极管 Q5的基极通过电阻 R11与三极管 Q4的集电极相连接, 其 集电极通过电阻 R12与储能模块相连接, 其发射极与地相连接; 当初始 电源的电压高于第一预设电压值时 (典型的例如电池处于正常工作状 态), 三极管 Q4导通, 三极管 R5不导通; 当初始电源的电压高于第一预 设电压值时(典型的例如电池意外掉电), 三极管 Q4截止, Q5导通, 储 能模块中存储的电能通过电阻 R12释放。
同时, 为了进一步保证患者安全, 该功能性电刺激系统还可以包括: 保险丝, 连接于储能模块和电刺激输出通道之间, 用于在储能模块的输 出电流大于第一预设电流值时, 切断储能模块与电剌激输出通道之间的 连接。 优选地, 保险丝为 25mA的快速熔断保险丝。
为了进一步保证患者安全, 在本发明优选的实施例中, 功能性电剌 激系统还可以包括急停保护装置。 该急停保护装置是为了应对用户的突 发情况, 如电刺激治疗诱发了心跳异常、 电刺激强度过大使用户产生痉 挛等, 用户无法自行关闭系统或摆脱电极时, 快速切断输出通道和电源, 并同时发出声光报警信号, 保护用户的安全。 该急停保护装置主要包括: 声控急停模块, 机械急停模块, 和 /或报警模块。 以下将对各模块进行详 细说明。
图 5为本发明实施例功能性电刺激系统的结构示意图。 如图 5所示, 该功能性电刺激系统还可以包括: 声控急停模块, 用于当接收到高于预 设强度或频率的声音后, 产生声控急停信号; 中央控制单元, 用于由声 控急停信号产生主动放电信号; 主动放电电路, 用于在接收到主动放电 信号后, 释放储能模块中存储的电能。
如图 5 所示, 该功能性电刺激系统还可以包括: 机械急停模块, 其 常开端连接于储能模块和电刺激输出通道之间; 功能性电刺激系统在正 常使用时, 常开端接通; 在紧急情况下, 常开端断开, 初始电源和和电 刺激输出通道之间的通路断开。 优选地, 机械急停模块为按钮开关; 功 能性电刺激系统在正常使用时, 用户通过握持或踩踏的方式按下开关, 常开端接通; 在紧急情况下, 用户松开开关, 常开端断开。
无论是在声控急停还是在机械急停情况下, 出现紧急情况时, 任意 一种开关动作都会切断电刺激的输出, 同时通过声光方式报警。
为了方便用户对电刺激参数进行灵活设置, 在本发明优选的实施例 中, 功能性电刺激系统可工作在 "Stand- alone"和 "PC- monitor "两种 运行模式。
工作在 "Stand- alone "时, 该功能性电剌激系统还可以包括: 人机 交互模块, 用于接收用户输入的电刺激参数; 中央控制单元, 与人机交 互模块相连接, 用于将用户输入的电刺激参数生成电剌激参数数据包, 并将电刺激参数数据包传输至电刺激输出通道。
工作在 "PC- monitor " 时, 该功能性电剌激系统还可以包括: 通信 接口模块, 用于接收从用户终端输入的电刺激参数数据包; 中央控制单 元, 与通信接口模块相连接, 用于将电剌激参数数据包解析并打包为电 刺激输出通道可解析的电刺激参数数据包。 优选地, 电刺激参数数据包 中所包含的电刺激参数中, 电刺激波形参数由音频信号、 用户实时肌电 信号或者固定的波形序列调制得到。 优选地, 通信接口模块为 RS232通 信接口。
以下将在上述实施例的基础上, 给出本发明的最优实施例。 需要说 明的, 该最优的实施例仅用于理解本发明, 并不用于限制本发明的保护 范围。 并且, 在无特别注明的情况下, 在相同或不同实施例中出现的技 术特征在不相互冲突的情况下可以组合使用。
图 6 为本发明实施例功能性电刺激系统的结构示意图。 功能性电刺 激系统包括中央控制单元 33, 电池 40, 直流升压模块 43, 储能电容 44, 主动放电电路 39, 断电自动放电电路 41, 桥式恒流源 17-32, 底层控制 器 1-16, 急停保护模块, 人机交互模块, RS232接口 37。 其中桥式恒流 源与底层控制器一一配对, 构成 16路电刺激输出模块, 该模块通过一对 电极贴片将电刺激作用于人体; 急停保护模块包括机械急停模块 42、 声 控急停模块 38 以及声光报警模块 34; 人机交互模块包括键盘 35、 液晶 屏 36。 整个系统由 12V的锂电池供电, 直流升压模块将电池的电压升高 到 200V, 为恒流输出电路提供电源。 恒流输出电路采用压控恒流源, 输 出电流大小为 0-100mA。 桥式电路由两组三极管组成, 它们导通及关断 的切换实现电流极性的变化, 其所需控制信号由底层控制器提供。 一个 底层控制器和一组桥式恒流输出电路构成一路电刺激输出通道, 底层控 制器通过 I2C总线受控于中央控制单元。 系统由 16路输出通道构成, 可 以同时作用于多块肌肉, 以相应的时序刺激这些肌肉从而使用户完成某 种动作。
图 6中的中央控制单元 33为 C8051F340单片机,是整个系统的主控 芯片, 其作用主要有驱动液晶屏 36, 读取键盘 35传递的信息, 通过芯片 集成的 I2C总线与底层控制器 1-16进行通讯; 当系统进入关机、 暂停的 状态时激活主动放电电路 39, 以免电能持续堆积; 响应声控急停 38产生 的紧急中断信号,并驱动声光报警模块 34,同时也激活主动放电电路 39, 停止电刺激; 当系统在 " PC-monitor"状态下, 通过 RS232接口 37与电 脑通讯, 不断接收来自电脑的控制信号, 解析后分发到对应通道的底层 单片机 1-16。
图 6中每一通道的电刺激输出由一个底层控制器 1-16与桥式恒流源 17-32 构成。 其中底层控制器为 C8051F410单片机, 该单片机集成双路 DA功能, 方便控制恒流源。 桥式恒流源的电路原理图可参见图 3。 桥式 结构主要是为了实现双极性的电刺激输出。 负载电阻即人体的被刺激肌 肉通过电极贴片串接在 H桥的桥臂上, 通过控制极性开关和三极管的导 通实现电流流过负载电阻方向的切换。 具体是正向极性开关与 Q2导通、 负向极性开关与 Q3截止, 电流从负载电阻 R7的左端流向右端, 设定为 正方向; 正向极性开关与 Q2截止、 负向极性开关与 Q1导通 3, 电流从 负载电阻 R7的右端流向左端, 设定为负方向。 三极管 Q1与运放 UA、 三极管 Q2与运放 UB分别构成两组恒流源。 其中运放 UA和 UB采用 LM358通用运放。
下面以 UB与 Q2组成的恒流源具体说明恒流源的工作原理。 由底层 控制器 C8051F410产生的正向幅值控制信号通过运放 UB的正极输入, 该控制信号是一个 0-3V的模拟量, 根据运放的 "虚短"特性, 可认为采 样电阻 R6的对地电压约等于正向幅值控制信号。 当采样电阻 R6为 30 欧姆时, 流过 R6的电流为 0-100mA, 由于通过 R4和 R5流向 R6的电流 很小, 因此可以认为流过 R7的电流约等于流过 R6的电流, 即 0-100mA。 负载电阻 R7是需要刺激的人体肌肉, 其阻值随环境的不同而变化, 通过 酒精擦拭以减小接触电阻的情况下约为 1K-2K, 以最大的 2K计算, 提供 100mA恒流刺激所需的电压为 200V,因此升压模块需要将电池电压至少 升至 200V。
图 7 为本发明实施例功能性电刺激系统中一个电剌激通道输出的波 形图。 第一阶段单片机 C8051F410使正向极性开关导通, 按照正脉冲幅 值 al输出正向幅值控制信号, 关闭负向极性开关, 将负向幅值控制信号 置零, 从而实现电流按照所需幅值正向流过负载电阻, 该阶段持续时间 为 tl, 以输出脉宽为 tl的正向脉冲; 第二阶段使负向极性开关导通, 按 照负脉冲幅值 a2输出负向幅值控制信号, 关闭正向极性开关, 将正向幅 值控制信号置零, 从而实现电流按照所需幅值负向流过负载电阻, 该阶 段持续时间为 t2, 以输出脉宽为 t2的负向脉冲; 第三阶段正负向开关均 截止, 正负向幅值控制信号均为零, 没有电流流过负载电阻, 持续时间 为 t3, 实现两个电剌激脉冲之间的间隔。 三阶段的时间之和 T为一个脉 冲周期的时间, 其倒数为脉冲频率。 每个电刺激通道的设定参数范围为: 正向脉宽 0-1000μ8, 负向脉宽 0-3000μ8, 正脉冲幅值 0-100mA, 负脉冲 幅值 0-50mA, 电刺激频率 0-100Hz。
由于桥式恒流输出电路所需的 200V 高压通过耐高压的大容量电解 电容存储, 所以系统在关机前、 两段电刺激之间的休息阶段以及意外掉 电的情况下, 系统会自动通过放电电路释放掉存储在电容中的电能, 避 免电能长时间存储在电容中造成意外。
图 4 为本发明实施例功能性电刺激系统直流升压、 自动放电及过流 保护的电路原理图。 电池的电压通过电感进行直流升压至 200V, 后端并 联 10 F的耐 400V高压的电解电容, 使得电刺激脉冲输出时该电压保持 稳定。主动放电电路的三极管 Q3由中央控制芯片提供的主动放电信号控 制, 通常为低, 此时三极管 Q3处于截止状态。 当需要主动放电时, 比如 停止运行, 暂停和急停时, 主动放电信号被中央控制单元置高, Q3导通, 电流通过 R8形成到地的回路,从而释放掉存储在电容 C1中的高压电能。
如果电池电量过低, 或者由于电池松动等问题造成突然掉电, 中央 控制单元以及后端的输出电路由于没有电源供应而无法正常工作, 此时 的电能会一直存储在电容中得不到释放, 造成安全隐患, 因此特别加入 了断电自动放电电路。 当工作正常使, 电池电压信号为 12V, 使得 Q4导 通, Q4集电极的电压为三级管的导通电压约为 0.2V,不足以使 Q5导通, RIO是一个阻抗很高的电阻, 流过的电流只有 Ο.ΙμΑ, 不会造成放电; 当 电池电压信号因为掉电而消失时, Q4截止, Q4的集电极被 R10拉高到 200V, 足以使得 Q5导通, 存储的电能通过 R12形成到地的回路得以释 放。
图 4中的 F1是一个 25mA的快速熔断保险丝, 正常工作时, 虽然脉 冲电流最大为 100mA, 但是因为占空比非常小, 流过人体的平均电流在 l-2mA 以内, 低于安全电流, 保险丝不会熔断。 一旦出现意外情况, 较 大的电流持续流过人体, 保险丝迅速熔断, 切断通路, 保护用户的安全。 根据资料表明, 流过人体的平均电流为 90-100mA时, 人才会出现呼吸麻 痹, 持续 3min后或更长时间后, 心脏麻痹或心房停止跳动, 而流过人体 的平均电流为 20-25mA时, 只是手指感觉疼痛, 灼热感增加, 手部肌肉 开始痉挛, 不至于迅速造成严重的生命威胁, 因此选用 25mA 的保险丝 有很高的安全裕量。
系统中的急停保护装置是为了应对用户的突发情况, 如电刺激治疗 诱发了心跳异常、 电刺激强度过大使用户产生痉挛等, 用户无法自行关 闭系统或摆脱电极时, 快速切断输出通道和电源, 并同时发出声光报警 信号, 保护用户的安全。 图 6中的急停保护模块包括声控急停 38、 机械 急停 42以及声光报警 34。其中声控急停本质是一个声控开关, 当发出一 定强度的声响后会产生一个跳变的信号, 该信号连接到中央控制单元 33 的中断引脚上, 用以触发急停中断。 声控急停的优点是反映快速, 当用 户或者医务人员发现紧急情况时, 常常无法马上关闭设备, 造成用户持 续受到伤害, 而声控急停只需大声呼喊就能激活, 可以迅速停止电刺激。 声控急停依赖于中央控制单元正常工作, 但当系统受到外界电磁干扰等 不确定影响以至于中央控制单元程序出错时, 声控急停就不能发挥正常 作用,此时依靠机械急停 42保护用户的安全。机械急停是一个按钮开关, 其常开端串接在储能模块与电剌激输出通道之间, 常闭端与声光报警相 连, 正常使用中由用户通过握持或踩踏的方式按下开关, 此时常开端接 通, 电池与直流升压模块联通; 常闭端断开, 声光报警不工作。 当出现 紧急情况时用户松开按钮, 常开端断开, 切断了电池与直流升压模块的 通路, 使得电刺激不能输出, 常闭端闭合, 使得声光报警模块得到一个 启动信号, 发出声光报警。
系统可以工作在 " Stand-alone"和 "PC-monitor"两种模式下, 以适 应不同工作环境的需要。 两种工作模式的使用前准备均相同, 首先将各 个通道的电极贴片贴在用户需要刺激的肌肉上。 如果进行下肢电刺激, 采用手握式的机械急停开关; 如进行上肢电剌激, 则采用踩踏式的机械 急停开关。 接通电源, 系统初始化各项外设, 在液晶屏上显示选择运行 模式的提示信息。 如果用户选择 "Stand-alone"运行模式, 系统提示用户 输入各个通道的电剌激参数。 用户可以根据以前的使用经验对电刺激参 数, 包括频率, 正负脉冲宽度与正负脉冲幅值, 进行设定。 这些设定参 数首先由中央控制单元生成相应的数据包, 通过连接底层控制器 数据 总线发送到相应通道的底层控制器。 底层控制器解析数据包后即按照相 应的时序输出电刺激。 在系统运行过程中, 如果用户感觉不适, 需要休 息时, 可以通过键盘暂停电剌激的输出, 待休息一段时间再继续进行电 剌激。 如果发生紧急情况, 比如突发肌肉痉挛, 来不及通过键盘关闭电 刺激输出, 用户可以大声呼喊以激活声控急停电路, 立即停止电刺激的 输出并由系统自动释放存储的电能; 用户也可使机械急停幵关动作, 直 接切断电能以停止电刺激。 不论机械急停或声控急停动作时, 均会激活 声光报警电路, 这样可以迅速引起周围人员的注意。 鉴于系统的中央控 制单元为单片机, 运算速度、 存储空间有限, 仅能输出几种有限的、 且 比较简单的波形, 限制了该系统的应用, 所以在 "PC-monitor"运行模式 中, 由电脑产生实时的电刺激波形参数, 由中央控制单元转发到各个通 道的底层控制器, 从而实现复杂控制。 "PC-monitor"运行的工作流程如 下, 电刺激前的准备工作同 " Stand-alone"运行模式一致, 液晶屏上显示 选择运行模式的提示信息后, 用户选择 " PC-励 nitor"运行模式, 中央控 制单元会等待由电脑传来的数据包。 在收到数据包后立即解析并打包成 底层单片机可解析的格式, 向下传递到底层单片机。 整个传输及解析过 程在 100 μ δ以内, 相对于人体肌肉的反应时间可以认为是实时控制。 最 终输出的期望波形有两种途径产生, 第一种为通过音乐调制过的脉冲信 号, 其优点是有一定的随机性, 避免长期采用固定电剌激后肌肉对该参 数的电刺激敏感度下降, 降低了治疗效果。 第二种为肌电信号调制过的 脉冲信号, 肌电信号由与电脑相连的肌电采集仪采集得到, 其优点是可 以通过用户的部分自主运动控制电刺激的强度, 比如偏瘫病人可以通过 健康一侧的肢体控制瘫痪一侧的剌激强度。
图 8 为本发明实施例功能性电刺激系统中央控制器的控制流程图。 如图 8所示, 中央控制器的控制流程包括- 步骤 S802 , 初始化外设;
步骤 S804, 选择工作模式, 即选择是独立模式还是受控于用户终端 的模式;
步骤 S806, 判断用户选择的工作模式, 是否为独立运行模式, 如果 是, 执行步骤 S808, 否则, 执行步骤 S820;
步骤 S808 , 通过人机交互模块获得各通道的刺激参数; 中央控制器 向底层控制器下发指令输出电刺激;
步骤 S810, 向底层控制器传递刺激参数;
步骤 S812, 判断键盘是否输入了暂停运行的指令, 如果是, 执行步 骤 S804, 否则, 执行步骤 S814 ;
步骤 S814 ,判断是否产生了声控急停信号,如果是,执行步骤 S816 , 否则, 执行步骤 S818 ;
步骤 S816 ,发出急停报警信号,发出主动放电信号,执行步骤 S832; 步骤 S818, 判断键盘是否输入了停止运行的指令, 如果是, 执行步 骤 S832 , 否则, 执行步骤 S812 ;
步骤 S820 , 判断是否收到用户终端输入的数据包, 如果是, 执行步 骤 S822, 否则, 重复判断是否收到用户终端输入的数据包;
步骤 S822 , 解析数据包;
步骤 S824, 判断是否是上位机传来的停止命令, 如果是, 执行步骤 S832 , 否则, 执行步骤 S826 ;
步骤 S826, 向底层控制器传递剌激参数;
步骤 S828 ,判断是否产生了声控急停信号,如果是,执行步骤 S830, 否则, 执行步骤 820;
步骤 S830,发出急停报警信号, 发出主动放电信号,执行步骤 S832; 步骤 S832 , 向底层控制器传递停止命令, 流程结束。 图 9 是本发明实施例功能性电剌激系统底层控制器的控制流程图。 如图 9所示, 底层控制器的控制流程包括:
步骤 S902, 判断是否收到用户终端传来的数据包, 如果是, 执行步 骤 S904, 否则, 重复判断是否收到用户终端传来的数据包;
步骤 S904, 解析数据包;
步骤 S906, 判断是否收到停止命令, 如果是, 执行退出步骤, 流程 结束, 否则, 执行步骤 S908;
步骤 S908, 获得一个周期中电刺激脉冲的参数;
步骤 S910, 按获得的正脉冲参数输出正向脉冲;
步骤 S912, 按获得的负脉冲参数输出负向脉冲;
步骤 S914, 停止输出;
步骤 S916, 判断是否收到新的数据包, 如果是, 执行步骤 S904, 否 则, 执行步骤 S910;
综上, 与现有技术相比, 本实施例提高了电刺激输出工作通道数, 增加了安全保护措施, 可以缓解用户在使用过程中的心理压力, 有效避 免因为功能性电刺激给用户带来的二次损伤, 如心跳异常和肌肉痉挛。 两种工作方式使得本实施例既可实现简单固定参数电刺激, 又可实现复 杂时变参数电刺激。 以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而己, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种功能性电刺激系统, 其特征在于, 该功能性电刺激系统 包括:
初始电源;
升压模块, 与所述初始电源相连接, 用于将所述初始电源的输出 电压升压至第一预设电压;
储能模块, 与所述升压模块相连接, 用于存储所述升压至第一预 设电压的电能;
中央控制单元, 用于生成电刺激参数数据包;
电刺激输出通道, 与所述储能模块相连接, 用于接收所述电剌激 参数数据包, 从所述电刺激参数数据包中解析出电剌激参数; 将所述 储能模块中存储的电能转换为所述电刺激参数对应的电剌激脉冲;并 将所述电刺激脉冲作用于患者的患病部位。
2、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 所 述电刺激输出通道包括:
底层控制器, 用于接收所述中央控制单元的电刺激数据包, 从所 述电刺激参数数据包中解析出电剌激参数,输出所述电剌激参数对应 的正向控制信号和负向控制信号;
恒流源, 与所述储能模块相连接, 用于接收正向控制信号和负向 控制信号;将所述储能模块中存储的电能转换输出所述正向控制信号 和负向控制信号对应的双极性电刺激脉冲;
电极贴片, 其正负极分别连接于所述恒流源的两输出端, 用于将 所述双极性电刺激脉冲作用于患者的患病部位。
3、 根据权利要求 2所述的功能性电刺激系统, 其特征在于, 所 述恒流源为桥式恒流源, 该桥式恒流源包括: 第一运放 (UA), 第二 运放 (UB ), 第一电阻 (Rl ), 第二电阻 (R2), 第三电阻 (R3 ), 第 四电阻(R4), 第五电阻(R5 ), 第六电阻(R6), 第一三极管(Ql ), 第二三极管 (Q2), 患者自身等效电阻 (R7); 其中, 第一运放 (UA), 第一电阻 (Rl ), 第二电阻 (R2), 第 三电阻 (R3 ) 和患者自身等效电阻 (R7) 组成负向脉冲的恒流控制 电路, 第一运放 (UA) 的正向输入端连接由底层控制器产生的负向 幅值控制信号控制负向脉冲电流的幅值, 第一电阻(R1 )连接第一运 放 (UA) 的输出端和第一三极管 (Q1 ) 的基极, 第二电阻 (R2) 连 接第一运放 (UA) 的负向输入端与第一三极管 (Q1 ) 的发射极, 第 三电阻(R3 )连接第一三极管(Q1 )的发射极和地,第一三极管(Q1 ) 的集电极通过正向极性开关连接至升压模块的输出;
第二运放 (UB), 第四电阻 (R4), 第五电阻 (R5 ), 第六电阻
(R6) 和患者自身等效电阻 (R7) 组成正向脉冲的恒流控制电路, 根据第二运放 (UB ) 的正向输入端连接由底层控制器产生的正向幅 值控制信号控制正向脉冲电流的幅值, 第四电阻(R4)连接第二运放
(UB ) 的输出端和第二三极管 (Q2) 的基极, 第五电阻 (R5 ) 连接 第二运放 (UB ) 的负向输入端与第二三极管 (Q2 ) 的发射极, 第六 电阻(R6)连接第二三极管(Q2) 的发射极和地, 第二三极管 (Q2) 的集电极通过负向极性开关连接至升压模块的输出;
所述负向脉冲的恒流控制电路和所述正向脉冲的恒流控制电流 交替工作, 实现双向电刺激输出, 所述电极贴片的正负极分别连接所 述桥式恒流源的桥臂两端至患者自身等效电阻 (R7)。
4、 根据权利要求 2所述的功能性电刺激系统, 其特征在于, 该 功能性电刺激系统包括: n组的电剌激输出通道;
所述中央控制单元,用于生成分别对应于所述 n组电刺激输出通 道的具有时序信息的电刺激参数数据包,并将所述电刺激参数数据包 分别发送至对应的电刺激输出通道。
5、 根据权利要求 4所述的功能性电刺激系统, 其特征在于, 所 述 n=16。
6、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 该 功能性电刺激系统还包括: 主动放电电路;
所述中央控制单元, 用于在系统关机、 暂停或急停状态下, 生成 主动放电信号; 所述主动放电电路, 其一端与所述储能模块相连接, 另一端与地 相连接, 用于接收所述主动放电信号, 释放所述储能模块中存储的电 能。 ―
7、 根据权利要求 6所述的功能性电刺激系统, 其特征在于, 所 述主动放电电路包括: 第三三极管 (Q3 ), 第八电阻 (R8 ), 第九电 阻 (R9);
所述第三三极管 (Q3 ) 的集电极通过第八电阻 (R8 ) 连接至所 述储能模块, 其发射极端与地连接, 其基极通过第九电阻(R9)与所 述中央控制单元相连接;
系统正常工作状态时, 所述第三三极管 (Q3 ) 为截止状态; 在 系统关机、暂停或急停状态下, 所述中央控制单元将所述主动放电信 号置为高电平, 所述第三三极管 (Q3 ) 导通, 存储在所述储能模块 中的电能通过第八电阻 (R8 ) 释放。
8、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 该 功能性电刺激系统还包括:
断电放电电路, 其控制端与所述初始电源相连接, 用于当所述初 始电源的电压低于第一预设电压值时,释放所述储能模块中存储的电 能。
9、 根据权利要求 8所述的功能性电刺激系统, 其特征在于, 所 述断电放电电路包括: 第四三极管 (Q4)、 第五三极管 (Q5 ), 第十 电阻 (R10)、 第 H ^—电阻 (Rl l )、 第十二电阻 (R12)、 第十三电阻
(R13 );
所述第四三极管 (Q4) 的基极通过第十三电阻 (R13 ) 与初始电 源电压信号相连接, 其集电极通过第十电阻 (R10) 与所述储能模块 相连接, 其发射极与地连接;
所述第五三极管 (Q5 ) 的基极通过第十一电阻 (R11 ) 与所述三 极管 Q4的集电极相连接, 其集电极通过电阻 R12与所述储能模块相 连接, 其发射极与地相连接;
当所述初始电源的电压高于所述第一预设电压值时,第四三极管 (Q4) 导通, 第五三极管 (Q5 ) 不导通; 当所述初始电源的电压低 于所述第一预设电压值时,第四三极管(Q4)截止,第五三极管(Q5 ) 导通, 所述储能模块中存储的电能通过第十二电阻 (R12 ) 释放。
10、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 该 功能性电刺激系统还包括:
保险丝, 连接于所述储能模块和所述电剌激输出通道之间, 用于 在所述储能模块的输出电流大于第一预设电流值时,切断所述储能模 块与所述电刺激输出通道之间的连接。
11、 根据权利要求 10所述的功能性电刺激系统, 其特征在于, 所述保险丝为 25mA的快速熔断保险丝。
12、 根据权利要求 6所述的功能性电刺激系统, 其特征在于, 该功能性电刺激系统还包括: 声控急停模块, 用于当接收到高于 预设强度或频率的声音后, 产生声控急停信号;
所述中央控制单元, 用于由所述声控急停信号产生主动放电信 号;
所述主动放电电路, 用于在接收到所述主动放电信号后, 释放所 述储能模块中存储的电能。
13、 根据权利要求 12所述的功能性电刺激系统, 其特征在于, 所述中央控制单元, 用于由声控急停信号产生报警信号; 所述功能性电刺激系统还包括: 报警电路, 用于在接收到所述报 警信号后, 产生声音和 /或光学报警信号。
14、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 该功能性电刺激系统还包括: 机械急停模块, 其常开端连接于所 述储能模块和所述电刺激输出通道之间;
所述功能性电刺激系统在正常使用时, 常开端接通; 在紧急情况 下, 常开端断开, 所述储能模块和和所述电刺激输出通道之间的通路 断开。
15、 根据权利要求 14所述的功能性电刺激系统, 其特征在于, 所述机械急停模块为按钮开关;
所述功能性电刺激系统在正常使用时,所述用户通过握持或踩踏 的方式按下开关, 所述常开端接通; 在紧急情况下, 用户松开开关, 所述常开端断开。
16、 根据权利要求 15所述的功能性电刺激系统, 其特征在于, 该功能性电刺激系统还包括:
报警电路, 与所述机械急停模块相连接, 用于在所述常开端断开 时, 产生声音和 /或光学报警信号。
17、 根据权利要求 1所述的功能性电剌激系统, 其特征在于, 该功能性电刺激系统还包括: 人机交互模块, 用于接收用户输入 的电刺激参数;
中央控制单元, 与所述人机交互模块相连接, 用于将用户输入的 电剌激参数生成电刺激参数数据包,并将所述电刺激参数数据包传输 至所述电刺激输出通道。
18、 根据权利要求 1所述的功能性电刺激系统, 其特征在于, 该功能性电刺激系统还包括: 通信接口模块, 用于接收从用户终 端输入的电刺激参数数据包;
中央控制单元, 与所述通信接口模块相连接, 用于将电刺激参数 数据包解析并打包为所述电刺激输出通道可解析的电刺激参数数据 包。
19、 根据权利要求 18所述的功能性电刺激系统, 其特征在于, 所述由用户终端输出的电刺激参数数据包中所包含的电刺激参数中, 电刺激波形参数由音频信号、用户实时肌电信号或者固定的波形序列 调制得到。
20、 根据权利要求 18所述的功能性电刺激系统, 其特征在于, 所述通信接口模块为 RS232通信接口。
21、 根据权利要求 1至 20中任一项所述的功能性电刺激系统, 其特征在于, 所述电刺激输出通道的设定参数范围为: 正向脉宽 0-1000μδ, 负向脉宽 0-3000μ8, 正脉冲幅值 0-100mA, 负脉冲幅值 0-50mA, 电刺激频率 0-100Hz。
22、 根据权利要求 1至 20中任一项所述的功能性电刺激系统, 其特征在于, 所述初始电源为电池, 所述升压模块为直流升压模块, 所述储能模块为储能电容。
PCT/CN2011/076492 2011-06-28 2011-06-28 功能性电刺激系统 WO2013000122A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/076492 WO2013000122A1 (zh) 2011-06-28 2011-06-28 功能性电刺激系统
CN201180037866.4A CN103068440B (zh) 2011-06-28 2011-06-28 功能性电刺激系统
US13/994,051 US8983621B2 (en) 2011-06-28 2011-06-28 Functional electrical stimulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076492 WO2013000122A1 (zh) 2011-06-28 2011-06-28 功能性电刺激系统

Publications (1)

Publication Number Publication Date
WO2013000122A1 true WO2013000122A1 (zh) 2013-01-03

Family

ID=47423362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076492 WO2013000122A1 (zh) 2011-06-28 2011-06-28 功能性电刺激系统

Country Status (3)

Country Link
US (1) US8983621B2 (zh)
CN (1) CN103068440B (zh)
WO (1) WO2013000122A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949012A (zh) * 2014-05-21 2014-07-30 上海谨诺医疗科技有限公司 多地址可控微型神经肌肉电刺激系统
CN114498562A (zh) * 2022-01-17 2022-05-13 深圳市瑞沃德生命科技有限公司 一种保护电路及生物样本制备装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US9399126B2 (en) 2014-02-27 2016-07-26 Thync Global, Inc. Methods for user control of neurostimulation to modify a cognitive state
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
JP2016007224A (ja) * 2014-06-20 2016-01-18 船井電機株式会社 光音響画像化装置
KR101669175B1 (ko) * 2014-08-29 2016-10-25 주식회사 엠아이텍 자극기, 자극기의 제어 방법, 및 전기자극 장치
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
US10258788B2 (en) 2015-01-05 2019-04-16 Thync Global, Inc. Electrodes having surface exclusions
CN107847732A (zh) 2015-05-29 2018-03-27 赛威医疗公司 用于经皮电刺激的方法和装置
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
IT201700005161A1 (it) 2017-01-18 2018-07-18 Viktor S R L Metodo ed apparecchiatura di elettrostimolazione
CN106994091A (zh) * 2017-03-31 2017-08-01 厦门尼金自动化设备有限公司 一种用于人体理疗和康复的理疗仪
CN108853723A (zh) * 2017-05-13 2018-11-23 陕西诺奕生物医药科技有限公司 一种经皮神经电刺激物理头痛治疗仪的使用方法
CN109976199A (zh) * 2017-12-27 2019-07-05 高权 一种信号发生装置以及具有信号发生装置的设备
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
CN108671395B (zh) * 2018-05-28 2024-03-08 江苏信息职业技术学院 一种嵌入式的人机交互型膀胱功能障碍治疗仪
CN108741261A (zh) * 2018-05-29 2018-11-06 李龙华 保健运动连体衣及其工作方法
CN108783623A (zh) * 2018-05-29 2018-11-13 李龙华 养护保健内衣及其工作方法
WO2019234921A1 (ja) * 2018-06-08 2019-12-12 株式会社ホーマーイオン研究所 電気刺激装置
CN109276806B (zh) * 2018-11-09 2024-02-06 福州大学 刺激强度可实时调整的可穿戴式恒流输出装置与控制方法
KR102627205B1 (ko) 2018-11-20 2024-01-18 뉴에너치 인크 역 관계를 갖는 주파수 및 피크 전압을 적용하는 전기 자극 장치
CN109589496B (zh) * 2019-01-18 2023-06-16 吉林大学 一种人体运动全过程穿戴式仿生康复系统
CN109833563B (zh) * 2019-02-26 2023-05-16 深圳市科曼医疗设备有限公司 一种神经肌肉恒流刺激方法及恒流刺激电路
WO2020190407A1 (en) * 2019-03-18 2020-09-24 Exo Neural Network Inc. Medical therapy arrangement for applying an electrical stimulation to a human or animal subject
CN109966126A (zh) * 2019-05-11 2019-07-05 上海健康医学院 一种基于电流点阵刺激的二维超声导盲杖
CN110141785A (zh) * 2019-06-13 2019-08-20 苏州博安捷机器人科技有限公司 一种多通道电刺激系统
CN111298292B (zh) * 2020-03-20 2022-03-25 北京航空航天大学 一种植入式膈肌起搏器
CN111450413B (zh) * 2020-04-09 2022-02-11 吉林大学 脑卒中患者触觉康复治疗系统
CN111870812B (zh) * 2020-08-24 2024-04-02 大悦创新(苏州)医疗科技股份有限公司 电刺激输出电路
KR20220033248A (ko) 2020-09-09 2022-03-16 삼성전자주식회사 무선 전력 중계 장치 및 무선 전력 중계 방법
CN114363132A (zh) 2020-10-13 2022-04-15 三星电子株式会社 通信方法
CN113181550A (zh) * 2021-03-18 2021-07-30 中山大学 一种调控关节力矩和刚度的功能性电刺激系统和方法
CN116350944B (zh) * 2023-06-01 2023-08-01 泉州艾奇科技有限公司 可调恒功率脉冲输出电路、系统及ems低频脉冲按摩仪
CN117116458B (zh) * 2023-10-24 2024-01-16 中国科学院自动化研究所 高速电阻抗成像信号采集系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514165A (en) * 1993-12-23 1996-05-07 Jace Systems, Inc. Combined high voltage pulsed current and neuromuscular stimulation electrotherapy device
CN1272798A (zh) * 1998-06-03 2000-11-08 神经调节公司 经皮肌内刺激系统
CN101244314A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 用于设置治疗模式的电刺激平台系统、方法及存储媒介

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8301526D0 (en) 1983-01-20 1983-02-23 Fourcin A J Apparatus for electrical stimulation of nerves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514165A (en) * 1993-12-23 1996-05-07 Jace Systems, Inc. Combined high voltage pulsed current and neuromuscular stimulation electrotherapy device
CN1272798A (zh) * 1998-06-03 2000-11-08 神经调节公司 经皮肌内刺激系统
CN101244314A (zh) * 2007-02-16 2008-08-20 上海塔瑞莎健康科技有限公司 用于设置治疗模式的电刺激平台系统、方法及存储媒介

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949012A (zh) * 2014-05-21 2014-07-30 上海谨诺医疗科技有限公司 多地址可控微型神经肌肉电刺激系统
CN114498562A (zh) * 2022-01-17 2022-05-13 深圳市瑞沃德生命科技有限公司 一种保护电路及生物样本制备装置
CN114498562B (zh) * 2022-01-17 2023-05-30 深圳市瑞沃德生命科技有限公司 一种生物样本制备装置

Also Published As

Publication number Publication date
US20140100638A1 (en) 2014-04-10
US8983621B2 (en) 2015-03-17
CN103068440B (zh) 2014-09-17
CN103068440A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2013000122A1 (zh) 功能性电刺激系统
CN101658712A (zh) 信号提示电刺激治疗仪
CN204543277U (zh) 生物反馈治疗装置及系统
US20210370046A1 (en) Apparatus for treating tinnitus through stimulating multiple acupoints with multi-electrode electric pulse based on bluetooth control and acupoint stimulating method using the same
CN106474624A (zh) 基于参数可调的经颅电刺激治疗仪
CN207734466U (zh) 一种盆底肌治疗仪
CN101716394B (zh) 治疗吞咽障碍的低频脉冲电磁仪
KR101409181B1 (ko) 가시광선 조사 및 진동자극 기능이 탑재된 재활치료용 기능적 전기자극기
WO2013000121A1 (zh) 功能性电刺激系统
CN201537319U (zh) 肌电反馈式电刺激仪
CN202223758U (zh) 便携式腿部肌肉运动恢复训练仪
CN201244292Y (zh) 用于对肌无力患者进行康复治疗的装置
CN205163912U (zh) 一种中频电疗仪
CN105363127A (zh) 一种骶神经刺激发生器
CN109908479A (zh) 一种植入式医疗控制系统
CN112023263A (zh) 一种远程监控的家用高精度经颅电流刺激系统
CN203458693U (zh) 一种微电脑仿生治疗仪
CN208888607U (zh) 一种信号发生装置以及具有信号发生装置的设备
CN202637717U (zh) 多功能智能肌肉电刺激治疗系统
WO2019113988A1 (zh) 一种用于缓解术前以及产前焦虑的功能电刺激装置及其使用方法
CN203399070U (zh) 一种治疗吞咽功能障碍的脉冲发生装置
CN103432686A (zh) 一种3d脉冲电疗仪电路
CN202342694U (zh) 一种痉挛肌温热治疗仪
CN216676712U (zh) 可穿戴式神经肌肉电刺激器及其系统
CN217938914U (zh) 电刺激装置及电刺激仪

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037866.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13994051

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868595

Country of ref document: EP

Kind code of ref document: A1