WO2012176534A1 - 液体クロマトグラフ質量分析装置 - Google Patents

液体クロマトグラフ質量分析装置 Download PDF

Info

Publication number
WO2012176534A1
WO2012176534A1 PCT/JP2012/059690 JP2012059690W WO2012176534A1 WO 2012176534 A1 WO2012176534 A1 WO 2012176534A1 JP 2012059690 W JP2012059690 W JP 2012059690W WO 2012176534 A1 WO2012176534 A1 WO 2012176534A1
Authority
WO
WIPO (PCT)
Prior art keywords
desolvation
mass spectrometer
droplets
liquid chromatograph
sample
Prior art date
Application number
PCT/JP2012/059690
Other languages
English (en)
French (fr)
Inventor
信二 吉岡
安田 博幸
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201280031153.1A priority Critical patent/CN103635797A/zh
Priority to EP12802378.5A priority patent/EP2725351A4/en
Priority to US14/127,117 priority patent/US20140131570A1/en
Publication of WO2012176534A1 publication Critical patent/WO2012176534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/044Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for preventing droplets from entering the analyzer; Desolvation of droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • H01J49/049Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample with means for applying heat to desorb the sample; Evaporation

Definitions

  • the present invention relates to a liquid chromatograph mass spectrometer that ionizes droplets of a liquid sample given from a liquid chromatograph section (LC) and introduces them into mass spectrometry (MS).
  • LC liquid chromatograph section
  • MS mass spectrometry
  • mass spectrometers are often used in the fields of environment, food, medicine, forensic medicine and the like as a technique for acquiring qualitative / quantitative information with a high sensitivity for a trace amount (ppm to ppb order) of multiple components.
  • ppm to ppb order a trace amount of multiple components.
  • multi-component ionization method used in a mass spectrometer, it is difficult to perform accurate qualitative / quantitative analysis because the ionization of a target component is hindered due to interference by the influence of contaminating components (multi-component). There are many cases.
  • ionization methods include electrospray ion source (ESI) using electrospray ionization and atmospheric pressure chemical ion source (APCI) using atmospheric pressure chemical ionization. These are ionization methods in which a sample solution is sprayed as droplets under atmospheric pressure and ions are generated from the droplets, and are characterized in that ions having molecular weight information are selectively generated.
  • ESI electrospray ion source
  • APCI atmospheric pressure chemical ion source
  • the flow rate of the mobile phase solvent generally used in liquid chromatography is several hundred ⁇ L / min to several mL / min, and thus several hundred ⁇ L eluted from the liquid chromatography.
  • spraying a sample solution of / min to several mL / min it is important to vaporize the sprayed sample solution as much as possible to generate ions efficiently.
  • a liquid chromatograph mass spectrometer using an electrospray ion source (ESI) using an electrospray ionization method that is generally used or an atmospheric pressure chemical ion source (APCI) using an atmospheric pressure chemical ionization method is a liquid chromatograph.
  • the mixed material is separated for each component by the graph, and ions are generated in the ionization section at atmospheric pressure.
  • Mass spectrometers used in the mass spectrometer include forms such as a quadrupole mass spectrometer, an ion trap, a tandem quadrupole mass spectrometer, and a time-of-flight mass spectrometer.
  • drying such as N2 heated to promote the vaporization of the droplets of the sprayed sample solution is performed.
  • gas is blown against a sample droplet.
  • Patent Document 1 and Patent Document 2 a method of spraying the sample spraying part of the ionization part and the inlet of the dry gas coaxially, and a sample spraying part of the ionization part, There is a method of arranging an inlet for a dry gas in an axial direction that intersects. In any case, in order to sufficiently dry the sample droplet, a large amount of drying gas is sprayed to improve the vaporization efficiency.
  • Patent Document 3 there is a method of removing large droplets that cause a deterioration in analysis accuracy from droplets sprayed from an ion source spray section.
  • This method is a method in which a centrifugal chamber is provided in order to select the particle size of droplets sprayed at the subsequent stage of the ion source spraying portion, and small droplets and large droplets are separated by centrifugal force.
  • the flow rate of the mobile phase solvent generally used in the liquid chromatograph is several hundred ⁇ L / min to several mL / min.
  • Patent Document 1 and Patent Document 2 a method of spraying the sample spraying portion of the ionization portion and the inlet of the drying gas coaxially, or a dry gas in an axial direction that intersects the sample spraying portion of the ionization portion There is a way to arrange the inlet.
  • it is necessary to spray a large amount of dry gas in order to sufficiently dry the sample droplets, it is necessary to spray a large amount of dry gas, and the ionic strength decreases due to dilution of the vaporized sample concentration with a large amount of dry gas or to the mass spectrometer.
  • the ionic strength decreased due to a decrease in the sample introduction efficiency.
  • the first problem with droplets of sample solutions with large particle sizes that are insufficiently vaporized is that such droplets of sample solutions with large particle sizes are directly applied to the sample introduction part of the mass spectrometer. When sprayed, the temperature of the sample introduction part is lowered, the solvent removal effect at the sample introduction part is lowered, and the sensitivity of the mass spectrometer is lowered.
  • a sample droplet having a large particle size and insufficient vaporization is not directly sprayed to the sample introduction part of the mass spectrometer.
  • a method of spraying the sample by shifting the axis between the central axis of the sample introduction part and the spray part of the ion source, or by arranging the spray part of the sample solution of the ionization part in a direction orthogonal to the sample introduction part.
  • droplets having a large diameter are arranged so as not to be sprayed directly on the sample introduction part.
  • the problem with this arrangement is that the spraying part of the ionization part is farther than when spraying from the front of the sample introduction part, so it is possible to reduce the introduction efficiency of large droplets that cause noise.
  • the efficiency of introducing sample ions into the mass spectrometer is also reduced, which causes a reduction in the intensity of the ions themselves.
  • the present invention was sprayed in an electrospray ion source (ESI) using an electrospray ionization method used in a liquid chromatograph mass spectrometer, an atmospheric pressure chemical ion source (APCI) using an atmospheric pressure chemical ionization method, or the like. It is an object of the present invention to provide a mass spectrometer having high detection sensitivity by generating fine charged droplets by efficiently vaporizing a sample solution, improving ionization efficiency of the sample, high ionic strength, and high detection sensitivity.
  • ESI electrospray ion source
  • APCI atmospheric pressure chemical ion source
  • the present invention includes a liquid chromatograph separating unit that separates a sample solution into components, a sample spraying unit that sprays the sample solution separated and eluted by the liquid chromatographic separating unit as droplets, and charging the droplets
  • a liquid chromatograph having ionization generating means for generating ions by (charged droplets), a mass analyzing unit for introducing and mass-separating the ions, and a desolvating unit for removing the solvent contained in the charged droplets
  • the desolvation section includes a desolvation flow chamber through which the charged droplets circulate, heating means for heating the desolvation flow chamber, and a spiral liquid provided in the desolvation flow channel chamber. It has a droplet guide channel.
  • the present invention also provides a liquid chromatograph separating means for separating a sample solution into components, a sample spraying section for spraying the sample solution separated and eluted by the liquid chromatographic separating means as droplets, and the droplets
  • a liquid chromatograph mass spectrometer having an ionization generating means for charging (charged droplets) to generate ions and a mass analyzer for introducing and mass-separating the ions, a solvent contained in the droplets
  • a desolvating section for removing the desolvating section, and the desolvating section includes a desolvating circulation chamber through which the droplets circulate, heating means for heating the desolvating circulation chamber, and a spiral liquid provided in the desolvating channel chamber.
  • a droplet guide channel is provided, and the removal of the solvent by the desolvation unit is before the droplets are charged by the ionization generating means.
  • the desolvation unit for removing the solvent contained in the charged droplets includes the desolvent circulation chamber through which the charged droplets circulate, the heating means for heating the desolvent circulation chamber, and the spiral provided in the desolvation channel chamber.
  • the charged droplets are guided by the spiral droplet guide channel and repeatedly swirled in the solvent removal channel chamber and heated, and the liquid medium is evaporated to form minute charged droplets, thereby promoting ionization.
  • the desolvation channel chamber is smaller than that in which the droplet guide channel is straight from the inlet side to the outlet side.
  • the droplet guide channel provided in the can be significantly lengthened, and the droplet can be sufficiently heated by the long droplet guide channel. Thereby, the liquid chromatograph mass spectrometer which is small and ionization is performed favorably can be provided.
  • the desolvation section for removing the solvent contained in the droplets is provided in the desolvation circulation chamber through which the droplets circulate, the heating means for heating the desolvation circulation chamber, and the desolvation channel chamber.
  • a spiral liquid droplet guide channel is provided, and the solvent removal by the desolvation section is performed before the droplets are charged by the ionization generating means.
  • the droplets are guided to the spiral droplet guide channel and repeatedly swirled in the solvent removal channel chamber and heated to evaporate the medium liquid and form minute droplets. The ionization by is promoted.
  • the desolvation channel chamber is smaller than that in which the droplet guide channel is straight from the inlet side to the outlet side.
  • the droplet guide channel provided in the can be significantly lengthened, and the droplet can be sufficiently heated by the long droplet guide channel.
  • the liquid chromatograph mass spectrometer which is small and ionization is performed favorably can be provided.
  • FIG. 4 is an enlarged view of a desolvation channel chamber having an inverted conical shape according to an embodiment of the present invention. It is a figure which shows the schematic structure of the mass spectrometer which concerns on the other Example of this invention and provided the desolvation flow path chamber which carried out the reverse cone shape immediately after the sample spraying part. It is a partial expanded cross section of the solvent removal flow path chamber which concerns on the Example of this invention and shows a helical droplet guide flow path.
  • FIG. 1 First, the liquid chromatograph mass spectrometer shown in FIG. 1 will be described including FIG. 2 and FIG.
  • the liquid chromatograph 1 includes, for example, a pump, an autosampler, a column open, and a UV detector.
  • the sample solution eluted from the liquid chromatograph 1 is supplied to a mass spectrometer and subjected to mass analysis.
  • the mass spectrometer includes an ionization unit 6 (ion generation means), an ion guide 9, and a mass analysis unit 10.
  • the mass spectrometer includes a sample spray unit 2 for spraying a sample of the ion source, a heated gas supply unit 3, a first pore member 7 provided with the first pores, and an inverted conical desolvation channel chamber 4
  • a desolvation unit 14 provided with a needle electrode 5 as an ion generating means, a second pore member 8 provided with a second pore, a quadrupole mass analyzer 11, an ion detection unit 12, and a data processing unit 13. Including.
  • the spout side of the sample spray unit 2 and the spout side of the heated gas supply unit 3 are provided so as to approach and face the inlet side of the desolvation channel chamber 4.
  • the needle electrode 5 is provided such that the tip approaches the inlet side center of the desolvation channel chamber 4.
  • the solvent removal flow path chamber 4 has an inlet side diameter of about 2 mm to 4 mm and an outlet side diameter of about 0.3 mm. Charged droplets circulate from the inlet side toward the outlet side in the inverse conical desolvation channel chamber 4 whose diameter decreases from the inlet side toward the outlet side.
  • a spiral droplet guide channel 20 as shown in FIG. 4 is provided on the inner peripheral surface of the desolvation channel chamber 4.
  • the spiral droplet guide channel 20 is formed by a groove extending continuously from the inlet side to the outlet side of the desolvation channel chamber 4.
  • the spiral liquid droplet guide channel 20 may be formed by a protrusion or a rib protruding from the inner peripheral surface of the desolvation channel chamber 4.
  • the droplets ejected from the sample spray section 2 are guided to the spiral droplet guide channel 20 and circulate from the inlet side to the outlet side while swirling as shown in FIG.
  • the above-described jet nozzle side of the sample spraying section 2 and the jet nozzle side of the heated gas supply section 3 are directed to the inlet side end of the droplet guide flow path 20 (groove) and match the tangential direction of the arc drawn by the groove.
  • the swirling flow of the liquid droplets flowing through the grooves is smoothed by disposing them.
  • the droplet guide channel 20 (groove) has a spiral shape from the inlet side to the outlet side of the desolvation channel chamber 4, it becomes a straight line from the inlet side to the outlet side of the desolvation channel chamber.
  • the droplet guide channel provided in the desolvation channel chamber can be remarkably lengthened, and the droplet can be sufficiently heated by the long droplet guide channel.
  • the liquid chromatograph mass spectrometer which is small and ionization is performed favorably can be provided.
  • the mixed sample is separated into single components by the liquid chromatograph 1 and eluted at a flow rate of several hundred ⁇ L / min to several mL / min.
  • the sample solution eluted from the liquid chromatograph 1 is introduced into the sample spray unit 2 provided in the ionization unit 6 of the liquid chromatograph mass spectrometer.
  • a high voltage is applied to the jetting side of the sample spraying section 2 by the ion generating means to generate ions.
  • the heated gas supply unit 3 that supplies a gas for drying the sample droplet sprayed from the sample spraying unit 2 may be installed immediately after the sample spraying unit 2.
  • the inverted cone-shaped desolvation channel chamber 4 heated to a constant temperature in order to stir the sprayed sample droplet and the heated gas and promote vaporization of the sample droplet is a first pore serving as a sample introduction portion.
  • the sample components sprayed from the sample spraying section 2 are ion transported to the mass spectrometry section 10 via the first pore of the first pore member 7, the second pore of the second pore member 8, and the ion guide 9. Is done.
  • Each ion is mass-separated by the quadrupole mass spectrometer 11, and the separated ions are detected by the ion detector 12 and displayed as mass spectrum and mass chromatogram data by the data processor 13. .
  • the first pore of the first pore member 7 and the second pore of the second pore member 8 are pores having a diameter of about 0.4 mm, and are between the first pore member 7 and the second pore member 8.
  • the degree of vacuum is maintained in the area A, the area B where the ion guide 9 is placed, and the area C of the mass spectrometer.
  • the degree of vacuum is region C, region B, and region A in descending order.
  • the region D of the ionization unit 6 (ion generating means) is about atmospheric pressure.
  • a vacuum pump is connected to the region C, the region B, and the region A, and a vacuum is established by evacuation of the vacuum pump.
  • the reason why the first pore of the first pore member 7 and the second pore of the second pore member 8 are pores of about 0.4 mm is to maintain a vacuum.
  • a voltage of several tens of volts is applied between the first pore member 7 and the second pore member 8, the partition members in the regions C and B, and the second pore member 8.
  • a voltage of several KV is applied between the sample spraying part 2 and the first pore member 7.
  • the ions generated by the ion generating means by being induced by the potential difference of the applied voltage are the first pore of the first pore member 7, the second pore of the second pore member 8, the ion guide 9, and mass spectrometry. It flows downstream in the order of part 10.
  • the flowing gas or droplets that do not have an electric charge are evacuated by a vacuum pump because they are not attracted by a potential difference.
  • the droplet guide channel 20 (groove) has a spiral shape from the inlet side to the outlet side of the desolvation channel chamber 4, the inlet side to the outlet side of the desolvation channel chamber Compared to a straight line directed toward the surface, the droplet guide channel provided in the desolvation channel chamber can be made significantly longer, and the droplet can be sufficiently heated by the long droplet guide channel. For this reason, the charged liquid droplets are evaporated into solvent droplets, and are finally ionized. Since unionized droplets contained in the components of the sample analyzed by the mass analyzer 10 can be reduced, analysis noise is reduced and mass analysis accuracy is improved.
  • FIG. 2 is a structural diagram of the reverse cone-shaped desolvation channel chamber 4 provided in the center of the first pore member 7 in FIG.
  • the upper figure is a top view and the lower figure is a cross-sectional view.
  • a space is provided in the hatched portion of the top view, and charged droplets of the sample sprayed from the sample spraying unit 2 are introduced into this space.
  • the first pore member 7 is formed with a thick material amount, and the reverse cone-shaped desolvation channel chamber is provided by utilizing the thickness.
  • the charged droplets of the sample introduced from the inlet side into the decontaminated desolvation channel chamber 4 are the apex (outlet) of the reverse cone so as to follow the spirally processed groove shown in white in the cross-sectional view. To the side) as a gas flow.
  • the charged droplets of the gas flow are heated to a constant temperature by providing a heating unit in the desolvation unit 14 having the inverted conical desolvation channel chamber 4.
  • the desolvation channel chamber 4 is a spiral droplet guide channel, compared to a channel configuration linearly extending from the inlet side to the outlet side of the desolvation channel chamber, The length of the channel becomes much longer, and the charged droplets are sufficiently heated while flowing through this long droplet guide channel, and the solvent liquid in the charged droplets is vaporized to form minute droplets. Ionization is achieved.
  • the reverse cone-shaped desolvation channel chamber 4 is a block that is heated to a predetermined temperature in advance, and its inner surface is provided with a groove that spirally flows to the apex of the reverse cone, It has a structure in which the atomized gaseous component flows.
  • the heating surface of the spiral droplet guide channel formed on the inner surface of the reverse conical desolvation channel chamber has a long channel length, so that the contact time of the flowing gaseous component increases, and the heating surface of the spiral droplet guide channel is removed during the flow. The solvent effect is improved.
  • heating means such as a heater and PTC may be used for the heating part of the inverse conical desolvation channel 4.
  • a large amount of the sample solution sprayed into the inverse conical desolvation channel chamber 4 is introduced, and vaporization by heating and stirring is promoted in a certain space. Since the concentration also increases, it becomes possible to efficiently transport microdroplets downstream of the second pore member 8. For this reason, it is possible to improve the transmittance of the ions themselves and to reduce the introduction of large droplets that cause the noise component of the detector 12, thereby improving the ion intensity and analysis accuracy.
  • an electrospray ion source (ESI) using an electrospray ionization method and an atmospheric pressure chemical ion source (APCI) using an atmospheric pressure chemical ionization method are used for this liquid chromatograph mass spectrometer.
  • ESI electrospray ion source
  • APCI atmospheric pressure chemical ion source
  • the charged droplet introduction portion The inside of the pore of the first pore is a decontamination channel chamber having an inverted cone shape, and the discharge port located at the apex of the inverted cone shape is in the direction of the pore of the second pore of the second pore member Installed to face.
  • the block of the desolvation part in which the inverted conical desolvation channel chamber is formed is a heating block heated to a constant temperature.
  • a spiral groove is provided so that the sprayed sample droplet and the dry gas such as N2 are sufficiently stirred, sufficiently in contact with the inner surface of the heating block, and vaporization is promoted. Fine charged droplets are efficiently generated when passing through the heating block, and the efficiently generated ions are introduced into the mass spectrometer. Since the desolvation part is provided in the first pore member, the liquid chromatograph mass spectrometer can be downsized as compared with the case where the desolvation part is provided separately from the first pore member.
  • the desolvation section is formed with an inverse conical desolvation flow passage chamber, and a discharge port having a small diameter (0.4 mm) that becomes the first pore is provided on the side opposite to the inlet side.
  • the vacuum in region A can be maintained at the outlet (exit side) of the chamber. Since the discharge port (exit side) of the desolvation channel chamber also serves as the first pore, the configuration is simple.
  • a needle electrode is provided in the vicinity of the discharge port located at the apex of the inverted conical shape, and only the fine droplets generated efficiently are chemically reacted.
  • a mass spectrometer characterized by being ionized by the above.
  • the embodiment shown in FIG. 3 is different from the previous embodiment shown in FIG. 1 in that the needle electrode 5 of the ionization section 6 (ion generation means) is arranged on the outlet side of the desolvation flow path chamber 4 of the desolvation section 14. It is a big difference. 1 is also different from the previous embodiment shown in FIG. 1 in that the desolvation flow path chamber 4 of the desolvation section 14 is placed obliquely and the sample spray section 2 and the gas supply section 3 are separated.
  • the desolvation section 14 having the inverted conical desolvation flow path chamber 4 has the same form as the previous embodiment shown in FIG.
  • the interior of the desolvation channel chamber 4 has a spiral droplet guide channel 20 (groove), and the sample droplet is transported in a spiral manner in the droplet guide channel 20 (groove).
  • the inverted conical desolvation channel chamber 4 has a heating unit such as a heater and is heated to a constant high temperature, and the sample droplet is a spiral shape heated to the high temperature. While passing through the groove, vaporization by heating and stirring is promoted, and microdroplets are generated. The generated fine droplets are efficiently transported from the apex portion (exit side) of the inverted conical shape to the mass analysis portion by the potential difference between the next first pore member and the second pore member. .
  • a heating means such as a heater may be used, or the heated gas supply portion 4 heated to a high temperature. Heating may be performed with a gas such as N2 supplied from the gas.
  • a large amount of the sample solution sprayed into the inverted conical desolvation channel chamber 4 is introduced, and heating and stirring are performed in a certain space. Vaporization is promoted and the concentration of fine droplets increases as it goes to the apex (exit side) of the inverted conical shape. Therefore, in the case of an atmospheric pressure chemical ion source using the atmospheric pressure chemical ionization method, spraying is performed in the sample spraying section 2.
  • the block of the desolvation part in which the desolvation channel chamber is formed is not provided inside the first pore member, but is arranged immediately after the downstream side of the sample spraying part, and the droplet of the sample is placed in the first pore member. Vaporization is promoted by heating the heating means provided in the block before being introduced into one pore. A droplet having a small particle diameter due to desolvation by vaporization is favorably ionized by a needle electrode (ion generating means) in the vicinity of the discharge port located at the apex of the inverse conical desolvation channel chamber.
  • the ionization employs an atmospheric pressure chemical ion source (APCI) using an atmospheric pressure chemical ionization method as in the embodiment shown in FIG. Unlike the embodiment shown in FIG.
  • the block of the desolvation section is provided separately from the first pore member, and therefore the arrangement of the desolvation section block can be arbitrarily selected.
  • the first pore member is not used for the block of the solvent removal portion, it can be made a size necessary for heating and vaporization without being limited by the plate thickness of the first pore member.
  • SYMBOLS 1 Liquid chromatograph, 2 ... Sample spray part, 3 ... Heated gas supply part, 4 ... Reverse conical shape solvent removal flow path chamber, 5 ... Needle electrode, 6 ... Ionization part, 7 ... First pore, 8 ... Second pore, 9 ... ion guide, 10 ... mass analyzer, 11 ... quadrupole mass spectrometer, 12 ... ion detector, 13 ... data processor, 14 ... heating unit, 20 ... droplet guide channel (groove)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明では、噴霧された試料溶液を効率良く気化させることにより、微細な帯電液滴を生成させ、試料のイオン化効率を向上させ、イオン強度の高く、大きな液滴を軽減させることにより、検出感度の高い質量分析装置を提供することを目的とする。本発明は、試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、液体クロマトグラフ分離手段で分離されて溶出する試料溶液を液滴として噴霧する試料噴霧部と、液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、イオンを導入して質量分離する質量分析部と、帯電液滴に含まれる溶媒を除去する脱溶媒部と、を有する液体クロマトグラフ質量分析装置において、脱溶媒部が帯電液滴が流通する脱溶媒流通室と、脱溶媒流通室を加熱する加熱手段と、脱溶媒流路室に設けた螺旋状の液滴案内流路を有することを特徴とする。

Description

液体クロマトグラフ質量分析装置
 本発明は、液体クロマトグラフ部(LC)から与えられた液体試料の液滴をイオン化して質量分析(MS)に導入する液体クロマトグラフ質量分析装置に関する。
 近年、環境、食品、医薬、法医学などの分野において、微量(ppm~ppbオーダー)の多成分を高感度に定性/定量情報を取得する手法として、質量分析装置が多く用いられている。しかし、質量分析装置で用いられるイオン化法はいずれも多成分系では、夾雑成分(多成分)の影響による妨害で、目的成分のイオン化が阻害されるために正確な定性/定量分析が困難となる場合が多い。
 そのため、質量分析装置で検出を行う前に、液体クロマトグラフィーなどのクロマト分離装置を接続し、成分ごとに分離を行うことで各成分の正確な定性/定量分析が行われている。液体クロマトグラフィーとの接続において、一般的に用いられるイオン化法としては、エレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)があり、これらは、大気圧下で試料溶液を液滴として噴霧し、液滴からイオン生成を行うイオン化法であり、選択的に分子量情報を持つイオンが生成されることが特徴である。
 液体クロマトグラフィーとの接続において、一般的に液体クロマトグラフィーで用いられる移動相溶媒の流量は、数百μL/min~数mL/minであり、このように液体クロマトグラフィーから溶出される数百μL/min~数mL/minの試料溶液を噴霧する場合、噴霧された試料溶液を出来る限り気化させて、効率良くイオン生成させることが重要となる。
 一般的に用いられるイオン化法のエレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)による液体クロマトグラフ質量分析装置は、液体クロマトグラフにより混合資料を成分毎に分離し、大気圧化のイオン化部において、イオン生成を行う。
 その後、第一細孔等を経由し、質量分析部に導入され、質量分離を行い、検出部にてイオン強度の検出を行い、データ処理装置にてマススペクトル及びクロマトグラムデータとして表示される。質量分析部に使用される質量分析装置は、四重極型質量分析計、イオントラップ、タンデム型四重極質量分析計、飛行時間型質量分析計等の形態がある。
 エレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)の両方のイオン化法においても、液体クロマトグラフから溶出する試料溶液を噴霧し、生成した試料液滴の気化効率を上げてイオン化効率を向上させる必要がる。
 液体クロマトグラフィーから送液される高い流量で噴霧された試料溶液の液滴の気化効率を上げるためには、噴霧された試料溶液の液滴の気化を促進するために加熱されたN2等の乾燥ガスを試料液滴に対して吹き付ける方法がある。この際、噴霧により生成された試料溶液の液滴を十分に気化するために、試料溶液の液滴とN2等の乾燥ガスとを十分攪拌することが重要となる。
 上記の様に、気化効率を向上させるため、特許文献1や特許文献2に示されるようにイオン化部の試料噴霧部と乾燥ガスの導入口を同軸で噴霧する方法やイオン化部の試料噴霧部と交差する様な軸方向に乾燥ガスの導入口を配置する方法がある。いずれの場合も、試料液滴を十分乾燥するためには多量の乾燥ガスを噴霧し、気化効率を向上させている。
 また、特許文献3に示されるようにイオン源噴霧部から噴霧された液滴の中から、分析精度を劣化させる要因となる大きな液滴を排除する方法がある。この方法は、イオン源噴霧部の後段に噴霧された液滴の粒径を選別するために遠心分離式チャンバを設け、遠心力により、小さな液滴と大きな液滴を分ける方法である。
 しかし、大きな液滴は排除されることから、分析精度の改善は可能であるが、イオン強度自身は低下することなり、より感度の良いイオン強度を確保するには、大きな液滴も効率良く液滴中の溶媒を気化させることが必要となる。
特開2003-83938号 米国特許第6759650号 特開2000-214149号
 液体クロマトグラフ質量分析装置における液体クロマトグラフとの接続において、一般的に液体クロマトグラフで用いられる移動相溶媒の流量は、数百μL/min~数mL/minであり、この様な流量で送液される試料溶媒を噴霧する場合、噴霧された試料溶媒すべてを気化させて、イオン生成させることは困難である。
 高い流量で噴霧された試料溶液の液滴の気化効率を上げるためには、噴霧された試料溶液の液滴の気化を促進するためにN2等の乾燥ガスを試料液滴に対して吹き付ける方法がある。この際、噴霧により生成された試料溶液の液滴を十分に気化するために、試料溶液の液滴とN2等の乾燥ガスとを十分攪拌することが重要となる。
 例として、特許文献1や特許文献2に示されるようにイオン化部の試料噴霧部と乾燥ガスの導入口を同軸で噴霧する方法やイオン化部の試料噴霧部と交差する様な軸方向に乾燥ガスの導入口を配置する方法がある。いずれの場合も、試料液滴を十分乾燥するためには多量の乾燥ガスを噴霧する必要があり、気化した試料濃度が多量の乾燥ガスにより希釈されることによるイオン強度の低下や質量分析部への試料導入効率の低下によりイオン強度が低下する課題があった。
 気化が不十分な粒径の大きい試料溶液の液滴が問題となるのは、まず、一つ目として、この様な粒径の大きい試料溶液の液滴が質量分析装置の試料導入部に直接噴霧された場合、試料導入部の温度低下が起こり、試料導入部での脱溶媒効果が低下し、質量分析装置の感度低下が生じる。
 二つ目としては、この様な粒径の大きい試料溶液の液滴が質量分析装置に導入され、検出器まで到達した場合、検出器側でのノイズの要因となり、結果としては、感度低下の要因となる。また、この様な粒径の大きい液滴が試料導入部及び質量分析部に断続的に導入された場合、質量分析部内部の汚れの要因ともなり得るため、最終的には、質量分析装置の感度低下に繋がることが多い。
 これらの問題を回避するために、高い流量で試料溶液を噴霧しイオン化を行うイオン源の場合、粒径の大きい気化不十分な試料液滴が直接質量分析装置の試料導入部へ噴霧されない様に試料導入部の中心軸とイオン源の噴霧部との軸をずらしたり、試料導入部に対して直交方向にイオン化部の試料溶液の噴霧部を配置し、試料を噴霧する方法を用いて、粒径の大きい液滴を試料導入部に直接噴霧しない様に配置する場合が多い。
 しかし、この様な配置をした場合の課題としては、試料導入部正面から噴霧した場合よりもイオン化部の噴霧部が遠くなるため、ノイズの原因となる大きい液滴の導入効率の軽減は可能であるが、質量分析装置への試料イオンの導入効率も低下し、イオン自身の強度が低下する原因となる。
 本発明は、液体クロマトグラフ質量分析装置で用いられるエレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)等において、噴霧された試料溶液を効率良く気化させることにより、微細な帯電液滴を生成させ、試料のイオン化効率を向上させ、イオン強度が高く、検出感度の高い質量分析装置を提供することを目的とする。
 本発明は、試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、前記液体クロマトグラフ分離手段で分離されて溶出する前記試料溶液を液滴として噴霧する試料噴霧部と、前記液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、前記イオンを導入して質量分離する質量分析部と、前記帯電液滴に含まれる溶媒を除去する脱溶媒部と、を有する液体クロマトグラフ質量分析装置において、前記脱溶媒部は、前記帯電液滴が流通する脱溶媒流通室と、前記脱溶媒流通室を加熱する加熱手段と、前記脱溶媒流路室に設けた螺旋状の液滴案内流路を有することを特徴とする。
 また、本発明は、試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、前記液体クロマトグラフ分離手段で分離されて溶出する前記試料溶液を液滴として噴霧する試料噴霧部と、前記液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、前記イオンを導入して質量分離する質量分析部と、を有する液体クロマトグラフ質量分析装置において、前記液滴に含まれる溶媒を除去する脱溶媒部を備え、前記脱溶媒部は前記液滴が流通する脱溶媒流通室と、前記脱溶媒流通室を加熱する加熱手段と、前記脱溶媒流路室に設けた螺旋状の液滴案内流路を備え、前記脱溶媒部による溶媒の除去が前記イオン化生成手段での前記液滴への帯電前であることを特徴とする。
 本発明によれば、帯電液滴に含まれる溶媒を除去する脱溶媒部は帯電液滴が流通する脱溶媒流通室と脱溶媒流通室を加熱する加熱手段と脱溶媒流路室に設けた螺旋状の液滴案内流路を有する。帯電液滴は螺旋状の液滴案内流路に案内されて脱溶媒流路室内を繰り返し旋回して加熱され、媒体液分が蒸発して微小な帯電液滴となり、イオン化が促進される。
また、脱溶媒流路室の液滴案内流路が螺旋状になっているので、液滴案内流路が入口側から出口側に向かって直線になっているものに比べ、脱溶媒流路室に設ける液滴案内流路を格段に長くすることができ、長い液滴案内流路で液滴を十分に加熱できる。これにより、小型でイオン化が良好に行われる液体クロマトグラフ質量分析装置を提供できる。
 また、本発明によれば、液滴に含まれる溶媒を除去する脱溶媒部は液滴が流通する脱溶媒流通室と、脱溶媒流通室を加熱する加熱手段と、脱溶媒流路室に設けた螺旋状の液滴案内流路を備え、前記脱溶媒部による溶媒の除去をイオン化生成手段での液滴への帯電前にするようにした。帯電する前に液滴が螺旋状の液滴案内流路に案内されて脱溶媒流路室内を繰り返し旋回して加熱され、媒体液分が蒸発して微小な液滴となるので、イオン化生成手段によるイオン化が促進される。また、脱溶媒流路室の液滴案内流路が螺旋状になっているので、液滴案内流路が入口側から出口側に向かって直線になっているものに比べ、脱溶媒流路室に設ける液滴案内流路を格段に長くすることができ、長い液滴案内流路で液滴を十分に加熱できる。これにより、小型でイオン化が良好に行われる液体クロマトグラフ質量分析装置を提供できる。
本発明の実施例に係るもので、第一細孔部材の内部に逆円錐形状の形状をした脱溶媒流路室を設けた液体クロマトグラフ質量分析装置の概略構成を示す図である。 本発明の実施例に係るもので、逆円錐形状をした形状をした脱溶媒流路室を拡大して示した図である。 本発明の他の実施例に係るもので、試料噴霧部の直後に逆円錐形状をした脱溶媒流路室を設けた質量分析装置の概略構成を示す図である。 本発明の実施例に係るもので、螺旋状の液滴案内流路を示す脱溶媒流路室の部分拡大断面である。
 以下、図面を参照して本発明の実施例を説明する。
 まず、図1に示す液体クロマトグラフ質量分析装置について、図2、図4を含めて説明する。
 液体クロマトグラフ1は、例えば、ポンプ、オートサンプラー、カラムオープン、UV検出器を含む。液体クロマトグラフ1で溶出だれた試料溶液は質量分析計に供給されて質量分析が行われる。質量分析計は、イオン化部6(イオン生成手段)、イオンガイド9、質量分析部10を含む。
 また、質量分析計は、イオン源の試料を噴霧する試料噴霧部2、加熱ガス供給部3、第一細孔が設けられた第一細孔部材7、逆円錐形状の脱溶媒流路室4が設けられた脱溶媒部14、イオン生成手段としての針電極5、第二細孔が設けられた第二細孔部材8、四極型質量分析器11、イオン検出部12、データ処理部13を含む。
 試料噴霧部2の噴出口側、および加熱ガス供給部3の噴出口側は、脱溶媒流路室4の入口側に接近して対向するように設けられる。針電極5は、先端が脱溶媒流路室4の入口側中央に接近するように設けられる。脱溶媒流路室4は、入口側の径が2mm~4mm程度、出口側の径が0.3mm程度である。入口側から出口側に向かって径小になる逆円錐形状の脱溶媒流路室4には、帯電液滴が入口側から出口側に向かって流通する。
 脱溶媒流路室4が設けられた脱溶媒部14は図示してないがヒータ等の加熱手段が設けられ、脱溶媒流路室4内を流通する帯電液滴は加熱される。脱溶媒流路室4の内周面には、図4に示すような螺旋状の液滴案内流路20が設けられる。螺旋状の液滴案内流路20は、脱溶媒流路室4の入口側から出口側に向かった連続的に延在する溝によって形成される。溝に代えて脱溶媒流路室4の内周面に突き出す突起やリブで螺旋状の液滴案内流路20に形成することもできる。
 試料噴霧部2から噴出する液滴は旋状の液滴案内流路20に案内され、図2に示すように旋回しながら入口側から出口側に向かって流通する。前述した試料噴霧部2の噴出口側、および加熱ガス供給部3の噴出口側は、液滴案内流路20(溝)の入口側端部に向けるとともに溝が描く円弧の接線方向に合うように配置することで溝を流れる液滴の旋回流が円滑になる。
 液滴案内流路20(溝)は、脱溶媒流路室4の入口側から出口側に向かう旋状になっているので、脱溶媒流路室の入口側から出口側に向けて直線になっているものに比べ、脱溶媒流路室に設ける液滴案内流路を格段に長くすることができ、長い液滴案内流路で液滴を十分に加熱できる。これにより、小型でイオン化が良好に行われる液体クロマトグラフ質量分析装置を提供できる。
 液体クロマトグラフ質量分析装置の動作概要について説明する。
 混合試料は、液体クロマトグラフ1により単一成分に分離され、数百μL/min~数mL/minの流量で溶出される。液体クロマトグラフ1から溶出した試料溶液は、液体クロマトグラフ質量分析装置のイオン化部6に備えている試料噴霧部2に導入される。この際、図1に示すエレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源の場合は、試料噴霧部2の噴出口側にイオン生成手段で高電圧を印加し、イオン生成を行う。
 また試料噴霧部2から噴霧された試料液滴を乾燥するためのガスを供給する加熱ガス供給部3は、試料噴霧部2の直後に設置しても良い。噴霧された試料液滴と加熱ガスの攪拌及び試料液滴の気化の促進を行うために一定温度に加熱された逆円錐形状の脱溶媒流路室4は、試料導入部である第一細孔部材7の中央部に設けられる。試料噴霧部2から噴霧された試料成分は、第一細孔部材7の第一細孔、第二細孔部材8の第二細孔、イオンガイド9を経由し、質量分析部10にイオン輸送される。
 各々のイオンは、四重極型質量分析計11により質量分離され、分離されたイオンは、イオン検出部12によりイオン検出され、データ処理部13にてマススペクトル及びマスクロマトグラムデータとして表示される。
 第一細孔部材7の第一細孔、第二細孔部材8の第二細孔は、径が0.4mm程度の細孔で、第一細孔部材7と第二細孔部材8間の領域A、イオンガイド9が置かれる領域B、質量分析部の領域Cは、真空度が保たれている。真空度の高さは、高い順から領域C、領域B、領域Aである。イオン化部6(イオン生成手段)の領域Dは、大気圧程度である。領域C、領域B、領域Aには真空ポンプが接続され、真空ポンプの排気により真空がたもたれる。第一細孔部材7の第一細孔、および第二細孔部材8の第二細孔が0.4mm程度の細孔であるのも真空を維持するためである。
 第一細孔部材7と第二細孔部材8、領域C、Bの仕切部材と第二細孔部材8との間には、それぞれ数10Vの電圧が印加される。試料噴霧部2と第一細孔部材7との間には、数KVの電圧が印加される。印加された電圧の電位差に誘引されてイオン生成手段で生成されたイオンは、第一細孔部材7の第一細孔、第二細孔部材8の第二細孔、イオンガイド9、質量分析部10の順で下流側に流れる。流れるガスや液滴で電荷を持たないものは、電位差による誘引が作用しないので真空ポンプで排気される。
 上述したように、液滴案内流路20(溝)は、脱溶媒流路室4の入口側から出口側に向かう旋状になっているので、脱溶媒流路室の入口側から出口側に向けて直線になっているものに比べ、脱溶媒流路室に設ける液滴案内流路を格段に長くすることができ、長い液滴案内流路で液滴を十分に加熱できる。このため、電荷を帯びた液滴は溶媒液が蒸発して微小液滴になり、最終的にイオン化される。質量分析部10で分析される試料の成分に含まれる未イオン化の液滴を少なくできるので分析のノイズが低減し、質量分析精度が向上する。
 脱溶媒部の脱溶媒流路室について、更に説明を加える。
 図2は、図1で第一細孔部材7の中央に設けた逆円錐形状の脱溶媒流路室4の構造図である。上図は、上面図であり、下図は、断面図となる。上面図の斜線部分に空間を設け、この空間内に、試料噴霧部2より噴霧された試料の帯電液滴が導入されることとなる。また、第一細孔部材7は厚みのある材量で形成され、その厚みを利用して上記逆円錐形状の脱溶媒流路室を設ける。逆円錐形状の脱溶媒流路室4内に入口側から導入された試料の帯電液滴は、断面図の白色で示している螺旋状に加工された溝に沿うように逆円錐の頂点(出口側)に向かってガス流として流れる。
 その際、この逆円錐形状の脱溶媒流路室4がある脱溶媒部14に加熱部を設けることにより、ガス流の帯電液滴は一定温度に加熱される。殊に、脱溶媒流路室4は螺旋状の液滴案内流路になっているので、脱溶媒流路室の入口側から出口側に向かって直線的に延びる流路形態のものに比べ、流路長は格段に長くなり、この長い液滴案内流路を流れながら帯電液滴は十分に加熱され、帯電液滴中の溶媒液分が気化され、微小な液滴を形成され、最終的にイオン化が達成される。また、試料噴霧部2で試料溶液を噴霧した直後に加熱ガス供給部4から供給される過熱されたN2等も同時にこの逆円錐形状の脱溶媒流路室4に導入することにより、加熱ガスとの攪拌効果も得られ、より気化を促進させる効果も得られる。
 上記の様に、逆円錐形状の脱溶媒流路室4は、予め一定の温度に加熱されるブロックになっており、その内面は、螺旋状に逆円錐の頂点に流れるような溝を設け、噴霧されたガス状成分が流れる構造を有している。逆円錐形状の脱溶媒流路室の内面に形成した螺旋状の液滴案内流路の加熱面は、流路長さが長いので流れるガス状成分の接触時間が増加し、その流れる間に脱溶媒効果が向上する。
 また、この逆円錐形状の脱溶媒流路室4の加熱部に関しては、発熱ヒーター、PTC等の加熱手段を用いても良い。また、逆円錐形状の脱溶媒流路室4内に噴霧された試料溶液を多く導入し、一定の空間内で加熱及び攪拌による気化を促進させ、逆円錐形状の頂点に向かうに従い、微小液滴濃度も高くなるため、第二細孔部材8の下流側に効率良く微小液滴を輸送することが可能となる。そのために、イオン自身の透過率の向上、検出器12のノイズ成分の要因となる大きな液滴の導入を軽減することが可能となり、イオン強度及び分析精度の向上が可能となる。
 また、この液体クロマトグラフ質量分析装置には、エレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)が用いられる。これらのイオン源(イオン生成手段など)から噴霧されて来る帯電液滴を第一細孔部材の中央部の内部に設けた第一細孔で効率良く脱溶媒させるために帯電液滴の導入部である第一細孔の細孔内部は逆円錐形状をした脱溶媒流路室にし、その逆円錐形状の頂点に位置する排出口が第二細孔部材の第二細孔の細孔方向に向くように設置される。
 また、この逆円錐形状の脱溶媒流路室を形成した脱溶媒部のブロックは、一定温度に加熱された加熱ブロックである。この加熱ブロック内は、噴霧された試料液滴とN2等の乾燥ガスが充分に攪拌されることと、加熱ブロック内面と充分に接触し、気化が促進される様に渦巻き状の溝を設け、加熱ブロック通過時に微細な帯電液滴を効率良く生成させ、効率良く生成したイオンが質量分析装置に導入される。脱溶媒部は第一細孔部材に設けたので、脱溶媒部を第一細孔部材とは別に設けるものに比べ、液体クロマトグラフ質量分析装置を小型化できる。また、脱溶媒部には逆円錐形状の脱溶媒流路室を形成し、入口側の反対側に第一細孔になる小径(0.4mm)の排出口を設けたので、この脱溶媒流路室の排出口(出口側)で領域Aの真空を保つことができる。脱溶媒流路室の排出口(出口側)が第一細孔を兼ねるので簡単な構成になる。
 また、大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)においては、逆円錐形状の頂点に位置する排出口近傍に針電極を設け、効率良く生成された微細液滴のみを化学反応によりイオン化させることを特徴とする質量分析装置を提供する。
 次に他の実施例について、図3を引用して説明する。
 図3に示す実施例は、イオン化部6(イオン生成手段)の針電極5を脱溶媒部14の脱溶媒流路室4の出口側に配置した点が図1に示す先の実施例との大きな違いである。また、脱溶媒部14の脱溶媒流路室4を斜めに置き、試料噴霧部2とガス供給部3を分けた点も図1に示す先の実施例との違いである。
 逆円錐形状の脱溶媒流路室4がある脱溶媒部14は、図1に示す先の実施例と同様なる形態をしている。脱溶媒流路室4の内部は螺旋形状をした液滴案内流路20(溝)を有し、液滴案内流路20(溝)で試料液滴が螺旋を描くように輸送される。また、この逆円錐形状の脱溶媒流路室4は、ヒーター等の加熱部を有しており、一定の高温に加熱された状態となり、試料液滴は、この高温に加熱された螺旋状の溝を通る間に加熱及び攪拌による気化が促進され、微小液滴が生成される。この生成した微細液滴は、逆円錐形状の頂点部(出口側)から、次の第一細孔部材、第二細孔部材間の電位差により質量分析部へとイオンが効率良く、輸送される。
 また、この逆円錐形状の脱溶媒流路室4の加熱に関しては、(第一細孔部7と同様にヒーター等の加熱手段を用いても良いし、高温に加熱された加熱ガス供給部4より供給されるN2等のガスにより加熱を行っても良い。)また、逆円錐形状の脱溶媒流路室4内に噴霧された試料溶液を多く導入し、一定の空間内で加熱及び攪拌による気化を促進させ、逆円錐形状の頂点(出口側)に向かうに従い、微小液滴濃度も高くなるため、大気圧化学イオン化法を用いた大気圧化学イオン源の場合では、試料噴霧部2で噴霧した後に針電極9でイオン化を行う(図1に示す先の実施例)ものと比較し、試料液滴の拡散を抑え、効率良くイオンを生成することが可能となる。また、大気圧化学イオン化の場合、液体クロマトグラフ(LC)からの溶媒液を脱溶媒流路室4で加熱して気化を促進させてから方がイオン化の向上が期待される。
 脱溶媒流路室が形成された脱溶媒部のブロックは第一細孔部材の内部に設けないで、試料噴霧部の下流側直後に配置し、試料の液滴が第一細孔部材の第一細孔に導入される前にブロックに備えた加熱手段の加熱により気化が促進される。気化による脱溶媒で粒径の小さい液滴は、逆円錐形状の脱溶媒流路室の頂点に位置する排出口近傍に針電極(イオン生成手段)でイオン化が良好に行われる。イオン化は、図1に実施例と同様、大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)を採用する。この脱溶媒部のブロックは、図1に示す実施例と異なり、第一細孔部材とは別に設けられるので、脱溶媒部のブロックの配置を任意に選択できる。また、脱溶媒部のブロックは第一細孔部材を用いないので、第一細孔部材の板厚に制限されることなく、加熱気化に必要な大きさにすることができる。
1…液体クロマトグラフ,2…試料噴霧部,3…加熱ガス供給部,4…逆円錐形状の脱溶媒流路室,5…針電極,6…イオン化部,7…第一細孔,8…第二細孔,9…イオンガイド,10…質量分析部,11…四重極型質量分析計,12…イオン検出部,13…データ処理部,14…加熱部,20…液滴案内流路(溝)

Claims (7)

  1.  試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、前記液体クロマトグラフ分離手段で分離されて溶出する前記試料溶液を液滴として噴霧する試料噴霧部と、前記液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、前記イオンを導入して質量分離する質量分析部と、前記帯電液滴に含まれる溶媒を除去する脱溶媒部と、を有する液体クロマトグラフ質量分析装置において、
     前記脱溶媒部は、前記帯電液滴が流通する脱溶媒流通室と、前記脱溶媒流通室を加熱する加熱手段と、前記脱溶媒流路室に設けた螺旋状の液滴案内流路を有することを特徴とする液体クロマトグラフ質量分析装置。
  2.  試料溶液を成分毎に分離する液体クロマトグラフ分離手段と、前記液体クロマトグラフ分離手段で分離されて溶出する前記試料溶液を液滴として噴霧する試料噴霧部と、前記液滴に帯電(帯電液滴)させてイオンを生成するイオン化生成手段と、前記イオンを導入して質量分離する質量分析部と、を有する液体クロマトグラフ質量分析装置において、
     前記液滴に含まれる溶媒を除去する脱溶媒部を備え、
     前記脱溶媒部は前記液滴が流通する脱溶媒流通室と、前記脱溶媒流通室を加熱する加熱手段と、前記脱溶媒流路室に設けた螺旋状の液滴案内流路を備え、
     前記脱溶媒部による溶媒の除去が前記イオン化生成手段での前記液滴への帯電前であることを特徴とする液体クロマトグラフ質量分析装置。
  3.  請求項1記載の液体クロマトグラフ質量分析装置において、
     前記螺旋状の液滴案内流路は螺旋径が前記脱溶媒流路室の入口側から出口側に向かって径小になることを特徴とする液体クロマトグラフ質量分析装置。
  4.  請求項2記載の液体クロマトグラフ質量分析装置において、
     前記螺旋状の液滴案内流路は螺旋径が前記脱溶媒流路室の入口側から出口側に向かって径小であり、前記イオン化生成手段の針電極部の先端が前記出口側の中央に位置することを特徴とする液体クロマトグラフ質量分析装置。
  5.  請求項1記載の液体クロマトグラフ質量分析装置において、
     前記脱溶媒流路室は口径が入口側から出口側に向かって径小になる円錐形状であり、前記螺旋状の液滴案内流路が脱溶媒流路室の内面に沿って形成されていることを特徴とする液体クロマトグラフ質量分析装置。
  6.  請求項1記載の液体クロマトグラフ質量分析装置において、
     前記脱溶媒部が前記イオン化生成手段の下流側に位置することを特徴とする液体クロマトグラフ質量分析装置。
  7. 請求項2記載の液体クロマトグラフ質量分析装置において、
     前記脱溶媒部が前記イオン化生成手段の上流側に位置することを特徴とする液体クロマトグラフ質量分析装置。
PCT/JP2012/059690 2011-06-24 2012-04-09 液体クロマトグラフ質量分析装置 WO2012176534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280031153.1A CN103635797A (zh) 2011-06-24 2012-04-09 液相色谱质谱分析装置
EP12802378.5A EP2725351A4 (en) 2011-06-24 2012-04-09 MASS SPECTROMETER COUPLED WITH LIQUID PHASE CHROMATOGRAPHY
US14/127,117 US20140131570A1 (en) 2011-06-24 2012-04-09 Liquid chromatography mass spectrometer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140134A JP2013007639A (ja) 2011-06-24 2011-06-24 液体クロマトグラフ質量分析装置
JP2011-140134 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176534A1 true WO2012176534A1 (ja) 2012-12-27

Family

ID=47422381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059690 WO2012176534A1 (ja) 2011-06-24 2012-04-09 液体クロマトグラフ質量分析装置

Country Status (5)

Country Link
US (1) US20140131570A1 (ja)
EP (1) EP2725351A4 (ja)
JP (1) JP2013007639A (ja)
CN (1) CN103635797A (ja)
WO (1) WO2012176534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720932A (zh) * 2021-08-20 2021-11-30 浙江大学 一种基于电弧热耦合的可直接分析含盐样品的液质联用的检测方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014003594B4 (de) * 2013-09-05 2021-10-21 Hitachi High-Tech Corporation Hybridionenquelle und Massenspektrometervorrichtung
JP6194858B2 (ja) * 2014-06-27 2017-09-13 株式会社島津製作所 イオン化室
JP6295150B2 (ja) * 2014-07-07 2018-03-14 株式会社日立ハイテクノロジーズ 質量分析装置
US10764964B2 (en) * 2015-10-07 2020-09-01 Agilent Technologies, Inc. Conical heater assembly for a gas chromatography column
WO2017154153A1 (ja) * 2016-03-09 2017-09-14 株式会社島津製作所 質量分析装置及び該装置を用いた生体試料の分析方法
WO2018034005A1 (ja) * 2016-08-19 2018-02-22 株式会社日立ハイテクノロジーズ イオン分析装置
JP7188441B2 (ja) * 2018-04-05 2022-12-13 株式会社島津製作所 質量分析装置および質量分析方法
WO2023003335A1 (ko) * 2021-07-20 2023-01-26 주식회사 엘지화학 액체 크로마토그래피, 이온화 장치 그리고 질량 분석기의 인터페이스 및 이를 이용한 시료 분석 방법
WO2023026355A1 (ja) * 2021-08-24 2023-03-02 株式会社島津製作所 イオン化装置
CN117637436B (zh) * 2024-01-26 2024-05-07 合肥谱佳医学检验实验室有限公司 一种三重四极杆质谱仪及自动控制、显示系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042033A (ja) * 1990-04-18 1992-01-07 Hitachi Ltd 試料のイオン化および質量分析のための装置
JPH07159377A (ja) * 1993-12-09 1995-06-23 Hitachi Ltd 液体クロマトグラフと質量分析計の直結方法およびその装置、液体クロマトグラフ−質量分析方法、並びに液体クロマトグラフ結合型質量分析装置
JPH0968517A (ja) * 1995-08-31 1997-03-11 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2000214149A (ja) 1999-01-28 2000-08-04 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2003083938A (ja) 2001-09-12 2003-03-19 Shimadzu Corp 質量分析装置
JP2003222612A (ja) * 2002-01-30 2003-08-08 Hitachi High-Technologies Corp 大気圧イオン化質量分析装置および分析方法
US6759650B2 (en) 2002-04-09 2004-07-06 Mds Inc. Method of and apparatus for ionizing an analyte and ion source probe for use therewith
JP2010537371A (ja) * 2007-08-15 2010-12-02 バリアン・インコーポレイテッド 真空以上の圧力での試料のイオン化
JP2011113832A (ja) * 2009-11-27 2011-06-09 Shimadzu Corp 質量分析装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777672B1 (en) * 2000-02-18 2004-08-17 Bruker Daltonics, Inc. Method and apparatus for a multiple part capillary device for use in mass spectrometry
US6818888B2 (en) * 2002-04-04 2004-11-16 Varian, Inc. Vortex flow atmospheric pressure chemical ionization source for mass spectrometry
GB0503533D0 (en) * 2005-02-21 2005-03-30 Forstmanis Talivaldis Evaporate for dilute aqueous solutions
US7742167B2 (en) * 2005-06-17 2010-06-22 Perkinelmer Health Sciences, Inc. Optical emission device with boost device
US7705296B2 (en) * 2006-02-14 2010-04-27 Excellims Corporation Ion mobility spectrometer apparatus and methods
US7595487B2 (en) * 2007-08-24 2009-09-29 Georgia Tech Research Corporation Confining/focusing vortex flow transmission structure, mass spectrometry systems, and methods of transmitting particles, droplets, and ions
US20100078553A1 (en) * 2008-09-30 2010-04-01 Advion Biosciences, Inc. Atmospheric pressure ionization (api) interface structures for a mass spectrometer
CN201788167U (zh) * 2010-08-04 2011-04-06 江苏天瑞仪器股份有限公司 Esi源质谱仪中鞘气的流经加热装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042033A (ja) * 1990-04-18 1992-01-07 Hitachi Ltd 試料のイオン化および質量分析のための装置
JPH07159377A (ja) * 1993-12-09 1995-06-23 Hitachi Ltd 液体クロマトグラフと質量分析計の直結方法およびその装置、液体クロマトグラフ−質量分析方法、並びに液体クロマトグラフ結合型質量分析装置
JPH0968517A (ja) * 1995-08-31 1997-03-11 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2000214149A (ja) 1999-01-28 2000-08-04 Shimadzu Corp 液体クロマトグラフ質量分析装置
JP2003083938A (ja) 2001-09-12 2003-03-19 Shimadzu Corp 質量分析装置
JP2003222612A (ja) * 2002-01-30 2003-08-08 Hitachi High-Technologies Corp 大気圧イオン化質量分析装置および分析方法
US6759650B2 (en) 2002-04-09 2004-07-06 Mds Inc. Method of and apparatus for ionizing an analyte and ion source probe for use therewith
JP2010537371A (ja) * 2007-08-15 2010-12-02 バリアン・インコーポレイテッド 真空以上の圧力での試料のイオン化
JP2011113832A (ja) * 2009-11-27 2011-06-09 Shimadzu Corp 質量分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725351A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720932A (zh) * 2021-08-20 2021-11-30 浙江大学 一种基于电弧热耦合的可直接分析含盐样品的液质联用的检测方法

Also Published As

Publication number Publication date
CN103635797A (zh) 2014-03-12
EP2725351A4 (en) 2015-04-29
JP2013007639A (ja) 2013-01-10
US20140131570A1 (en) 2014-05-15
EP2725351A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2012176534A1 (ja) 液体クロマトグラフ質量分析装置
JP4234441B2 (ja) 検体のイオン化方法及び装置並びに供用イオン源プローブ
CA2858457C (en) Mass spectrometer vacuum interface method and apparatus
JP6030662B2 (ja) 質量分光計の真空インターフェース方法および真空インターフェース装置
JP6423878B2 (ja) 液体サンプルのための増大された噴霧形成
JPH0785834A (ja) 質量分析計および静電レンズ
WO2006065520A2 (en) Atmospheric pressure ionization with optimized drying gas flow
US6794646B2 (en) Method and apparatus for atmospheric pressure chemical ionization
JPH03138561A (ja) クロマトグラフ・システム
EP2783387B1 (en) Mass spectrometer system with curtain gas flow
US11099161B2 (en) Ionizer and mass spectrometer
EP2709139A2 (en) Apparatus for providing gaseous sample ions/molecules and a corresponding method
US8680460B2 (en) Converging-diverging supersonic shock disruptor for fluid nebulization and drop fragmentation
CN111052302B (zh) 具有不对称喷雾的apci离子源
WO2013190277A2 (en) Method and apparatus for controlling the supply of ions
JP2001108656A (ja) 質量分析計用インターフェイスおよび質量分析システム
JP2011113832A (ja) 質量分析装置
JP3620120B2 (ja) 溶液の質量分析に関する方法と装置
US8502162B2 (en) Atmospheric pressure ionization apparatus and method
JP2000100375A (ja) 質量分析計及びその静電レンズ
WO2000019193A1 (en) Split flow electrospray device for mass spectrometry
JP2009025260A (ja) 液体クロマトグラフ質量分析装置
JP6806235B2 (ja) 荷電粒子の供給制御方法及び装置
JP4400284B2 (ja) 液体クロマトグラフ質量分析装置
JP2019045291A (ja) 荷電粒子の供給制御方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14127117

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012802378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE