WO2012176646A1 - シールドフレーム、シールドフレームの実装構造、及び電子携帯機器 - Google Patents

シールドフレーム、シールドフレームの実装構造、及び電子携帯機器 Download PDF

Info

Publication number
WO2012176646A1
WO2012176646A1 PCT/JP2012/064928 JP2012064928W WO2012176646A1 WO 2012176646 A1 WO2012176646 A1 WO 2012176646A1 JP 2012064928 W JP2012064928 W JP 2012064928W WO 2012176646 A1 WO2012176646 A1 WO 2012176646A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield frame
mounting structure
circuit board
shield
solder
Prior art date
Application number
PCT/JP2012/064928
Other languages
English (en)
French (fr)
Inventor
俊亘 小勝
Original Assignee
Necカシオモバイルコミュニケーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necカシオモバイルコミュニケーションズ株式会社 filed Critical Necカシオモバイルコミュニケーションズ株式会社
Priority to EP12802801.6A priority Critical patent/EP2725884A1/en
Priority to US14/118,526 priority patent/US20140098500A1/en
Publication of WO2012176646A1 publication Critical patent/WO2012176646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0037Housings with compartments containing a PCB, e.g. partitioning walls

Definitions

  • the present invention relates to a shield frame mounted on a wiring board of an electronic device, a mounting structure of the shield frame, and an electronic portable device, and more particularly to a structure of a wiring substrate for realizing a reduction in size and thickness of the device.
  • a shield member that performs electromagnetic shielding between electronic components is used. Since the shield member is designed to cover the electronic component, the size of the shield member often affects the product size. Therefore, in order to reduce the size of the device, it is necessary to reduce the size of the shield member and the surrounding mounting technology. Therefore, a technology for reducing the size while ensuring good electromagnetic shielding properties has been developed in recent years. In addition, it is necessary to shield each function unit and operating frequency unit such as wireless, power supply, CPU (central processing element), etc., but it is structured so that each area is blocked by a partition plate in one large shield. There are also things.
  • FIG. 13 is a perspective view of a mounting board on which a shield frame having a bent structure is mounted. On the circuit board 100, a bent shield frame 200, semiconductor components 110a to 110f, and semiconductor components and electronic components (not shown) are mounted.
  • the bent shield frame 200 includes a protrusion 201 that fits into the cover, an inner corner notch 202, and an outer corner joint 203.
  • the inner corner notch 202 is manufactured by being bent from a flat plate, and thus such an inner corner portion is generated because one of the wall surfaces cannot be formed. Also, the outer corner portion needs a joint, and strictly speaking, a gap is opened.
  • FIG. 14 shows a state where the frame cover 300 is fitted.
  • the bent shield frame 200 and the cover 300 are configured such that the projection 201 of the bent shield frame fits into the fitting hole 301 of the cover 300. Further, a contact 302 for electrically connecting the cover 300 and the shield frame 200 is configured.
  • 15A and 15B are views showing the mounting structure with the cover 300 attached, where FIG. 15A is a plan view, and FIG. 15B is a view taken along the arrow A in FIG. Even if the cover is attached in this way, the cover 300 has a soldering region, so it cannot reach the bottom surface (the surface of the circuit board 100), and the inner corner notch 202 has a hole, It becomes a factor to reduce the shielding performance.
  • FIG. 16A to 16E show a state in which the mounting structure of FIG. 13 is viewed from another direction.
  • FIG. 16A is a plan view
  • FIG. 16B is a view as seen from an arrow A in FIG. 16A
  • FIG. 16D is a view as viewed from an arrow C in FIG. 16A
  • FIG. 16E is a view as viewed from an arrow D in FIG. 16A.
  • the shielding performance is lowered at the location of the inner corner notch 202.
  • an object of the present invention is to provide a shield frame, a shield frame mounting structure, and an electronic portable device that can achieve both high shielding performance, thinning of shield components and high density of component mounting in a simpler form. To provide equipment.
  • the present invention employs the following means. That is, the shield frame of the present invention includes a side plate portion that extends in a direction rising from the circuit board with respect to the circuit board on which the electronic component is mounted and is disposed so as to surround the side of the electronic component.
  • the shield frame is characterized in that a base end portion of the side plate portion facing the circuit board has a flangeless structure and is an end portion for fixing the solder to the circuit board side.
  • the first effect of the present invention is that reliable electromagnetic shielding is possible even with a large shield frame having a complicated shape.
  • the second effect of the present invention is that it is possible to achieve both reliable electromagnetic shielding and downsizing in a large shield frame.
  • the third effect of the present invention is that it can be realized with a mounting area equivalent to that of a conventional folding type shield frame.
  • the fourth effect of the present invention is that simple waterproofing in the shield frame is possible.
  • FIG. 2 is a perspective view showing a state where a cover is installed in the mounting structure of FIG. 1.
  • FIG. 3 is a plan view of the mounting structure shown in FIG. 2. It is A arrow line view of FIG. 3A. It is a principal part enlarged view of FIG. 3B. It is the top view which looked at the mounting structure of FIG. 1 from another direction. It is A arrow line view of FIG. 4A. It is a B arrow line view of FIG. 4A. It is C arrow line view of FIG. 4A. It is a D arrow line view of Drawing 4A.
  • FIG. 16A It is sectional drawing which shows the soldering part of the mounting structure shown in FIG. It is sectional drawing which shows the soldering part of the mounting structure by a general method. It is a top view which shows the footprint shape of the corner part of the mounting structure shown in FIG. It is a perspective view of the mounting structure of the shield frame of a prior art example. It is a perspective view which shows the state which installed the frame cover in the mounting structure of FIG. It is a top view which shows the state which installed the frame cover in the mounting structure of FIG. It is A arrow view of FIG. 15A, and the principal part enlarged view. It is the top view which looked at the mounting structure of FIG. 13 from another direction. It is A arrow line view of FIG. 16A. It is a B arrow line view of FIG. 16A. It is C arrow line view of FIG. 16A. It is D arrow line view of FIG. 16A.
  • FIG. 1 is a perspective view showing a schematic schematic configuration of a mounting substrate using a diaphragm type shield frame (diaphragm type large shield) incorporated in a mobile phone (electronic portable device) according to the best mode of an embodiment of the present invention.
  • a diaphragm type shield frame diaphragm type large shield
  • FIG. 4 On the circuit board 100, an aperture type shield frame 400, semiconductor components 110a to 110f, and semiconductor components and electronic components (not shown) are mounted.
  • the shield frame 400 is fixed to the circuit board 100 on which electronic components 110a to 110f such as semiconductor components are mounted.
  • the shield frame 400 extends in a direction rising from the circuit board 100 with respect to the circuit board 100, and the electronic component 110a.
  • ⁇ 110f is provided with a side plate portion 400A and a beam 400B protruding from the front end portion of the side plate portion 400A to the inner side of the region surrounding the electronic component.
  • the side plate portion 400A has a so-called flangeless structure in which the base end portion K opposed to the circuit board 100 does not have a flange portion projecting to the side, and serves as an end portion for fixing solder to the circuit board 100 side. ing.
  • an inner angle R portion 402 and an outer angle R portion 403 are configured as shown in FIG. Therefore, electromagnetic noise does not leak from the outer peripheral wall surface or is not affected by the outside.
  • an intermediate beam 405 is provided on the inner side of the side plate portion 400A, and an inner wall 406 for preventing transmission and reception of electromagnetic wave noise between functional units of a predetermined size in the shield frame is provided on the intermediate beam 405. Is provided.
  • Such a structure makes it possible to install semiconductor components that originally had to be individually shielded in the same shield frame.
  • FIG. 2 is a perspective view when the diaphragm cover 500 is installed on the diaphragm large shield shown in FIG.
  • the drawing-type cover 500 is fixed by fitting the projection 401 of the drawing-type shield frame into the fitting hole 501.
  • several connection contacts 502 are provided to ensure electrical connection, so that the diaphragm cover and the diaphragm shield frame can be reliably electrically connected.
  • the semiconductor component mounted in the shield frame is completely shielded in the state in which the drawing-type cover 500 is attached.
  • FIG. 3A to 3C are diagrams showing a mounting structure when the cover 500 is installed, in which FIG. 3A is a plan view, FIG. 3B is a view taken along arrow A in FIG. 3A, and FIG. 3C is an enlarged view of a main part in FIG. is there.
  • 4A to 4E are diagrams showing a mounting structure in a state where the cover 500 is removed and the side plate portion 400A of the shield frame 400 is viewed, FIG. 4A is a plan view, and FIG. 4B is an arrow A in FIG. 4A.
  • FIG. 4C is a view as viewed from the arrow B in FIG. 4A
  • FIG. 4D is a view as viewed from the arrow C in FIG. 4A
  • FIG. 4E is a view as viewed from the arrow D in FIG.
  • FIG. 4C is a view as viewed from the arrow B in FIG. 4A
  • FIG. 4D is a view as viewed from the arrow C in FIG. 4A
  • FIG. 5A and 5B show a cross section (FIG. 5A) of the side plate portion 400A of the flangeless type diaphragm shield frame 400 of the present invention and a wall surface cross section (FIG. 5B) of the conventional flange type diaphragm shield frame 600.
  • FIG. 5A shows a cross section (FIG. 5A) of the side plate portion 400A of the flangeless type diaphragm shield frame 400 of the present invention and a wall surface cross section (FIG. 5B) of the conventional flange type diaphragm shield frame 600.
  • the land width B necessary for mounting is inevitably larger than the land width A in the case of the side plate portion 400A of the flangeless type shield frame.
  • the area occupied by the shield frame on the circuit board increases, so the mounting area of semiconductor components and electronic components when viewed from the entire circuit board is reduced, which hinders high density mounting of components. End up.
  • the advantage of the flange mold is that the height direction is determined in the subsequent process of the press molding process, and the outer periphery is cut by final punching. There is an advantage that can be processed. For this reason, it is relatively easy to obtain good results as solderability.
  • the flangeless shape it is difficult to determine the height in the subsequent process, and the dimension in the height direction is determined by the outer shape cut and the subsequent drawing. For this reason, it exists in the tendency for the precision of a lower surface flatness to worsen compared with a flange type
  • FIG. 6 shows the state from the surface layer part of the circuit board to the shield. From the top, the side plate part 400A of the drawing type shield frame 400, the solder layer 160, and the solder resist 101 and the outermost conductor layer on the surface layer of the circuit board 100 are shown. 102 and an insulating layer 103.
  • Fig. 7 is a diagram showing mounting by the amount of solder in the normal case, but if the solder height is low, the unevenness cannot be absorbed well in this way.
  • the unevenness on the lower surface can be absorbed.
  • the footprint is dotted.
  • FIG. 8 shows the outer wall and footprint shape of the shield frame in the present invention.
  • Solder resist openings 102 that is, footprints, are arranged in a dotted line with respect to the side plate portion 400A.
  • the solder printing area 104 is made slightly larger than the solder resist opening 102. By doing so, the amount of solder supply can be increased.
  • FIG. 8 the amount of solder creeping can be increased by making the resist opening narrower than usual in the cross-sectional direction.
  • 9A and 9B are views showing a soldered portion of the mounting structure shown in FIG. 1 and the mounting structure of the comparative example (conventional example), and FIG. 9A is a cross-sectional view showing the soldered portion of the structure shown in FIG.
  • FIG. 9B is a cross-sectional view showing a soldered portion of a comparative example. If the dimension C shown in FIG. 8 is C ′ in FIG. 9B, the solder spreads sideways, so that the amount of scooping cannot be increased. Accordingly, it is appropriate to make the amount of scooping larger within a predetermined dimension as shown by a dimension C shown in FIGS.
  • FIG. 10 is a schematic diagram (in the case of the present invention) when the amount of solder is increased in the absence of a shield frame
  • FIG. 11 is a general diagram in which the solder resist opening and the mask opening (solder printing area) are matched. The method is shown. As shown in FIG. 10, by increasing the amount of solder, the maximum height at the time of melting the solder can be increased by surface tension.
  • FIG. 12 shows a specific corner portion footprint shape.
  • the footprint shape of the corner portion 105 is such that the R of the inner side 106 is extremely small as 0.2 mm, rather than the curvature radius R0.8 mm of the side plate portion 400A. If the thickness of the side plate portion 400A is 0.2 mm, the inner side R of the shield frame is 0.6 mm, which is smaller than that. By doing so, it is possible to arrange the mounted parts up to the corners. Furthermore, since the solder resist opening width at the corners is smaller than other places, the solder rises and good solderability can be obtained. Further, by providing the oblique slit 107, the solder near the corner can be reliably collected at the corner.
  • the footprint width is preferably smaller than a numerical value obtained by adding 0.4 mm to the plate thickness of the side plate portion 400A.
  • the mechanical strength of the frame itself is increased as compared with the folding type shield frame, so that it is easy to ensure the strength of the mounted substrate.
  • the outer periphery of the shield frame is in close contact with the substrate, water and resin do not leak from the gap between the shield frame and the substrate. For this reason, the effects that the resin filled in the shield frame does not leak out and water does not enter from the outside can be obtained.
  • the soldering itself is a dotted line, there is almost no gap because it is in close contact with the substrate. Even if there are some gaps, since it is a solder resist portion, it has water repellency and oil repellency, and moisture and resin do not enter under no pressure.
  • a reliable electromagnetic shield is possible even with a large shield frame having a complicated shape
  • a reliable electromagnetic shield with a large shield frame can be compatible with downsizing.
  • it can be realized with a mounting area equivalent to that of a conventional bent type shield frame, and fourthly, it is possible to achieve simple waterproofing in the shield frame.
  • the projection is provided on the shield frame side and the fitting hole is provided on the cover side.
  • the shield frame side may be the fitting hole and the cover may be the projection.
  • the shield frame is preferably made of a metal having a low surface resistance.
  • the metal in this case include stainless steel, aluminum, an aluminum alloy, a copper alloy, and a titanium alloy.
  • the material is stainless steel, the solderability is not good, so that the surface is tin-plated or solder-plated. If it is a copper alloy such as white or brass, surface treatment is not necessary, but the shape stability is inferior instead. The same applies to aluminum alloys.
  • the shield frame and the cover are separated from each other.
  • the shield frame and the cover may be an integral part. In this case, there are problems that the components after mounting cannot be confirmed and resin coating is difficult, but the number of components can be reduced and the cost can be reduced.
  • the present invention reliable electromagnetic shielding is possible even with a large shield frame having a complicated shape, and both reliable electromagnetic shielding and downsizing can be achieved with a large shield frame. Further, it can be realized with a mounting area equivalent to that of a conventional bent type shield frame, and simple waterproofing in the shield frame is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

電子部品が実装された回路基板に対して、該回路基板から立ち上がる方向に延在し、かつ前記電子部品の側方を囲むように配置される側板部を備え、前記側板部の前記回路基板に対向させる基端部がフランジレス構造とされ、かつ前記回路基板側へのはんだ固定用端部とされているシールドフレーム。該シールドフレームが金属で構成され、かつ絞り加工により形成されていることが望ましい。

Description

シールドフレーム、シールドフレームの実装構造、及び電子携帯機器
 本発明は電子機器の配線基板に実装されるシールドフレーム、シールドフレームの実装構造、及び電子携帯機器に関し、特に機器の小型薄型化を実現するための配線基板の構造に関する。
 本願は、2011年6月23日に出願された特願2011-139863号に基づき優先権を主張し、その内容をここに援用する。
 近年、携帯電話や携帯情報端末、ノート型パーソナルコンピュータなど、携帯用機器において、端末の進化ともに高機能化が進み、機能追加に対応するため回路基板上の部品は非常に過密化している。またこれらの携帯用の端末では、携帯電話ネットワーク用のアンテナ、テレビアンテナ、ブルーツース(Bluetooth)アンテナ、GPSアンテナ、RFIDアンテナなどの、用途(周波数)の異なる電波を発する電子部品が隣接して実装され、LSIの動作クロック周波数も高速化するなど、相互干渉が大きな問題となっている。
 これらの課題を解決する方法として、電子部品間の電磁遮蔽を行うシールド部材が用いられている。このシールド部材は電子部品を覆うように設計されるため、シールド部材の大きさが製品サイズに影響を与えることも多い。従って機器を小型化するにはシールド部材やその周辺の実装技術も小型する必要がある。そこで良好な電磁シールド性を確保しつつ、小型化する技術が近年開発されている。
 また、無線、電源、CPU(中央演算素子)など、機能単位、動作周波数単位にシールドを行う必要があるが、1つの大きなシールドにまとめて、個々の領域を仕切り板で遮断するような構造のものもある。
 従来この種のシールド部品及びその実装構造としては、下記特許文献1に記載されたものが提案されている。
特開2006-196664号公報
 ところで、上記特許文献1記載のシールド部品は、板金による切断加工と折曲げ加工とにより製造されるものであるため、隙間が形成されてシール性が低下するという問題がある。すなわち、シールド部品は電気的な密閉性が必要であるにも関わらず、板金を折り曲げただけの形状だと角部には微小な隙間が空いてしまう。
 この点について図13から図16Eを用いて詳細に説明すると、図13のように形状が複雑になると、特に内角部分は折り曲げでは対抗する2辺を成立させることが出来ないために、片側の壁面には壁面高さ分の穴が空いてしまう。以下に具体的に説明する。
 図13は折り曲げ構造のシールドフレームを実装した実装基板の斜視図である。回路基板100には折り曲げシールドフレーム200、半導体部品110a~110fと図示されない半導体部品や電子部品が実装されている。
 折り曲げシールドフレーム200にはカバーと嵌合する突起201、内角部切り欠き202、外角部合わせ目203が構成される。内角部切り欠き202は、折り曲げ構造の場合、平板から折り曲げて製造されるため、このような内角部分はどちらかの壁面が構成できなくなるために生じる。また外角部についても、合わせ目が必要となり、厳密には隙間が開いてしまう。
 図14はフレームカバー300を嵌合させたところである。折り曲げシールドフレーム200とカバー300は、折り曲げシールドフレームの突起201が、カバー300の嵌合穴301に嵌るようになっている。またカバー300とシールドフレーム200を電気的に接続するための接点302が構成されている。
 図15A、15Bはカバー300を取り付けた状態の実装構造を示す図であって、図15Aは平面図、図15Bは図15AのA矢視図およびその要部拡大図である。
 このようにカバーを取り付けても、カバー300にははんだ付け領域があるため最下面(回路基板100の表面)まで届かせることができず、内角部切り欠き202の部分は穴があいてしまい、シールド性を低下させる要因となる。
 図16A~16Eは、図13の実装構造を別の方向から見た状態を示すものであって、図16Aは平面図、図16Bは図16AのA矢視図、図16Cは図16AのB矢視図、図16Dは図16AのC矢視図、図16Eは図16AのD矢視図である。
 これらの図に示すように、同じように内角部切り欠き202の箇所はシールド性が低下する。
 なお、上記特許文献1には、絞り加工により形成されたシールド部品が記載されているが、その加工法に起因して回路基板側への端部に凹凸が生じるものと考えられる。したがって、このシールド部品は、一部のみを回路基板側へ固定した場合、凹凸部分に隙間が生じて上記と同様にシールド効果が充分に得られないという問題がある。
 本発明の目的は、上記した課題を解決するため、高いシールド性能とシールド部品の薄型化と部品実装の高密度化をより単純な形状で両立させるシールドフレーム、シールドフレームの実装構造、及び電子携帯機器を提供することにある。
 上記目的を達成するために、本発明は以下の手段を採用している。すなわち、本発明のシールドフレームは、電子部品が実装された回路基板に対して、該回路基板から立ち上がる方向に延在し、かつ前記電子部品の側方を囲むように配置される側板部を備えたシールドフレームであって、前記側板部の前記回路基板に対向させる基端部がフランジレス構造とされ、かつ前記回路基板側へのはんだ固定用端部とされていることを特徴とする。
 本発明の第1の効果は、複雑な形状の大型シールドフレームであっても確実な電磁シールドが可能な点である。
 本発明の第2の効果は、大型シールドフレームでの確実な電磁シールドと小型化が両立できる点である。
 本発明の第3の効果は、従来の折り曲げタイプのシールドフレームと同等の実装面積で実現可能な点である。
 本発明の第4の効果は、シールドフレーム内の簡易防水が可能な点である。
本発明の一実施形態として示したシールドフレームの実装構造の概略構成を示す斜視図である。 図1の実装構造において、カバーを設置した状態を示す斜視図である。 図2に示す実装構造の平面図である。 図3AのA矢視図である。 図3Bの要部拡大図である。 図1の実装構造を別の方向から見た平面図である。 図4AのA矢視図である。 図4AのB矢視図である。 図4AのC矢視図である。 図4AのD矢視図である。 図1に示す実装構造のはんだ付部分を示す図である。 図5Aに対する比較例としての、従来の実装構造のはんだ付部分を示す図である。 図1に示す実装構造のシールドフレームのはんだ付部分を示す断面図である。 図1に示す実装構造のシールドフレームに対し、通常の場合のはんだ量による実装を表した断面図である。 図1に示す実装構造のシールドフレームの外壁とフットプリントの形状を示す平断面図である。 図1に示す実装構造のはんだ付部分を示す断面図である。 図9Aに対する比較例としての従来例のはんだ付部分を示す断面図である。 図1に示す実装構造のはんだ付部分を示す断面図である。 一般的手法による実装構造のはんだ付部分を示す断面図である。 図1に示す実装構造のコーナ部のフットプリント形状を示すを示す平面図である。 従来例のシールドフレームの実装構造の斜視図である。 図13の実装構造にフレームカバーを設置した状態を示す斜視図である。 図13の実装構造にフレームカバーを設置した状態を示す平面図である。 図15AのA矢視図および、その要部拡大図である。 図13の実装構造を別の方向から見た平面図である。 図16AのA矢視図である。 図16AのB矢視図である。 図16AのC矢視図である。 図16AのD矢視図である。
[構造の説明]
 図1は本発明の実施例の最良の形態の、携帯電話(電子携帯機器)に内蔵される、絞り型シールドフレーム(絞り型大型シールド)を用いた実装基板の模式的な概略構成を示す斜視図である。回路基板100上に、絞り型シールドフレーム400と、半導体部品110a~110fと、図示されない半導体部品および電子部品が実装されている。
 シールドフレーム400は、半導体部品等の電子部品110a~110fが実装された回路基板100に固定されるものであり、回路基板100に対して、回路基板100から立ち上がる方向に延在し、電子部品110a~110fを囲むように配置される側板部400Aと、この側板部400Aの先端部から電子部品を囲む領域の内方側へ張り出す梁400Bとを備えている。
 側板部400Aは、回路基板100に対向させる基端部Kが、側方へ張り出すフランジ部を有しないいわゆるフランジレス構造とされており、かつ回路基板100側へのはんだ固定用端部となっている。
 この側板部400Aの外面には、後述する絞り型用カバーを取り付ける際の突起401のほか、図1で示すように内角R部402、外角R部403が構成されるが、他の外周壁面404と切れ目なく連続しているため、外周壁面から電磁波ノイズが漏れたり、あるいは外部から影響を受けたりすることがない。
 また、側板部400Aの内方には、中間梁405が設けられており、中間梁405には、シールドフレーム内の所定の大きさの機能単位間で電磁波ノイズの送受を防ぐための内壁406が設けられている。このような構造により、本来個別にシールドを行う必要のあった半導体部品同士を、同一シールドフレーム内に設置することが可能になる。
 図2は、図1に示す絞り型大型シールドに絞り型用カバー500を設置した場合の斜視図である。絞り型用カバー500は、絞り型シールドフレームの突起401が、嵌合穴501に嵌ることで固定される。また電気的な接続を確実に取るための接続接点502も数箇所設けられており、絞り型用カバーと絞り型シールドフレームが確実に電気的な接続が取れるようになっている。
 本図に示すように絞り型用カバー500を取り付けた状態ではシールドフレーム内に実装された半導体部品は完全にシールドされていることがわかる。
 図3A~3Cは、カバー500を設置した場合の実装構造を示す図であって、図3Aは平面図、図3Bは図3AのA矢視図、図3Cは図3Aの要部拡大図である。
 また、図4A~4Eは、カバー500を取り外し、かつ、シールドフレーム400の側板部400A部分を見た状態の実装構造を示す図であり、図4Aは平面図、図4Bは図4AのA矢視図、図4Cは図4AのB矢視図、図4Dは図4AのC矢視図、図4Eは図4AのD矢視図である。
 これらの図に示すように、折り曲げ型シールドフレームで防ぐことができなかった空孔は存在しないことがわかる。
 次に図5Aから図12を用いて、本発明が部品実装上の高密度化が可能な点を説明する。
 図5A、5Bは、本発明のフランジレス型の絞りシールドフレーム400の側板部400Aの断面(図5A)と、従来のフランジ型絞りシールドフレーム600の壁面断面(図5B)を示す。
 この図が示すように、フランジ型絞りシールドではフランジ部分601ではんだ付けを行うため、必然的に実装に必要なランド幅Bが、フランジレス型シールドフレームの側板部400Aの場合のランド幅Aよりも大きくなる。この結果、フランジ型ではシールドフレームの回路基板上での占有面積が大きくなるため、回路基板全体で見た場合の半導体部品、電子部品の実装面積が減少し部品実装の高密度化の妨げとなってしまう。
 一方、フランジ型の利点として、プレス成型工程の後工程で高さ方向が決定し、最終的な打ち抜きで外周部を切断することが考えられるため、高さ寸法およびフランジ面の平坦度を精度よく加工できる利点がある。このためはんだ付け性としては良好な結果を比較的得やすい。
 一方、フランジレス形状では後工程での高さ決定が難しく、外形カットとその後の絞り加工で高さ方向の寸法が決定する。このため、フランジ型に比べて下面平坦度の精度が悪くなる傾向にある。このため、本発明では、図6に示すように、下面の凹凸Pをはんだ付け領域内で吸収することで、本課題を解決している。
 図6は回路基板表層部からシールドまでの様子を表しており、上から絞り型シールドフレーム400の側板部400A、はんだ層160、そして回路基板100の表層の、ソルダレジスト101、最外層の導体層102、絶縁層103となっている。
 図7は通常の場合のはんだ量による実装を表した図だが、はんだ高さが低いとこのようにうまく凹凸を吸収できない。はんだの濡れ上がり領域を通常よりも高くすることで、下面の凹凸を吸収することができる。はんだ濡れ上がり高さを高くするためには、接続するフットプリントのはんだ溶融高さを高くする必要がある。このため、本発明では、フットプリントを点線状としている。
 図8は本発明におけるシールドフレームの外壁とフットプリント形状を現している。側板部400Aに対し、ソルダレジスト開口102、すなわちフットプリントが点線状に並んでいる。一方、はんだ印刷領域104はソルダレジスト開口102よりも一回り大きくしている。こうすることで、はんだ供給量を増量できる。
 また、図8において、断面方向についてもレジスト開口を通常よりも狭くすることで、はんだの這い上がり量を増加させることが出来る。
 図9A,9Bは、図1に示す実装構造と比較例(従来例)の実装構造とのはんだ付部分を示す図であり、図9Aは図1に示す構造のはんだ付部分を示す断面図、図9Bは比較例のはんだ付部分を示す断面図である。
 図8に示す寸法Cが、図9BにおいてC´であると、はんだが横に広がるため、這い上がり量を大きく取れない。従って、図8,9Aに示す寸法Cのように所定寸法以内に狭くすることが這い上がり量を大きくするために適切である。
 次に、図10はシールドフレームがない状態で、はんだ量を増量した場合の模式図(本発明の場合)であり、図11はソルダレジスト開口とマスク開口(はんだ印刷領域)を一致させる一般的手法によるものを示す。
 図10に示すようにはんだ量を増量することで、表面張力によりはんだ溶融時の最大高さを高くすることが出来る。
 図12に、具体的なコーナ部のフットプリント形状を示す。角部105のフットプリント形状は、側板部400Aの曲率半径R0.8mmよりも、内側106のRを0.2mmと極端に小さくしている。側板部400Aの厚さを0.2mmとすると、シールドフレームの内側Rは0.6mmとなるが、それよりも小さくしている。こうすることで、実装部品を角部まで配置することが可能になる。
 さらに角部のソルダレジスト開口幅が他の場所よりも小さくなるため、はんだが盛り上がり、良好なはんだ付け性が得られる。また斜めスリット107を設けることで、角部近傍のはんだを角部に確実に集めることができる。
 上記の構成において、図12に示す側板部400Aに対するはんだ量は、はんだ溶融後の高さが0.1mm以上確保されることが望ましい。また、図12の構成において、フットプリント幅は、側板部400Aの板厚に0.4mmを加えた数値よりも小さいことが望ましい。
 このように構成することにより、側板部400Aに対するはんだ付部分の高さ、幅寸法が適切に設定され、側板部400Aの固定強度を確保した上ではんだ付部分の占有面積をできるだけ小さくすることができ、スペース効率の向上が図れる。
 以上説明した構成によれば、折り曲げ型と同様の実装エリアを確保しつつ、高いシールド性能と良好な半田付け性を確保できる。
 本発明によれば、折り曲げ型のシールドフレームと比較して、フレーム自体の機械的強度、特にねじり方向の強度が上がるため、実装した基板の強度確保も容易になる。またさらに、シールドフレーム外周が均一に基板と密着するため、シールドフレームと基板の隙間から水や樹脂が漏れることがない。このため、シールドフレーム内に充填した樹脂が漏れ出さない、外から水等の浸入がない、という効果が得られる。
 また、はんだ付けそのものは点線状であるものの、基板と密着するためほとんど隙間はあかない。また多少の隙間があいたとしても、ソルダレジスト部分であるため撥水、撥油性があり、無圧下での水分や樹脂の浸入は起こらない。

 従って、本発明においては、第一に、複雑な形状の大型シールドフレームであっても確実な電磁シールドが可能であり、第二に、大型シールドフレームでの確実な電磁シールドと小型化が両立でき、第三に、従来の折り曲げタイプのシールドフレームと同等の実装面積で実現可能であり、第四に、シールドフレーム内の簡易防水が可能であるという効果が得られる。

 なお、上記の実施形態においては、シールドフレーム側に突起を設け、カバー側に嵌合穴を設けているが、シールドフレーム側を嵌合穴、カバーを突起としても構わない。このようにすることで絞り構造のシールドフレームの外側に突起物がなくなるため、シールドフレームの製造が容易になる。デメリットとしてはシールドフレーム壁面に穴が空くため、水や樹脂の通り抜けが可能になることである。

 また、上記実施形態において、シールドフレームの材質としては、金属であって、表面抵抗の小さいものが望ましい。この場合の金属としては、例えば、ステンレス、アルミニウム、アルミニウム合金、銅合金、チタン合金が挙げられる。

 材質がステンレスの場合、はんだ付け性が良くないため、表面に錫めっきや、はんだめっきを施したものがよい。洋白や真鍮など銅合金であれば表面処理の必要はないが、その代わりに形状の安定性が劣るという短所がある。アルミ合金も同様である。

 また、上記の実施形態においては、シールドフレームとカバーを分離した構造としたが、シールドフレームとカバーは一体の部品であっても構わない。この場合、実装後の部品が確認できない、樹脂塗布が困難、という問題はあるが、部品点数が削減でき、コストダウンが可能である。
 本発明によれば、複雑な形状の大型シールドフレームであっても確実な電磁シールドが可能で、大型シールドフレームでの確実な電磁シールドと小型化が両立できる。また、従来の折り曲げタイプのシールドフレームと同等の実装面積で実現可能であるとともに、シールドフレーム内の簡易防水が可能である。
 100 回路基板
 110a~110f 電子部品
 400 シールドフレーム
 400A 側板部

Claims (7)

  1.  電子部品が実装された回路基板に対して、該回路基板から立ち上がる方向に延在し、かつ前記電子部品の側方を囲むように配置される側板部を備えたシールドフレームであって、
     前記側板部の前記回路基板に対向させる基端部がフランジレス構造とされ、かつ前記回路基板側へのはんだ固定用端部とされていることを特徴とするシールドフレーム。
  2.  請求項1記載のシールドフレームにおいて、
     該シールドフレームが金属で構成され、かつ絞り加工により形成されていることを特徴とするシールドフレーム。
  3.  請求項2記載のシールドフレームにおいて、
     該シールドフレームが、ステンレス、アルミニウム、アルミニウム合金、銅合金、チタン合金のうちから選ばれた一の金属から構成されていることを特徴とするシールドフレーム。
  4.  請求項1から3のいずれか一項記載のシールドフレームが設けられたシールドフレームの実装構造であって、
     前記側板部の基端部が、前記回路基板側に対してはんだ付けにより固定され、
     前記シールドフレームに対するはんだ量が、はんだ溶融後の高さとして0.1mm以上確保されていることを特徴とするシールドフレームの実装構造。
  5.  請求項1から3のいずれか一項記載のシールドフレームが設けられたシールドフレームの実装構造であって、
     前記側板部の基端部が、前記回路基板側に対してはんだ付けにより固定され、
     前記シールドフレームの接続用フットプリント幅が、該シールドフレームの板厚に0.4mmを加えた数値よりも小さいことを特徴とするシールドフレームの実装構造。
  6.  請求項1から3のいずれか一項記載のシールドフレームを備えた電子携帯機器。
  7.  請求項4、請求項5のいずれか一項記載のシールドフレームの実装構造を備えた電子携帯機器。
PCT/JP2012/064928 2011-06-23 2012-06-11 シールドフレーム、シールドフレームの実装構造、及び電子携帯機器 WO2012176646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12802801.6A EP2725884A1 (en) 2011-06-23 2012-06-11 Shield frame, sealed frame mounting structure, and electronic portable device
US14/118,526 US20140098500A1 (en) 2011-06-23 2012-06-11 Shield frame, shield frame mounting structure, and electronic portable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139863 2011-06-23
JP2011-139863 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176646A1 true WO2012176646A1 (ja) 2012-12-27

Family

ID=47422486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064928 WO2012176646A1 (ja) 2011-06-23 2012-06-11 シールドフレーム、シールドフレームの実装構造、及び電子携帯機器

Country Status (4)

Country Link
US (1) US20140098500A1 (ja)
EP (1) EP2725884A1 (ja)
JP (1) JPWO2012176646A1 (ja)
WO (1) WO2012176646A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6525371B1 (ja) * 2018-03-28 2019-06-05 三菱電機株式会社 回転電機及びそれを用いたエレベータのドア装置
CN113597241A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 屏蔽罩及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140142600A (ko) * 2013-06-04 2014-12-12 삼성전자주식회사 전자 기기의 보호 장치 및 그를 구비하는 전자 기기
CN112788859B (zh) * 2021-01-21 2022-04-01 上海望友信息科技有限公司 一种屏蔽框钢网开口方法、装置、电子设备及存储介质
WO2024090866A1 (ko) * 2022-10-28 2024-05-02 삼성전자주식회사 쉴드 캔을 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322773U (ja) * 1986-07-30 1988-02-15
JPH0497398U (ja) * 1991-01-18 1992-08-24
JP2006196664A (ja) 2005-01-13 2006-07-27 Fuji Photo Film Co Ltd 基板へのシールドケース取付構造及び携帯電話
WO2009147916A1 (ja) * 2008-06-03 2009-12-10 シャープ株式会社 シールドケース搭載基板
JP2010245561A (ja) * 2010-07-13 2010-10-28 Fujitsu Media Device Kk 電子部品の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4838475A (en) * 1987-08-28 1989-06-13 Motorola, Inc. Method and apparatus for EMI/RFI shielding an infrared energy reflow soldered device
TW486238U (en) * 1996-08-18 2002-05-01 Helmut Kahl Shielding cap
JP3792518B2 (ja) * 2001-01-19 2006-07-05 三菱電機株式会社 電子回路部品のシールド構造
US6796485B2 (en) * 2002-01-24 2004-09-28 Nas Interplex Inc. Solder-bearing electromagnetic shield
JP2008288523A (ja) * 2007-05-21 2008-11-27 Fujitsu Media Device Kk 電子部品,及びその製造方法
US20140218851A1 (en) * 2013-02-01 2014-08-07 Microsoft Corporation Shield Can

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6322773U (ja) * 1986-07-30 1988-02-15
JPH0497398U (ja) * 1991-01-18 1992-08-24
JP2006196664A (ja) 2005-01-13 2006-07-27 Fuji Photo Film Co Ltd 基板へのシールドケース取付構造及び携帯電話
WO2009147916A1 (ja) * 2008-06-03 2009-12-10 シャープ株式会社 シールドケース搭載基板
JP2010245561A (ja) * 2010-07-13 2010-10-28 Fujitsu Media Device Kk 電子部品の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6525371B1 (ja) * 2018-03-28 2019-06-05 三菱電機株式会社 回転電機及びそれを用いたエレベータのドア装置
WO2019186832A1 (ja) * 2018-03-28 2019-10-03 三菱電機株式会社 回転電機及びそれを用いたエレベータのドア装置
CN113597241A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 屏蔽罩及电子设备

Also Published As

Publication number Publication date
US20140098500A1 (en) 2014-04-10
EP2725884A1 (en) 2014-04-30
JPWO2012176646A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP4732128B2 (ja) 高周波無線モジュール
JP4138862B1 (ja) 回路基板モジュール及び電子機器
US9247682B2 (en) Electronic circuit module
WO2012176646A1 (ja) シールドフレーム、シールドフレームの実装構造、及び電子携帯機器
US11398436B2 (en) Module having sealing layer with recess
JP5144210B2 (ja) 半導体装置
JP4500726B2 (ja) 高周波機器の取付構造
CN110050386B (zh) 天线基板
JPWO2006093155A1 (ja) 基板間接続コネクタ及び基板間接続コネクタを用いた回路基板装置
CN113747776B (zh) 屏蔽罩、电路板组件及电子设备
JP2018133531A (ja) 電子装置
JP2006165201A (ja) 回路モジュール装置
CN112187970B (zh) 摄像头模组及其电子装置
JP3999177B2 (ja) 高周波回路基板
US20210307221A1 (en) Shield structure and electronic device
JP2011100891A (ja) シールド部材及び該シールド部材を備える電子機器
KR20040031805A (ko) 블루투스용 안테나 일체형 rf모듈
WO2008010261A1 (fr) Structure de substrat et terminal mobile
JP2008124167A (ja) 高周波モジュールと、これを用いた電子機器
CN215010824U (zh) 线路板组件和电子设备
JP2012028432A (ja) 電子部品
JP5642559B2 (ja) 電子部品モジュール
RU2791302C1 (ru) Экранирующий корпус и электронное устройство
KR20060093580A (ko) 안테나 일체형 블루투스 모듈
JP2015222775A (ja) 電子部品のシールド構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012802801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013521529

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14118526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE