WO2017063415A1 - 一种收发信机及工作方法 - Google Patents

一种收发信机及工作方法 Download PDF

Info

Publication number
WO2017063415A1
WO2017063415A1 PCT/CN2016/090316 CN2016090316W WO2017063415A1 WO 2017063415 A1 WO2017063415 A1 WO 2017063415A1 CN 2016090316 W CN2016090316 W CN 2016090316W WO 2017063415 A1 WO2017063415 A1 WO 2017063415A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
calibration
intermediate frequency
path
signal
Prior art date
Application number
PCT/CN2016/090316
Other languages
English (en)
French (fr)
Inventor
王珊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017063415A1 publication Critical patent/WO2017063415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • This document relates to, but is not limited to, the field of transceivers for communication systems, and more particularly to a transceiver and method of operation.
  • the carrier and image frequency of the zero-IF transceiver will fall into the signal band and affect the performance of the transceiver.
  • the high-IF scheme can shift these components out of the wanted signal band by frequency planning, and satisfy the system application by simple off-line calibration and filtering.
  • the biggest disadvantage of the offline calibration scheme is that the calibration parameters cannot adapt to the temperature change.
  • the calibration values written in the off-line table at normal temperature will greatly deteriorate with the temperature change.
  • the zero-IF architecture due to carrier leakage and sideband suppression.
  • the spurious components all fall into the useful signal band, using offline calibration, and the performance is poor.
  • the embodiment of the invention provides a transceiver and a working method, which can improve the working performance of the zero intermediate frequency transceiver.
  • An embodiment of the present invention provides a transceiver, including:
  • Zero-IF transmit path and zero-IF receive path and:
  • a feedback control link configured to acquire a transmit signal of a zero intermediate frequency transmit path, according to the transmit signal Generating a feedback signal and calibrating the zero intermediate frequency transmission path according to the feedback signal;
  • the calibration device is configured to perform on-line calibration of the zero intermediate frequency transmit path, the zero intermediate frequency receive path, and the feedback control link.
  • the feedback control link is set to:
  • the transceiver includes a plurality of zero intermediate frequency transmission paths, and the feedback control link is set to:
  • the calibration device is further configured to perform offline calibration of the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link.
  • the calibration device is configured to perform offline calibration of the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link in the following manner:
  • the power amplifier device of the zero-IF transmission path is turned off; the internal calibration source of the zero-IF transmission path is used to perform off-line calibration of the zero-IF transmission path for transmitting local oscillator leakage; and the filter coefficients on the zero-IF transmission path are constructed and utilized to simulate The amplitude and phase of the transmit shunt are unbalanced, and the zero-IF transmission path is subjected to transmission image off-line calibration; the internal control source of the feedback control link is used to perform feedback offline calibration on the feedback control link; the component is used on the feedback control link.
  • Filter coefficient, amplitude and phase imbalance of analog feedback shunt, feedback image frequency off-line calibration of feedback control link use internal calibration source of zero IF receive path to receive offline calibration of zero IF receive path;
  • the amplitude and phase imbalance of the receive and receive channels are simulated by the filter coefficients on the zero-IF receive path, and the zero-IF receive path is subjected to the received image-offline calibration.
  • the calibration device is configured to perform on-line calibration of the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link in the following manner:
  • the control feedback control link stops acquiring the transmitting signal of the zero-IF transmission path, and uses the service data to transmit the zero-IF transmission path to transmit the local oscillator leakage online.
  • Calibration and transmission of image frequency online calibration using the number of services The feedback image frequency is online calibrated according to the feedback control link.
  • the preset time includes controlling a calibration switching period or sending and receiving a switching time slot.
  • Embodiments of the present invention provide a working method of a transceiver, where the transceiver includes a zero intermediate frequency transmission path, a zero intermediate frequency receiving path, a feedback control link, and a calibration device, and the working method includes: a feedback control link to obtain a zero intermediate frequency transmission path.
  • the transmitting signal generates a feedback signal according to the transmitted signal, and calibrates the zero intermediate frequency transmitting path according to the feedback signal; the calibration device performs online calibration on the zero intermediate frequency transmitting path, the zero intermediate frequency receiving path and the feedback control link.
  • the feedback signal is generated according to the transmit signal, and the zero intermediate frequency transmit path is calibrated according to the feedback signal.
  • the feedback control link determines the transmit power of the transmit signal according to the transmit signal, generates a feedback signal according to the transmit power, and assists in calibrating the zero intermediate frequency transmit according to the feedback signal. path.
  • the transceiver includes a plurality of zero intermediate frequency transmission paths
  • the feedback control link acquires a transmission signal of the zero intermediate frequency transmission path, generates a feedback signal according to the transmission signal, and calibrates the zero intermediate frequency transmission path according to the feedback signal, including:
  • the feedback control link acquires a transmission signal of each zero intermediate frequency transmission path by means of time division multiplexing, and generates a feedback signal of each zero intermediate frequency transmission path according to the transmission signal of each zero intermediate frequency transmission path, according to each zero intermediate frequency
  • the feedback signal of the transmit path calibrates each zero-IF transmit path.
  • the method further includes: the calibration device performs offline calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link.
  • the calibration apparatus performs off-line calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link, including: turning off the power amplifier device of the zero intermediate frequency transmission path during initialization; using an internal calibration source of the zero intermediate frequency transmission path, The zero-IF transmission path performs off-line calibration of the emission local oscillator leakage; constructs and utilizes the filter coefficients on the zero-IF transmission path, simulates the amplitude and phase imbalance of the transmission branch, and performs on-off-line calibration of the zero-IF transmission path; Control the internal calibration source of the link, and perform feedback offline calibration on the feedback control link; the component uses the filter coefficient on the feedback control link to simulate the amplitude and phase imbalance of the feedback shunt, and feedback mirror on the feedback control link Off-line calibration; use the internal calibration source of the zero-IF receive path to perform offline calibration of the zero-IF receive path; construct and utilize the filter coefficients on the zero-IF receive path to simulate the receive split The amplitude and phase are unbalanced, and the zero-IF
  • the calibration device performs online calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link, including: performing on-line calibration of the zero-IF receiving path by using the service data; and controlling the feedback control after the preset time
  • the link stops acquiring the transmission signal of the zero-IF transmission path, and uses the service data to transmit the zero-IF transmission path to the local oscillator calibration and the on-line calibration of the transmission image, and uses the service data to perform feedback image on-line calibration of the feedback control link.
  • the preset time includes controlling a calibration switching period or sending and receiving a switching time slot.
  • Embodiments of the present invention provide a transceiver including a feedback control link and a calibration device.
  • the feedback control link acquires a transmission signal of a transmission path, and inversely calibrates a transmission path according to the transmission signal, and at the same time, the calibration device also
  • the online calibration of all the channels in the transceiver is realized, so that the transceiver can be calibrated in real time according to the running condition of the device, thereby improving the working performance and solving the poor performance of the existing zero-IF transceiver using off-line calibration. problem.
  • FIG. 1 is a schematic structural diagram of a transceiver according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for operating a transceiver according to a second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a transceiver according to a third embodiment of the present invention.
  • FIG. 4 is a flow chart of overall calibration of a transceiver in a third embodiment of the present invention.
  • FIG. 5 is a flowchart of receiving path calibration in a third embodiment of the present invention.
  • FIG. 6 is a flow chart of calibration of a transmission path in a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a transceiver according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a transceiver according to a first embodiment of the present invention.
  • the transceiver 1 provided by the embodiment of the present invention includes: a zero intermediate frequency transmission path 11 and a zero intermediate frequency receiving path 12, and:
  • the feedback control link 13 is configured to acquire a transmission signal of the zero intermediate frequency transmission path 11, generate a feedback signal according to the transmission signal, and calibrate the zero intermediate frequency transmission path according to the feedback signal;
  • the transmission power of the transmitted signal of the zero intermediate frequency transmission path 11 obtained is the sum of the transmission power of the actual transmission signal and the feedback link gain of the intermediate frequency transmission path 11.
  • the transmission power of the actual transmission signal of the zero intermediate frequency transmission path 11 is the power of the signal output by the power amplifier module in the intermediate frequency transmission path 11.
  • the calibration device 14 is configured to perform on-line calibration of the zero intermediate frequency transmission path, the zero intermediate frequency receive path, and the feedback control link to achieve real time calibration of the transceiver.
  • the feedback control link 13 in the foregoing embodiment is configured to implement zero channel IF transmission path according to the feedback signal in the following manner: direct control calibration and auxiliary calibration, by setting a separate control module (such as setting a central processing unit) (CPU, Central Processing Unit), etc.) to directly control the output of the digital to analog converter (DAC) module and/or the low pass filter module in the zero intermediate frequency transmission path 11, or to provide feedback
  • a separate control module such as setting a central processing unit) (CPU, Central Processing Unit), etc.
  • DAC digital to analog converter
  • the low pass filter module in the zero intermediate frequency transmission path 11
  • the transmit power of the transmit signal received by the control link is compared with the RRU target power, and a comparison result is output. According to the comparison result, the transmit power of the actual transmit signal of the zero intermediate frequency transmit path 11 is adjusted to the RRU target power to complete the feedback control chain.
  • the adjusting the transmit power of the actual transmit signal of the zero intermediate frequency transmission path 11 to the RRU target power according to the comparison result includes:
  • the zero intermediate frequency transmit path is adjusted by adjusting the power of the signal output by the DAC module in the zero intermediate frequency transmit path 11. 11 The actual transmit signal's transmit power is adjusted to the RRU target power.
  • the power of the signal output by the DAC module in the zero intermediate frequency transmission path 11 can be adjusted to the difference between the original power minus the transmission power of the transmission signal and the RRU target power.
  • the transmit power of the actual transmit signal of the zero intermediate frequency transmission path 11 is adjusted to the RRU target power by adjusting the transmit link gain (the gain of the controllable gain amplifier).
  • the transmit link gain can be adjusted to the original transmit link gain minus the difference between the transmit power of the transmit signal and the RRU target power.
  • the feedback control link 13 in the foregoing embodiment is configured to:
  • the transceiver 1 in the foregoing embodiment includes a plurality of zero intermediate frequency transmission paths 12, and the feedback control link 13 is configured to:
  • the transmission signal of each zero intermediate frequency transmission path 12 is obtained by means of time division multiplexing, and the feedback signal of each zero intermediate frequency transmission path 12 is generated according to the transmission signal of each zero intermediate frequency transmission path 12, according to each zero intermediate frequency transmission path 12
  • the feedback signal calibrates each of the zero intermediate frequency transmit paths 12.
  • the calibration device 14 in the above embodiment is further configured to perform offline calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link.
  • the calibration apparatus 14 in the foregoing embodiment is configured to perform offline calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link in the following manner:
  • the power amplifier device of the zero intermediate frequency transmission path is turned off;
  • the zero-IF transmission path is transmitted and the local oscillator leakage is off-line calibration;
  • the component uses the filter coefficient on the feedback control link to simulate the amplitude and phase imbalance of the feedback shunt, and performs feedback image offline off-line calibration on the feedback control link;
  • the filter coefficients on the zero-IF receiving path are constructed and utilized to simulate the amplitude and phase imbalance of the receiving shunt, and the zero-IF receiving path is subjected to the receiving image offline off-line calibration.
  • the calibration apparatus 14 in the foregoing embodiment is configured to perform online calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link in the following manner:
  • the control feedback control link stops acquiring the transmission signal of the zero-IF transmission path, and uses the service data to transmit the zero-IF transmission path to the local oscillator calibration and the on-line calibration of the transmission image, and utilizes the service data to the feedback control chain.
  • the road performs feedback on-line calibration.
  • the calibration device 14 is further configured to:
  • the power amplifier device of the zero-IF transmission path is turned on during normal operation;
  • the control feedback control link acquires a transmission signal of a zero intermediate frequency transmission path, and performs digital predistortion detection, standing wave detection, and power detection according to the transmission signal;
  • the zero-IF transmission path is transmitted, the local oscillator leakage initial calibration, and the transmission image rejection initialization calibration.
  • the preset time in the foregoing embodiment includes controlling a calibration switching period or sending and receiving a switching time slot, and is mainly for a TDD (Time Division Duplexing) system.
  • TDD Time Division Duplexing
  • the off-line calibration involved in the embodiment of the present invention includes the calibration performed before the device is initialized, and is mainly used to correct the error existing in the device itself; correspondingly, the online calibration includes the calibration performed during normal operation of the device. It is mainly used to correct the error caused by environmental factors such as temperature and power.
  • Step 2 is a flowchart of a working method of a transceiver according to a second embodiment of the present invention.
  • the working method of the transceiver provided by the embodiment of the present invention includes the following steps. Step:
  • the feedback control link acquires a transmission signal of a zero intermediate frequency transmission path, generates a feedback signal according to the transmission signal, and calibrates a zero intermediate frequency transmission path according to the feedback signal;
  • S202 The calibration device performs online calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link.
  • the feedback control link determining a transmit power of the transmit signal according to the transmit signal, and generating a feedback signal according to the transmit power, according to the feedback signal.
  • Auxiliary calibration of the zero-IF transmit path is also advantageously advantageous.
  • the transceiver in the foregoing embodiment includes multiple zero intermediate frequency transmission paths
  • the feedback control link acquires a transmission signal of a zero intermediate frequency transmission path, generates a feedback signal according to the transmission signal, and calibrates the zero intermediate frequency transmission path according to the feedback signal, including:
  • the feedback control link acquires a transmission signal of each zero intermediate frequency transmission path by means of time division multiplexing, and generates a feedback signal of each zero intermediate frequency transmission path according to the transmission signal of each zero intermediate frequency transmission path, according to each zero intermediate frequency
  • the feedback signal of the transmit path calibrates each zero-IF transmit path.
  • the working method in the foregoing embodiment further includes: performing, by the calibration device, offline calibration of the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link.
  • the calibration apparatus in the foregoing embodiment performs offline calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link, including:
  • the power amplifier device of the zero intermediate frequency transmission path is turned off;
  • the zero-IF transmission path is transmitted and the local oscillator leakage is off-line calibration;
  • the component uses the filter coefficient on the feedback control link to simulate the amplitude and phase imbalance of the feedback shunt, and performs feedback image offline off-line calibration on the feedback control link;
  • the filter coefficients on the zero-IF receiving path are constructed and utilized to simulate the amplitude and phase imbalance of the receiving shunt, and the zero-IF receiving path is subjected to the receiving image offline off-line calibration.
  • the calibration apparatus in the foregoing embodiment performs online calibration on the zero intermediate frequency transmission path, the zero intermediate frequency receiving path, and the feedback control link, including:
  • the control feedback control link stops acquiring the transmission signal of the zero-IF transmission path, and uses the service data to transmit the zero-IF transmission path to the local oscillator calibration and the on-line calibration of the transmission image, and utilizes the service data to the feedback control chain.
  • the road performs feedback on-line calibration.
  • the method further includes:
  • the power amplifier device of the zero intermediate frequency transmission path is turned on during normal operation;
  • the control feedback control link acquires a transmission signal of a zero intermediate frequency transmission path, and performs digital predistortion detection, standing wave detection, and power detection according to the transmission signal;
  • the zero-IF transmission path is transmitted, the local oscillator leakage initial calibration, and the transmission image rejection initialization calibration.
  • the preset time in the foregoing embodiment includes controlling a calibration switching period or transmitting and receiving a switching time slot.
  • This embodiment provides a single-receive single-transmitting transceiver, as shown in FIG. 3:
  • the hardware structure of the RRU includes:
  • a power amplifier module 332 a controllable gain amplifier module 342, a modulation module 352, a low pass filter (LPF, Low Pass Filter) module 362, and a DAC (Digital to Analog Converter) module 372;
  • LPF Low Pass Filter
  • DAC Digital to Analog Converter
  • the processing module 38 further includes a phase locked loop module and a local oscillator module, which are not shown;
  • the controllable gain amplifier module 341, the controllable gain amplifier module 342 and the controllable gain amplifier module 343 can be implemented by a controllable gain amplifier for time division multiplexing, and the demodulation module 351 and the modulation module 352 can also be used by the demodulation module 353.
  • the LPF module 361, the LPF module 362, and the LPF module 363 can be time-multiplexed by one LPF, and the ADC module 371, the DAC module 372, and the ADC module 373 can also be implemented by an AD/DA converter.
  • the function of the calibration apparatus is implemented by software, and therefore, the corresponding module is not shown in this embodiment.
  • the zero-IF single-channel transceiver system schematic consists of three parts: transmitting, receiving and feedback.
  • the transmitting link is digital-analog converted by the DAC module and then provided to the modulation module for low-frequency filtering through low-pass filtering.
  • the gain amplification module is controlled to adjust the transmission power.
  • the filtering is completed and transmitted to the antenna port.
  • the receiving link passes through the low noise amplification module and the controllable gain amplification module to perform gain control.
  • the demodulator is down-converted and then filtered by a low-pass filter to perform analog-to-digital conversion on the ADC.
  • the feedback link internally includes a controllable gain amplifier module and a demodulation and low-pass filter module, and the filtered signal is supplied to the ADC for mode conversion.
  • the number conversion is further processed, and the feedback link undertakes power detection, standing wave detection, and real-time calibration functions, and the channel switching module is used to switch between multiple transmission channels.
  • the zero-IF architecture does not require the RF filter module, the IF amplification module and the IF filter module compared with the traditional high-IF architecture.
  • the filtering module is configured to receive and transmit the filtering in the frequency band to complete the suppression of the useless signal and improve the performance of the transceiver.
  • the low noise amplification module is arranged to perform low noise amplification on the received small signal.
  • the controllable gain amplification module is configured to perform gain adjustment functions of the receiver and transmitter.
  • the modulation module is configured to perform upconversion conversion on the transmitter using a modulator, and the demodulation module is configured to use a demodulator for the receiver and the feedback. Perform down conversion.
  • the local oscillator module is configured to provide a local oscillator signal to the modulation module and the demodulation module.
  • the low pass filter module is configured to filter the pre-modulated and demodulated intermediate frequency signals.
  • the ADC module is set to perform analog to digital conversion, and the DAC module is set to perform digital to analog conversion.
  • the power amplifier module is set to amplify the transmitted small signal to the rated output power.
  • the coupling module in the selection switch is set to complete the signal coupling, the coupled transmission signal energy is provided to the feedback link for power detection, the transmission power control is implemented, the pre-distortion acquisition function is performed, and the selection module (ie, the selection switch in FIG. 3) is set to be completed. Multi-channel forward and reverse signal selection.
  • the digital signal processing module is configured to perform digital signal calculation and digital processing functions.
  • the auto-calibration function includes calibration of the transmitted local oscillator and image frequency and calibration of the received or feedback DC offset and image frequency. It can be distinguished as the emission local oscillator leakage offline calibration, the emission image offline calibration, the reception and feedback offline calibration, the reception and the The feedback image is off-line calibrated, transmitting local oscillator leakage, transmitting image frequency and online calibration of the receiving and feedback image frequencies.
  • Off-line calibration uses the internal calibration source of the transceiver module to generate a single tone, sweep or modulation signal to complete the calibration.
  • the online calibration uses the service signal of the transceiver to ensure that the real-time calibration is completed without affecting the normal transceiver service.
  • the receiving calibration function can not perform off-line calibration and enable online calibration when initializing the RRU because it is not multiplexed with other channels.
  • the receiving calibration process will not be described again, in which the filter on the receiving IQ branch is constructed.
  • the coefficients are used to simulate the amplitude and phase imbalance of the IQ shunt to achieve calibration of the receive link image frequency.
  • the real-time calibration process needs to occupy the feedback control link, the real-time calibration and the transmitter's digital pre-distortion algorithm, power detection and standing wave detection functions are mutually exclusive, so software for the transceiver power-on process and real-time calibration process is required. control.
  • the transmission calibration process includes: first, the RRU power-on transmission channel is enabled, Firstly, the internal calibration source is used for offline calibration. In this case, in order to protect the power amplifier module, the power amplifier module is turned off before the calibration starts, and then the feedback channel (ie, the feedback control link) and the transmission channel (ie, the zero intermediate frequency transmission path) are offlinely calibrated.
  • the transmit sideband calibration is achieved by constructing the LPF filter coefficients on the transmit link (ie, the zero IF transmit path) to simulate the amplitude and phase imbalance of the transmit link IQ shunt.
  • the internal calibration source is turned off, and the transmitter normally transmits the service data while performing DPD (Digital Pre Distortion) detection, standing wave detection, power detection function, and starting timing at the same time.
  • DPD Digital Pre Distortion
  • Wave detection, power detection function use the business data to start the online calibration function of the transmission and feedback link, and restore the functions of DPD, standing wave detection and power detection after the calibration is completed.
  • it is necessary to judge the transmission and reception switching time slot perform receiving online calibration when the receiving work is enabled, and perform online transmission calibration when the transmitting work is enabled. In order to ensure the robustness of the calibration process, some error signs and countermeasures can be set.
  • This embodiment provides a dual receive dual transmit (2T2R) transceiver, as shown in FIG. 7:
  • the 2T2R transceiver provided in this embodiment copies the receiving path and the transmitting path of the single-receive single-transmit receiving and receiving machine shown in FIG. 3, and uses a time-multiplexed manner to share the feedback control link.
  • the controllable gain amplification module can be implemented by using an attenuator and an amplifier integration scheme.
  • the power-on RRU startup and calibration process includes: initializing the board software and hardware after power-on, running the chip version after the optical port is adaptive, performing chip initialization configuration when the power amplifier is turned off, and completing the downlink image frequency and sideband offline calibration. At this time, the output coupling loop of the power amplifier is required to be disconnected, so the electronic switch hits the ALL OFF state, and finally the uplink and offline calibration is triggered.
  • the RRU performs power calibration and the like, and the number of iterations of each calibration is set during the calibration process. , returns a successful value upon completion. If an error occurs during the calibration process, the error code is reported. The chip is reset and recalibrated. The fault is reported for five consecutive runs and the fault is stopped.
  • the online calibration process includes: setting the calibration period.
  • the online calibration is that the control state of the electronic switch is switched from FPGA (Field-Programmable Gate Array) to CPU manual control, fixed to the corresponding transmission channel service signal, and the FPGA is switched.
  • FPGA Field-Programmable Gate Array
  • the electronic switch is in the manual state, the switching point is required to be within the interval of two complete electronic switch switching cycles, that is, the integrity of the electronic switching cycle is ensured.
  • the RRU needs to stop the DPD and standing wave detection, stop the power detection, and switch the electronic switch to the corresponding service signal channel.
  • the CPU is enabled.
  • the electronic switch is an automatic state of the FPGA, enabling power detection, enabling DPD and standing wave detection. If an error message occurs during the calibration process, it is necessary to judge the error information, shield the information that does not affect the performance and usage, give an alarm for the error information whose performance does not affect the function, and give an alarm notification for the unavailable information. Write to the log.
  • Embodiments of the present invention provide a transceiver including a feedback control link and a calibration device.
  • the feedback control link acquires a transmission signal of a zero intermediate frequency transmission path, and inversely calibrates the transmission path according to the transmission signal, and simultaneously calibrates
  • the device also implements on-line calibration of all channels in the transceiver, which enables the transceiver to be calibrated in real time according to the operation of the device, improving the performance and solving the performance of the existing zero-IF transceiver using off-line calibration. Poor question.
  • Embodiments of the present invention also provide a computer readable storage medium storing computer executable instructions for performing any of the methods described above.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program in a storage and a memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution enables the transceiver to be calibrated in real time according to the operation of the device, thereby improving the working performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

一种收发信机及工作方法,该收发信机包括零中频发射通路及零中频接收通路,以及:反馈控制链路,用于获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路;校准装置,用于对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准。

Description

一种收发信机及工作方法 技术领域
本文涉及但不限于通信系统的收发信机领域,尤指一种收发信机及工作方法。
背景技术
近年来在通信领域,因器件的发展,零中频技术越来越多得到广泛的应用,并逐渐趋于成熟;采用零中频技术的收发信机的最大优点是省略了中频滤波电路,中频混频器和中频本振,简化了通道,降低通道的成本,减小了单板的体积,这些优点迎合了当今收发信机尤其是通信基站小型化和低成本的需求;因此,零中频技术的收发信机受到广泛的关注和运用。
但是,零中频收发信机的载波和镜频都会落入信号带内影响收发机性能。高中频方案可以通过频率规划把这些分量移出有用信号带内,通过简单的离线校准和滤波来满足系统应用。但是离线校准方案的最大的缺点为校准参数不能适应温度变化,在常温写入离线表格中的校准值随着温度变化,校准性能会大幅度恶化,对于零中频架构由于载波泄露和边带抑制这些杂散分量全部落入有用信号带内,使用离线校准,工作性能差。
因此,如何提供一种可提高工作性能的零中频收发信机,是本领域技术人员亟待解决的技术问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种收发信机及工作方法,能够提高零中频收发信机的工作性能。
本发明实施例提供了一种收发信机,包括:
零中频发射通路及零中频接收通路,以及:
反馈控制链路,设置为获取零中频发射通路的发射信号,根据发射信号 生成反馈信号,根据反馈信号校准零中频发射通路;
校准装置,设置为对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准。
可选的,反馈控制链路是设置为:
获取零中频发射通路的发射信号,根据发射信号确定发射信号的发射功率,根据发射功率生成反馈信号,根据反馈信号辅助校准零中频发射通路。
可选的,收发信机包括多个零中频发射通路,反馈控制链路是设置为:
通过分时复用的方式获取每一个零中频发射通路的发射信号,根据每一个零中频发射通路的发射信号生成每一个零中频发射通路的反馈信号,根据每一个零中频发射通路的反馈信号校准每一个零中频发射通路。
可选的,校准装置还设置为对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准。
可选的,校准装置是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准:
在初始化时,关闭零中频发射通路的功放装置;利用零中频发射通路的内部校准源,对零中频发射通路进行发射本振泄露离线校准;构建并利用零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对零中频发射通路进行发射镜频离线校准;利用反馈控制链路的内部校准源,对反馈控制链路进行反馈离线校准;构件并利用反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对反馈控制链路进行反馈镜频离线校准;利用零中频接收通路的内部校准源,对零中频接收通路进行接收离线校准;构建并利用零中频接收通路上的滤波器系数,模拟接收分路的幅度和相位不平衡,对零中频接收通路进行接收镜频离线校准。
可选的,校准装置是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准:
利用业务数据对零中频接收通路进行接收镜频在线校准;在预设时间后,控制反馈控制链路停止获取零中频发射通路的发射信号,利用业务数据对零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用业务数 据对反馈控制链路进行反馈镜频在线校准。
可选的,预设时间包括控制校准切换周期或者收发切换时隙。
本发明实施例提供了一种收发信机的工作方法,收发信机包括零中频发射通路、零中频接收通路、反馈控制链路以及校准装置,工作方法包括:反馈控制链路获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路;校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准。
可选的,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路包括:反馈控制链路根据发射信号确定发射信号的发射功率,根据发射功率生成反馈信号,根据反馈信号辅助校准零中频发射通路。
可选的,收发信机包括多个零中频发射通路,所述反馈控制链路获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路包括:
所述反馈控制链路通过分时复用的方式获取每一个零中频发射通路的发射信号,根据每一个零中频发射通路的发射信号生成每一个零中频发射通路的反馈信号,根据每一个零中频发射通路的反馈信号校准每一个零中频发射通路。
可选的,还包括:校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准。
可选的,校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准包括:在初始化时,关闭零中频发射通路的功放装置;利用零中频发射通路的内部校准源,对零中频发射通路进行发射本振泄露离线校准;构建并利用零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对零中频发射通路进行发射镜频离线校准;利用反馈控制链路的内部校准源,对反馈控制链路进行反馈离线校准;构件并利用反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对反馈控制链路进行反馈镜频离线校准;利用零中频接收通路的内部校准源,对零中频接收通路进行接收离线校准;构建并利用零中频接收通路上的滤波器系数,模拟接收分路 的幅度和相位不平衡,对零中频接收通路进行接收镜频离线校准。
可选的,校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准包括:利用业务数据对零中频接收通路进行接收镜频在线校准;在预设时间后,控制反馈控制链路停止获取零中频发射通路的发射信号,利用业务数据对零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用业务数据对反馈控制链路进行反馈镜频在线校准。
可选的,预设时间包括控制校准切换周期或者收发切换时隙。
本发明实施例的有益效果:
本发明实施例提供了一种收发信机,该收发信机包括反馈控制链路及校准装置,反馈控制链路获取发射通路的发射信号,根据该发射信号反校准发射通路,同时,校准装置也实现了对收发信机内所有通路的在线校准,这样就使得收发信机可以根据设备运行情况实时校准,提高了工作性能,解决了现有零中频收发信机使用离线校准导致的工作性能差的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明第一实施例提供的收发信机的结构示意图;
图2为本发明第二实施例提供的收发信机工作方法的流程图;
图3为本发明第三实施例提供的收发信机的结构示意图;
图4为本发明第三实施例中收发信机整体校准的流程图;
图5为本发明第三实施例中接收通路校准的流程图;
图6为本发明第三实施例中发射通路校准的流程图;
图7为本发明第四实施例提供的收发信机的结构示意图。
本发明的实施方式
现通过具体实施方式结合附图的方式对本发明做出进一步的诠释说明。
第一实施例:
图1为本发明第一实施例提供的收发信机的结构示意图,由图1可知, 在本实施例中,本发明实施例提供的收发信机1包括:零中频发射通路11及零中频接收通路12,以及:
反馈控制链路13,设置为获取零中频发射通路11的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路;
其中,获得的零中频发射通路11的发射信号的发射功率为零中频发射通路11实际的发射信号的发射功率和反馈链路增益之和。
其中,零中频发射通路11实际的发射信号的发射功率为零中频发射通路11中功放模块输出的信号的功率。
校准装置14,设置为对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准,以实现对收发信机的实时校准。
可选的,上述实施例中的反馈控制链路13是设置为采用以下方式实现根据反馈信号校准零中频发射通路:直接控制校准及辅助校准,可以通过设置单独的控制模块(如设置中央处理器(CPU,Central Processing Unit)等)实现对零中频发射通路11内数字模拟转换器(DAC,Digital to Analog Converter)模块和/或低通滤波器模块的输出进行直接控制校准,还可以是将反馈控制链路采到的发射信号的发射功率与RRU目标功率进行比较,输出一个比较结果,根据比较结果将零中频发射通路11实际的发射信号的发射功率调整到RRU目标功率,以完成反馈控制链路13对零中频发射通路11的功率校准等等。
其中,根据比较结果将零中频发射通路11实际的发射信号的发射功率调整到RRU目标功率包括:
当比较结果为发射信号的发射功率和RRU目标功率之间的差值的绝对值小于或等于预设值时,通过调整零中频发射通路11中DAC模块输出的信号的功率来将零中频发射通路11实际的发射信号的发射功率调整到RRU目标功率。
其中,可以将零中频发射通路11中DAC模块输出的信号的功率调整为原功率减去发射信号的发射功率和RRU目标功率之间的差值。
当比较结果为发射信号的发射功率和RRU目标功率之间的差值的绝对 值大于预设值时,通过调整发射链路增益(即可控增益放大器的放大倍数)来零中频发射通路11实际的发射信号的发射功率调整到RRU目标功率。
其中,可以将发射链路增益调整为原发射链路增益减去发射信号的发射功率和RRU目标功率之间的差值。
可选的,上述实施例中的反馈控制链路13是设置为:
获取零中频发射通路11的发射信号,根据发射信号确定发射信号的发射功率,根据发射功率生成反馈信号,根据反馈信号辅助校准零中频发射通路。
可选的,上述实施例中的收发信机1包括多个零中频发射通路12,反馈控制链路13是设置为:
通过分时复用的方式获取每一个零中频发射通路12的发射信号,根据每一个零中频发射通路12的发射信号生成每一个零中频发射通路12的反馈信号,根据每一个零中频发射通路12的反馈信号校准每一个零中频发射通路12。
可选的,上述实施例中的校准装置14还设置为对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准。
可选的,上述实施例中的校准装置14是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准:
在初始化时,关闭零中频发射通路的功放装置;
利用零中频发射通路的内部校准源,对零中频发射通路进行发射本振泄露离线校准;
构建并利用零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对零中频发射通路进行发射镜频离线校准;
利用反馈控制链路的内部校准源,对反馈控制链路进行反馈离线校准;
构件并利用反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对反馈控制链路进行反馈镜频离线校准;
利用零中频接收通路的内部校准源,对零中频接收通路进行接收离线校准;
构建并利用零中频接收通路上的滤波器系数,模拟接收分路的幅度和相位不平衡,对零中频接收通路进行接收镜频离线校准。
具体如何进行发射本振泄露离线校准、发射镜频离线校准、反馈离线校准、反馈镜频离线校准、接收离线校准和接收镜频离线校准可以采用本领域技术人员的公知技术实现,并不用于限定本发明实施例的保护范围,这里不再赘述。
可选的,上述实施例中的校准装置14是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准:
利用业务数据对零中频接收通路进行接收镜频在线校准;
在预设时间后,控制反馈控制链路停止获取零中频发射通路的发射信号,利用业务数据对零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用业务数据对反馈控制链路进行反馈镜频在线校准。
可选的,校准装置14还设置为:
对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准之前,在正常工作时,开启零中频发射通路的功放装置;
控制反馈控制链路获取零中频发射通路的发射信号,根据发射信号进行数字预失真检测、驻波检测及功率检测;
对零中频发射通路进行发射本振泄露初始化校准及发射镜频抑制初始化校准。
可选的,上述实施例中的预设时间包括控制校准切换周期或者收发切换时隙,主要针对TDD(Time Division Duplexing,时分双工)系统。
本发明实施例所涉及的离线校准包括在设备初始化时,未正常工作前所进行的校准,主要用于修正设备自身存在的误差;对应的,在线校准则包括在设备正常工作时所进行的校准,主要用于修正设备因温度、功率等环境因素导致的误差。
第二实施例:
图2为本发明第二实施例提供的收发信机的工作方法的流程图,由图2可知,在本实施例中,本发明实施例提供的收发信机的工作方法包括以下步 骤:
S201:反馈控制链路获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路;
S202:校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准。
可选的,上述实施例中的根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路包括:反馈控制链路根据发射信号确定发射信号的发射功率,根据发射功率生成反馈信号,根据反馈信号辅助校准零中频发射通路。
可选的,上述实施例中的收发信机包括多个零中频发射通路,反馈控制链路获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路包括:
所述反馈控制链路通过分时复用的方式获取每一个零中频发射通路的发射信号,根据每一个零中频发射通路的发射信号生成每一个零中频发射通路的反馈信号,根据每一个零中频发射通路的反馈信号校准每一个零中频发射通路。
可选的,上述实施例中的工作方法还包括:校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准。
可选的,上述实施例中的校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准包括:
在初始化时,关闭零中频发射通路的功放装置;
利用零中频发射通路的内部校准源,对零中频发射通路进行发射本振泄露离线校准;
构建并利用零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对零中频发射通路进行发射镜频离线校准;
利用反馈控制链路的内部校准源,对反馈控制链路进行反馈离线校准;
构件并利用反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对反馈控制链路进行反馈镜频离线校准;
利用零中频接收通路的内部校准源,对零中频接收通路进行接收离线校准;
构建并利用零中频接收通路上的滤波器系数,模拟接收分路的幅度和相位不平衡,对零中频接收通路进行接收镜频离线校准。
可选的,上述实施例中的校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准包括:
利用业务数据对零中频接收通路进行接收镜频在线校准;
在预设时间后,控制反馈控制链路停止获取零中频发射通路的发射信号,利用业务数据对零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用业务数据对反馈控制链路进行反馈镜频在线校准。
可选的,该方法还包括:
校准装置对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准之前,在正常工作时,开启零中频发射通路的功放装置;
控制反馈控制链路获取零中频发射通路的发射信号,根据发射信号进行数字预失真检测、驻波检测及功率检测;
对零中频发射通路进行发射本振泄露初始化校准及发射镜频抑制初始化校准。
可选的,上述实施例中的预设时间包括控制校准切换周期或者收发切换时隙。
现结合具体应用场景对本发明做进一步的诠释说明。
第三实施例:
本实施例提供了一种单接收单发射的收发信机,如图3所示:
收发信机RRU(Remote Radio Unit,射频拉远单元)的硬件结构包括:
零中频接收通路与零中频发射通路公用的天线31、滤波模块32;
属于零中频接收通路的低噪声放大模块331、可控增益放大器模块341、解调模块351、LPF(Low Pass Filter,低通滤波器)低通滤波模块361以及ADC(Analog to digital converter,模数转换器)模块371;
属于零中频发射通路的功放模块332、可控增益放大器模块342、调制模块352、低通滤波器(LPF,Low Pass Filter)模块362以及DAC(Digital to Analog converter,数模转换器)模块372;
属于反馈控制链路的具备耦合功能的选择开关333、可控增益放大器模块343、解调模块353、LPF低通滤波模块363以及ADC模数转换模块373,以及主要的设置为业务实现的数字信号处理模块38,还包括未示出的锁相环模块及本振模块;
其中,可控增益放大器模块341、可控增益放大器模块342及可控增益放大器模块343可以由一个可控增益放大器分时复用实现,解调模块351、调制模块352以解调模块353也可以由一个调制解调器分时复用实现,LPF模块361、LPF模块362及LPF模块363可以由一个LPF分时复用,ADC模块371、DAC模块372及ADC模块373也可以由一个AD/DA转换器实现。在本实施例中,校准装置的功能由软件实现,因此,本实施例未示出对应的模块。
可选的,零中频单通道收发信机系统示意图由发射,接收和反馈三大部分组成,发射链路由DAC模块完成数模转换后经过低通滤波提供给调制模块完成上变频,再经过可控增益放大模块来调整发射功率,最后经过功放模块完成信号放大后完成滤波到天线口发射;接收链路接收到天线口信号后经过低噪声放大模块和可控增益放大模块进行增益控制后送给解调器进行下变频再经过低通滤波器滤波后给ADC进行模数转换;反馈链路内部包含可控增益放大器模块及解调和低通滤波模块,将滤波后的信号提供给ADC进行模数转换再做下一步处理,反馈链路承担了功率检测,驻波检测,实时校准功能,采用通道切换模块在多个发射通道间切换。
本发明实施例提供的收发信机每一个模块功能说明,与传统高中频相比零中频架构不需要射频滤波模块,中频放大模块及中频滤波模块。滤波模块设置为接收和发射频段内的滤波,完成对无用信号的抑制,提高收发信机性能。低噪声放大模块设置为对接收到的小信号进行低噪声放大。可控增益放大模块设置为完成接收机和发射机的增益调节功能。调制模块设置为对发射机采用调制器进行上变频转换,解调模块设置为对接收机和反馈采用解调器 进行下变频转换。本振模块设置为对调制模块和解调模块提供本振信号。低通滤波器模块设置为对调制前及解调后的中频信号进行滤波。ADC模块设置为完成模拟到数字的转换,DAC模块设置为完成数字到模拟的转换。功放模块设置为将发射小信号放大到额定输出功率。选择开关内的耦合模块设置为完成信号耦合,耦合发射信号能量提供给反馈链路进行功率检测,实现发射功率控制,预失真采数功能,选择模块(即图3中的选择开关)设置为完成多通道前向和反向信号选择功能。数字信号处理模块设置为完成数字信号运算及数字处理功能。
以上为本实施例提供的零中频收发信机的硬件架构说明,另一个关键点为零中频收发信机的自动校准功能实现及与RRU系统功能相配合的解决方案。
自动校准功能包含对发射本振和镜频的校准及接收或反馈直流偏移和镜频的校准,可区分为发射本振泄露离线校准,发射镜频离线校准,接收和反馈离线校准,接收和反馈镜频离线校准,发射本振泄露,发射镜频及接收和反馈镜频的在线校准。
离线校准都采用收发模块内部校准源产生单音,扫频或调制信号来完成校准,在线校准都采用收发信机的业务信号保证不影响正常收发信业务的同时完成实时校准。
如图4所示,RRU系统整体校准流程图不再赘述,现在分别描述接收和发射校准详细过程。
接收校准功能由于不与其他通道复用可以在初始化RRU时完成离线校准并使能在线校准即可,如图5所示,接收校准流程不再赘述,其中,通过构建接收IQ分路上的滤波器系数来模拟IQ分路的幅度和相位不平衡实现对接收链路镜频的校准。
对于发射校准由于实时校准过程需要占用反馈控制链路,这样实时校准与发射机的数字预失真算法,功率检测及驻波检测功能互斥,所以需要对收发信机上电流程和实时校准流程进行软件控制。
基于此,如图6所示,发射校准流程包括:首先RRU上电发射通道使能, 首先采用内部校准源进行离线校准,此时为了保护功放模块在校准开始前先将功放模块关闭再依次对反馈通道(即反馈控制链路)和发射通道(即零中频发射通路)进行离线校准,通过构建发射链路(即零中频发射通路)上LPF滤波器系数来模拟发射链路IQ分路的幅度和相位不平衡实现发射边带校准。离线校准完成后关闭内部校准源,发射机正常发送业务数据同时进行DPD(Digital Pre Distortion,数字预失真)检测,驻波检测,功率检测功能,同时启动定时,规定时间周期到达之后停止DPD,驻波检测,功率检测功能,利用业务数据开始发射和反馈链路的在线校准功能,校准完成后恢复DPD,驻波检测和功率检测的功能。对于TDD系统需要判断收发切换时隙,在接收工作使能时进行接收在线校准,在发射工作使能时进行发射在线校准。为了保证校准流程的健壮性,可设置一些错误标志和应对措施。
第四实施例:
本实施例提供一种双接收双发射(2T2R)的收发信机,如图7所示:
本实施例提供的2T2R收发信机,是将图3所示的单接收单发射接收信机的接收通路及发射通路进行复制,利用分时复用的方式公用反馈控制链路。其中可控增益放大模块可采用衰减器和放大器集成方案实现。
上电RRU启动及校准流程包括:上电后首先为单板软件和硬件初始化,光口自适应后运行芯片版本加载,在关闭功放状态下进行芯片初始化配置,完成下行镜频和边带离线校准,此时要求功放输出耦合环路断开所以电子开关打到ALL OFF状态,最后触发上行离线校准,离线校准完成后RRU进行功率定标等流程,在校准过程中设定每次校准的迭代次数,完成后返回成功值。如果校准过程中出现错误,则上报错误代码芯片复位重新校准,连续五次运行错误上报故障停止工作。
在线校准流程包括:设置校准周期,在线校准是电子开关的控制状态由FPGA(Field-Programmable Gate Array,现场可编程门阵列)切换为CPU手动控制,固定为对应发射通道的业务信号,FPGA在切换电子开关为手动状态时,要求切换点位于两个完整的电子开关切换周期间隔时间内,即保证电子开关周期的完整性。在校准开始时,RRU需要停止DPD和驻波检测,停止功率检测,切换电子开关为对应的业务信号通道,校准完成后,CPU使能 电子开关为FPGA自动状态,使能功率检测,使能DPD和驻波检测功能。在校准过程中如果发生错误信息,需要对错误信息判断,对于不影响性能和使用的信息给予屏蔽,对于性能有损伤不影响功能的错误信息给出告警,对于不可用的信息给出告警通知甚至写入日志。
综上可知,通过本发明的实施,至少存在以下有益效果:
本发明实施例提供了一种收发信机,该收发信机包括反馈控制链路及校准装置,反馈控制链路获取零中频发射通路的发射信号,根据该发射信号反校准发射通路,同时,校准装置也实现了对收发信机内所有通路的在线校准,这样就使得收发信机可以根据设备运行情况实时校准,提高了工作性能,解决了现有零中频收发信机使用离线校准导致的工作性能差的问题。
本发明实施例还提出了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述描述的任意一个方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储与存储器中的程序/指令来实现其相应功能。本发明不限于任何特定形式的硬件和软件的结合。
以上仅是本发明的具体实施方式而已,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本发明技术方案的保护范围。
工业实用性
上述技术方案使得收发信机可以根据设备运行情况实时校准,提高了工作性能。

Claims (14)

  1. 一种收发信机,包括零中频发射通路及零中频接收通路,以及:
    反馈控制链路,设置为获取所述零中频发射通路的发射信号,根据所述发射信号生成反馈信号,根据所述反馈信号校准所述零中频发射通路;
    校准装置,设置为对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行在线校准。
  2. 如权利要求1所述的收发信机,其中,所述反馈控制链路是设置为:
    获取所述零中频发射通路的发射信号,根据所述发射信号确定所述发射信号的发射功率,根据发射功率生成反馈信号,根据所述反馈信号辅助校准所述零中频发射通路。
  3. 如权利要求1所述的收发信机,其中,所述收发信机包括多个零中频发射通路,所述反馈控制链路是设置为:
    通过分时复用的方式获取每一个零中频发射通路的发射信号,根据每一个零中频发射通路的发射信号生成每一个零中频发射通路的反馈信号,根据每一个零中频发射通路的反馈信号校准每一个零中频发射通路。
  4. 如权利要求1至3任一项所述的收发信机,所述校准装置还设置为对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行离线校准。
  5. 如权利要求4所述的收发信机,其中,所述校准装置是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行离线校准:
    在初始化时,关闭所述零中频发射通路的功放装置;利用所述零中频发射通路的内部校准源,对所述零中频发射通路进行发射本振泄露离线校准;构建并利用所述零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对所述零中频发射通路进行发射镜频离线校准;利用所述反馈控制链路的内部校准源,对所述反馈控制链路进行反馈离线校准;构件并利用所述反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对 所述反馈控制链路进行反馈镜频离线校准;利用所述零中频接收通路的内部校准源,对所述零中频接收通路进行接收离线校准;构建并利用所述零中频接收通路上的滤波器系数,模拟接收分路的幅度和相位不平衡,对所述零中频接收通路进行接收镜频离线校准。
  6. 如权利要求4所述的收发信机,其中,所述校准装置是设置为采用以下方式实现对零中频发射通路、零中频接收通路及反馈控制链路进行在线校准:
    利用业务数据对所述零中频接收通路进行接收镜频在线校准;在预设时间后,控制所述反馈控制链路停止获取所述零中频发射通路的发射信号,利用所述业务数据对所述零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用所述业务数据对所述反馈控制链路进行反馈镜频在线校准。
  7. 如权利要求6所述的收发信机,其中,所述预设时间包括控制校准切换周期或者收发切换时隙。
  8. 一种收发信机的工作方法,所述收发信机包括零中频发射通路、零中频接收通路、反馈控制链路以及校准装置,所述工作方法包括:
    所述反馈控制链路获取所述零中频发射通路的发射信号,根据所述发射信号生成反馈信号,根据所述反馈信号校准所述零中频发射通路;
    所述校准装置对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行在线校准。
  9. 如权利要求8所述的工作方法,其中,所述根据发射信号生成反馈信号,根据所述反馈信号校准所述零中频发射通路包括:所述反馈控制链路根据所述发射信号确定所述发射信号的发射功率,根据发射功率生成反馈信号,根据所述反馈信号辅助校准所述零中频发射通路。
  10. 如权利要求8所述的工作方法,其中,所述收发信机包括多个零中频发射通路,所述反馈控制链路获取零中频发射通路的发射信号,根据发射信号生成反馈信号,根据反馈信号校准零中频发射通路包括:
    所述反馈控制链路通过分时复用的方式获取每一个零中频发射通路的发射信号,根据每一个零中频发射通路的发射信号生成每一个零中频发射通路 的反馈信号,根据每一个零中频发射通路的反馈信号校准每一个零中频发射通路。
  11. 如权利要求8至10任一项所述的工作方法,还包括:所述校准装置对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行离线校准。
  12. 如权利要求11所述的工作方法,其中,所述校准装置对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行离线校准包括:
    在初始化时,关闭所述零中频发射通路的功放装置;利用所述零中频发射通路的内部校准源,对所述零中频发射通路进行发射本振泄露离线校准;构建并利用所述零中频发射通路上的滤波器系数,模拟发射分路的幅度和相位不平衡,对所述零中频发射通路进行发射镜频离线校准;利用所述反馈控制链路的内部校准源,对所述反馈控制链路进行反馈离线校准;构件并利用所述反馈控制链路上的滤波器系数,模拟反馈分路的幅度和相位不平衡,对所述反馈控制链路进行反馈镜频离线校准;利用所述零中频接收通路的内部校准源,对所述零中频接收通路进行接收离线校准;构建并利用所述零中频接收通路上的滤波器系数,模拟接收分路的幅度和相位不平衡,对所述零中频接收通路进行接收镜频离线校准。
  13. 如权利要求11所述的工作方法,其中,所述校准装置对所述零中频发射通路、所述零中频接收通路及所述反馈控制链路进行在线校准包括:利用业务数据对所述零中频接收通路进行接收镜频在线校准;在预设时间后,控制所述反馈控制链路停止获取所述零中频发射通路的发射信号,利用所述业务数据对所述零中频发射通路进行发射本振泄露在线校准及发射镜频在线校准,利用所述业务数据对所述反馈控制链路进行反馈镜频在线校准。
  14. 如权利要求13所述的工作方法,其中,所述预设时间包括控制校准切换周期或者收发切换时隙。
PCT/CN2016/090316 2015-10-15 2016-07-18 一种收发信机及工作方法 WO2017063415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510665005.0 2015-10-15
CN201510665005.0A CN106603108B (zh) 2015-10-15 2015-10-15 一种收发信机及工作方法

Publications (1)

Publication Number Publication Date
WO2017063415A1 true WO2017063415A1 (zh) 2017-04-20

Family

ID=58517710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090316 WO2017063415A1 (zh) 2015-10-15 2016-07-18 一种收发信机及工作方法

Country Status (2)

Country Link
CN (1) CN106603108B (zh)
WO (1) WO2017063415A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422167A (zh) * 2020-10-27 2021-02-26 北京空间飞行器总体设计部 一种多通道高精度的测距收发机零值校准方法
WO2023165322A1 (zh) * 2022-03-03 2023-09-07 阿里巴巴达摩院(杭州)科技有限公司 信号处理方法和存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707264A (zh) * 2017-08-31 2018-02-16 希姆通信息技术(上海)有限公司 功率检测反馈电路及方法
CN109586758B (zh) * 2017-09-28 2020-11-17 瑞昱半导体股份有限公司 干扰消除方法及传收装置
CN108736913A (zh) * 2018-05-11 2018-11-02 深圳国人通信股份有限公司 零中频收发芯片的直流分量的校准方法及系统
CN113067590B (zh) * 2019-12-30 2022-09-23 华为技术有限公司 一种无线装置、方法及相关设备
CN113691278B (zh) * 2021-10-26 2022-02-08 广东省新一代通信与网络创新研究院 时分模式多频段收发信机及多频段信号发送和接收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025623A1 (en) * 2001-07-31 2003-02-06 Brueske Daniel E. Dynamic range on demand receiver and method of varying same
CN101222741A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 基站零中频发射参数的校准装置及方法
CN101616125A (zh) * 2008-06-26 2009-12-30 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
CN101651474A (zh) * 2008-08-12 2010-02-17 大唐移动通信设备有限公司 多天线零中频发射机及其校准方法
CN102694758A (zh) * 2012-04-11 2012-09-26 上海聚星仪器有限公司 射频前端收发链路在线校准办法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735422B1 (en) * 2000-10-02 2004-05-11 Baldwin Keith R Calibrated DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture
CN104580060B (zh) * 2015-01-20 2018-09-14 重庆邮电大学 一种iq不平衡失真的数字预失真校正装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025623A1 (en) * 2001-07-31 2003-02-06 Brueske Daniel E. Dynamic range on demand receiver and method of varying same
CN101222741A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 基站零中频发射参数的校准装置及方法
CN101616125A (zh) * 2008-06-26 2009-12-30 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
CN101651474A (zh) * 2008-08-12 2010-02-17 大唐移动通信设备有限公司 多天线零中频发射机及其校准方法
CN102694758A (zh) * 2012-04-11 2012-09-26 上海聚星仪器有限公司 射频前端收发链路在线校准办法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112422167A (zh) * 2020-10-27 2021-02-26 北京空间飞行器总体设计部 一种多通道高精度的测距收发机零值校准方法
WO2023165322A1 (zh) * 2022-03-03 2023-09-07 阿里巴巴达摩院(杭州)科技有限公司 信号处理方法和存储介质

Also Published As

Publication number Publication date
CN106603108A (zh) 2017-04-26
CN106603108B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2017063415A1 (zh) 一种收发信机及工作方法
US7463864B2 (en) Modified dual band direct conversion architecture that allows extensive digital calibration
JP4616093B2 (ja) Rf受信器ミスマッチ校正システム及び方法
JP4845437B2 (ja) Lo漏洩及び側波帯像の校正システム及び方法
US10498573B2 (en) Systems and methods for combining signals from multiple active wireless receivers
KR100539874B1 (ko) 무선 송수신장치에서 자가 보상장치 및 방법
CN101453226B (zh) 本振泄漏消除装置及方法
US7133649B2 (en) Negative feedback amplifier for transmitter, transmitter, and method of correcting error in the negative feedback amplifier
KR100694788B1 (ko) 무선 통신 신호가 생성된 송신기의 진폭 및 위상 특성을기지국의 전송 전력 제어 신호 및 송신기의 알려진 증폭기특성에 응답하여 조정하는 방법 및 시스템
EP2830273B1 (en) Device and method for communications correction
TWI513248B (zh) 補償同相正交不匹配的方法與裝置
US20070280338A1 (en) Method and apparatus for reduced noise and carrier feedthrough in multimode transmitter
CN101951241A (zh) 实现射频泄漏对消的装置及方法和射频识别阅读器
WO2012174831A1 (zh) 一种进行iq信号实时校准的方法和装置
US8948700B2 (en) Method and system for compensating for distortion in a transmitter by utilizing a digital predistortion scheme with a feedback mixer configuration
US8711904B2 (en) Calibration method for non-ideal transceivers
KR100961647B1 (ko) 전압 정재파비를 완화시키기 위한 방법 및 시스템
TWI508465B (zh) 用於通訊系統的電路及其射頻積體電路
US20230147812A1 (en) Amplitude offset calibration method, device, and storage medium
JP2007104007A (ja) 直交変調器及び直交変調器におけるベクトル補正方法
JP2008278120A (ja) トランシーバーおよびそれを使用した無線システム
JP2002077284A (ja) 送信機
JP2008098781A (ja) 通信装置
CN117459085A (zh) 具有自我校准机制的收发器装置及其自我校准方法
CN117675489A (zh) 信号校正方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854797

Country of ref document: EP

Kind code of ref document: A1