WO2012174831A1 - 一种进行iq信号实时校准的方法和装置 - Google Patents

一种进行iq信号实时校准的方法和装置 Download PDF

Info

Publication number
WO2012174831A1
WO2012174831A1 PCT/CN2011/083573 CN2011083573W WO2012174831A1 WO 2012174831 A1 WO2012174831 A1 WO 2012174831A1 CN 2011083573 W CN2011083573 W CN 2011083573W WO 2012174831 A1 WO2012174831 A1 WO 2012174831A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
local oscillator
value
register
oscillator leakage
Prior art date
Application number
PCT/CN2011/083573
Other languages
English (en)
French (fr)
Inventor
蓝翱华
周瑞兴
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012174831A1 publication Critical patent/WO2012174831A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal

Definitions

  • the present invention relates to the technical field of signal radio frequency transmission in the field of wireless communication, and more particularly to a method and apparatus for performing real-time calibration of IQ signals.
  • the method of processing the local oscillator leakage is to perform production calibration on the DC offset of the IQ signal in the base station transmitting device, and write the calibration parameter into the I signal DC compensation register and the Q signal DC compensation register to control the DC bias of the IQ.
  • the level of the local oscillator leakage can be suppressed to a lower level.
  • the calibration accuracy of the one-time calibration is low and the local oscillator leakage power is sensitive to environmental influences after calibration. When the base station transmitter is operating in a high or low temperature environment, the one-time IQ calibration cannot meet the strict spurious emission requirements.
  • the technical problem to be solved by the present invention is to provide a method and device for performing real-time calibration of IQ signals, thereby improving the real-time and accuracy of local oscillator leakage suppression.
  • a method for performing real-time calibration of an IQ signal includes: calculating, by a feedback link, a local oscillator leakage signal power estimate of the base station transmitting device according to a radio frequency signal output by the base station transmitting device, by adjusting a value of the I signal DC compensation register and/or Or the value of the Q signal DC compensation register until the local oscillator leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the above method can also have the following characteristics:
  • the above method can also have the following characteristics:
  • the values of the two registers are alternately adjusted in stages; the step of adjusting the value of one of the registers includes: increasing the value of the register by the preset step size, and determining that the local oscillator leaks on the feedback link When the signal power estimate is less than or equal to the local oscillator leakage signal power estimate before the value of the register is increased, continue to increase the value of the register by the preset step size until the value of the register is increased by the preset step size. After determining that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register increases, the other register is periodically adjusted.
  • the above method can also have the following characteristics:
  • the preset step length is the first step length, and after using the first step length to increase the value of a register, it is determined that the power loss of the local oscillator leakage signal on the feedback link is greater than the value of the local oscillator leakage signal before the value of the register increases. a value, the preset step size is changed to a second step length, and the first step length is greater than the second step size.
  • the above method can also have the following characteristics:
  • the local oscillator RF signal is obtained, and the local oscillator RF signal is subjected to power detection to obtain a local oscillator analog signal, and the local oscillator analog signal is converted into a local oscillator digital signal by an analog-to-digital converter, and the power value of the local oscillator digital signal is The local oscillator leakage signal power is estimated.
  • a device for performing real-time calibration of an IQ signal includes a local oscillator leakage signal power estimation calculation module, and an IQ signal calibration module; and the local oscillator leakage signal power estimation calculation module is configured to The radio frequency signal output by the transmitting device calculates a local oscillator leakage signal power estimate of the base station transmitting device; the IQ signal calibration module adjusts a value of the I signal DC compensation register in the base station transmitting device and/or a Q signal DC compensation register The value until the local oscillator leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the above device may also have the following characteristics:
  • the IQ signal calibration module is further configured to set an I signal DC compensation register and a Q signal DC After compensating the initial value of the register, increasing the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register by a preset step size and determining whether the local oscillator leakage signal power estimate is located at the base station transmitting device requirement
  • the local oscillator leakage power standard interval when the determination result is no, repeats the above-mentioned value of the increase register and the judgment operation.
  • the above device may also have the following characteristics:
  • the IQ signal calibration module is further configured to alternately adjust the values of the two registers in stages; the step of adjusting the value of one of the registers is: adding the register by the preset step size Value, when determining that the local oscillator leakage signal power estimate on the feedback link is less than or equal to the local oscillator leakage signal power estimate before the value of the register increases, continue to increase the value of the register by the preset step size until After the preset step size increases the value of this register, it is judged that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register increases, and another register is periodically adjusted.
  • the above device may also have the following characteristics:
  • the IQ signal calibration module is further configured to: when the preset step length is the first step length, use a first step length to increase a register value, and determine that the local oscillator leakage signal power estimate on the feedback link is greater than the register. The local oscillator leakage signal power estimate before the value is increased, the preset step size is changed to the second step length, and the first step length is greater than the second step length.
  • the above device may also have the following characteristics:
  • the local oscillator leakage signal power estimation calculation module includes a signal coupling circuit, a band pass filter, a power detection circuit, and an analog to digital converter; the signal coupling circuit is configured to signal-output the RF signal output by the base station transmitting device to the a band pass filter; the band pass filter is configured to perform band pass filtering on the coupled signal to obtain a local oscillator radio frequency signal; and the power detecting circuit is configured to convert the local oscillator analog signal into an analog to digital converter The digital signal; the analog-to-digital converter, the power value of the local oscillator digital signal is the local oscillator leakage signal power estimate.
  • a method for performing real-time calibration of IQ signals including:
  • the step of adjusting the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register until the local leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device includes:
  • the step of adjusting the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register until the local leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device includes:
  • phase adjustment of the value of the I signal DC compensation register and the value of the Q signal DC compensation register are alternately performed, including:
  • phase adjustment on the value of any one of the I signal DC compensation register and the Q signal DC compensation register in the following manner: increasing the value of the register by the preset step size, and determining the local oscillator on the feedback link
  • the leakage signal power estimate is less than or equal to the local oscillator leakage signal power estimate before the value of the register increases, continue to increase the value of the register by the preset step size until the local oscillator leakage signal power on the feedback link
  • the estimate is greater than the local oscillator leakage signal power estimate before the value of the register is incremented; thereafter, another register other than the register is staged.
  • the preset step length is a first step length
  • the method further includes: using the first step length such that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register is increased, the preset step size is The second step is changed to a fine adjustment until the local oscillator leakage signal power estimate reaches a minimum value; wherein the first step length is greater than the second step length.
  • the feedback link receives the radio frequency signal output by the base station transmitting device and calculates the base station transmission
  • the steps of estimating the local oscillator leakage signal power of the device include:
  • the DC signal is converted into a digital signal corresponding to the leakage of the local oscillator, and the power value of the digital signal leaked by the local oscillator is the local oscillator leakage signal power estimate.
  • a device for performing real-time calibration of an IQ signal comprising a local oscillator leakage signal power estimation calculation module and an IQ signal calibration module, wherein:
  • the local oscillator leakage signal power estimation calculation module is configured to: receive a radio frequency signal output by the base station transmitting device, and calculate a local oscillator leakage signal power estimate of the base station transmitting device;
  • the IQ signal calibration module is configured to: adjust a value of an I signal DC compensation register and/or a value of a Q signal DC compensation register in a base station transmitting device according to the local oscillator leakage signal power estimate until the local oscillator leakage signal power is estimated The value is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the IQ signal calibration module is configured to adjust the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register as follows:
  • the IQ signal calibration module is further configured to adjust the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register as follows:
  • the IQ signal calibration module is further configured to: increase the value of the I signal DC compensation register or the Q signal DC compensation register by the first step length until the local oscillator leakage signal power estimate is greater than the value of the register is increased The local oscillator leakage signal power is estimated; afterwards, the first step length is changed to the second step to perform fine adjustment until the local oscillator leakage signal power estimate reaches a minimum value; wherein the first step length is greater than Said the second step.
  • the local oscillator leakage signal power estimation calculation module includes a signal coupling circuit, a band pass filter, a power detection circuit, and an analog to digital converter, wherein:
  • the signal coupling circuit is configured to: receive a radio frequency signal output by the base station transmitting device and perform signal coupling to obtain a coupled signal and output the same to the band pass filter;
  • the band pass filter is configured to: perform band pass filtering on the coupled signal to obtain a local oscillator radio frequency signal;
  • the power detection circuit is configured to: convert the local oscillator radio frequency signal input by the band pass filter into a direct current signal;
  • the analog-to-digital converter is configured to: perform analog-to-digital conversion on the DC signal to obtain a digital signal corresponding to the leakage of the local oscillator, and the power value of the digital signal leaked by the local oscillator is an estimate of the power loss of the local oscillator leakage signal .
  • the base station transmitting device includes a digital-to-analog converter, an IQ filter, an IQ modulator, and a radio frequency transmitting unit, where the local oscillator leakage signal power evaluation calculation module receives the radio frequency signal sent by the radio frequency transmitting unit.
  • the digital-to-analog converter receives the digital signal output by the IQ signal calibration module.
  • This scheme realizes real-time calibration of IQ signals by introducing a feedback link, which improves the real-time and accuracy of local oscillator leakage suppression.
  • FIG. 1 is a schematic structural diagram of an apparatus for performing real-time calibration of an IQ signal in an embodiment. Preferred embodiment of the invention
  • the system for performing real-time calibration of an IQ signal includes a base station transmitting apparatus and an IQ signal real-time calibration apparatus, wherein the base station transmitting apparatus forms a closed loop with the IQ signal real-time calibration apparatus, and the IQ signal real-time calibration apparatus receives the base station. Transmitting the output of the device and performing real-time calibration on the IQ signal of the base station transmitting device, wherein:
  • the base station transmitting apparatus includes a digital to analog converter, an IQ filter, an IQ modulator, and a radio frequency transmitting unit, where:
  • the digital-to-analog converter is configured to receive a digital signal input by the FPGA and the IQ signal real-time calibration device, convert the digital signal into an analog signal, and the digital-to-analog converter further includes a DC, amplitude, and phase compensation module.
  • a digital-to-analog converter is used to convert the digital signal transmitted from the FPGA to an intermediate frequency analog signal.
  • the main suppliers are ADI, TI and NXP.
  • the IQ filter is an LC built-in filter arranged to filter out the spurs of the above-mentioned digital-to-analog converter together with the IF signal, using a low-pass filter.
  • the IQ modulator is actually equivalent to a mixer, configured to perform frequency shifting, and the intermediate frequency signal input by the IQ filter is mixed with the local oscillator signal through the IQ modulator to output a radio frequency signal.
  • the radio frequency transmitting unit mainly comprises a device such as a radio frequency amplifier and an attenuator, and sends the output large frequency radio frequency signal to the duplexer and the IQ signal real-time calibration device.
  • the IQ signal real-time calibration device is configured to: receive a radio frequency signal output by the radio frequency transmitting unit, and output a digital signal to the digital-to-analog converter to form a digital-to-analog converter, an IQ filter, an IQ modulator, and a radio frequency A feedback link for the link formed by the transmitting unit.
  • the connection relationship between the above four modules and the IQ signal real-time calibration device is shown in FIG. 1. Since the DC level of the quadrature differential circuit of the IQ modulator input is unbalanced, the unbalanced DC level passes through the IQ modulator and the local oscillator signal The multiplied output is the local oscillator leakage signal, which is amplified and then enters the local oscillator leakage signal power estimation calculation module of the IQ signal real-time calibration device, and converts the analog signal into a digital signal.
  • the IQ signal calibration module of the IQ signal real-time calibration device is controlled by The DC compensation register in the digital-to-analog conversion module works.
  • the IQ signal real-time calibration device comprises: a local oscillator leakage signal power estimation calculation module and an IQ signal calibration module, wherein:
  • the local oscillator leakage signal power estimation calculation module is configured to: calculate, by using a feedback link, a local oscillator leakage signal power estimate of the base station transmitting device according to the radio frequency signal output by the base station transmitting device; the IQ signal calibration module is configured to: By adjusting the value of the I signal DC compensation register and/or the value of the Q signal DC compensation register in the base station transmitting device until the local oscillator leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the IQ signal calibration module removes the gain effect of the feedback link based on the detected local oscillator leakage signal power estimate, and obtains the local oscillator leakage power output from the original IQ modulator terminal, and calibrates the signal by modifying the value of the register.
  • the local oscillator leakage signal power estimation calculation module includes a signal coupling circuit, a band pass filter, a power detection circuit, and an analog to digital converter, wherein:
  • the signal coupling circuit is configured to: signal-couple the RF signal outputted by the base station transmitting device to output the coupled signal to the band pass filter; the circuit can be implemented by a directional coupler with a coupling degree of about 40 dB.
  • the band pass filter is configured to: band-pass filter the coupled signal to obtain a local oscillator RF signal; and filter the center frequency point of the local oscillator leakage frequency.
  • the band pass filter may select a sound table filter, a dielectric filter or an LC filter or the like.
  • the power detection circuit is configured to: convert the local oscillator RF signal input by the band pass filter into a DC signal.
  • the analog-to-digital converter is configured to: perform analog-to-digital conversion on the DC signal to obtain a digital signal corresponding to the leakage of the local oscillator; the magnitude of the voltage level is linear with the magnitude of the leakage power of the local oscillator, and is used for the local oscillator
  • the power value of the leaked digital signal is the local oscillator leakage signal power estimate.
  • the IQ signal calibration module uses a preset step size adjustment register value, and the IQ signal calibration module is configured to: after setting the initial value of the I signal DC compensation register and the Q signal DC compensation register, increase the I signal DC compensation by a preset step size. a value of the register and/or a value of the Q signal DC compensation register and determining whether the local oscillator leakage signal power estimate is located in a local oscillator leakage power standard interval required by the base station transmitting device, and when the determination result is no, repeating the above Increase the value of the register and judge The operation is broken until the local oscillator leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the IQ signal calibration module can adjust only one of the registers and alternately adjust the values of the two registers in stages; wherein, the step of adjusting the value of one of the registers includes: Step size increases the value of this register, and judges that the local oscillator leakage signal power estimate on the feedback link is less than or equal to the local oscillator leakage signal power estimate before the value of the register increases, and continues to increase the register by the preset step size. The value, until the value of the register is increased by the preset step size, determining that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register is increased, The registers are adjusted in stages.
  • the IQ signal calibration module can be adjusted in such a way that the single-step long value can also be multi-step long.
  • the IQ signal calibration module is also set to: when the preset step is the first step, the first step is used. After the value of a register, it is determined that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register is increased, and the preset step size is changed to the second step to perform fine adjustment. Until the local oscillator leakage signal power estimate reaches a minimum value, the local oscillator leakage signal power estimate reaches a minimum value: the first step is adjusted, and the local oscillator leakage signal power estimate is increased.
  • the first step length is greater than the second step length. For example, the first step is 10 and the second step is 1.
  • the device realizes real-time calibration of the IQ signal by introducing a feedback link, improves the real-time and accuracy of the local oscillator leakage suppression, reduces the index requirements on the RF transmitting circuit and the signal coupling circuit, and reduces the system cost.
  • the method for performing real-time calibration of an IQ signal includes: calculating, by using a feedback link, a power estimation of a local oscillator leakage signal of the base station transmitting device according to a radio frequency signal output by the base station transmitting device, and adjusting a value of the DC compensation register of the I signal And/or the value of the Q signal DC compensation register until the local oscillator leakage signal power estimate is located in the local oscillator leakage power standard interval required by the base station transmitting device.
  • the step of calculating the local oscillator leakage signal power estimate of the base station transmitting device by using the feedback link according to the radio frequency signal output by the base station transmitting device comprises: coupling the radio frequency signal output by the base station transmitting device, and coupling the signal
  • the band-pass filtering is performed to obtain the local-frequency RF signal, and the local-frequency RF signal is subjected to power detection to obtain a DC signal, and the DC signal is converted by an analog-to-digital converter.
  • the digital signal corresponding to the leakage of the local oscillator is exchanged, and the power value of the digital signal leaked by the local oscillator is the local oscillator leakage signal power estimate.
  • the preset step size is used to adjust the value of the register. Specifically, after setting the initial values of the I signal DC compensation register and the Q signal DC compensation register, the value of the I signal DC compensation register and/or Q are increased by a preset step size. And determining a value of the signal DC compensation register and determining whether the local oscillator leakage signal power estimate is located in a local oscillator leakage power standard interval required by the base station transmitting device, and when the determination result is no, repeatedly performing the value of the increasing register and determining operating.
  • the step of adjusting the value of one of the registers includes: increasing by the preset step size The value of this register, when determining that the local oscillator leakage signal power estimate on the feedback link is less than or equal to the local oscillator leakage signal power estimate before the value of the register increases, continue to increase the value of the register by the preset step size, After increasing the value of the register by the preset step size, determining that the local oscillator leakage signal power estimate on the feedback link is greater than the local oscillator leakage signal power estimate before the value of the register increases, performing another register stage Sex adjustment.
  • the single-step long value can also be multi-step long value
  • the preset step length is the first step length
  • after using the first step length to increase the value of a register, the feedback link is determined.
  • the vibration leakage signal power estimate is greater than the local oscillator leakage signal power estimate before the value of the register is increased, and the preset step size is changed to the second step length, and the first step length is greater than the second step length.
  • the first step is 10 and the second step is 1.
  • Step 1 Set the I signal DC compensation register and Q signal DC compensation register and the value to the intermediate value (can also be set to other values). For example, if the digital-to-analog converter is AD9122, set the two DC compensation registers to 128.
  • Step 2 In steps of 10 units, first increase the value of the I signal DC compensation register. For each adjustment step, record the sample value of the analog-to-digital converter (ADC). If the sample value of the ADC is before the adjustment. If the value is small, continue to increase the value of the I signal DC compensation register until the ADC sample ratio is higher. When the value of one step is large, step 3 is performed.
  • ADC analog-to-digital converter
  • Step 3 In steps of 10 units, first increase the value of the Q signal DC compensation register. For each adjustment step, record the sample value of the analog-to-digital converter (ADC). If the sample value of the ADC is before the adjustment. If the value is small, continue to increase the value of the Q signal DC compensation register until the sample value of the ADC is larger than the value of the previous step. Then go to step 2.
  • ADC analog-to-digital converter
  • the sample value of the ADC is larger than that before the adjustment. You need to change the step to 1 unit. Repeat steps 2 and 3 until the local leakage value meets the system standard interval requirements.
  • This solution implements real-time calibration of IQ signals by introducing a feedback link, which improves the real-time and accuracy of local oscillator leakage suppression. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

一种进行IQ信号实时校准的方法和装置,该方法包括:通过反馈链路接收基站发射装置输出的射频信号并计算所述基站发射装置的本振泄露信号功率估值,根据所述本振泄露信号功率估值调整所述基站发射装置的I信号直流补偿寄存器的值和/或Q信号直流补偿寄存器的值直至所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率标准区间为止。上述技术方案通过引入反馈链路实现IQ信号的实时校准,提高了对本振泄露抑制的实时性和准确度。

Description

一种进行 10信号实时校准的方法和装置
技术领域
本发明涉及无线通讯领域的信号射频发射的技术领域, 尤其涉及一种进 行 IQ信号实时校准的方法和装置。
背景技术
在无线通信领域, 空间的频谱干扰较为复杂, 尤其是釆用数字预失真技 术的宽带基站, 要求发射机输出尽量少的杂散信号, 以免发射机的杂散影响 数字预失真的效果。但是对于复杂的中频系统来说, 由于 IQ调制器的直流电 平的不平衡, 不可避免地产生本振泄漏, 形成较大的杂散干扰。 通常处理本 振泄露的方法是对基站发射装置中 IQ信号的直流偏置进行生产校准,将校准 参数写入 I信号直流补偿寄存器和 Q信号直流补偿寄存器内, 以此来控制 IQ 的直流偏置, 可以把本振泄露的电平抑制到较低的水平。 但是, 一次性校准 的校准准确度较低而且校准后本振泄露功率对环境影响很敏感, 在基站发射 装置工作在高温或低温环境时,一次性地 IQ校准无法满足严格的杂散辐射要 求。
发明内容
本发明要解决的技术问题是提供一种进行 IQ信号实时校准的方法和装 置, 提高对本振泄露抑制的实时性和准确度。
一种进行 IQ信号实时校准的方法, 包括: 通过反馈链路根据基站发射装 置输出的射频信号计算所述基站发射装置的本振泄露信号功率估值, 通过调 整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至所述本振 泄露信号功率估值位于所述基站发射装置要求的本振泄露功率标准区间为 止。
其中, 上述方法还可以具有以下特点:
设置 I信号直流补偿寄存器和 Q信号直流补偿寄存器的初始值后, 以预 设步长增加 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值并判 断所述本振泄露信号功率估值是否位于所述基站发射装置要求的本振泄露功 率标准区间, 在判断结果为否时, 重复执行上述增加寄存器的值以及判断的 操作。
其中, 上述方法还可以具有以下特点:
交替性地对上述两个寄存器的值进行阶段性调整; 对其中一寄存器的值 进行阶段性调整的操作包括: 以所述预设步长增加此寄存器的值, 判断反馈 链路上本振泄露信号功率估值小于或等于此寄存器的值增加前的本振泄露信 号功率估值时, 继续以所述预设步长增加此寄存器的值, 直至以所述预设步 长增加此寄存器的值后, 判断反馈链路上本振泄露信号功率估值大于此寄存 器的值增加前的本振泄露信号功率估值时, 对另一寄存器进行阶段性调整。
其中, 上述方法还可以具有以下特点:
所述预设步长为第一步长, 使用第一步长增加一寄存器的值后, 判断反 馈链路上本振泄露信号功率估值大于此寄存器的值增加前的本振泄露信号功 率估值, 将所述预设步长改为第二步长, 所述第一步长大于所述第二步长。
其中, 上述方法还可以具有以下特点:
通过反馈链路根据基站发射装置输出的射频信号计算所述基站发射装置 的本振泄露信号功率估值的方式为: 将基站发射装置输出的射频信号进行信 号耦合后, 将耦合信号进行带通滤波得到本振射频信号, 将此本振射频信号 进行功率检波后得到本振模拟信号, 将此本振模拟信号经模数转换器转换为 本振数字信号, 此本振数字信号的功率值即为所述本振泄露信号功率估值。
一种进行 IQ信号实时校准的装置;所述装置包括本振泄露信号功率估值 计算模块、 和 IQ信号校准模块; 所述本振泄露信号功率估值计算模块, 用于 通过反馈链路根据基站发射装置输出的射频信号计算所述基站发射装置的本 振泄露信号功率估值; 所述 IQ信号校准模块, 通过调整基站发射装置中 I信 号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至所述本振泄露 信号功率估值位于所述基站发射装置要求的本振泄露功率标准区间为止。
其中, 上述装置还可以具有以下特点:
所述 IQ信号校准模块,还用于设置 I信号直流补偿寄存器和 Q信号直流 补偿寄存器的初始值后, 以预设步长增加 I信号直流补偿寄存器的值和 /或 Q 信号直流补偿寄存器的值并判断所述本振泄露信号功率估值是否位于所述基 站发射装置要求的本振泄露功率标准区间, 在判断结果为否时, 重复执行上 述增加寄存器的值以及判断的操作。 其中, 上述装置还可以具有以下特点:
所述 IQ信号校准模块,还用于交替性地对上述两个寄存器的值进行阶段 性调整; 对其中一寄存器的值进行阶段性调整的操作包括: 以所述预设步长 增加此寄存器的值, 判断反馈链路上本振泄露信号功率估值小于或等于此寄 存器的值增加前的本振泄露信号功率估值时, 继续以所述预设步长增加此寄 存器的值, 直至以所述预设步长增加此寄存器的值后, 判断反馈链路上本振 泄露信号功率估值大于此寄存器的值增加前的本振泄露信号功率估值时, 对 另一寄存器进行阶段性调整。
其中, 上述装置还可以具有以下特点:
所述 IQ信号校准模块,还用于在预设步长为第一步长时,使用第一步长 增加一寄存器的值后, 判断反馈链路上本振泄露信号功率估值大于此寄存器 的值增加前的本振泄露信号功率估值, 将所述预设步长改为第二步长, 所述 第一步长大于所述第二步长。
其中, 上述装置还可以具有以下特点:
本振泄露信号功率估值计算模块包括信号耦合电路、 带通滤波器、 功率 检波电路、 模数转换器; 所述信号耦合电路, 用于将基站发射装置输出的射 频信号进行信号耦合输出至所述带通滤波器; 所述带通滤波器, 用于将耦合 信号进行带通滤波得到本振射频信号; 所述功率检波电路, 用于将此本振模 拟信号经模数转换器转换为本振数字信号; 所述模数转换器, 用于此本振数 字信号的功率值即为所述本振泄露信号功率估值。
一种进行 IQ信号实时校准的方法, 包括:
通过反馈链路接收基站发射装置输出的射频信号并计算所述基站发射装 置的本振泄露信号功率估值, 所述反馈链路根据所述本振泄露信号功率估值 调整所述基站发射装置的 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄 存器的值直至所述本振泄露信号功率估值位于所述基站发射装置要求的本振 泄露功率标准区间为止。
其中, 调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率 标准区间为止的步骤包括:
设置所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存器的初始值 后, 以预设步长增加所述 I信号直流补偿寄存器的值和 /或所述 Q信号直流补 偿寄存器的值并判断所述本振泄露信号功率估值是否位于所述基站发射装置 要求的本振泄露功率标准区间, 在判断结果为否时, 重复执行上述增加及判 断的操作, 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本 振泄露功率标准区间为止。
其中, 调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率 标准区间为止的步骤包括:
交替性地对所述 I信号直流补偿寄存器的值和所述 Q信号直流补偿寄存 器的值进行阶段性调整, 包括:
按照以下方式对所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存 器中的任一个的值进行阶段性调整: 以所述预设步长增加该寄存器的值, 判 断反馈链路上本振泄露信号功率估值小于或等于该寄存器的值增加前的本振 泄露信号功率估值时, 继续以所述预设步长增加该寄存器的值, 直至所述反 馈链路上本振泄露信号功率估值大于该寄存器的值增加前的本振泄露信号功 率估值; 之后, 对除该寄存器外的另一寄存器进行阶段性调整。
其中, 所述预设步长为第一步长;
该方法还包括: 使用所述第一步长使得所述反馈链路上本振泄露信号功 率估值大于此寄存器的值增加前的本振泄露信号功率估值后, 将所述预设步 长改为第二步长进行微调, 直到所述本振泄露信号功率估值达到最小值; 其 中, 所述第一步长大于所述第二步长。
其中, 反馈链路接收基站发射装置输出的射频信号并计算所述基站发射 装置的本振泄露信号功率估值的步骤包括:
将所述基站发射装置输出的射频信号进行信号耦合后得到耦合信号 , 将 所述耦合信号进行带通滤波得到本振射频信号, 将所述本振射频信号进行功 率检波后得到直流信号 , 将所述直流信号转换为对应本振泄露的数字信号 , 所述本振泄露的数字信号的功率值即为所述本振泄露信号功率估值。
一种进行 IQ信号实时校准的装置 ,该装置包括本振泄露信号功率估值计 算模块和 IQ信号校准模块, 其中:
所述本振泄露信号功率估值计算模块设置成: 接收基站发射装置输出的 射频信号并计算所述基站发射装置的本振泄露信号功率估值;
所述 IQ信号校准模块设置成:根据所述本振泄露信号功率估值调整基站 发射装置中 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至 所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率标准 区间为止。
其中, 所述 IQ信号校准模块设置成按照以下方式调整 I信号直流补偿寄 存器的值和 /或 Q信号直流补偿寄存器的值:
设置所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存器的初始值 后, 以预设步长增加所述 I信号直流补偿寄存器的值和 /或所述 Q信号直流补 偿寄存器的值并判断所述本振泄露信号功率估值是否位于所述基站发射装置 要求的本振泄露功率标准区间, 在判断结果为否时, 重复执行上述增加及判 断的操作, 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本 振泄露功率标准区间为止。
其中, 所述 IQ信号校准模块还设置成按照以下方式调整 I信号直流补偿 寄存器的值和 /或 Q信号直流补偿寄存器的值:
交替性地对所述 I信号直流补偿寄存器的值和所述 Q信号直流补偿寄存 器的值进行阶段性调整;按照以下方式对所述 I信号直流补偿寄存器和所述 Q 信号直流补偿寄存器中的任一个的值进行阶段性调整: 以所述预设步长增加 该寄存器的值, 判断所述本振泄露信号功率估值小于或等于此寄存器的值增 加前的本振泄露信号功率估值时, 继续以所述预设步长增加该寄存器的值, 直至所述本振泄露信号功率估值大于该寄存器的值增加前的本振泄露信号功 率估值; 之后, 对除该寄存器外地另一寄存器进行阶段性调整。
其中, 所述 IQ信号校准模块还设置成: 以第一步长增加 I信号直流补偿 寄存器或 Q信号直流补偿寄存器的值, 直到所述本振泄露信号功率估值大于 此寄存器的值增加前的本振泄露信号功率估值; 之后, 将所述第一步长改为 第二步长进行微调, 直到所述本振泄露信号功率估值达到最小值; 其中, 所 述第一步长大于所述第二步长。
其中, 所述本振泄露信号功率估值计算模块包括信号耦合电路、 带通滤 波器、 功率检波电路和模数转换器, 其中:
所述信号耦合电路设置成: 接收基站发射装置输出的射频信号并将其进 行信号耦合, 得到耦合信号后将其输出至所述带通滤波器;
所述带通滤波器设置成: 将所述耦合信号进行带通滤波得到本振射频信 号;
所述功率检波电路设置成: 将所述带通滤波器输入的本振射频信号转化 为直流信号;
所述模数转换器设置成: 对所述直流信号进行模数转换, 得到对应本振 泄露的数字信号, 所述本振泄露的数字信号的功率值即为所述本振泄露信号 功率估值。
其中, 所述基站发射装置包括数模转换器、 IQ滤波器、 IQ调制器和射频 发射单元, 其中, 所述本振泄露信号功率估值计算模块接收所述射频发射单 元发出的射频信号 ,所述数模转换器接收所述 IQ信号校准模块输出的数字信 号。
本方案通过引入反馈链路实现 IQ信号的实时校准,提高了对本振泄露抑 制的实时性和准确度。
附图概述
图 1是实施例中进行 IQ信号实时校准的装置结构示意图。 本发明的较佳实施方式
下面将结合附图对本发明的具体实施做进一步详细的说明。
本发明实施例的进行 IQ信号实时校准的系统包括基站发射装置及 IQ信 号实时校准装置, 所述基站发射装置与所述 IQ信号实时校准装置形成闭环, 所述 IQ信号实时校准装置接收所述基站发射装置的输出,并对所述基站发射 装置的 IQ信号进行实时校准, 其中:
所述基站发射装置包括数模转换器、 IQ滤波器、 IQ调制器和射频发射单 元, 其中:
所述数模转换器设置成:接收 FPGA和所述 IQ信号实时校准装置输入的 数字信号, 将所述数字信号转换为模拟信号, 所述数模转换器还包括直流、 幅度和相位补偿模块。 本发明的实施例中用数模转换器这个芯片来将 FPGA 传给它的数字信号转为中频模拟信号, 主要的供应厂商有 ADI、 TI和 NXP。
所述 IQ滤波器: 是 LC搭建的滤波器, 设置成滤除上述数模转换器连同 中频信号一起出来的杂散, 用的是低通滤波器。
所述 IQ调制器: 其实就相当于一个混频器, 设置成进行频语搬移, 将所 述 IQ滤波器输入的中频信号, 与本振信号一起经过 IQ调制器混频后, 输出 射频信号。
所述射频发射单元主要包括射频放大器和衰减器等器件, 将输出的大频 率射频信号发送给双工器和所述 IQ信号实时校准装置。
所述 IQ信号实时校准装置设置成:接收所述射频发射单元输出的射频信 号, 输出数字信号给所述数模转换器, 形成由所述数模转换器、 IQ滤波器、 IQ调制器、 射频发射单元所组成的链路的反馈链路。
上述四个模块与所述 IQ信号实时校准装置的连接关系见图 1 , 由于 IQ 调制器输入端正交差分电路的直流电平不平衡, 这个不平衡的直流电平经过 IQ调制器后, 与本振信号相乘输出的就是本振泄露信号, 这个信号经过放大 后进入所述 IQ信号实时校准装置的本振泄露信号功率估值计算模块,将模拟 信号转为数字信号。 所述 IQ信号实时校准装置的 IQ信号校准模块是通过控 制数模转换模块内的直流补偿寄存器进行工作的。
如图 1所示, 所述 IQ信号实时校准装置包括: 本振泄露信号功率估值计 算模块和 IQ信号校准模块, 其中:
所述本振泄露信号功率估值计算模块设置成: 通过反馈链路根据基站发 射装置输出的射频信号计算所述基站发射装置的本振泄露信号功率估值; 所述 IQ信号校准模块设置成: 通过调整基站发射装置中 I信号直流补偿 寄存器的值和 /或 Q信号直流补偿寄存器的值直至所述本振泄露信号功率估 值位于所述基站发射装置要求的本振泄露功率标准区间为止。 IQ信号校准模 块根据检测到的本振泄露信号功率估值除去反馈链路的增益效果, 即可得到 原 IQ调制器端输出的本振泄露功率, 并通过修改寄存器的值进行信号校准。
其中, 所述本振泄露信号功率估值计算模块包括信号耦合电路、 带通滤 波器、 功率检波电路和模数转换器, 其中:
所述信号耦合电路设置成: 将基站发射装置输出的射频信号进行信号耦 合后将耦合信号输出至所述带通滤波器; 此电路可釆用定向耦合器实现, 耦 合度大约 40dB。
所述带通滤波器设置成: 将所述耦合信号进行带通滤波得到本振射频信 号; 滤波器中心频点为本振泄露的频点。 所述带通滤波器可以选择声表滤波 器, 介质滤波器或者 LC滤波器等等。
所述功率检波电路设置成: 将所述带通滤波器输入的本振射频信号转化 为直流信号。
所述模数转换器设置成: 对所述直流信号进行模数转换, 得到对应本振 泄露的数字信号; 该电压电平的大小与本振泄露功率的大小呈线性关系, 用 于此本振泄露的数字信号的功率值即为所述本振泄露信号功率估值。
所述 IQ信号校准模块使用预设步长调整寄存器的值, IQ信号校准模块 设置成: 设置 I信号直流补偿寄存器和 Q信号直流补偿寄存器的初始值后, 以预设步长增加 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值 并判断所述本振泄露信号功率估值是否位于所述基站发射装置要求的本振泄 露功率标准区间, 在判断结果为否时, 重复执行上述增加寄存器的值以及判 断的操作, 直到所述本振泄露信号功率估值位于所述基站发射装置要求的本 振泄露功率标准区间。
IQ信号校准模块可以只对其中一个寄存器进行调整还可以交替性地对上 述两个寄存器的值进行阶段性调整; 其中, 对其中一寄存器的值进行阶段性 调整的操作包括: 以所述预设步长增加此寄存器的值, 判断反馈链路上本振 泄露信号功率估值小于或等于此寄存器的值增加前的本振泄露信号功率估值 时, 继续以所述预设步长增加此寄存器的值, 直至以所述预设步长增加此寄 存器的值后, 判断反馈链路上本振泄露信号功率估值大于此寄存器的值增加 前的本振泄露信号功率估值时, 对另一寄存器进行阶段性调整。
IQ信号校准模块的调整方式可以使单一步长值还可以釆用多步长值的方 式, IQ信号校准模块还设置成: 在预设步长为第一步长时, 使用第一步长增 加一寄存器的值后, 判断反馈链路上本振泄露信号功率估值大于此寄存器的 值增加前的本振泄露信号功率估值,将所述预设步长改为第二步长进行微调, 直到所述本振泄露信号功率估值达到最小值, 所述本振泄露信号功率估值达 到最小值是指: 再调整一个步长, 所述本振泄露信号功率估值将变大。 其中, 所述第一步长大于所述第二步长。 例如第一步长为 10, 第二步长为 1。
本装置通过引入反馈链路实现 IQ信号的实时校准,提高对本振泄露抑制 的实时性和准确度, 降低对射频发射电路以及信号耦合电路的指标要求, 降 氐系统成本。
本发明实施例的进行 IQ信号实时校准的方法包括:通过反馈链路根据基 站发射装置输出的射频信号计算所述基站发射装置的本振泄露信号功率估 值, 通过调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直 至所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率标 准区间为止。
本方法中, 通过反馈链路根据基站发射装置输出的射频信号计算所述基 站发射装置的本振泄露信号功率估值的步骤包括: 将基站发射装置输出的射 频信号进行信号耦合后, 将耦合信号进行带通滤波得到本振射频信号, 将此 本振射频信号进行功率检波后得到直流信号, 将此直流信号经模数转换器转 换得到对应本振泄露的数字信号, 此本振泄露的数字信号的功率值即为所述 本振泄露信号功率估值。
本方法中使用预设步长调整寄存器的值, 具体的, 设置 I信号直流补偿 寄存器和 Q信号直流补偿寄存器的初始值后, 以预设步长增加 I信号直流补 偿寄存器的值和 /或 Q信号直流补偿寄存器的值并判断所述本振泄露信号功 率估值是否位于所述基站发射装置要求的本振泄露功率标准区间, 在判断结 果为否时, 重复执行上述增加寄存器的值以及判断的操作。
本方法中可以只对其中一个寄存器进行调整还可以交替性地对上述两个 寄存器的值进行阶段性调整; 对其中一寄存器的值进行阶段性调整的操作包 括: 以所述预设步长增加此寄存器的值, 判断反馈链路上本振泄露信号功率 估值小于或等于此寄存器的值增加前的本振泄露信号功率估值时, 继续以所 述预设步长增加此寄存器的值, 直至以所述预设步长增加此寄存器的值后, 判断反馈链路上本振泄露信号功率估值大于此寄存器的值增加前的本振泄露 信号功率估值时, 对另一寄存器进行阶段性调整。
本方法中可以使单一步长值还可以釆用多步长值的方式, 所述预设步长 为第一步长, 使用第一步长增加一寄存器的值后, 判断反馈链路上本振泄露 信号功率估值大于此寄存器的值增加前的本振泄露信号功率估值, 将所述预 设步长改为第二步长,所述第一步长大于所述第二步长。例如第一步长为 10, 第二步长为 1。
IQ信号校准方式的具体示例:
步骤 1 , 设置 I信号直流补偿寄存器和 Q信号直流补偿寄存器和值为中 间值(也可以设置为其它值) , 例如如果数模转换器为 AD9122时, 设置此 两个直流补偿寄存器设置为 128。
步骤 2, 以 10个单位为步进, 先增大 I信号直流补偿寄存器的值, 每调 整一步, 都记录下模数转换器(ADC )的釆样值, 如果 ADC的釆样值比调整 前的值小, 则继续增大 I信号直流补偿寄存器的值, 直到 ADC的釆样值比上 一步的值大为止, 此时进行步骤 3。
步骤 3 , 以 10个单位为步进, 先增大 Q信号直流补偿寄存器的值, 每调 整一步, 都记录下模数转换器(ADC )的釆样值, 如果 ADC的釆样值比调整 前的值小, 则继续增大 Q信号直流补偿寄存器的值, 直到 ADC的釆样值比 上一步的值大为止。 此时再执行步骤 2。
在执行步骤 2和步骤 3的过程中 ,仅仅调整一个步进( 10个单位)后 ADC 的釆样值就比调整前大, 则需要将步进改为 1个单位。 再重复进行第 2、 3步 的操作, 直到本振泄露的值满足系统标准区间要求为止。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性 本方案通过引入反馈链路实现 IQ信号的实时校准,提高了对本振泄露抑 制的实时性和准确度。 因此本发明具有很强的工业实用性。

Claims

权 利 要 求 书
1、 一种进行 IQ信号实时校准的方法, 包括:
通过反馈链路接收基站发射装置输出的射频信号并计算所述基站发射装 置的本振泄露信号功率估值, 所述反馈链路根据所述本振泄露信号功率估值 调整所述基站发射装置的 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄 存器的值直至所述本振泄露信号功率估值位于所述基站发射装置要求的本振 泄露功率标准区间为止。
2、 如权利要求 1所述的方法, 其中, 调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至所述本振泄露信号功率估值位于所述基 站发射装置要求的本振泄露功率标准区间为止的步骤包括:
设置所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存器的初始值 后, 以预设步长增加所述 I信号直流补偿寄存器的值和 /或所述 Q信号直流补 偿寄存器的值并判断所述本振泄露信号功率估值是否位于所述基站发射装置 要求的本振泄露功率标准区间, 在判断结果为否时, 重复执行上述增加及判 断的操作, 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本 振泄露功率标准区间为止。
3、 如权利要求 2所述的方法, 其中, 调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至所述本振泄露信号功率估值位于所述基 站发射装置要求的本振泄露功率标准区间为止的步骤包括:
交替性地对所述 I信号直流补偿寄存器的值和所述 Q信号直流补偿寄存 器的值进行阶段性调整, 包括:
按照以下方式对所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存 器中的任一个的值进行阶段性调整: 以所述预设步长增加该寄存器的值, 判 断反馈链路上本振泄露信号功率估值小于或等于该寄存器的值增加前的本振 泄露信号功率估值时, 继续以所述预设步长增加该寄存器的值, 直至所述反 馈链路上本振泄露信号功率估值大于该寄存器的值增加前的本振泄露信号功 率估值; 之后, 对除该寄存器外的另一寄存器进行阶段性调整。
4、 如权利要求 2或 3所述的方法, 其中, 所述预设步长为第一步长; 该方法还包括: 使用所述第一步长使得所述反馈链路上本振泄露信号功 率估值大于此寄存器的值增加前的本振泄露信号功率估值后, 将所述预设步 长改为第二步长进行微调, 直到所述本振泄露信号功率估值达到最小值; 其 中, 所述第一步长大于所述第二步长。
5、 如权利要求 1所述的方法, 其中, 反馈链路接收基站发射装置输出的 射频信号并计算所述基站发射装置的本振泄露信号功率估值的步骤包括: 将所述基站发射装置输出的射频信号进行信号耦合后得到耦合信号 , 将 所述耦合信号进行带通滤波得到本振射频信号, 将所述本振射频信号进行功 率检波后得到直流信号 , 将所述直流信号转换为对应本振泄露的数字信号 , 所述本振泄露的数字信号的功率值即为所述本振泄露信号功率估值。
6、 一种进行 IQ信号实时校准的装置, 该装置包括本振泄露信号功率估 值计算模块和 IQ信号校准模块, 其中: 所述本振泄露信号功率估值计算模块设置成: 接收基站发射装置输出的 射频信号并计算所述基站发射装置的本振泄露信号功率估值;
所述 IQ信号校准模块设置成:根据所述本振泄露信号功率估值调整基站 发射装置中 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值直至 所述本振泄露信号功率估值位于所述基站发射装置要求的本振泄露功率标准 区间为止。
7、 如权利要求 6所述的装置, 其中, 所述 IQ信号校准模块设置成按照 以下方式调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的值: 设置所述 I信号直流补偿寄存器和所述 Q信号直流补偿寄存器的初始值 后, 以预设步长增加所述 I信号直流补偿寄存器的值和 /或所述 Q信号直流补 偿寄存器的值并判断所述本振泄露信号功率估值是否位于所述基站发射装置 要求的本振泄露功率标准区间, 在判断结果为否时, 重复执行上述增加及判 断的操作, 直至所述本振泄露信号功率估值位于所述基站发射装置要求的本 振泄露功率标准区间为止。
8、 如权利要求 7所述的装置, 其中, 所述 IQ信号校准模块还设置成按 照以下方式调整 I信号直流补偿寄存器的值和 /或 Q信号直流补偿寄存器的 值:
交替性地对所述 I信号直流补偿寄存器的值和所述 Q信号直流补偿寄存 器的值进行阶段性调整;按照以下方式对所述 I信号直流补偿寄存器和所述 Q 信号直流补偿寄存器中的任一个的值进行阶段性调整: 以所述预设步长增加 该寄存器的值, 判断所述本振泄露信号功率估值小于或等于此寄存器的值增 加前的本振泄露信号功率估值时, 继续以所述预设步长增加该寄存器的值, 直至所述本振泄露信号功率估值大于该寄存器的值增加前的本振泄露信号功 率估值; 之后, 对除该寄存器外地另一寄存器进行阶段性调整。
9、 如权利要求 7或 8所述的装置, 其中,
所述 IQ信号校准模块还设置成: 以第一步长增加 I信号直流补偿寄存器 或 Q信号直流补偿寄存器的值, 直到所述本振泄露信号功率估值大于此寄存 器的值增加前的本振泄露信号功率估值; 之后, 将所述第一步长改为第二步 长进行微调, 直到所述本振泄露信号功率估值达到最小值; 其中, 所述第一 步长大于所述第二步长。
10、 如权利要求 6所述的装置, 其中, 所述本振泄露信号功率估值计算 模块包括信号耦合电路、 带通滤波器、 功率检波电路和模数转换器, 其中: 所述信号耦合电路设置成: 接收基站发射装置输出的射频信号并将其进 行信号耦合, 得到耦合信号后将其输出至所述带通滤波器;
所述带通滤波器设置成: 将所述耦合信号进行带通滤波得到本振射频信 号;
所述功率检波电路设置成: 将所述带通滤波器输入的本振射频信号转化 为直流信号;
所述模数转换器设置成: 对所述直流信号进行模数转换, 得到对应本振 泄露的数字信号, 所述本振泄露的数字信号的功率值即为所述本振泄露信号 功率估值。
11、 如权利要求 6-10中任一项所述的装置, 其中, 所述基站发射装置包 括数模转换器、 IQ滤波器、 IQ调制器和射频发射单元, 其中, 所述本振泄露 信号功率估值计算模块接收所述射频发射单元发出的射频信号, 所述数模转 换器接收所述 IQ信号校准模块输出的数字信号。
PCT/CN2011/083573 2011-06-24 2011-12-06 一种进行iq信号实时校准的方法和装置 WO2012174831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110172792.7 2011-06-24
CN 201110172792 CN102223330A (zh) 2011-06-24 2011-06-24 一种进行iq信号实时校准的方法和装置

Publications (1)

Publication Number Publication Date
WO2012174831A1 true WO2012174831A1 (zh) 2012-12-27

Family

ID=44779762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083573 WO2012174831A1 (zh) 2011-06-24 2011-12-06 一种进行iq信号实时校准的方法和装置

Country Status (2)

Country Link
CN (1) CN102223330A (zh)
WO (1) WO2012174831A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223330A (zh) * 2011-06-24 2011-10-19 中兴通讯股份有限公司 一种进行iq信号实时校准的方法和装置
CN102497341B (zh) * 2011-11-15 2015-02-04 大唐移动通信设备有限公司 一种本振泄露校准方法及系统
CN103067321B (zh) * 2012-12-20 2015-07-15 大唐移动通信设备有限公司 一种本振泄露快速校准装置及方法
CN103916345A (zh) * 2012-12-28 2014-07-09 北京中电华大电子设计有限责任公司 一种无线局域网芯片发射机本振泄漏校正的方法和装置
CN103701754B (zh) * 2013-12-23 2017-04-19 北京航天测控技术有限公司 一种矢量调制信号的自动校准方法
CN104158552B (zh) * 2014-08-01 2016-11-23 华为技术有限公司 零中频发射机、接收机及相关方法和系统
CN107547145B (zh) * 2016-06-27 2021-10-12 中兴通讯股份有限公司 一种本振泄漏信号的检测方法及装置
CN107819712A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 本振泄漏自动校准方法及装置
CN106549682B (zh) * 2016-11-04 2018-11-23 北京遥测技术研究所 一种减小发射信道角度误差的电路
CN108156103B (zh) * 2016-12-05 2022-02-15 中兴通讯股份有限公司 一种iq信号校准方法及装置
CN106850083B (zh) * 2017-03-24 2020-02-07 京信通信系统(中国)有限公司 一种抑制本振泄露信号的方法、电路板及通信设备
CN108710093B (zh) * 2018-04-16 2020-11-13 福建新大陆通信科技股份有限公司 提高变频器本振频率一致性的校准装置及方法
CN112436857B (zh) * 2020-07-21 2022-03-29 珠海市杰理科技股份有限公司 检测电路及检测方法、无线射频收发器、电器设备
CN112051447B (zh) * 2020-07-24 2024-02-13 山东浪潮科学研究院有限公司 一种混频器直流偏置校准方法、设备及介质
CN112615641A (zh) * 2020-12-31 2021-04-06 武汉力通通信有限公司 宽带射频收发机本振泄露补偿方法及系统
CN113949393B (zh) * 2021-10-25 2023-02-17 北京奕斯伟计算技术股份有限公司 发射机及其校准方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306691A (zh) * 1999-03-24 2001-08-01 皇家菲利浦电子有限公司 具有载波泄露补偿的正交调制器
CN101099296A (zh) * 2005-01-04 2008-01-02 富士通株式会社 Dc偏移补偿方法及dc偏移补偿装置
CN101364796A (zh) * 2007-08-07 2009-02-11 曹志明 应用于可变增益放大器的直流偏移消除电路
CN101616125A (zh) * 2008-06-26 2009-12-30 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
CN101981880A (zh) * 2008-03-29 2011-02-23 高通股份有限公司 用于dc补偿和agc的方法和系统
CN102223330A (zh) * 2011-06-24 2011-10-19 中兴通讯股份有限公司 一种进行iq信号实时校准的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306691A (zh) * 1999-03-24 2001-08-01 皇家菲利浦电子有限公司 具有载波泄露补偿的正交调制器
CN101099296A (zh) * 2005-01-04 2008-01-02 富士通株式会社 Dc偏移补偿方法及dc偏移补偿装置
CN101364796A (zh) * 2007-08-07 2009-02-11 曹志明 应用于可变增益放大器的直流偏移消除电路
CN101981880A (zh) * 2008-03-29 2011-02-23 高通股份有限公司 用于dc补偿和agc的方法和系统
CN101616125A (zh) * 2008-06-26 2009-12-30 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
CN102223330A (zh) * 2011-06-24 2011-10-19 中兴通讯股份有限公司 一种进行iq信号实时校准的方法和装置

Also Published As

Publication number Publication date
CN102223330A (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
WO2012174831A1 (zh) 一种进行iq信号实时校准的方法和装置
KR100539874B1 (ko) 무선 송수신장치에서 자가 보상장치 및 방법
US7397868B2 (en) Direct conversion RF transceiver for wireless communications
TWI571078B (zh) 用於正交接收信號的寬頻寬類比至數位轉換的裝置和方法
KR101200601B1 (ko) 입력 신호의 진폭에 따라 전송 링크의 출력 신호의 진폭및/또는 위상을 결정하는 방법 및 시스템
TWI513248B (zh) 補償同相正交不匹配的方法與裝置
JP6552832B2 (ja) 二重化装置、無線デバイス、及び関連する方法
US8948700B2 (en) Method and system for compensating for distortion in a transmitter by utilizing a digital predistortion scheme with a feedback mixer configuration
US8942635B2 (en) Method and system for compensating for estimated distortion in a transmitter by utilizing a digital predistortion scheme with a single feedback mixer
WO2005086362A1 (ja) 受信回路と、それを用いた受信装置および送受信装置
WO2017063415A1 (zh) 一种收发信机及工作方法
WO2012103856A2 (zh) 通信校正装置及方法
GB2489002A (en) Delay adjustment to reduce distortion in an envelope tracking transmitter
CN102025666B (zh) 一种基站发信机设备实现iq信号校准的方法及装置
KR20080052442A (ko) 전압 정재파비를 완화시키기 위한 방법 및 시스템
TWI677202B (zh) 能夠抵銷內部訊號洩漏的無線收發機
TWI739663B (zh) 校正傳送器的方法
CN101056128B (zh) 稳定发射功率的方法和发射机
CN103208978B (zh) 基于镜像法的宽频带自适应谐波消除装置
JP5776495B2 (ja) 利得測定回路、利得測定方法および通信装置
US9608743B2 (en) Methods and devices for determining intermodulation distortions
WO2021135543A1 (zh) 接收机的校准方法及装置和接收机
TW201926914A (zh) 訊號發送裝置、偵測電路與其訊號偵測方法
WO2004040755A1 (ja) フィルタ回路及び無線装置
US20140307765A1 (en) Wireless transmission system, and method for determining default gain of wireless transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868329

Country of ref document: EP

Kind code of ref document: A1