WO2012103856A2 - 通信校正装置及方法 - Google Patents

通信校正装置及方法 Download PDF

Info

Publication number
WO2012103856A2
WO2012103856A2 PCT/CN2012/074458 CN2012074458W WO2012103856A2 WO 2012103856 A2 WO2012103856 A2 WO 2012103856A2 CN 2012074458 W CN2012074458 W CN 2012074458W WO 2012103856 A2 WO2012103856 A2 WO 2012103856A2
Authority
WO
WIPO (PCT)
Prior art keywords
analog
digital
channel
signal
correction
Prior art date
Application number
PCT/CN2012/074458
Other languages
English (en)
French (fr)
Other versions
WO2012103856A3 (zh
Inventor
李兴文
先丽
李挺钊
江立红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/074458 priority Critical patent/WO2012103856A2/zh
Priority to CN201280000457.1A priority patent/CN102771053B/zh
Priority to JP2015506065A priority patent/JP5896392B2/ja
Priority to EP12741531.3A priority patent/EP2830273B1/en
Priority to KR1020147031833A priority patent/KR101625965B1/ko
Publication of WO2012103856A2 publication Critical patent/WO2012103856A2/zh
Publication of WO2012103856A3 publication Critical patent/WO2012103856A3/zh
Priority to US14/516,931 priority patent/US9300335B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a communication correction apparatus and method. Background technique
  • the receiver mainly includes: an analog RF front end 101, an analog demodulator and an intermediate frequency channel 102 and an analog to digital converter (ADC) 103.
  • the analog RF front end 101 typically includes a Low Noise Amplifier (LNA).
  • LNA Low Noise Amplifier
  • various receivers of wireless communication systems are non-ideal.
  • IQ Inphase and Quadrature
  • DC direct current
  • analog RF front-end In-band amplitude fluctuations and group delay fluctuations, nonlinear distortion, etc. of the RF filter.
  • the non-ideality is the in-band amplitude fluctuation and group delay fluctuation of the RF filter, the in-band amplitude fluctuation and the group delay fluctuation introduced by the IF surface acoustic wave filter (SAW), and Nonlinear distortion, etc.
  • a correction channel is often used to correct the non-ideal characteristics of the receiver.
  • the more commonly used method for correcting channels is to generate a certain form of RF test signal by using a test signal generating device, and mix it with the input RF analog signal in the form of a coupler or a resistor network at the input of the receiver, and then send it together. Go to the input of the receiver.
  • the test signal generating device also sends a digital form corresponding to the RF test signal to the channel correction module for correction by the channel correction module. After the channel correction module is corrected, the test signal is cancelled, in an attempt to eliminate the interference of the test signal on the service signal.
  • the present invention provides a communication correction apparatus and method for solving the problem that the prior art uses a test signal to interfere with a service signal when performing channel correction on a receiver.
  • the present invention provides a communication correction apparatus, including: a receiving channel and a correction channel; the receiving channel includes an analog RF front end, a demodulator, a first analog to digital converter, and a first channel correction module; Including a frequency converter, a second analog to digital converter, and a digital processor;
  • the analog RF front end is respectively connected to the demodulator and the frequency converter, and is configured to perform amplification processing on the received radio frequency analog signal, and output the amplified to the demodulator and the frequency converter respectively.
  • Analog signal
  • the demodulator is connected to the first analog to digital converter, and is configured to perform demodulation processing on the amplified analog signal, and output the demodulated analog signal to the first analog to digital converter;
  • the first analog-to-digital converter is further connected to the first channel correction module, configured to perform analog-to-digital conversion on the demodulated analog signal, obtain a first digital signal, and output the first digital signal. Giving the first channel correction module;
  • the frequency converter is connected to the second analog-to-digital converter, and is configured to perform frequency conversion processing on the amplified analog signal to obtain a first frequency conversion analog signal, and output the first frequency conversion analog signal to the second Analog to digital converter
  • the second analog-to-digital converter is connected to the digital processor, and is configured to perform analog-to-digital conversion on the first variable-frequency analog signal to obtain a first analog-digital converted digital signal, and convert the first analog-digital conversion
  • the subsequent digital signal is output to the digital processor;
  • the digital processor is further connected to the first channel correction module, configured to digitally process the first analog-digital converted digital signal to obtain a second digital signal, and output the second digital signal to the The first channel correction module;
  • the first channel correction module is configured to correct the first digital signal according to the second digital signal, and output the corrected digital signal.
  • the present invention provides a communication correction method, including:
  • the analog RF front end of the receiving channel amplifies the received RF analog signal, and outputs the amplified analog signal to the demodulator of the receiving channel and the frequency converter of the correcting channel respectively; the demodulator pair of the receiving channel
  • the amplified analog signal is demodulated and output to a first analog-to-digital converter of the receiving channel; the first analog-to-digital converter of the receiving channel performs analog-to-digital conversion on the demodulated analog signal to obtain a first a digital signal, and outputting the first digital signal to the first channel correction module of the receiving channel;
  • the frequency converter of the correction channel receives the amplified output of the analog RF front end of the receiving channel An analog signal, performing frequency conversion processing on the amplified analog signal to obtain a first frequency conversion analog signal, and outputting the first frequency conversion analog signal to a second analog to digital converter of the correction channel; a second analog-to-digital converter performs analog-to-digital conversion on the first variable-frequency analog signal to obtain a first analog-digital converted digital signal, and outputs the first analog-digital converted digital signal to digital processing of the correction channel
  • the digital processor of the correction channel digitally processes the first analog-digital converted digital signal to obtain a second digital signal and outputs the second digital signal to the first channel correction module of the receiving channel ;
  • the first channel correction module of the receiving channel corrects the first signal according to the second digital signal, and outputs the corrected digital signal.
  • FIG. 1 is a structural block diagram of a receiver in a conventional wireless communication system
  • FIG. 2 is a schematic structural diagram of a communication correction apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a communication correction apparatus according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a communication correction method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a communication correction method according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a communication correction method according to still another embodiment of the present invention.
  • FIG. 7 is a flowchart of a communication correction method according to still another embodiment of the present invention.
  • 2 is a schematic structural diagram of a communication correction apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus of this embodiment includes: a receiving channel 100 and a correction channel 200.
  • the receiving channel 100 mainly includes: an analog RF front end 11, a demodulator 12, a first analog to digital converter 13, and a first channel correction module 14.
  • the analog RF front end 11 is connected to the demodulator 12, the demodulator 12 is connected to the first analog to digital converter 13, and the first analog to digital converter 13 is connected to the first channel correction module 14.
  • the correction channel 200 mainly includes: a frequency converter 21, a second analog to digital converter 22, and a digital processor 23.
  • the inverter 21 is connected to the second analog-to-digital converter 22, and the second analog-to-digital converter 22 is connected to the digital processor 23.
  • the analog RF front end 11 is also connected to the frequency converter 21; the digital processor 23 is also connected to the first channel correction module 14.
  • the receiving channel 100 of this embodiment is similar in structure to the receiver in the prior art communication system, except that the functions of some devices are not identical.
  • the function of each device in the receiving channel 100 is as follows:
  • the analog RF front end 11 is mainly used for receiving the RF analog signal, and amplifying the RF analog signal, and then outputting the amplified analog signal to the demodulator 12 and the inverter 21, respectively.
  • the amplification process mainly refers to low noise amplification. That is to say, the analog RF front end 11 of the embodiment outputs two analog signals after low noise amplification of the received RF analog signal.
  • the analog RF front end 11 of this embodiment is mainly composed of some LNAs and filters.
  • the demodulator 12 is configured to receive an analog signal, perform demodulation processing on the received analog signal, and then output the demodulated analog signal to the connected first analog to digital converter 13.
  • the analog signal received by the demodulator 12 refers to an analog signal output from the analog RF front end 11.
  • the demodulator 12 of the present embodiment may be constituted by an analog demodulator and an intermediate frequency channel, but is not limited thereto.
  • a first analog-to-digital converter 13 configured to perform analog-to-digital conversion on the received demodulated analog signal to obtain a first digital signal, and then output the first digital signal to the first channel correction module 14 to enable A channel correction module 14 corrects the first digital signal to achieve the purpose of overcoming the non-ideal characteristics of the receiver.
  • the first channel correction module 14 is configured to receive the first digital signal output by the first analog to digital converter 13.
  • the frequency converter 21 is configured to receive an analog signal, perform frequency conversion processing on the received analog signal to obtain a first frequency conversion analog signal, and then output the obtained first frequency conversion analog signal to the connected second analog to digital converter 22.
  • the inverter 21 mainly changes a high frequency signal (for example, 2100 MHz) into an intermediate frequency signal (for example, 140 MHz).
  • the analog signal received by the frequency converter 21 is an analog signal output from the analog RF front end 11.
  • the frequency converter 21 of this embodiment can be used by an analog frequency converter and The frequency channel is constructed, but is not limited thereto.
  • the second analog-to-digital converter 22 is configured to receive the first frequency conversion analog signal output by the frequency converter 21, perform analog-to-digital conversion on the first frequency conversion analog signal, convert the first frequency conversion analog signal into a digital signal, and obtain a first analog-to-digital conversion. The subsequent digital signal then outputs the first analog-to-digital converted digital signal to the digital processor 23.
  • the digital processor 23 is configured to receive the first analog-digital converted digital signal output by the second analog-to-digital converter 22, digitally process the first analog-digital converted digital signal to obtain a second digital signal, and then Digital signal output. In the present embodiment, the digital processor 23 outputs the second digital signal to the first channel correction module 14.
  • the digital processor 23 can process the digital signal using a Least Square (LS) algorithm or the like.
  • LS Least Square
  • the digital signal processed by the correction channel 200 is a real signal. Since there is no demodulator, there is no non-ideal characteristic of the demodulator and a complex signal of the demodulator (including IQ non-ideal characteristics), therefore, To compensate for the non-ideal characteristics of the demodulator.
  • the first channel correction module 14 not only receives the first digital signal output by the first analog to digital converter 13, but also receives the second digital signal output by the digital processor 23, and according to the number The second digital signal outputted by the processor 23 corrects the first digital signal output from the first analog to digital converter 13 and outputs the corrected digital signal.
  • the first digital signal output by the first analog-to-digital converter 13 includes a DC-OFFSET signal of the demodulator 12 and an image signal. Since the correction channel 200 does not demodulate the analog signal, the analog signal is frequency-converted by the inverter 21, so the second digital signal output from the digital processor 23 does not include the DC-OFFSET signal and the image signal.
  • the first channel correction module 14 can correlate two digital signals from the first analog to digital converter 13 and from the digital processor 23 by using an LS algorithm or the like based on a characteristic change of the characteristics of the demodulator and the modulator. Compare, find the non-ideal characteristics, and then correct the non-ideal characteristics found.
  • FIG. 3 is a schematic structural diagram of a communication correction apparatus according to another embodiment of the present invention. The embodiment is implemented based on the embodiment shown in FIG. 2. As shown in FIG. 3, the apparatus of this embodiment further includes: a transmitting channel 300.
  • the transmit channel 300 mainly includes: a second channel correction module 31, a digital to analog converter 32, a modulator 33, and an analog transmit front end 34.
  • the second channel correction module 31 is connected to the digital to analog converter 32, the digital to analog converter 32 is connected to the modulator 33, and the modulator 33 is connected to the analog transmitting front end 34.
  • correction channel 200 of the embodiment further includes: a selection control module 24.
  • the selection control module 24 is connected to the inverter 21.
  • the analog RF front end 11 is connected to the frequency converter 21 through the selection control module 24, that is, the selection control module 24 is connected between the analog RF front end 11 and the frequency converter 21.
  • the analog transmit front end 34 is coupled to the frequency converter 21 via a selection control module 24, i.e., the selection control module 24 is coupled between the analog transmit front end 34 and the frequency converter 21.
  • the digital processor 23 is also coupled to the second channel correction module 31 and is also provided for providing the digitally processed digital signal to the second channel correction module 31.
  • the control module 24 is selected to control the frequency converter 21 to communicate with the analog RF front end 11, or to control the frequency converter 21 to communicate with the analog transmitting front end 34. That is, the correction channel 200 of the present embodiment is simultaneously connected to the receiving channel 100 and the transmitting channel 300, and the calibration channel 200 is connected to one of the receiving channel 100 and the transmitting channel 300 by the selection control module 24 at a certain time to make correction. Channel 200 performs channel correction on the channels that are in communication therewith.
  • the frequency converter 21 of the embodiment is further configured to receive the power amplified analog signal output by the analog transmitting front end 34, and perform frequency conversion processing on the power amplified analog signal to obtain a second frequency conversion analog signal, and the second frequency conversion The analog signal is output to the second analog to digital converter 22.
  • the second analog-to-digital converter 22 is further configured to receive the second frequency conversion analog signal output by the frequency converter 21, and perform analog-to-digital conversion on the second frequency conversion analog signal output by the frequency converter 21 to obtain the second analog-digital converted number.
  • the signal outputs the second analog-digital converted digital signal to the digital processor 23.
  • the digital processor 23 is further configured to receive the second analog-to-digital converted digital signal output by the second analog-to-digital converter 22, and digitally process the second analog-digital converted digital signal to obtain a third digital signal. And outputting the third digital signal to the second channel correction module 31, so that the second channel correction module 31 corrects the fourth digital signal to be corrected by the third digital signal provided by the digital processor 23, and the corrected number is The signal is output to a digital to analog converter 32.
  • the transmitting channel 300 of this embodiment is similar to the structure of the transmitter in the existing communication system, and the area The difference is that some devices do not have the same function.
  • the functions of the devices in the transmitting channel 300 are as follows: a second channel correcting module 31, located at the receiving front end of the transmitting channel 300, for receiving the fourth digital signal to be corrected, and receiving the digitally processed output of the digital processor 23
  • the digital signal is corrected by the third digital signal provided by the digital processor 23, and the corrected digital signal is output to the digital-to-analog converter 32.
  • the fourth digital signal to be corrected refers to a digital signal that needs to be transmitted through the transmitting channel 300.
  • the fourth digital signal to be corrected may be a digital signal input from the outside.
  • the second channel correction module 31 is also based on the characteristics that the characteristics of the demodulator and the modulator change slowly, and the two digital signals from the digital processor 23 and the input are correlated and compared by using an LS algorithm to find a non-ideal. The characteristics are then corrected for the non-ideal characteristics found.
  • the digital-to-analog converter 32 is configured to receive the corrected digital signal output by the second channel correction module 31, perform digital-to-analog conversion on the corrected digital signal, and convert the received corrected digital signal into an analog The signal is then output to the modulator 33 by the digital-to-analog converted analog signal.
  • the modulator 33 is configured to receive an analog signal output by the digital-to-analog converter 32, modulate the received analog signal, and output the modulated analog signal to the analog transmitting front end 34.
  • the modulator 33 mainly modulates the intermediate frequency signal to the radio frequency, for example, to adjust the 10 MHz signal to 2100 MHz, that is, to perform spectrum shifting.
  • the modulator 33 of the present embodiment can be constituted by an analog modulator and an intermediate frequency channel, but is not limited thereto.
  • the analog transmitting front end 34 is configured to receive the modulated analog signal output by the modulator 33, and perform power amplification processing on the received analog analog signal, and transmit the power amplified analog signal to the frequency converter. 21 output power amplified analog signal.
  • the analog transmit front end 34 of the present embodiment can typically be constructed of a power amplifier.
  • the second channel correction module 31 specifically corrects the digital signal of the current time by using the characteristics of the transmission channel 300 acquired by the digital signal of the previous moment, thereby overcoming the transmission channel 300.
  • Various non-ideal characteristics improve the accuracy of the digital signal at the current moment.
  • the digital signal of the previous moment is processed by the correction channel 200 to obtain a third digital signal, and the digital signal of the current moment is the fourth digital signal.
  • the transmitter also has non-ideal characteristics.
  • the communication correction device of the embodiment is connected to the transmission channel through the correction channel, and performs channel correction on the transmission channel, which overcomes the non-ideal characteristics of the transmission channel and improves the transmission precision of the wireless signal.
  • the transmitting channel and the receiving channel share a correcting channel, and the implementation structure is simple, and the implementation cost is low.
  • the selection control module 24 of the present embodiment may be a switch module or a radio frequency combining module, but is not limited thereto, and any device capable of implementing the selection control function is applicable to the technical solution of the present invention.
  • the selection control module 24 of the embodiment can control the inverter 21 to communicate with the analog RF front end 11 in a time division multiplexing manner, or control the frequency converter 21 to communicate with the analog transmitting front end 34.
  • the selection control module 24 controls the frequency converter 21 to communicate with the analog RF front end 11 in the first subframe, and then the inverter 21 and the analog transmission front end 34 are disconnected in the first subframe, and then in the first subframe.
  • the correction channel 200 performs channel correction on the receiving channel 100.
  • the selection control module 24 controls the frequency converter 21 to communicate with the analog transmitting front end 34 in the second subframe, and then the inverter 21 is disconnected from the analog RF front end 11 in the second subframe, and then in the second subframe.
  • the correction channel 200 performs channel correction on the transmission channel 300.
  • the transmit channel can be used to simulate an IQ modulated transmitter, such as a zero intermediate frequency transmitter, but is not limited thereto.
  • the receive channel can be used to simulate an IQ demodulation receiver, such as a zero-IF receiver.
  • FIG. 4 is a flowchart of a communication correction method according to an embodiment of the present invention. As shown in FIG. 4, the method of this embodiment includes:
  • Step 401 The analog RF front end of the receiving channel amplifies the received RF analog signal, and outputs the amplified analog signal to the demodulator of the receiving channel and the frequency converter of the correcting channel respectively.
  • Step 402 The demodulator of the receiving channel demodulates the received amplified analog signal and outputs the first analog-to-digital converter to the receiving channel.
  • the first analog-to-digital converter of the receiving channel pairs the demodulated analog signal. Performing analog-to-digital conversion to obtain a first digital signal, and outputting the first digital signal to the first channel correction module of the receiving channel.
  • Step 403 The frequency converter of the calibration channel receives the amplified analog signal outputted by the analog RF front end of the receiving channel, and performs frequency conversion processing on the amplified analog signal to obtain the first frequency conversion analog signal. Outputting the first frequency conversion analog signal to the second analog to digital converter of the correction channel; the second analog to digital converter of the correction channel performs analog to digital conversion on the first frequency conversion analog signal to obtain the first analog to digital converted digital signal, and The first analog-digital converted digital signal is output to the digital processor of the correction channel; the digital processor of the correction channel digitally processes the first analog-digital converted digital signal to obtain a second digital signal and output the second digital signal to The first channel correction module of the receiving channel.
  • Step 404 The first channel correction module of the receiving channel corrects the first digital signal according to the second digital signal, and outputs the corrected digital signal.
  • the communication correction method of the embodiment is implemented by the correction communication device provided by the embodiment of the present invention, and describes in detail how the communication correction device corrects the receiving channel, and overcomes the non-ideal characteristics of the receiving channel by correcting the receiving channel, thereby improving Receive accuracy of wireless signals.
  • FIG. 5 is a flowchart of a communication correction method according to another embodiment of the present invention.
  • the embodiment is implemented based on the embodiment shown in FIG. 4.
  • the method in this embodiment includes: Step 400: The selection control module of the correction channel controls the analog RF of the inverter and the receiving channel of the correction channel. The front end is connected.
  • the selection control module can control the frequency converter to communicate with the analog RF front end or the analog transmission front end by means of time division multiplexing.
  • the selection control module controls the frequency converter to communicate with the analog RF front end, and provides conditions for correcting the reception channel through the correction channel.
  • the channel correction method of this embodiment is applicable to the case where the receiving channel and the transmitting channel exist at the same time.
  • the selection control module controls the frequency converter to communicate with the analog RF front end, and provides conditions for correcting the receiving channel through the correction channel.
  • FIG. 6 is a flowchart of a communication correction method according to still another embodiment of the present invention. As shown in FIG. 6, the method in this embodiment includes:
  • Step 601 The frequency converter receives the power amplified analog signal output from the analog transmitting front end of the transmitting channel, and performs frequency conversion processing on the power amplified analog signal to obtain a second frequency conversion analog signal and outputs the second frequency conversion analog signal to the calibration.
  • the second analog to digital converter of the channel receives the power amplified analog signal output from the analog transmitting front end of the transmitting channel, and performs frequency conversion processing on the power amplified analog signal to obtain a second frequency conversion analog signal and outputs the second frequency conversion analog signal to the calibration.
  • the second analog to digital converter of the channel The second analog to digital converter of the channel.
  • Step 602 The second analog-to-digital converter of the correction channel performs analog-to-digital conversion on the second variable-frequency analog signal to obtain a second analog-digital converted digital signal, and outputs the second analog-digital converted digital signal to the corrected channel number.
  • the digital processor of the correction channel digitally processes the second analog-digital converted digital signal to obtain a third digital signal and outputs the third digital signal to the second channel correction module of the transmitting channel.
  • Step 603: The second channel correction module of the transmitting channel receives the third digital signal and the fourth digital signal to be corrected, and corrects the fourth digital signal according to the third digital signal, and outputs the corrected digital signal to the number of the transmitting channel. Analog converter.
  • Step 604 The digital-to-analog converter of the transmitting channel performs digital-to-analog conversion on the corrected digital signal, and outputs the analog-to-digital converted analog signal to the modulator of the transmitting channel; and simulates the digital-to-analog conversion of the modulator of the transmitting channel The signal is modulated and the analog transmit front end of the transmit channel is output.
  • Step 605 The analog transmitting front end of the transmitting channel performs power amplification processing on the modulated analog signal, and transmits the power amplified analog signal, and outputs the amplified analog signal to the frequency converter of the correcting channel.
  • the communication correction method of the embodiment is implemented by the correction communication device provided by the embodiment of the present invention, and describes in detail how the communication correction device corrects the transmission channel, and overcomes the non-ideal characteristics of the transmission channel by correcting the transmission channel, thereby improving The accuracy of the transmission of wireless signals.
  • FIG. 7 is a flowchart of a communication correction method according to still another embodiment of the present invention.
  • the embodiment is implemented based on the embodiment shown in FIG. 6.
  • the method in this embodiment includes: Step 600:
  • the selection control module of the correction channel controls the simulation of the inverter and the transmission channel of the correction channel.
  • the front end of the transmission is connected.
  • the selection control module can control the frequency converter to communicate with the analog RF front end or the analog transmission front end by means of time division multiplexing.
  • the selection control module controls the frequency converter to communicate with the analog transmitting front end, and provides conditions for correcting the transmitting channel through the correcting channel.
  • the channel correction method of this embodiment is applicable to the case where the receiving channel and the transmitting channel exist at the same time, and the selection control module can control the frequency converter to communicate with the analog transmitting front end, and provides conditions for correcting the transmitting channel through the correcting channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Amplifiers (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Description

通信校正装置及方法 技术领域 本发明涉及无线通信技术, 尤其涉及一种通信校正装置及方法。 背景技术
图 1为现有无线通信系统中接收机的结构框图。 如图 1所示, 接收机主 要包括: 模拟射频前端 101、 模拟解调器及中频通道 102 和模数转换器 ( Analogue to Digital Converter, ADC ) 103。 模拟射频前端 101—般包括有 低噪声放大器(Low Noise Amplifier, LNA )。 通常, 无线通信系统的各种接 收机均具有非理想性。 例如, 对于模拟 IQ解调接收机来说, 其非理想性表现 为同相与正交(Inphase and Quadrature, IQ )信号的幅相不平衡、 直流( Direct Current, DC )干扰、 模拟射频前端中的射频滤波器的带内振幅波动与群时延 波动、 非线性失真等。 对于数字中频接收机来说, 其非理想性表现为射频滤 波器的带内幅度波动与群延时波动、 中频声表面波滤波器(SAW ) 引入的带 内幅度波动与群延时波动、 以及非线性失真等。
在实际使用中, 常使用校正通道来校正接收机的非理想特性。 目前较为 常用的校正通道的方法是用一个测试信号产生装置产生一定形式的射频测试 信号, 并在接收机输入端用耦合器或者电阻网络的形式, 与输入的射频模拟 信号相混合, 然后一起送到接收机的输入端。 其中, 测试信号产生装置还将 与射频测试信号对应的数字形式送到通道校正模块以供通道校正模块进行校 正。 通道校正模块校正结束后, 再进行测试信号的对消处理, 以试图消除测 试信号对业务信号的干扰。
但是, 对测试信号的对消处理不是完全理想的, 在对消处理后的输出信 号中还会存在一定的测试信号的残留, 这就对业务信号形成了干扰。 发明内容
本发明提供一种通信校正装置及方法, 用以解决现有技术使用测试信号 对接收机进行通道校正时对业务信号造成干扰的问题。 一方面, 本发明提供一种通信校正装置, 包括: 接收通道和校正通道; 所述接收通道包括模拟射频前端、 解调器、 第一模数转换器和第一通道 校正模块; 所述校正通道包括变频器、 第二模数转换器和数字处理器;
其中, 所述模拟射频前端分别与所述解调器和所述变频器连接, 用于对 接收到的射频模拟信号进行放大处理, 并分别向所述解调器和所述变频器输 出放大后的模拟信号;
所述解调器与所述第一模数转换器连接, 用于对所述放大后的模拟信号 进行解调处理 , 并将解调后的模拟信号输出给所述第一模数转换器;
所述第一模数转换器还与所述第一通道校正模块连接, 用于对所述解调 后的模拟信号进行模数转换, 获得第一数字信号, 并将所述第一数字信号输 出给所述第一通道校正模块;
所述变频器与所述第二模数转换器连接, 用于对所述放大后的模拟信号 进行变频处理获得第一变频模拟信号, 并将所述第一变频模拟信号输出给所 述第二模数转换器;
所述第二模数转换器与所述数字处理器连接, 用于对所述第一变频模拟 信号进行模数转换获得第一模数转换后的数字信号, 并将所述第一模数转换 后的数字信号输出给所述数字处理器;
所述数字处理器还与所述第一通道校正模块连接, 用于对所述第一模数 转换后的数字信号进行数字处理获得第二数字信号, 并将所述第二数字信号 输出给所述第一通道校正模块;
所述第一通道校正模块, 用于根据所述第二数字信号对所述第一数字信 号进行校正, 并输出校正后的数字信号。
另一方面, 本发明提供一种通信校正方法, 包括:
接收通道的模拟射频前端对接收到的射频模拟信号进行放大处理, 并分 别向所述接收通道的解调器和校正通道的变频器输出放大后的模拟信号; 所述接收通道的解调器对所述放大后的模拟信号进行解调并输出给所述 接收通道的第一模数转换器; 所述接收通道的第一模数转换器对解调后的模 拟信号进行模数转换获得第一数字信号, 并将所述第一数字信号输出给所述 接收通道的第一通道校正模块;
所述校正通道的变频器接收所述接收通道的模拟射频前端输出的放大后 的模拟信号, 对所述放大后的模拟信号进行变频处理获得第一变频模拟信号 并将所述第一变频模拟信号输出给所述校正通道的第二模数转换器; 所述校 正通道的第二模数转换器对所述第一变频模拟信号进行模数转换获得第一模 数转换后的数字信号 , 并将所述第一模数转换后的数字信号输出给所述校正 通道的数字处理器; 所述校正通道的数字处理器对所述第一模数转换后的数 字信号进行数字处理获得第二数字信号并将所述第二数字信号输出给所述接 收通道的第一通道校正模块;
所述接收通道的第一通道校正模块根据所述第二数字信号对所述第一信 号进行校正, 并输出校正后的数字信号。
本发明实施例提供的通信校正装置及方法, 通过将接收到的业务信号进 行分路, 使用业务信号本身对接收机的通道进行校正, 既通过校正通道校正 了接收机的非理想性, 又解决了现有技术中使用测试信号对接收机进行通道 校正时, 由于测试信号对消不彻底造成对业务信号的干扰的问题。 附图说明 图 1为现有无线通信系统中接收机的结构框图;
图 2为本发明一实施例提供的通信校正装置的结构示意图;
图 3为本发明另一实施例提供的通信校正装置的结构示意图;
图 4为本发明一实施例提供的通信校正方法的流程图;
图 5为本发明另一实施例提供的通信校正方法的流程图;
图 6为本发明又一实施例提供的通信校正方法的流程图;
图 7为本发明又一实施例提供的通信校正方法的流程图。 具体实施方式 图 2为本发明一实施例提供的通信校正装置的结构示意图。如图 2所示, 本实施例的装置包括: 接收通道 100和校正通道 200。
其中, 接收通道 100主要包括: 模拟射频前端 11、 解调器 12、 第一模数 转换器 13和第一通道校正模块 14。 其中, 模拟射频前端 11与解调器 12连 接, 解调器 12与第一模数转换器 13连接, 第一模数转换器 13和第一通道校 正模块 14连接。 校正通道 200主要包括: 变频器 21、 第二模数转换器 22和数字处理器 23。 其中, 变频器 21与第二模数转换器 22连接, 第二模数转换器 22和数字 处理器 23连接。
其中, 模拟射频前端 11还与变频器连接 21 ; 数字处理器 23还与第一通 道校正模块 14连接。
本实施例的接收通道 100与现有通信系统中的接收机的结构相类似, 区 别在于一些器件的功能不完全相同。 接收通道 100中每个器件的功能如下: 模拟射频前端 11主要用于接收射频模拟信号,并对射频模拟信号进行放 大处理, 然后分别向解调器 12和变频器 21输出放大后的模拟信号。 其中, 所述放大处理主要是指低噪声放大。 也就是说, 本实施例的模拟射频前端 11 在对接收到的射频模拟信号进行低噪声放大后会输出两路模拟信号。 两路模 拟信号中, 一路输入模拟射频前端 11 所连接的解调器 12, —路输入模拟射 频前端 11所连接的变频器 21。本实施例的模拟射频前端 11主要由一些 LNA 和滤波器构成。
解调器 12, 用于接收模拟信号, 对接收到的模拟信号进行解调处理, 然 后将解调出的模拟信号输出给所连接的第一模数转换器 13。 在本实施例中, 解调器 12接收到的模拟信号是指模拟射频前端 11输出的一路模拟信号。 本 实施例的解调器 12可由模拟解调器和中频通道构成, 但不限于此。
第一模数转换器 13 , 用于对接收到的上述解调后的模拟信号进行模数转 换, 获得第一数字信号, 然后将第一数字信号输出给第一通道校正模块 14, 以使第一通道校正模块 14对该第一数字信号进行校正,从而达到克服接收机 的非理想特性的目的。
此时, 第一通道校正模块 14, 用于接收第一模数转换器 13输出的第一 数字信号。
本实施例的校正通道 200中各器件的功能如下:
变频器 21 , 用于接收模拟信号, 并对接收到的模拟信号进行变频处理获 得第一变频模拟信号, 然后将获得的第一变频模拟信号输出给所连接的第二 模数转换器 22。 变频器 21主要是将高频信号 (例如 2100MHz ) 变为中频信 号(例如 140MHz ) 。 在本实施例中, 变频器 21接收到的模拟信号是模拟射 频前端 11输出的一路模拟信号。 本实施例的变频器 21可由模拟变频器和中 频通道构成, 但不限于此。
第二模数转换器 22, 用于接收变频器 21输出的第一变频模拟信号, 对 第一变频模拟信号进行模数转换, 将第一变频模拟信号转换为数字信号, 获 得第一模数转换后的数字信号, 然后将第一模数转换后的数字信号输出给数 字处理器 23。
数字处理器 23 , 用于接收第二模数转换器 22输出的第一模数转换后的 数字信号, 对第一模数转换后的数字信号进行数字处理获得第二数字信号, 然后将第二数字信号输出。 在本实施例中, 数字处理器 23将第二数字信号输 出给第一通道校正模块 14。 数字处理器 23可以采用最小二乘( Least Square, LS ) 算法等对数字信号进行处理。
其中, 经过校正通道 200处理后的数字信号是实信号, 由于没有经过解 调器, 因此不存在解调器的非理想特性和解调器的复信号(含有 IQ非理想特 性) , 因此, 可用于补偿解调器的非理想特性。
由此可见, 在本实施例中, 第一通道校正模块 14不仅会接收第一模数转 换器 13输出的第一数字信号,还会接收数字处理器 23输出的第二数字信号, 并根据数字处理器 23输出的第二数字信号对第一模数转换器 13输出的第一 数字信号进行校正, 并输出校正后的数字信号。
其中, 第一模数转换器 13输出的第一数字信号包括解调器 12的直流偏 置(DC-OFFSET )信号和镜像信号。 而由于校正通道 200并未对模拟信号进 行解调处理, 而是通过变频器 21对模拟信号进行了变频处理, 因此数字处理 器 23输出的第二数字信号不包括 DC-OFFSET信号和镜像信号。
其中,第一通道校正模块 14可以基于解调器和调制器的特性变化緩慢的 特点,采用 LS算法等对来自第一模数转换器 13的和来自数字处理器 23的两 路数字信号进行相关比较, 找出非理想特性, 然后对找出的非理想特性进行 校正。
在本实施例中, 由于通过校正通道对接收机的通道进行了校正, 克服了 接收机的各种非理性特性, 提高了接收到的数字信号的精度。 同时, 由于本 实施例使用接收机接收到的业务信号本身对接收机进行通道校正, 不再使用 外来的测试信号, 避免了对外来测试信号进行对消的操作, 也就解决了对外 来测试信号对消不彻底给业务信号造成干扰的问题。 图 3为本发明另一实施例提供的通信校正装置的结构示意图。 本实施例 基于图 2所示实施例实现, 如图 3所示, 本实施例的装置还包括: 发射通道 300。
发射通道 300主要包括: 第二通道校正模块 31、 数模转换器 32、 调制器 33和模拟发射前端 34。 其中, 第二通道校正模块 31与数模转换器 32连接, 数模转换器 32与调制器 33连接, 调制器 33和模拟发射前端 34连接。
进一步, 本实施例的校正通道 200还包括: 选择控制模块 24。 选择控制 模块 24与变频器 21连接。
其中,模拟射频前端 11通过选择控制模块 24与变频器 21连接, 也就是 说选择控制模块 24连接于模拟射频前端 11与变频器 21之间。模拟发射前端 34通过选择控制模块 24与变频器 21连接, 也就是说选择控制模块 24连接 于模拟发射前端 34与变频器 21之间。数字处理器 23还与第二通道校正模块 31连接, 还用于向第二通道校正模块 31提供数字处理后的数字信号。
选择控制模块 24, 用于控制变频器 21与模拟射频前端 11连通, 或者控 制控制变频器 21与模拟发射前端 34连通。 也就是说, 本实施例的校正通道 200同时连接于接收通道 100和发射通道 300,在某一时刻通过选择控制模块 24将校正通道 200与接收通道 100和发射通道 300其中之一连通, 使校正通 道 200对与之连通的通道进行通道校正。
基于上述, 本实施例的变频器 21还用于接收模拟发射前端 34输出的功 率放大后的模拟信号, 并对功率放大后的模拟信号进行变频处理获得第二变 频模拟信号, 并将第二变频模拟信号输出给第二模数转换器 22。
相应的, 第二模数转换器 22还用于接收变频器 21输出的第二变频模拟 信号,并对变频器 21输出的第二变频模拟信号进行模数转换获得第二模数转 换后的数字信号, 将第二模数转换后的数字信号输出给数字处理器 23。
相应地, 数字处理器 23还用于接收第二模数转换器 22输出的第二模数 转换后的数字信号, 并对第二模数转换后的数字信号进行数字处理, 获得第 三数字信号, 并将第三数字信号输出给第二通道校正模块 31 , 以使第二通道 校正模块 31用数字处理器 23提供的第三数字信号对待校正的第四数字信号 进行校正, 将校正后的数字信号输出给数模转换器 32。
本实施例的发射通道 300与现有通信系统中的发射机的结构相类似, 区 别在于一些器件的功能不完全相同。 发射通道 300中各器件的功能如下: 第二通道校正模块 31 , 位于发射通道 300的接收前端, 用于接收待校正 的第四数字信号,以及接收数字处理器 23输出的经数字处理得到的第三数字 信号,并用数字处理器 23提供的第三数字信号对待校正的第四数字信号进行 校正, 将校正后的数字信号输出给数模转换器 32。 其中, 所述待校正的第四 数字信号是指需要通过发射通道 300发射出去的数字信号。 所述待校正的第 四数字信号可以是由外部输入的数字信号。 具体的, 第二通道校正模块 31也 是基于解调器和调制器的特性变化緩慢的特点,采用 LS算法等对来自数字处 理器 23的和输入的两路数字信号进行相关比较, 找出非理想特性, 然后对找 出的非理想特性进行校正。
数模转换器 32, 用于接收第二通道校正模块 31输出的校正后的数字信 号, 对所述校正后的数字信号进行数模转换, 将接收到的所述校正后的数字 信号转换为模拟信号, 然后将数模转换得到的模拟信号输出给调制器 33。
调制器 33 , 用于接收数模转换器 32输出的模拟信号, 对接收到的模拟 信号进行调制, 并将调制后的模拟信号输出给模拟发射前端 34。 调制器 33 主要是将中频信号调制到射频上,例如将 10MHz的信号调整到 2100MHz上, 也就是进行频谱的搬移。
本实施例的调制器 33可由模拟调制器和中频通道构成, 但不限于此。 模拟发射前端 34, 用于接收调制器 33输出的调制后的模拟信号, 并对 接收到的所述调制后的模拟信号进行功率放大处理, 将功率放大后的模拟信 号发射出去, 并向变频器 21输出功率放大后的模拟信号。 本实施例的模拟发 射前端 34通常可由功率放大器构成。
由于本实施例的校正装置的结构可知,第二通道校正模块 31具体是使用 由前一时刻的数字信号获取的发射通道 300的特性, 对当前时刻的数字信号 进行校正, 从而克服发射通道 300的各种非理想特性, 提高当前时刻的数字 信号的发射精度。 上述前一时刻的数字信号经校正通道 200进行处理后得到 第三数字信号, 上述当前时刻的数字信号为第四数字信号。
在实际应用中, 不仅接收机存在非理想特性, 发射机同样会存在非理想 特性。 例如, 对于模拟 IQ调制 (又称模拟正交调制)发射机来说, 其非理想 特性主要表现为 IQ信号的镜像信号以及本振泄漏,这会严重影响发射信号的 精度。 而本实施例的通信校正装置通过校正通道与发射通道相连接, 并对发 射通道进行通道校正, 克服了发射通道存在的非理想特性, 提高了无线信号 的发射精度。 另外, 在本实施例中, 发射通道和接收通道共用一个校正通道, 实现结构简单, 实现成本较低。
进一步, 本实施例的选择控制模块 24可以是开关模块或射频合路模块, 但不限于此, 凡是能够实现选择控制功能的器件都适用于本发明技术方案。
在实际应用中, 如果对通道进行校正后, 通道的特性在一定时间内会比 较稳定, 也就是说可以不必对通道进行实时校正。 基于此, 本实施例的选择 控制模块 24可以采用时分复用的方式控制变频器 21与模拟射频前端 11连 通, 或者控制变频器 21与模拟发射前端 34连通。 例如, 选择控制模块 24控 制变频器 21与模拟射频前端 11在第一子帧内连通, 则在第一子帧内变频器 21与模拟发射前端 34是断开的, 则在第一子帧内校正通道 200对接收通道 100进行通道校正。 然后, 选择控制模块 24控制变频器 21与模拟发射前端 34在第二子帧内连通, 则在第二子帧内变频器 21与模拟射频前端 11是断开 的, 则在第二子帧内校正通道 200对发射通道 300进行通道校正。
在上述各实施例中, 发射通道可用于模拟 IQ调制发射机, 例如零中频发 射机,但不限于此。接收通道可用于模拟 IQ解调接收机,例如零中频接收机。
下面将通过具体实施例详细说明本发明实施例提供的通信校正装置的工 作原理。
图 4为本发明一实施例提供的通信校正方法的流程图。 如图 4所示, 本 实施例的方法包括:
步骤 401、 接收通道的模拟射频前端对接收到的射频模拟信号进行放大 处理, 并分别向接收通道的解调器和校正通道的变频器输出放大后的模拟信 号。
步骤 402、 接收通道的解调器对接收到的放大后的模拟信号进行解调并 输出给接收通道的第一模数转换器; 接收通道的第一模数转换器对解调后的 模拟信号进行模数转换获得第一数字信号, 将第一数字信号输出给接收通道 的第一通道校正模块。
步骤 403、 校正通道的变频器接收接收通道的模拟射频前端输出的放大 后的模拟信号, 对放大后的模拟信号进行变频处理获得第一变频模拟信号并 将第一变频模拟信号输出给校正通道的第二模数转换器; 校正通道的第二模 数转换器对第一变频模拟信号进行模数转换获得第一模数转换后的数字信 号, 并将第一模数转换后的数字信号输出给校正通道的数字处理器; 校正通 道的数字处理器对第一模数转换后的数字信号进行数字处理获得第二数字信 号并将第二数字信号输出给接收通道的第一通道校正模块。
步骤 404、 接收通道的第一通道校正模块根据第二数字信号对第一数字 信号进行校正, 并输出校正后的数字信号。
本实施例的通信校正方法由本发明实施例提供的校正通信装置实现, 详 细描述了通信校正装置如何对接收通道进行校正的过程, 通过对接收通道进 行校正克服了接收通道的非理想特性, 提高了无线信号的接收精度。
图 5为本发明另一实施例提供的通信校正方法的流程图。 本实施例基于 图 4所示实施例实现, 如图 5所示, 本实施例的方法在步骤 401之前包括: 步骤 400、 校正通道的选择控制模块控制校正通道的变频器与接收通道 的模拟射频前端连通。
具体的, 选择控制模块可以采用时分复用的方式控制变频器与模拟射频 前端或模拟发射前端相连通。 在本实施例中, 选择控制模块控制变频器与模 拟射频前端连通, 为通过校正通道对接收通道进行校正提供了条件。
本实施例的通道校正方法适用于接收通道和发射通道同时存在的情况, 首先由选择控制模块控制变频器与模拟射频前端连通, 为通过校正通道对接 收通道进行校正提供了条件。
图 6为本发明又一实施例提供的通信校正方法的流程图。 如图 6所示, 本实施例的方法包括:
步骤 601、 校正通道的变频器接收发射通道的模拟发射前端输出的功率 放大后的模拟信号, 对功率放大后的模拟信号进行变频处理获得第二变频模 拟信号并将第二变频模拟信号输出给校正通道的第二模数转换器。
步骤 602、 校正通道的第二模数转换器对第二变频模拟信号进行模数转 换获得第二模数转换后的数字信号, 并将第二模数转换后的数字信号输出给 校正通道的数字处理器; 校正通道的数字处理器对第二模数转换后的数字信 号进行数字处理获得第三数字信号并将第三数字信号输出给发射通道的第二 通道校正模块。 步骤 603、 发射通道的第二通道校正模块接收第三数字信号及待校正的 第四数字信号并根据第三数字信号对第四数字信号进行校正, 将校正后的数 字信号输出给发射通道的数模转换器。
步骤 604、 发射通道的数模转换器对校正后的数字信号进行数模转换, 并将数模转换得到的模拟信号输出给发射通道的调制器; 发射通道的调制器 对数模转换得到的模拟信号进行调制后输出发射通道的模拟发射前端。
步骤 605、 发射通道的模拟发射前端对调制后的模拟信号进行功率放大 处理, 将功率放大后的模拟信号发射出去, 并向校正通道的变频器输出功率 放大后的模拟信号。
本实施例的通信校正方法由本发明实施例提供的校正通信装置实现, 详 细描述了通信校正装置如何对发射通道进行校正的过程, 通过对发射通道进 行校正克服了发射通道的非理想特性, 提高了无线信号的发射精度。
图 7为本发明又一实施例提供的通信校正方法的流程图。 本实施例基于 图 6所示的实施例实现, 如图 7所示, 本实施例的方法在步骤 601之前包括: 步骤 600、 校正通道的选择控制模块控制校正通道的变频器与发射通道 的模拟发射前端连通。
具体的 , 选择控制模块可以采用时分复用的方式控制变频器与模拟射频 前端或模拟发射前端相连通。 在本实施例中, 选择控制模块控制变频器与模 拟发射前端连通, 为通过校正通道对发射通道进行校正提供了条件。
本实施例的通道校正方法适用于接收通道和发射通道同时存在的情况, 可由选择控制模块控制变频器与模拟发射前端连通, 为通过校正通道对发射 通道进行校正提供了条件。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种通信校正装置, 其特征在于, 包括: 接收通道和校正通道; 所述接收通道包括模拟射频前端、 解调器、 第一模数转换器和第一通道 校正模块; 所述校正通道包括变频器、 第二模数转换器和数字处理器;
其中, 所述模拟射频前端分别与所述解调器和所述变频器连接, 用于对 接收到的射频模拟信号进行放大处理, 并分别向所述解调器和所述变频器输 出放大后的模拟信号;
所述解调器与所述第一模数转换器连接, 用于对所述放大后的模拟信号 进行解调处理 , 并将解调后的模拟信号输出给所述第一模数转换器;
所述第一模数转换器还与所述第一通道校正模块连接, 用于对所述解调 后的模拟信号进行模数转换, 获得第一数字信号, 并将所述第一数字信号输 出给所述第一通道校正模块;
所述变频器与所述第二模数转换器连接, 用于对所述放大后的模拟信号 进行变频处理获得第一变频模拟信号, 并将所述第一变频模拟信号输出给所 述第二模数转换器;
所述第二模数转换器与所述数字处理器连接, 用于对所述第一变频模拟 信号进行模数转换获得第一模数转换后的数字信号, 并将所述第一模数转换 后的数字信号输出给所述数字处理器;
所述数字处理器还与所述第一通道校正模块连接, 用于对所述第一模数 转换后的数字信号进行数字处理获得第二数字信号, 并将所述第二数字信号 输出给所述第一通道校正模块;
所述第一通道校正模块, 用于根据所述第二数字信号对所述第一数字信 号进行校正, 并输出校正后的数字信号。
2、 根据权利要求 1所述的通信校正装置, 其特征在于, 还包括: 发射通 道; 所述发射通道包括第二通道校正模块、 数模转换器、 调制器和模拟发射 前端;
所述校正通道还包括: 与所述变频器连接的选择控制模块;
其中, 所述模拟射频前端通过所述选择控制模块与所述变频器连接; 所 述模拟发射前端通过所述选择控制模块与所述变频器连接; 所述选择控制模 块, 用于控制所述变频器与所述模拟射频前端连通, 或者控制所述变频器与 所述模拟发射前端连通;
所述变频器, 还用于对所述模拟发射前端输出的功率放大后的模拟信号 进行变频处理获得第二变频模拟信号, 并将所述第二变频模拟信号输出给所 述第二模数转换器;
所述第二模数转换器, 还用于对所述第二变频模拟信号进行模数转换获 得第二模数转换后的数字信号, 并将所述第二模数转换后的数字信号输出给 所述数字处理器;
所述数字处理器还与所述第二通道校正模块连接, 还用于对所述第二模 数转换后的数字信号进行数字处理获得第三数字信号, 将所述第三数字信号 输出给所述第二通道校正模块;
所述第二通道校正模块, 还与所述数模转换器连接, 用于接收所述第三 数字信号和待校正的第四数字信号并根据所述第三数字信号对所述第四数字 信号进行校正 , 并将校正后的数字信号输出给所述数模转换器;
所述数模转换器, 与所述调制器连接, 用于对所述校正后的数字信号进 行数模转换, 并将数模转换得到的模拟信号输出给所述调制器;
所述调制器, 与所述模拟发射前端连接, 用于对所述数模转换得到的模 拟信号进行调制后输出给所述模拟发射前端;
所述模拟发射前端, 用于对调制后的模拟信号进行功率放大处理, 将功 率放大后的模拟信号发送出去并输出给所述变频器。
3、 根据权利要求 2所述的通信校正装置, 其特征在于, 所述选择控制模 块具体采用时分复用的方式控制所述变频器与所述模拟射频前端连通, 或者 控制所述变频器与所述模拟发射前端连通。
4、 根据权利要求 2或 3所述的通信校正装置, 其特征在于, 所述选择控 制模块为开关模块或射频合路模块。
5、 根据权利要求 1或 2或 3或 4所述的通信校正装置, 其特征在于, 所 述解调器包括模拟解调器和中频通道; 所述调制器包括模拟调制器和中频通 道。
6、 一种通信校正方法, 其特征在于, 包括:
接收通道的模拟射频前端对接收到的射频模拟信号进行放大处理, 并分 别向所述接收通道的解调器和校正通道的变频器输出放大后的模拟信号; 所述接收通道的解调器对所述放大后的模拟信号进行解调并输出给所述 接收通道的第一模数转换器; 所述接收通道的第一模数转换器对解调后的模 拟信号进行模数转换获得第一数字信号, 并将所述第一数字信号输出给所述 接收通道的第一通道校正模块;
所述校正通道的变频器接收所述接收通道的模拟射频前端输出的放大后 的模拟信号, 对所述放大后的模拟信号进行变频处理获得第一变频模拟信号 并将所述第一变频模拟信号输出给所述校正通道的第二模数转换器; 所述校 正通道的第二模数转换器对所述第一变频模拟信号进行模数转换获得第一模 数转换后的数字信号 , 并将所述第一模数转换后的数字信号输出给所述校正 通道的数字处理器; 所述校正通道的数字处理器对所述第一模数转换后的数 字信号进行数字处理获得第二数字信号并将所述第二数字信号输出给所述接 收通道的第一通道校正模块;
所述接收通道的第一通道校正模块根据所述第二数字信号对所述第一信 号进行校正, 并输出校正后的数字信号。
7、 根据权利要求 6所述的通信校正方法, 其特征在于, 所述校正通道的 变频器接收所述接收通道的模拟射频前端输出的模拟信号之前包括:
所述校正通道的选择控制模块控制所述校正通道的变频器与所述接收通 道的模拟射频前端连通。
8、 根据权利要求 6或 7所述的通信校正方法, 其特征在于, 还包括: 所述校正通道的变频器接收发射通道的模拟发射前端输出的功率放大后 的模拟信号, 对所述功率放大后的模拟信号进行变频处理获得第二变频模拟 信号并将所述第二变频模拟信号输出给所述校正通道的第二模数转换器; 所述校正通道的第二模数转换器对所述第二变频模拟信号进行模数转换 获得第二模数转换后的数字信号, 并将所述第二模数转换后的数字信号输出 给所述校正通道的数字处理器; 所述校正通道的数字处理器对所述第二模数 转换后的数字信号进行数字处理获得第三数字信号并将所述第三数字信号输 出给所述发射通道的第二通道校正模块;
所述发射通道的第二通道校正模块接收所述第三数字信号以及待校正的 第四数字信号, 并根据所述第三数字信号对所述第四数字信号进行校正, 将 校正后的数字信号输出给所述发射通道的数模转换器; 所述发射通道的数模转换器对所述校正后的数字信号进行数模转换, 并 将数模转换得到的模拟信号输出给所述发射通道的调制器; 所述发射通道的 调制器对所述数模转换得到的模拟信号进行调制后输出所述发射通道的模拟 发射前端;
所述发射通道的模拟发射前端对调制后的模拟信号进行功率放大处理, 将功率放大后的模拟信号发射出去, 并向所述校正通道的变频器输出所述功 率放大后的模拟信号。
9、 根据权利要求 8所述的通信校正方法, 其特征在于, 所述校正通道的 变频器接收发射通道的模拟发射前端输出的功率放大后的模拟信号之前包 括:
所述校正通道的选择控制模块控制所述校正通道的变频器与所述发射通 道的模拟发射前端连通。
10、 根据权利要求 9所述的通信校正方法, 其特征在于, 所述校正通道 的选择控制模块控制所述校正通道的变频器与所述发射通道的模拟发射前端 连通包括:
所述校正通道的选择控制模块具体采用时分复用的方式控制所述校正通 道的变频器与所述发射通道的模拟发射前端连通。
PCT/CN2012/074458 2012-04-20 2012-04-20 通信校正装置及方法 WO2012103856A2 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2012/074458 WO2012103856A2 (zh) 2012-04-20 2012-04-20 通信校正装置及方法
CN201280000457.1A CN102771053B (zh) 2012-04-20 2012-04-20 通信校正装置及方法
JP2015506065A JP5896392B2 (ja) 2012-04-20 2012-04-20 通信補正のための装置及び方法
EP12741531.3A EP2830273B1 (en) 2012-04-20 2012-04-20 Device and method for communications correction
KR1020147031833A KR101625965B1 (ko) 2012-04-20 2012-04-20 통신 정정을 위한 장치 및 방법
US14/516,931 US9300335B2 (en) 2012-04-20 2014-10-17 Device and method for communication correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074458 WO2012103856A2 (zh) 2012-04-20 2012-04-20 通信校正装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/516,931 Continuation US9300335B2 (en) 2012-04-20 2014-10-17 Device and method for communication correction

Publications (2)

Publication Number Publication Date
WO2012103856A2 true WO2012103856A2 (zh) 2012-08-09
WO2012103856A3 WO2012103856A3 (zh) 2013-03-28

Family

ID=46603156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074458 WO2012103856A2 (zh) 2012-04-20 2012-04-20 通信校正装置及方法

Country Status (6)

Country Link
US (1) US9300335B2 (zh)
EP (1) EP2830273B1 (zh)
JP (1) JP5896392B2 (zh)
KR (1) KR101625965B1 (zh)
CN (1) CN102771053B (zh)
WO (1) WO2012103856A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127493A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种用于校正多个传输通道间偏差的装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170302483A1 (en) * 2015-10-06 2017-10-19 Maxlinear Asia Singapore Private Limited Receiver Based Envelope Detector
US10139438B2 (en) * 2016-08-25 2018-11-27 Intel Corporation Apparatus and method for calibrating high speed serial receiver analog front end and phase detector
KR102412718B1 (ko) * 2016-11-16 2022-06-24 한국전자통신연구원 고정 무선 링크 시스템에서 간섭을 제거하기 위한 장치 및 방법
JP6597654B2 (ja) * 2017-01-20 2019-10-30 トヨタ自動車株式会社 車両用ドア
KR102616755B1 (ko) * 2018-09-19 2023-12-20 인텔 코포레이션 에너지 효율적인 스펙트럼 필터링을 갖는 초고속 데이터 레이트의 디지털 밀리미터파 송신기
CN113190271B (zh) * 2021-04-07 2022-10-14 中国电子科技集团公司第二十九研究所 一种多个独立系统互联的通道校正的方法
CN113381820A (zh) * 2021-06-07 2021-09-10 创耀(苏州)通信科技股份有限公司 一种射频信号产生装置
WO2022268916A2 (en) 2021-06-23 2022-12-29 Ose Immunotherapeutics Pan-coronavirus peptide vaccine
WO2023009499A1 (en) 2021-07-27 2023-02-02 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease type 1a (gsd1a)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657241B2 (en) * 2002-02-01 2010-02-02 Qualcomm, Incorporated Distortion reduction calibration
CN100358378C (zh) * 2003-07-17 2007-12-26 华为技术有限公司 一种阵列天线收发通道的校正装置及方法
EP2075908A3 (en) * 2004-04-30 2009-07-22 Telegent Systems, Inc. integrated analog video receiver
CN100352298C (zh) * 2004-09-08 2007-11-28 中兴通讯股份有限公司 一种时分双工智能天线系统阵列通道的校正方法和装置
JP2008516537A (ja) * 2004-10-12 2008-05-15 マックスリニアー,インコーポレイティド アップコンバージョンと、これに後続するダイレクトダウンコンバージョンを使用するハイブリッド受信機アーキテクチャ
JP2008028530A (ja) 2006-07-19 2008-02-07 Fujitsu Ltd ばらつき補正回路を備えた無線受信機
US7760817B2 (en) 2006-08-10 2010-07-20 Mediatek Inc. Communication system for utilizing single tone testing signal having specific frequency or combinations of DC value and single tone testing signal to calibrate impairments in transmitting signal
CN100556015C (zh) * 2007-03-27 2009-10-28 华为技术有限公司 一种预失真装置及方法
US8290449B2 (en) * 2007-09-18 2012-10-16 California Institute Of Technology Equalization of third-order intermodulation products in wideband direct conversion receiver
US8121575B2 (en) * 2007-10-10 2012-02-21 Silicon Laboratories Inc. Modulated IF receiver and method
US8249535B2 (en) * 2008-01-25 2012-08-21 Nxp B.V. Radio receivers
WO2009128222A1 (ja) 2008-04-17 2009-10-22 パナソニック株式会社 受信装置と、これを用いた電子機器
JP5098811B2 (ja) * 2008-05-27 2012-12-12 日本電気株式会社 携帯端末装置とその消費電力制御方法
JP2010219697A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 受信機
CN102045754B (zh) 2009-10-22 2014-04-30 华为技术有限公司 发射机、基站设备和对齐发射机信号的方法
CN102231636B (zh) * 2011-06-21 2014-06-18 清华大学 一种接收机射频前端装置及其接收信号方法
DE102014104524B4 (de) * 2013-10-02 2017-07-06 Silicon Laboratories Inc. Empfänger mit der Fähigkeit zur Erfassung von Frequenzabweichungen und Verfahren dafür

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2830273A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127493A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种用于校正多个传输通道间偏差的装置及方法
US10938489B2 (en) 2017-12-29 2021-03-02 Huawei Technologies Co., Ltd. Apparatus and method for correcting deviation between plurality of transmission channels
US11456807B2 (en) 2017-12-29 2022-09-27 Huawei Technologies Co., Ltd. Apparatus and method for correcting deviation between plurality of transmission channels

Also Published As

Publication number Publication date
EP2830273B1 (en) 2016-11-09
EP2830273A2 (en) 2015-01-28
CN102771053B (zh) 2014-04-02
KR20140146655A (ko) 2014-12-26
WO2012103856A3 (zh) 2013-03-28
CN102771053A (zh) 2012-11-07
EP2830273A4 (en) 2015-04-08
US9300335B2 (en) 2016-03-29
JP2015518688A (ja) 2015-07-02
KR101625965B1 (ko) 2016-05-31
JP5896392B2 (ja) 2016-03-30
US20150036771A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
WO2012103856A2 (zh) 通信校正装置及方法
US8010064B2 (en) Systems and methods for transmitter calibration
KR100735366B1 (ko) 무선 송수신장치에서 자가 보상장치 및 방법
TWI571078B (zh) 用於正交接收信號的寬頻寬類比至數位轉換的裝置和方法
JP2012199923A (ja) 無線通信装置のアンテナをチューニングするシステム及び方法
US8121571B2 (en) Method for second intercept point calibration based on opportunistic reception
US20090310711A1 (en) Transmitter and receiver capable of reducing in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
WO2013032459A1 (en) Adaptive interference cancellation for transmitter distortion calibration in multi-antenna transmitters
CN105245475A (zh) 确定频率相关正交不平衡的通信单元、方法及集成电路
WO2017063415A1 (zh) 一种收发信机及工作方法
US20120014472A1 (en) Method, apparatus, and system for microwave signal correction
US9991994B1 (en) Method and terminal device for reducing image distortion
US10044547B2 (en) Digital code recovery with preamble
JP2009246655A (ja) 非線形歪補償装置及びその周波数特性偏差補償方法
KR100710123B1 (ko) 필터의 이득 리플 및 군지연 특성을 보상할 수 있는 수신회로 및 방법
US10142041B2 (en) Homodyne receiver calibration
JP6603639B2 (ja) 送受信回路、送受信機および信号時間差補正方法
JP4786335B2 (ja) 通信システム、受信機及び送信機
CN113079117B (zh) 一种接收链路iq失配估计的方法及装置
TW200939651A (en) Apparatus with tunable filter and related adjusting method
KR101573321B1 (ko) 광대역 위성통신용 제로-아이.에프(if) 변복조 장치
WO2014185175A1 (ja) 送信機
CN117459164A (zh) 一种ip2自动校准装置及方法
CN117713852A (zh) 一种发射机直流偏移校准方法和系统、收发系统
CN113162704A (zh) 基于镜像抑制的信号校准方法、装置、系统和电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000457.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741531

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015506065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012741531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012741531

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031833

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741531

Country of ref document: EP

Kind code of ref document: A2