WO2012174950A1 - 一种深紫外半导体发光器件及其制造方法 - Google Patents

一种深紫外半导体发光器件及其制造方法 Download PDF

Info

Publication number
WO2012174950A1
WO2012174950A1 PCT/CN2012/075071 CN2012075071W WO2012174950A1 WO 2012174950 A1 WO2012174950 A1 WO 2012174950A1 CN 2012075071 W CN2012075071 W CN 2012075071W WO 2012174950 A1 WO2012174950 A1 WO 2012174950A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
emitting device
substrate
support structure
Prior art date
Application number
PCT/CN2012/075071
Other languages
English (en)
French (fr)
Inventor
钟志白
陈文欣
梁兆煊
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to US13/624,937 priority Critical patent/US8860059B2/en
Publication of WO2012174950A1 publication Critical patent/WO2012174950A1/zh
Priority to US14/481,928 priority patent/US9318657B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the present invention relates to a method of fabricating a semiconductor light-emitting device, and more particularly to a deep ultraviolet semiconductor light-emitting device and a method of fabricating the same, which have an emission wavelength of 100 nm to 315 nm.
  • the UV coverage range is from 100nm to 400nm.
  • the UVA wavelength range is 400-315 nm; the UVB wavelength range is 315-280 nm; and the UVC wavelength range is 280-100 nm.
  • the illuminating method of the illuminating diode can be more efficient.
  • Ultraviolet light-emitting diodes emit light in the ultraviolet range (from 100 to 400 nm), but at actual wavelengths below 365 nm, the luminous efficiency is very limited. At 365 nm, the luminous efficiency is 5 to 8%, and at 395 nm, the wavelength is close to 20%. The longer wavelength ultraviolet light is better. These UV-emitting diodes have been used in UV-curable materials, photocatalytic air purifiers, counterfeit identification, phototherapy, white LEDs and solar machines. In the current state of the art, the light intensity of the ultraviolet diode has been close to 3000 mW/cm2 (30 kW/m2).
  • UV light-emitting diodes With the development of advanced photoinitiators and resin synthesis formulations, UV light-emitting diodes will be expanded to be used in the development of cured materials. At the same time, UVC has bactericidal ultraviolet light, which can be effectively applied to disinfection and sterilization, purified water, and medical applications. Therefore, the development of ultraviolet light-emitting diode light flux technology has a great impact on the future application of ultraviolet light-emitting diodes.
  • ultraviolet light emitting diodes have multiple layers of different material structures. The choice of material and thickness affects the wavelength of the LED. In order to improve the light extraction efficiency, these multilayer structures are selected with different chemical composition to promote the independent entry of photocarriers into the composite region (generally a quantum well).
  • the quantum well is doped with a donor atom to increase the concentration of electrons (N-type layer), and the other side is doped with a acceptor atom to increase the concentration of the void (P-type layer:).
  • the ultraviolet light emitting diode includes an electronic contact structure, and different electrode structures can be connected to the power source according to the properties of different devices, and the power source can supply current to the device through the contact structure.
  • the contact structure injects current into the light-emitting region along the surface of the device and converts it into light.
  • a conductive material can be used as the contact structure on the surface of the ultraviolet light emitting diode, but these structures block the emission of light and reduce the luminous flux.
  • a prior art illuminator chip structure is listed, including a single crystal substrate.
  • the surface epitaxial overlay p-GaN layer absorbs ultraviolet light generated from the illuminator, especially at a wavelength of 280 to 100 nm. Due to the high resistance, the heat dissipation of the ultraviolet light-emitting diode is not good under high current driving, which affects the performance of the device.
  • the present invention provides a deep ultraviolet semiconductor light emitting device and a method of fabricating the same.
  • an deep ultraviolet semiconductor light emitting device comprises: a substrate with a conductive via; an illuminating epitaxial structure, which in turn is composed of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer; an optomechanical support structure provided with a conductive channel; the luminescent epitaxial structure is located in the foregoing Between the substrate and the optomechanical support structure, one side of the optomechanical support structure is a light exit surface.
  • the semiconductor layer adjacent to the substrate in the light-emitting epitaxial structure of the present invention is provided with a micro-optical channel.
  • the light-emitting layer of the present invention produces light having a wavelength of from 100 nm to 315 nm.
  • the optomechanical support structure of the present invention is composed of a single crystal material, on the one hand as an epitaxial growth substrate, and on the other hand, as a light exit surface.
  • the thickness of the optomechanical support structure of the present invention is 1/4 integral multiple of the wavelength of the illumination.
  • the optomechanical support structure of the present invention has a thickness of 5 to 100 um, which makes it possible to stabilize the multilayer thin film emitter structure while improving the luminous efficiency.
  • the surface of the optomechanical support structure of the present invention has a series of microchannels, the depth of which is deep The degree is less than the thickness of the optomechanical support structure.
  • the depth of the aforementioned microchannel is less than or equal to 1/2 of the thickness of the optomechanical support structure, and is subjected to a corresponding physical stress.
  • the total area of each of the conductive vias on the substrate of the present invention should be less than 60% of the total surface area of the substrate to ensure good contact while ensuring physical stability.
  • the substrate of the present invention is connected to the light-emitting epitaxial structure by a metal structure.
  • the foregoing metal structure comprises: a reflective layer, an ohmic metal contact layer and a bonding layer.
  • the aforementioned bonding layer is composed of a conductive material having a resistivity of 1.0 x 1 (T 8 to 1.0 10 -4 ⁇ .
  • the material of the substrate of the present invention is selected from ceramics and silicon wafers, and has good heat dissipation properties.
  • a method of fabricating a deep ultraviolet semiconductor light emitting device includes:
  • the method further comprises: fabricating a micro-optical channel over the outer cover layer over the entire epitaxial structure.
  • step 2) of the method the substrate is bonded to the light-emitting epitaxial structure through a metal bonding layer, and the specific steps are as follows: forming a reflective layer on the surface of the light-emitting epitaxial structure; forming an ohmic contact layer on the reflective layer; A eutectic metal layer is formed on the ohmic contact layer; the substrate is bonded to the eutectic metal.
  • the thickness of the optomechanical support structure of the present invention is 1/4 integral multiple of the wavelength of the illumination.
  • the optomechanical support structure of the present invention has a thickness of 5 to 100 um, which enables the multilayer thin film emitter structure to be stabilized while improving the luminous efficiency.
  • step 3) of the method further comprises: forming a microchannel pattern on the optomechanical support structure, the depth being less than the thickness of the optomechanical support structure.
  • the depth of the aforementioned microchannel is less than or equal to 1/2 of the thickness of the optomechanical support structure, and is subjected to a corresponding physical stress.
  • the area of the aforementioned passage is less than or equal to 60% of the total surface of the light exiting to ensure physical stability.
  • the invention relates the light-emitting epitaxial structure between the optical mechanical support structure and the heat dissipation substrate with the conductive channel, on the one hand, effectively solving the heat dissipation problem, and on the other hand, ensuring the physical stability and structural integrity of the light-emitting epitaxial structure, It can be used as a light-receiving surface to enhance light extraction efficiency.
  • the side cover layer of the light-emitting epitaxial structure away from the light-emitting surface has a micro-light channel, and the reflective layer, the light generated by the light-emitting body is mostly outputted from one side of the optomechanical support structure, thereby avoiding the cover layer p-GaN absorption. Ultraviolet light effectively increases the light extraction efficiency.
  • controlling the optomechanical support structure within a certain thickness range enables stabilization of the multilayer film illuminator structure while improving luminous efficiency.
  • the optical pattern is formed on the surface of the optomechanical support structure, which further effectively promotes the light extraction rate.
  • FIG. 1 is a schematic structural view of a prior art semiconductor light emitting device.
  • FIG. 2 is a schematic view of a semiconductor light emitting device of the present invention.
  • FIG. 3 is a schematic structural view of an optomechanical support structure of the present invention.
  • FIG. 4 is a schematic view showing the path of the light emitting direction of the semiconductor light emitting device of the present invention.
  • 5 to 9 are schematic cross-sectional views showing a manufacturing process of a semiconductor light emitting device according to the present invention.
  • the figures are: luminescent epitaxial structure 100, n-type semiconductor contact layer 101, luminescent layer 102, p semiconductor contact layer 103, p-type semiconductor cap layer 104, micro-light channel 105, metal structure 110, metal reflective layer 111, ohm Metal contact layer 112, bonding layer 113, single crystal substrate 120, heat dissipation substrate 200, a through hole 201, a conductive path 202, an optomechanical support structure 320, a conductive path 321, and a micro channel 322.
  • any one of the two sides of the n-type semiconductor layer and the p-type semiconductor layer may be a light-emitting surface in the light-emitting epitaxial structure.
  • the side of the n-type semiconductor layer is used as the light-emitting surface, because the P-type layer is taken.
  • the principle that the side is the light-emitting surface and the side of the n-type layer is basically the same, and therefore the description will not be repeated.
  • a deep ultraviolet semiconductor light emitting device includes: a heat dissipation substrate 200, a metal structure 110, a light emitting epitaxial structure 100, and an optomechanical support structure 320.
  • the heat dissipation substrate 200 is used for supporting the light-emitting epitaxial structure, and is composed of a material having good thermal conductivity, and may be a ceramic or a silicon wafer, and a series of through holes 201 are provided thereon, and the total area of the substrate is preferably smaller than the base considering the stress tolerance of the substrate. 60% of the total area of the base substrate, about 40% here.
  • a conductive material is filled in the via hole to form a conductive path 202 for transferring current into the light-emitting epitaxial structure to emit light by the excitation light-emitting layer.
  • the metal structure 110 is composed of a metal reflective layer 111, an ohmic metal contact layer 112, and a bonding layer 113.
  • the bonding layer 113 made of conductive material
  • the resistivity of the material is between l .O x lO- 8 to 1.0 10 "4 ⁇ . ⁇ , melting point above 200 ° C
  • the contact layer 112 made of conductive material, the material The resistivity is between 1.0 X 10 -8 and ⁇ . ⁇ ⁇ 10 -4 ⁇ , and the material thereof can be selected from Au, Ag, Cu, Al, Pt
  • the material of the reflective layer 111 can be Al, Ag, Pt And Au.
  • the light emitting epitaxial structure 100 includes an n-type semiconductor contact layer 101 (eg , the light-emitting layer 102 (such as Al x Ga 1-x N/n-Al x Ga 1-x N, which may be a multiple quantum well or a single quantum well structure), p semiconductor contact layer 103 (such as p-Al x Ga 1 ⁇ c N), p-type semiconductor cap layer 104 (p-GaN).
  • the p-type semiconductor cap layer 104 is provided with a series of micro-light channels 105 whose area does not exceed 80% of the total area.
  • the micro-light channel 105 is prepared on the surface of the P-type layer to enhance the amount of light transmission to reach the surface of the reflective layer, and reflect the light to further improve the luminosity.
  • 3 is a schematic view of an optomechanical support structure 320.
  • the optomechanical support structure 320 is in contact with the n-type semiconductor layer 101.
  • the optomechanical support structure 320 is thinned by the single crystal substrate 120, and the material thereof may be a single crystal material such as sapphire or A1N.
  • the thickness of the optomechanical support structure 320 is represented by t M.
  • t M is taken as a 1/4 integral multiple of the emission wavelength in the present embodiment, and the value range of t M is finally controlled.
  • the thickness is controlled at 5 ⁇ 100um.
  • the optomechanical support structure 320 has a conductive path 321 electrically connected to the n-type semiconductor layer 101 for transmitting a current to a depth of N.
  • the light emitting device passes through the conductive path 202 of the substrate 200 and the optomechanical support structure.
  • the conductive path 321 of 320 turns on the external current, and the light-emitting layer 102 emits light under the excitation of the current.
  • the direct light passes directly through the n-layer type 101, and is taken out by the optical mechanical support structure, and the reflected light passes through the micro-light channel 105 of the p-type semiconductor layer cover layer 104, and is reflected by the metal reflective layer 111.
  • the light-emitting direction effectively reduces the absorption of ultraviolet light by the P-type semiconductor layer cap layer 104 and improves the light-emitting efficiency.
  • This embodiment includes: transferring the illuminant structure to a highly thermally conductive pedestal substrate with conductive vias
  • the P-layer micro-light channel can be implemented by dry etching or chemical wet etching. In both technologies, photoresist can be used for protection. The desired pattern is formed by photolithography, and then the desired pattern is etched. After the photoresist and the protective layer are removed, a metal reflective film layer is first formed on the P surface, and the highly reflective metal material may be Al, Pt, Ag, etc. Then, an ohmic contact metal structure is prepared. The total coverage area of the micro-light channel does not affect the conductivity of the P layer, and does not exceed 80% of the total area. The P-layer micro-optical channel can greatly improve the luminous efficiency.
  • a susceptor substrate with conductive material filled apertures can be implemented in a number of different ways. Laser or mechanical holes can be used to inject conductive materials such as gold, copper and nickel. After the eutectic alloy layer is formed on the surface of the pedestal substrate, the pedestal substrate with the conductive material filled with the small holes and the eutectic alloy is placed on the P layer. The metal layer is bonded.
  • the eutectic metal may be a eutectic alloy such as AuSn or AgSn, which is characterized in that a molten state is formed between the base substrate and the P-layer metal at a relatively low temperature to form a void-free bond.
  • the optomechanical support structure is converted from a single crystal substrate.
  • the single crystal substrate is thinned by chemical, mechanical or a combination of the two methods, and the thickness is controlled in accordance with the allowable range of the extension stress of the epitaxial layer.
  • the relevant channel pattern is prepared by dry etching or wet etching.
  • the conductive channel and the region of the light-increasing microchannel can be realized by laser processing and two dry methods, wet or dry-wet combination etching, for example: thinning the single crystal substrate by mechanical grinding and polishing, and then protecting the single layer of SiO 2
  • the film is then spin-coated with a layer of photoresist, and the corresponding pattern is formed by exposure, and the N-layer metal is plated to remove the photoresist.
  • the second lithography produces a pattern of enhancement microchannels that are patterned by dry, wet or wet-wet etching to a depth of no more than half the depth of the conductive via.
  • Such an optomechanical support structure with controllable thickness and optical pattern enhances the luminous efficiency of the illuminator.
  • an n-type semiconductor contact layer 101, a light-emitting layer 102, a p-layer semiconductor contact layer 103, and a p-type semiconductor cap layer 104 are epitaxially grown on the A1N substrate 120 in this order.
  • the microchannel 105 is prepared by a dry etching method, and the depth of the microchannel is between 10 and 500 nm; the reflective metal layer 111 is formed on the top surface of the p-type semiconductor cap layer 104, and the metal is reflective.
  • NiAu is preferred as the layer material, and the thickness is between 50 and 1000 nm. It may also be made of an alloy including Al, Ag, Ni, Au, Cu, Pd and Rh, and the ohmic contact is achieved by high temperature annealing in a N 2 atmosphere.
  • the material of the ohmic metal contact layer is preferably Ti/Pt/Au alloy, and the thickness is Between 0.5 ⁇ 10um, it can also be made of any alloy including Cr, Ni, Co, Cu, Sn, Au.
  • the bonding layer 113 is made of AuSn alloy with a thickness of l ⁇ 10um. It is any alloy process including Ag, Ni, Sn, Cu, Au, and the like.
  • the wafer is bonded to the substrate 200 with the periodic conductive vias on the touch layer 112 and the bonding layer 113.
  • Process conditions The temperature is between 0 ⁇ 500 °C, the pressure is between 0 ⁇ 800kg, and the time is between 0 ⁇ 180 minutes.
  • the A1N single crystal substrate 120 for growing the epitaxial structure is subjected to chemical polishing and thinning, and the thickness is reduced to 1/4 integral multiple of the emission wavelength, and the final thickness is controlled to 5 to 100 ⁇ m.
  • a series of microchannel patterns 322 are formed on the thinned substrate 320 by dry etching to form a special optomechanical support structure 320 to extract more light emitted from the illuminator; the depth of the unpenetrated channel may not be greater than The thickness of the single crystal substrate is 1/2.
  • a small hole is prepared by laser or wet etching, is passed to the N-type semiconductor layer, and the conductive material is filled in the small hole to form the conductive path 321; and is prepared on the channel N-type ohmic contact metal layer, the material is preferably made of three kinds of alloys of Ti, Al, Au, or any alloy of Ti, Al, Au, Ag, Rh, Co, and passed through the N 2 atmosphere. High temperature annealing achieves ohmic contact characteristics and enhances adhesion to the N semiconductor layer.
  • An N-electrode pad is prepared on the above-mentioned N-type ohmic contact metal layer, and the material is preferably TiAu, and the thickness is between 1 and 20 ⁇ m.
  • the unit devices on the wafer are separated one by one according to the pitch period of the substrate 200 of the conductive path to form core particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

一种深紫外半导体发光器件及其制造方法。该半导体发光器件包括:带有导电通道的基板(200);发光外延结构(100),依次由n型半导体层(101)、发光层(102)、p半导体层(103)构成;光学机械支撑结构(320),设置有导电通道(321);所述发光外延结构(100)位于前述基板(200)和光学机械支撑结构(320)之间,光学机械支撑结构(320)一侧为出光面。将发光外延结构(100)夹在光学机械支撑结构(320)与带导电通道的散热基板(200)之间,一方面,有效的解决其散热问题,另一方面,确保了发光外延结构的物理稳定性和结构完整性,并可作为取光面,增强出光效率。

Description

一种深紫外半导体发光器件及其制造方法
本申请要求于 2011 年 6 月 20 日提交中国专利局、 申请号为 201110165321.3、 发明名称为 "一种深紫外半导体发光器件及其制造方法"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种半导体发光器件其制造方法,更具体地为一种深紫外半导 体发光器件及其制造方法, 其发光波长为 100nm~315nm。
背景技术
紫外线覆盖波长范围为 100nm~400nm。 一般, UVA 的波长范围指 400-315nm; UVB的波长范围指 315~280nm; UVC的波长范围指 280~100nm。 对比荧光发光和气体放电发光, 发光二极管的发光方法可更有效率。
紫外线发光二极管可以发出紫外范围的光 (从 100~400nm) , 但是实际在 365nm波长以下, 发光效率非常有限。 在 365nm波长其发光效率在 5~8%, 在 395nm波长接近 20%,较长波段的紫外线发光效率比较好。这些紫外线发光二 极管已经开始应用于紫外线固化材料, 光催化净化空气器, 伪钞鉴定, 光线疗 法, 白光二极发光管和日光浴机。 在目前现有技术, 紫外线二极发光管光强度 己经接近 3000mW/cm2(30kW/m2)。 伴随目前先进光引发剂和树脂合成配方的 发展, 将扩大紫外线发光二极管应用在固化材料开发范围。 同时, UVC有着 杀菌紫外线,可以有效应用于消毒和杀菌,净化水,和医疗中有一系列的应用。 所以提升紫外线发光二极管光通量技术发展对紫外线发光二极管未来应用领 域影响重大。
通常, 紫外线发光二极管具有多层不同材料结构。材料与厚度的选择影响 到 LED的发光波长。 为提升取光效率, 这些多层结构都是选择不同的化学成 分组成, 以促进光电载流子独立进入复合区 (一般是量子阱)。 在量子阱一侧掺 以施子原子从而提高电子的浓度 (N型层), 另外一侧掺以受子原子从而提高空 洞的浓度 (P型层:)。 紫外线发光二极管包括电子接触结构,根据不同器件的性质可选择不同电 极结构连接电源, 电源可通过接触结构为器件提供电流。接触结构将电流沿着 器件表面注入发光区里面并转换成光。在紫外线发光二极管表面可用导电材料 做成接触结构, 但是这些结构会阻止光的发射从而降低光通量。
如图 1所示, 列出了一个现有技术的发光体芯片结构, 其中包括单晶衬底
120, 掺杂 N型半导体层 101 , 发光层 102, 掺杂 P型半导体层 103和一覆盖 层 104用来制备低电阻率接触。 在这些芯片结构中, 表面外延覆盖层 p-GaN 层会吸收从发光体产生的紫外线光, 特别是波长在 280~100nm。 由于电阻高, 在大电流驱动下, 紫外线发光二极管的散热性不好, 影响器件的性能。
发明内容
针对现有技术中存在的上述问题,本发明提供了一种深紫外半导体发光器 件及其制造方法。
根据本发明的一方面,提供了一种深紫外半导体发光器件。该半导体发光 器件包含: 带有导电通道的基板; 发光外延结构, 依次由 n型半导体层、 发光 层、 p型半导体层构成; 光学机械支撑结构, 设置有导电通道; 所述发光外延 结构位于前述基板和光学机械支撑结构之间, 光学机械支撑结构一侧为出光 面。
优选地,本发明之发光外延结构中靠近基板的一侧半导体层设置有微光通 道。
优选地, 本发明之发光层所产生的光波长为 100nm~315nm。
优选地, 本发明之所述光学机械支撑结构由单晶材料构成, 一方面作为外 延生长衬底, 另一方面, 作为出光面。
优选地, 本发明之光学机械支撑结构的厚度为发光波长的 1/4整倍数。 优选地,本发明之光学机械支持结构厚度为 5~100um,使得能够稳固多层 薄膜发光体结构, 同时提升光通效率。
优选地, 本发明之光学机械支持结构表面有一系列微通道, 该微通道的深 度小于光学机械支持结构的厚度。
优选地, 前述微通道的深度小于或等于光学机械支持结构厚度的 1/2, 以 7 受相应物理应力。
优选地, 本发明之基板上各导电通道的总面积应小于基板总表面积的 60%, 以保证良好接触, 同时确保物理稳定性。
优选地, 本发明之基板通过一金属结构与发光外延结构连接。
优选地, 前述金属结构包含: 反射层, 欧姆金属接触层和键合层。
优选地, 前述键合层由导电材料组成, 其电阻率在 1.0 x l(T8到 1.0 10-4Ω·ηι。
优选地, 本发明之基板的材料选自陶瓷、 硅片, 具有较好的散热性。 根据本发明的另一方面, 提供了一种深紫外半导体发光器件的制作方法。 该方法包括:
1 )在单晶衬底上外延生长发光外延结构, 其依次由 η型半导体层、 发光 层、 Ρ型半导体层构成;
2 )提供一带有导电通道的基板, 将其与发光外延结构连接, 其中, 发光 外延结构位于该基板和前述单晶衬底之间;
3 ) 削薄单晶衬底, 在衬底上制作导电通道, 其连接外部电源与发光外延 结构, 形成光学机械支持结构。
优选地, 本方法还包括: 在整个外延结构上的外覆盖层制作微光通道。 优选地, 本方法之步骤 2 ) 中, 所述基板通过金属键合层与发光外延结构 键合, 其具体步骤如下: 在发光外延结构表面上形成反射层; 在反射层上形成 欧姆接触层; 在欧姆接触层上形成共晶金属层; 将基板与共晶金属键合。
优选地, 本发明之光学机械支撑结构的厚度为发光波长的 1/4整倍数。 优选地,本发明之光学机械支持结构厚度为 5~100um,使得能够稳固多层 薄膜发光体结构, 同时提升光通效率。 优选地, 本方法之步骤 3 ) 中还包含: 在光学机械支持结构上形成微通道 图形, 其深度小于光学机械支持结构的厚度。
优选地, 前述微通道的深度小于或等于光学机械支持结构厚度的 1/2, 以 7 受相应物理应力。
优选地,前述 通道的面积小于或等于光出射总表面的 60%, 以确保物理 稳定性。
本发明将发光外延结构夹在光学机械支持结构与带导电通道的散热基板 之间, 一方面, 有效的解决其散热问题, 另一方面, 确保了发光外延结构的物 理稳定性和结构完整性, 并可作为取光面, 增强出光效率。
进一步地,发光外延结构的远离出光面的一侧覆盖层带有微光通道,加上 反射层,发光体产生的光大部分从光学机械支持结构的一侧输出,避免了覆盖 层 p-GaN吸收紫外线, 有效地提高了出光效率。
更进一步地,控制光学机械支持结构在特定厚度范围内, 能够稳固多层薄 膜发光体结构, 同时提升光通效率。 在光学机械支持结构表面制作光学图形, 进一步有效促进了光的提取率。
附图说明
附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发 明的实施例一起用于解释本发明, 但并不构成对本发明的限制。
图 1为一个现有技术的半导体发光器件的结构示意图。
图 2为本发明之半导体发光器件示意图。
图 3为本发明之光学机械支撑结构的结构示意图。
图 4为本发明半导体发光器件的发光方向的路径示意图。
图 5〜图 9为本发明半导体发光器件制造过程的截面示意图。
图中各标号为: 发光外延结构 100, n型半导体接触层 101 , 发光层 102, p半导体接触层 103 , p型半导体覆盖层 104, 微光通道 105 , 金属结构 110, 金属反射层 111 , 欧姆金属接触层 112, 键合层 113 , 单晶衬底 120, 散热基板 200, 通孔 201 , 导电通道 202 , 光学机械支撑结构 320, 导电通道 321 , 微通 道 322。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式。 需要说明的是, 均落在本发明的保护范围之内。
本发明中, 在发光外延结构中可取 n型半导体层、 p型半导体层两侧之任 意一侧为出光面, 以下实施例均以 n型半导体层一侧为出光面, 因取 P型层一 侧为出光面与 n型层一侧的原理基本相同, 故不再重复描述。
实施例一
如图 2所示, 一种深紫外半导体发光器件, 包括: 散热基板 200, 金属结 构 110, 发光外延结构 100和光学机械支持结构 320。
散热基板 200用于支撑发光外延结构, 由导热性能好的材料构成, 可为陶 瓷或硅片, 其上设有系列通孔 201 , 考虑到该基板的应力承受度, 其总面积最 好小于基座衬底总面积的 60% , 在这里取 40%左右。 在通孔内填充导电材料 形成导电通道 202 , 用于将电流传送到发光外延结构中, 用激发发光层发光。
金属结构 110由金属反射层 111 ,欧姆金属接触层 112和键合层 113构成。 其中键合层 113 由导电材料组成, 材料的电阻率在 l .O x lO-8到 1.0 10"4Ω.ηι 之间, 熔点在 200°C以上; 接触层 112由导电材料组成, 材料的电阻率在 1.0 X 10-8到 Ι .Ο χ 10-4Ω.ηι之间, 其材料可以从 Au, Ag, Cu, Al, Pt中选择; 反 射层 111的材料可以是 Al, Ag, Pt和 Au。
发光外延结构 100, 包括 n型半导体接触层 101(如
Figure imgf000007_0001
, 发光层 102(如 AlxGa1-xN/n-AlxGa1-xN, 可为多量子阱或单量子阱结构), p半导体接触 层 103(如 p-AlxGa1→cN), p型半导体覆盖层 104(p-GaN)。 其中, p型半导体覆 盖层 104设有系列微光通道 105 , 其面积不超过总面积的 80%。 在 P型层表面 制备微光通道 105从而增强透光量达到反射层表面,将光反射出来, 进一步提 升发光率。 如图 3所示为光学机械支撑结构 320示意图。 光学机械支撑结构 320与 n 型半导体层 101接触, 该光学机械支撑结构 320由单晶衬底 120减薄而成的, 其材料可以为蓝宝石、 A1N等单晶材料。 用 tM表示光学机械支撑结构 320的 厚度, 根据光折射原理, 为了获得最佳取光率, 本实施例中 tM取值为发光波 长的 1/4整数倍, tM取值范围控制最终厚度控制在 5~100um。 在光学机械支撑 结构 320上有导电通道 321 , 与 n型半导体层 101电连接, 用于传送电流到 N 的深度, 考虑到需承受相应物理应力, t0与 tM的关系最好满足如下关系式: t0 < tM/2 , 本实施例取 t。=tM/2。
如图 4所示,发光器件通过基板 200的导电通道 202和光学机械支撑结构
320的导电通道 321接通外部电流, 发光层 102在电流激发下发射光线。 其中 直射光直接穿过 n层型 101 , 通过光学机械支撑结构的取光、 直接射出, 反射 光穿过 p型半导体层覆盖层 104的微光通道 105 ,通过金属反射层 111的反射, 射向出光方向,进而有效减少了 P型半导体层覆盖层 104对紫外光的吸收,提 高的出光效率。
实施例二
本实施例包含:将发光体结构转移至带导电通路高导热基座衬底板上的制
P层微光通道可用干蚀刻或者化学湿法蚀刻实现。 在两种技术中, 可先利 用光刻胶进行保护。 利用光刻方法形成所需要的图案, 然后蚀刻出所需要的图 形, 去除光刻胶及保护层后, 在 P表面先制备一层金属反射薄膜层, 高反射金 属材料可以是 Al, Pt, Ag等, 然后制备欧姆接触金属结构。 微光通道总覆盖 面积在不影响 P层导电性情况下, 不超过总面积的 80%, 该 P层微光通道可 大大提升发光效率。
带有导电材料填充小孔的基座衬底可以用多种不同方法实现。可利用激光 或者机械挖孔, 然后注入导电材料, 例如: 金、 铜和镍等。 在基座衬底表面上 制作共熔合金层后,将带有导电材料填充小孔及共熔合金的基座衬底与 P层上 的金属层进行键合。 共熔金属可以是 AuSn, AgSn等共熔合金, 其特性是在比 较低温下基座衬底和 P层金属间达到熔融状态形成无空隙的键合。
光学机械支撑结构是由单晶衬底转化而成的。通过化学,机械或两种方法 组合, 将单晶基板减薄, 根据外延层伸张应力容许范围内控制减薄厚度。 单晶 基板减薄完成后, 用干法蚀刻或湿法蚀刻制备相关通道图形。导电通道和增光 微通道的区域可用激光加工法和两次的干法, 湿法或干湿组合方法蚀刻实现, 例如: 利用机械研磨和抛光将单晶基板减薄后, 长一层 Si02作保护膜, 然后 旋涂一层光刻胶, 用曝光法制作相应的图形, 镀上 N层金属后去除光刻胶。 第二次的光刻制备出增光微通道的图形, 利用干法, 湿法或干湿法蚀刻完成增 光微通道的图形, 其图形深度不超过导电穿透通道深度的一半。这样带有可控 厚度和光学图形的光学机械支撑结构, 可以提升发光体的发光效率。
下面结合图 5〜图 9, 进行详细说明。
首先, 在 A1N基板 120上依次外延生长 n型半导体接触层 101 , 发光层 102, p层半导体接触层 103 , p型半导体覆盖层 104。
下一步,在 p型半导体覆盖层 104上,利用干蚀刻方法制备微米通道 105, 微米通道的深度在 10~500nm之间; 在 p型半导体覆盖层 104顶面上制作反射 金属层 111 , 金属反射层材料首选 NiAu, 厚度在 50~1000nm之间, 也可以是 包括 Al、 Ag、 Ni、 Au、 Cu、 Pd和 Rh中的一种合金制成, 并通过在 N2气氛 中高温退火达到欧姆接触特性并增强其与 p型半导体覆盖层 104的附着力;在 上述反射金属层 111上制备欧姆金属接触层 112及键合层 113 , 欧姆金属接触 层的材料首选 Ti/Pt/Au合金, 厚度在 0.5~10um之间, 也可以是包括 Cr、 Ni、 Co、 Cu、 Sn、 Au在内的任何一种合金制成, 键合层 113材料首选 AuSn合金, 厚度在 l~10um之间, 也可以是包括 Ag、 Ni、 Sn、 Cu、 Au等在内的任何一种 合金制程。
下一步,在上述触层 112及键合层 113上将晶片与带有周期性导电通路的 基板 200进行键合 (Wafer Bonding)。 工艺条件: 温度在 0~500°C之间, 压力在 0~800kg之间, 时间在 0~180分钟之间。 下一步, 将上述用于生长外延结构的 A1N单晶衬底 120进行化学研磨减 薄, 厚度减薄到发光波长的 1/4整倍数, 最终厚度控制在 5~100um。 在上述减 薄基板 320上利用干蚀刻方法, 制作一系列的微通道图形 322, 形成特殊的光 学机械支撑结构 320, 以提取更多从发光体发射出来的光; 未穿透通道的深度 不可大于单晶基板厚度的 1/2。
下一步,对应于光学机械支撑结构 320的周期性位置, 利用激光或者湿法 蚀刻制备小孔, 通至 N型半导体层, 在小孔内填充导电材料, 形成导电通道 321 ; 并在通道上制备 N型欧姆接触金属层, 材料优选 Ti、 Al、 Au三种符合 金属, 也可以是 Ti、 Al、 Au、 Ag、 Rh、 Co在内的任何一种合金制成, 并通 过在 N2气氛中高温退火达到欧姆接触特性并增强其与 N半导体层的附着力。 在上述 N型欧姆接触金属层上制备 N电极焊盘,材料优选 TiAu,厚度在 l~20um 之间。
下一步,根据导电通路的基板 200的间距周期,将晶圓上的单元器件逐一 解离, 形成芯粒。
本发明的特征和结构可参看附图的详细描述。 附图数据是描述概要, 不是 按比例绘制。 为了图形清晰, 未有在每个图的标识做备注。 所有专利申请, 专 利权以引用的方式并入本文中, 包括引用的实体, 如有沖突, 以当前的规格和 定义为参照。

Claims

权 利 要 求
1.一种深紫外半导体发光器件, 包括:
一带有导电通道的基板;
一发光外延结构, 依次由 n型半导体层、 发光层、 p型半导体层构成; 其特征在于: 还包括
一光学机械支撑结构, 设置有导电通道;
所述发光外延结构被夹在前述基板和光学机械支撑结构之间,光学机械支 撑结构一侧为出光面。
2.根据权利要求 1所述的半导体发光器件, 其特征在于: 所述光学机械支 撑结构由单晶材料构成。
3.根据权利要求 1的所述的半导体发光器件, 其特征在于: 在发光外延结 构的靠近基板的一侧半导体层制备微光通道。
4.根据权利要求 1或 3所述的半导体发光器件, 其特征在于: 所述光学机 械支撑结构的厚度为发光波长的 1/4整倍数。
5.根据权利要求 1或 3所述的半导体发光器件, 其特征在于: 所述光学机 械支持结构厚度为 5~100um。
6.根据权利要求 1或 3所述的半导体发光器件, 其特征在于: 所述光学机 械支持结构表面有一系列微通道,该微通道的深度小于光学机械支持结构的厚 度。
7.根据权利要求 6所述的半导体发光器件, 其特征在于: 所述微通道的深 度小于或等于光学机械支持结构厚度的 1/2, 以承受相应物理应力。
8.根据权利要求 1或 3所述的半导体发光器件, 其特征在于: 所述基板上 各导电通道的总面积应小于基板总表面积的 60%。
9.根据权利要求 1或 3所述的半导体发光器件, 其特征在于: 所述基板与 发光外延结构之间有一金属结构。
10.根据权利要求 9所述的半导体发光器件, 其特征在于: 所述金属结构 包含: 反射层, 欧姆金属接触层和键合层。
11.根据权利要求 9所述的半导体发光器件, 其特征在于: 所述键合层由 导电材料组成, 材料的电阻率在 1.0 10"8到 1.0 10—4Ω.ηι之间。
12.根据权利要求 1或 3的所述的半导体发光器件, 其特征在于: 所述基 板的材料选自陶瓷、 硅片。
13.根据权利要求 1 所述的半导体发光器件, 其特征在于: 发光层所产生 的光波长为 100nm~315nm。
14.一种紫外半导体发光器件的制作方法, 其包含如下步骤:
在单晶衬底上外延生长发光外延结构, 其依次由 n型半导体层、 发光层、 p型半导体层构成;
提供一带有导电通道的基板, 将其与发光外延结构连接, 其中, 发光外延 结构被夹在该基板和前述单晶衬底之间;
削薄单晶衬底,在衬底上制作导电通道,其连接外部电源与发光外延结构, 形成光学机械支持结构。
15.根据权利要求 14所述的半导体发光器件的制作方法,还包含如下步骤: 在整个外延结构上的外覆盖层制作微光通道。
16.根据权利要求 14所述的半导体发光器件的制作方法, 其特征在于: 前 述步骤 2 ) 中, 所述基板通过金属键合层与发光外延结构键合, 其具体步骤如 下:
在发光外延结构表面上形成反射层;
在反射层上形成欧姆接触层;
在欧姆接触层上形成共晶金属层;
将基板与共晶金属键合。
17.根据权利要求 14所述的半导体发光器件的制作方法, 其特征在于: 所 述光学机械支撑结构的厚度为发光波长的 1/4整倍数。
18.根据权利要求 14所述的半导体发光器件的制作方法, 其特征在于: 所 述光学机械支持结构厚度小于或等于 15微米。
19.根据权利要求 14所述的半导体发光器件的制作方法, 其特征在于: 前 述步骤 3 ) 中还包含: 在光学机械支持结构上形成微通道图形, 其深度小于光 学机械支持结构的厚度。
20.根据权利要求 19所述的半导体发光器件的制作方法, 其特征在于: 所 述微通道的深度小于或等于光学机械支持结构厚度的 1/2。
PCT/CN2012/075071 2011-06-20 2012-05-04 一种深紫外半导体发光器件及其制造方法 WO2012174950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/624,937 US8860059B2 (en) 2011-06-20 2012-09-23 Light emitting devices, systems, and methods of manufacturing
US14/481,928 US9318657B2 (en) 2011-06-20 2014-09-10 Light emitting devices, systems, and methods of manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110165321.3 2011-06-20
CN2011101653213A CN102208522A (zh) 2011-06-20 2011-06-20 一种深紫外半导体发光器件及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075070 Continuation WO2012174949A1 (zh) 2011-06-20 2012-05-04 一种深紫外半导体发光器件

Publications (1)

Publication Number Publication Date
WO2012174950A1 true WO2012174950A1 (zh) 2012-12-27

Family

ID=44697256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075071 WO2012174950A1 (zh) 2011-06-20 2012-05-04 一种深紫外半导体发光器件及其制造方法

Country Status (2)

Country Link
CN (1) CN102208522A (zh)
WO (1) WO2012174950A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326949A (zh) * 2018-12-15 2020-06-23 深圳市中光工业技术研究院 激光器芯片的制造方法及激光器芯片

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208522A (zh) * 2011-06-20 2011-10-05 厦门市三安光电科技有限公司 一种深紫外半导体发光器件及其制造方法
US8822314B2 (en) * 2012-06-14 2014-09-02 Palo Alto Research Center Incorporated Method of growing epitaxial layers on a substrate
JP6431013B2 (ja) * 2016-09-21 2018-11-28 シャープ株式会社 窒化アルミニウム系半導体深紫外発光素子
CN107611233B (zh) * 2017-08-24 2019-05-03 西安交通大学 基于复合转移衬底的垂直结构深紫外led器件及其制备方法
CN109768137B (zh) * 2018-12-29 2022-06-14 晶能光电(江西)有限公司 垂直结构led芯片及其制备方法
CN112768580B (zh) * 2021-01-04 2021-12-07 宁波安芯美半导体有限公司 深紫外led外延结构、深紫外led及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303995A (ja) * 2002-04-12 2003-10-24 Sony Corp 窒化物半導体素子及びその製造方法
CN101604716A (zh) * 2008-06-10 2009-12-16 北京大学 一种深紫外发光二极管及其制备方法
CN102208522A (zh) * 2011-06-20 2011-10-05 厦门市三安光电科技有限公司 一种深紫外半导体发光器件及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152708B2 (ja) * 1991-12-12 2001-04-03 株式会社東芝 半導体発光素子
TW495999B (en) * 2001-03-26 2002-07-21 Jang Guo Ying Structure and manufacturing method of micro-channel LED
US8525200B2 (en) * 2008-08-18 2013-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitting diode with non-metallic reflector
JP5024247B2 (ja) * 2008-09-12 2012-09-12 日立電線株式会社 発光素子
CN101521252A (zh) * 2008-09-26 2009-09-02 钜亨电子材料元件有限公司 具有导电导热基板的发光二极管制造方法及其结构
CN201450017U (zh) * 2008-12-26 2010-05-05 世纪晶源科技有限公司 一种单电极led芯片结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303995A (ja) * 2002-04-12 2003-10-24 Sony Corp 窒化物半導体素子及びその製造方法
CN101604716A (zh) * 2008-06-10 2009-12-16 北京大学 一种深紫外发光二极管及其制备方法
CN102208522A (zh) * 2011-06-20 2011-10-05 厦门市三安光电科技有限公司 一种深紫外半导体发光器件及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326949A (zh) * 2018-12-15 2020-06-23 深圳市中光工业技术研究院 激光器芯片的制造方法及激光器芯片

Also Published As

Publication number Publication date
CN102208522A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
US9318657B2 (en) Light emitting devices, systems, and methods of manufacturing
TWI506811B (zh) 具電流阻斷結構之發光裝置及製造具電流阻斷結構發光裝置之方法
US9018665B2 (en) Semiconductor light emitting device and method for manufacturing the same
WO2012174950A1 (zh) 一种深紫外半导体发光器件及其制造方法
EP1905103B1 (en) Method of fabricating a light emitting diode having a thermal conductive substrate
JP5767184B2 (ja) ワイヤボンディングのないウェーハ段階のled
JP5186800B2 (ja) 窒化物半導体発光素子、これを備える発光装置及び窒化物半導体発光素子の製造方法
US20060237735A1 (en) High-efficiency light extraction structures and methods for solid-state lighting
JP5151301B2 (ja) 半導体発光素子及びその製造方法
US7696523B2 (en) Light emitting device having vertical structure and method for manufacturing the same
TW201115790A (en) Wavelength-converted semiconductor light emitting device including a filter and a scattering structure
WO2012174949A1 (zh) 一种深紫外半导体发光器件
TW200834915A (en) Protection for the epitaxial structure of metal devices
KR102075713B1 (ko) 발광 소자 및 발광 소자 패키지
JP6106522B2 (ja) 半導体発光素子アレイ
JP2010251481A (ja) 発光装置
JP6440392B2 (ja) 半導体発光素子
TWI290377B (en) Light emitting apparatus and fabricated method thereof
JP2012070017A (ja) 半導体発光素子
TW200937509A (en) Fabrication of semiconductor devices
TWI436497B (zh) 發光元件之製造方法
JP2010199248A (ja) 発光装置
TW200919775A (en) High light efficiency solid-state light emitting device and method for producing the same
CN116230817A (zh) 一种垂直结构深紫外led器件及其制备方法
WO2016098853A1 (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802354

Country of ref document: EP

Kind code of ref document: A1