WO2023165322A1 - 信号处理方法和存储介质 - Google Patents

信号处理方法和存储介质 Download PDF

Info

Publication number
WO2023165322A1
WO2023165322A1 PCT/CN2023/075657 CN2023075657W WO2023165322A1 WO 2023165322 A1 WO2023165322 A1 WO 2023165322A1 CN 2023075657 W CN2023075657 W CN 2023075657W WO 2023165322 A1 WO2023165322 A1 WO 2023165322A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform signal
signal
waveform
phase
target
Prior art date
Application number
PCT/CN2023/075657
Other languages
English (en)
French (fr)
Inventor
肖水鑫
倪孝彤
Original Assignee
阿里巴巴达摩院(杭州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴达摩院(杭州)科技有限公司 filed Critical 阿里巴巴达摩院(杭州)科技有限公司
Publication of WO2023165322A1 publication Critical patent/WO2023165322A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses

Definitions

  • the present invention relates to the field of computers, in particular to a signal processing method and a storage medium.
  • the waveform error is usually corrected by local oscillator leakage compensation and mixer calibration, but this method is not considered comprehensively, and there is a technical problem of low accuracy of waveform signal processing.
  • Embodiments of the present invention provide a signal processing method and a storage medium to at least solve the technical problem of low accuracy in waveform signal processing.
  • a signal processing method may include: eliminating the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by a wave generator; converting the second waveform signal into a third waveform in the target signal channel signal; correct the third waveform signal based on the mixed frequency signal to obtain a fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensate the fourth waveform signal, and output the compensation After the fourth waveform signal.
  • a signal processing method may include: performing defect detection on the surface of the target object to obtain a first waveform signal; eliminating a local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by a wave generator; Convert the second waveform signal into the third waveform signal in the target signal channel; correct the third waveform signal based on the frequency mixing signal to obtain the fourth waveform signal; based on the fourth waveform signal and the target waveform signal of the wave generator Compensate the fourth waveform signal based on the difference information; determine the defect detection result on the surface of the target object based on the compensated fourth waveform signal.
  • a signal processing method may include: obtaining the first waveform signal by calling the first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter is the first waveform signal; eliminating the local oscillator leakage signal from the first waveform signal, The second waveform signal is obtained, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted into the third waveform signal in the target signal channel; the third waveform signal is corrected based on the mixed frequency signal to obtain the fourth waveform signal A waveform signal; outputting a compensated fourth waveform signal by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the compensated fourth waveform signal.
  • a signal processing device may include: a first elimination unit, configured to eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform The signal is output by the wave generator; the first conversion unit is used to convert the second waveform signal into a third waveform signal in the target signal channel; the first correction unit is used to correct the third waveform signal based on the mixed frequency signal, The fourth waveform signal is obtained; the first compensation unit is configured to compensate the fourth waveform signal based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, and output the compensated fourth waveform signal.
  • a signal processing device may include: a detection unit for detecting defects on the surface of the target object to obtain a first waveform signal; a second elimination unit for eliminating a local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, Wherein, the first waveform signal is output by the wave generator; the second conversion unit is used to convert the second waveform signal into the third waveform signal in the target signal channel; the second correction unit is used to correct the third waveform signal based on the frequency mixing signal.
  • the waveform signal is corrected to obtain a fourth waveform signal; the second compensation unit is used to compensate the fourth waveform signal based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator; the first determination unit, A defect detection result of the surface of the target object is determined based on the compensated fourth waveform signal.
  • a signal processing device may include: an acquisition unit, configured to acquire the first waveform signal by calling the first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter is the first waveform signal; a third elimination unit, configured to Eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator; the third conversion unit is used to convert the second waveform signal into the first waveform signal in the target signal channel Three waveform signals; the third correction unit is used to correct the third waveform signal based on the frequency mixing signal to obtain the fourth waveform signal; the output unit is used to output the compensated fourth waveform signal by calling the second interface, wherein, The second interface includes a second parameter, and a parameter value of the second parameter is the compensated fourth waveform signal.
  • a computer-readable storage medium includes a stored program, wherein, when the program is running, the device where the storage medium is located is controlled to perform any of the above signal processing Methods.
  • a processor for running a program wherein any one of the signal processing methods above is executed when the program is running.
  • a signal processing system including: a processor; a memory connected to the processor, used to provide the processor with instructions for processing the following processing steps: from the first waveform signal Eliminate the leakage signal of the local oscillator to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; convert the second waveform signal into the third waveform signal in the target signal channel; based on the mixing signal to the third waveform The signal is corrected to obtain a fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal is compensated, and the compensated fourth waveform signal is output.
  • the local oscillator leakage signal is eliminated from the first waveform signal to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted into the first waveform signal in the target signal channel Three waveform signals; correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensating the fourth waveform signal, and Outputting the compensated fourth waveform signal.
  • the present application obtains the mixed frequency signal by converting the compensated signal of the first waveform signal (for example, LO leakage), corrects the mixed frequency signal, and obtains the fourth waveform signal, based on the fourth waveform signal and the target waveform letter Compensate the obtained waveform signal for the difference information between the signals (for example, ideal waveform signal), so that the fourth waveform signal and the target waveform signal are as consistent as possible, thereby achieving the technical effect of improving the accuracy of waveform signal processing, The technical problem of low accuracy of waveform signal processing is solved.
  • Fig. 1 is a hardware structural block diagram of a computer terminal (or mobile device) according to a signal processing method of an embodiment of the present invention
  • Fig. 2 is a flow chart of a signal processing method according to an embodiment of the present invention.
  • Fig. 3 is a flowchart of another signal processing method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of another signal processing method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of obtaining a demodulated wave packet signal according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a signal processing device according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of another signal processing device according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of another signal processing device according to an embodiment of the present invention.
  • Fig. 9 is a structural block diagram of a computer terminal according to an embodiment of the present invention.
  • AVG Arbitrary Waveform Generator
  • High-frequency carrier (local oscillator, referred to as LO), is a high-frequency radio wave
  • Arbitrary Waveform Generator I channel (AWG I channel for short) channel), is a standardized wire gauge channel;
  • the Q channel of the arbitrary wave generator (Arbitrary Waveform Generator I channel, referred to as AWG Q channel) is a standardized wire gauge channel;
  • Ultrasonic radio frequency signal the signal used to drive the qubit
  • Spectrum analyzer an instrument used to study the spectral structure of electrical signals
  • a high-speed oscilloscope is an electronic measuring instrument
  • Local oscillator leakage (LO leakage) compensation refers to the local oscillator signal leaked to the output port or input port, and the local oscillator can refer to the local oscillation;
  • Demodulation is the process of replying a message from the modulated signal carrying the message. It can modulate the carrier with the information to be conveyed for the sending end to generate a signal carrying the message. The receiving end must recover the conveyed message before it can be processed. use;
  • Mixer calibration refers to the output of precise frequency
  • fluxonium which is the first-level quantum bit (Qubit for short) under the inductive quantum bit (flux qubit, also known as the magnetic flux qubit) in the superconducting qubit, is used to connect many large junctions (large capacitors) in series Then connect the large junction and the small junction in parallel.
  • the large junction series provides enough inductance to make the quantum fluctuation of charge distribution Less than one Cooper pair charge; when the oscillation frequency of the system is much lower than the plasma oscillation frequency of the large junction, fluxonium can well suppress the low-frequency charge drift, while retaining the high-frequency oscillation part of the charge; when the fluxonium loop magnetic When the pass is changed, its energy level structure can be adjusted in a wide range (0.5-10GHz);
  • transmon transmission line shunted plasma oscillation qubit
  • capacitive qubit charge qubit, also known as the charge qubit copper-pairbox
  • EC charge energy
  • Sensitivity, and the coupling capacitance between it and a linear resonant cavity makes it and the linear resonant cavity form a circuit quantum electrodynamics (circuit-QED) system, which can realize the manipulation and readout of qubits.
  • an embodiment of a signal processing method is also provided. It should be noted that the steps shown in the flowcharts of the drawings can be executed in a computer system such as a set of computer-executable instructions, and, Although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that shown or described herein.
  • Fig. 1 shows a block diagram of a hardware structure of a computer terminal (or mobile device) for implementing a signal processing method.
  • the computer terminal 10 may include one or more (shown by 102a, 102b, ..., 102n in the figure) processors (processors may include but not limited to microprocessors) MCU or a processing device such as a programmable logic device FPGA), a memory 104 for storing data, and a transmission module 106 for communication functions.
  • processors may include but not limited to microprocessors
  • MCU or a processing device such as a programmable logic device FPGA
  • memory 104 for storing data
  • a transmission module 106 for communication functions.
  • FIG. 1 is only a schematic diagram, and it does not limit the structure of the above-mentioned electronic device.
  • computer terminal 10 may also include more or fewer components than shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the one or more processors and/or other signal processing circuits described above may generally be referred to herein as "signal processing circuits".
  • the signal processing circuit may be implemented in whole or in part as software, hardware, firmware or other arbitrary combinations.
  • the signal processing circuit can be a single independent processing module, or be fully or partially integrated into any of the other elements in the computer terminal 10 (or mobile device).
  • the signal processing circuit is controlled by a processor (for example, the selection of the terminal path of the variable resistance connected to the interface).
  • the memory 104 can be used to store software programs and modules of application software, such as the program instruction/data storage device corresponding to the signal processing method in the embodiment of the present invention, and the processor runs the software programs and modules stored in the memory 104 to execute various A functional application and signal processing, that is, to realize the above-mentioned signal processing method.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor, and these remote memories may be connected to the computer terminal 10 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by the communication provider of the computer terminal 10 .
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the display may be, for example, a touchscreen liquid crystal display (LCD), which may enable a user to interact with the user interface of the computer terminal 10 (or mobile device).
  • LCD liquid crystal display
  • the computer device (or mobile device) shown in FIG. 1 may include hardware components (including circuits), software components (including computer code), or a combination of both hardware and software elements. It should be noted that FIG. 1 is only one example of a particular embodiment, and is intended to illustrate the types of components that may be present in a computer device (or mobile device) as described above.
  • the present application provides a signal processing method as shown in FIG. 2 . It should be noted that the signal processing method in this embodiment may be executed by the mobile terminal in the embodiment shown in FIG. 1 .
  • FIG. 2 is a flowchart of a signal processing method according to an embodiment of the present invention. As shown in FIG. 2, the method may include the following steps:
  • Step S202 eliminating the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • the wave generator outputs the first waveform signal, adjusts the size of the output first waveform signal, eliminates the local oscillator leakage signal in the first waveform signal, and obtains the second waveform signal, wherein the first waveform signal can be the bias DC signal output by the wave generator, and the second waveform signal can be the Optimum bias DC signal in addition to LO leakage signal.
  • the first waveform signal (for example, a bias DC signal) is obtained, and the size of the first waveform signal is adjusted to eliminate the local oscillator leakage signal from the first waveform signal, so as to obtain a second waveform signal, for example, the most Excellent bias DC signal for AWG.
  • a bias DC signal for example, a bias DC signal
  • Step S204 converting the second waveform signal into a third waveform signal in the target signal channel.
  • the obtained second waveform signal is converted to obtain the third waveform signal in the target signal channel, wherein the third waveform signal can be a sub-waveform signal in the target signal channel
  • the target signal channel can be channel I/Q, wherein the I channel is used to control the rotation in the X direction, and the Q channel is used to control the rotation in the Y direction, which is beneficial to the control of qubits.
  • demodulate and low-pass filter the obtained second waveform signal for example, the bias DC signal of the optimal AWG
  • demodulate and low-pass filter the obtained second waveform signal for example, the bias DC signal of the optimal AWG
  • the channel phase difference is based on the determined phase difference to compensate the sub-waveform signal in the target signal channel to obtain a third waveform signal.
  • Step S206 correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • the mixing signal is input, and the third waveform signal in the mixer is corrected to obtain the fourth waveform signal, wherein the mixing signal can be a wave packet signal with a constant input
  • the fourth waveform signal may be a corrected IQ channel compensated waveform signal obtained after frequency mixing to obtain the driving qubit signal (RF signal).
  • a constant value wave packet signal obtains an RF signal after mixing in a mixer, connect the RF signal to a spectrum analyzer, and adjust the amplitude of the wave packet signal of the target channel (for example, channel I/Q) Value until there is only one peak on the spectrum analyzer to complete the correction of the third waveform signal in the mixer, and output the fourth waveform signal, which can be the optimal IQ channel compensation waveform signal.
  • the target channel for example, channel I/Q
  • Step S208 based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensate the fourth waveform signal, and output the compensated fourth waveform signal.
  • the fourth waveform signal and the target waveform signal of the wave generator are subjected to an identification algorithm to obtain the gap between the fourth waveform signal and the target waveform signal of the wave generator, and based on the obtained gap to The fourth waveform signal is compensated, and the compensated fourth waveform signal is output, wherein the waveform compensation can be realized by modifying the amplitude and phase codes of the generated waveform on the terminal, and the target waveform signal can be an ideal waveform signal.
  • a constant-value wave packet signal obtain an RF signal after mixing in a mixer, correct the RF signal, output a fourth waveform signal, connect the fourth waveform signal to an oscilloscope, and analyze the fourth waveform
  • the signal is demodulated and low-pass filtered, and then an identification algorithm is performed to obtain the difference between the amplitude and phase of the fourth waveform signal and the target waveform signal (for example, an ideal waveform signal) of the wave generator.
  • the local oscillator leakage signal is eliminated from the first waveform signal to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted into the target signal channel
  • the third waveform signal in the wave generator; the third waveform signal is corrected based on the mixing signal to obtain the fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal is corrected compensation, and Outputting the compensated fourth waveform signal.
  • the present application obtains the mixed frequency signal by converting the compensated signal of the first waveform signal (for example, LO leakage), corrects the mixed frequency signal, and obtains the fourth waveform signal, based on the fourth waveform signal and the target waveform
  • the difference information between the signals (for example, the ideal waveform signal) is compensated for the obtained waveform signal, so that the fourth waveform signal and the target waveform signal are as consistent as possible, thereby achieving the technical effect of improving the accuracy of the waveform signal processing, The technical problem of low accuracy of waveform signal processing is solved.
  • step S204 converting the second waveform signal into a third waveform signal in the target signal channel includes: acquiring the first phase and the second phase of the second waveform signal in the first signal channel The second phase in the signal channel, wherein the wave generator includes a first signal channel and a second signal channel, and the target signal channel is the first signal channel or the second signal channel; the target signal channel is determined based on the first phase and the second phase The third waveform signal in .
  • the wave generator includes a first signal channel and a second signal channel, obtains the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel, and converts the second The waveform signal is converted into a third waveform signal in the target signal channel, and the third waveform signal in the target signal channel is determined based on the first phase and the second phase, wherein the first signal channel can be the I signal channel of the AWG, and the second signal The channel may be a Q signal channel of the AWG.
  • the local oscillator leakage signal is eliminated from the first waveform signal to obtain a second waveform signal, and the second waveform signal is transmitted to a terminal (for example, a computer terminal), and then by inputting a demodulation code on the terminal, the The demodulation of the waveform signal is to obtain the demodulated waveform signal.
  • a terminal for example, a computer terminal
  • the demodulation of the waveform signal is to obtain the demodulated waveform signal.
  • the demodulation code can be used to multiply the second waveform signal first according to A high-frequency signal actually set is passed through a low-pass filter to obtain a demodulated waveform signal.
  • determining the third waveform signal in the target signal channel based on the first phase and the second phase includes: obtaining a first phase difference between the first phase and the second phase; The difference is compensated to the sub-waveform signal of the second waveform signal in the target signal channel to obtain a third waveform signal.
  • the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel are obtained by least squares identification algorithm or curve fitting method, and the first phase is determined and the first phase difference between the second phase, the first phase difference is compensated to the sub-waveform signal of the second waveform signal in the target signal channel to obtain a third waveform signal, wherein the first phase difference can be the first The difference between the phase and the second phase.
  • the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel are determined by a least squares identification algorithm or a curve fitting method, and the first phase and the second phase Making a difference between the two phases to obtain a first phase difference between the first phase and the second phase, and supplementing the first phase difference to the sub-waveform signal of the second waveform signal in the target signal channel to obtain a third waveform signal.
  • the above process can be realized by modifying the code of the terminal to generate the wave packet signal.
  • obtaining the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel includes: determining a plurality of wave packets corresponding to the second waveform signal A signal, wherein the wave packet frequencies of the plurality of wave packet signals are different, and the wave packet frequency is determined by the bias frequency of the wave generator; the first phase and the second phase are determined based on the plurality of wave packet signals.
  • a plurality of wave packet signals corresponding to the second waveform signal is determined, and the first phase and the second phase are determined based on the plurality of wave packet signals, so as to obtain the second wave packet signal in the first signal channel of the second waveform signal.
  • Determine the wave packet frequency corresponding to a plurality of wave packet signals, the wave packet frequency is determined by the offset frequency of the wave generator, for example, the wave packet frequency can be one-twentieth to twenty of the offset frequency of the wave generator When the bias frequency of the wave generator is 100MHz, the wave packet frequency can be calculated as 5-100MHz.
  • the correction of the cos wave packet of a specified frequency can be considered for the frequency of 5MHz-50MHz, and the 5MHz wave packet can be corrected first, then the 10MHz wave packet can be corrected, and then the 15MHz wave packet can be corrected, and then the 15MHz wave packet can be corrected. Correct the 20MHz wave packet, and so on, every 5MHz, and finally correct the 50MHz wave packet (the interval can also be shortened, so more frequencies need to be corrected), where the sine wave (Sin wave) and the cos wave essence It is the same.
  • determining the first phase and the second phase based on multiple wave packet signals includes: performing frequency mixing processing on multiple wave packet signals to obtain a target wave packet signal; detecting the target wave packet signal , to obtain the driving qubit signal; at least demodulating the driving qubit signal to obtain the first phase and the second phase.
  • a plurality of wave packet signals are mixed to obtain a target wave packet signal, and the target wave packet signal is detected to obtain a driving qubit signal, and the driving qubit signal is demodulated and low-pass filtered,
  • the identification algorithm the first phase and the second phase are obtained, wherein the driving qubit signal can be an RF signal measured with an oscilloscope after frequency mixing, and can be used to drive the qubit.
  • input wave packet signals of different frequencies perform frequency mixing processing on multiple input wave packet signals, obtain target wave packet signals, use an oscilloscope to detect target wave packet signals, and obtain driving qubit signals (for example, RF signal), demodulate and low-pass filter the driving qubit signal, and obtain the first phase and the second phase through the identification algorithm.
  • driving qubit signals for example, RF signal
  • the wave packet signal is a cosine wave packet signal.
  • the wave packet signal in this embodiment is a cosine wave packet signal.
  • step S208 based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensating the fourth waveform signal includes: acquiring the first amplitude of the fourth waveform signal The amplitude difference between the value and the second amplitude of the target waveform signal; and the first amplitude of the fourth waveform signal is compensated based on the amplitude difference.
  • the obtained fourth waveform signal (can be the actually obtained signal)
  • the amplitude of the wave generator must have a large attenuation, and the target waveform signal can be obtained by compensating the amplitude; for the phase, if the phase difference is within the allowable threshold, no correction is required.
  • the fourth waveform signal is compared with the target waveform signal of the wave generator to determine the amplitude difference between the first amplitude of the fourth waveform signal and the second amplitude of the target waveform signal, based on the first The amplitude difference between the four waveform signals and the target waveform signal of the wave generator is compensated for the first amplitude of the fourth waveform signal, wherein the target waveform signal of the wave generator can be the initially set waveform signal.
  • step S208 based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensating the fourth waveform signal includes: obtaining a third phase of the fourth waveform signal A second phase difference between the fourth phase of the target waveform signal and the second phase difference; based on the second phase difference, the third phase of the fourth waveform signal is compensated.
  • the fourth waveform signal is compared with the target waveform signal of the wave generator to determine the second phase difference between the third phase of the fourth waveform signal and the fourth phase of the target waveform signal, based on the fourth The second phase difference between the third phase of the waveform signal and the fourth phase of the target waveform signal compensates the third phase of the fourth waveform signal.
  • the second phase difference between the third phase of the fourth waveform signal and the fourth phase of the target waveform signal is determined by least squares identification algorithm or curve fitting method, and the second phase difference is compensated to the first Two phase difference. For example, if the second phase difference between the third phase of the fourth waveform signal and the fourth phase of the target waveform signal is 1 degree, then 1 degree can be added to the third phase of the fourth waveform signal. It should be noted that, The phase is compensated by modifying the code of the production waveform on the terminal.
  • compensating the third phase of the fourth waveform signal based on the second phase difference includes: in response to the second phase difference being greater than the first threshold, then compensating the third phase of the fourth waveform signal based on the second phase difference The third phase of the compensation.
  • the second phase difference between the third phase of the fourth waveform signal and the fourth phase of the target waveform signal is determined, and if the second phase difference is greater than the first threshold, in response to the second phase difference being greater than the first Threshold, the third phase of the fourth waveform signal is compensated based on the second phase difference, wherein the first threshold may be a value set according to actual needs.
  • the third phase of the fourth waveform signal may not be corrected.
  • the difference information between the compensated fourth waveform signal and the target waveform signal is smaller than the second threshold.
  • the fourth waveform signal is compensated, and the difference information between the compensated fourth waveform signal and the target waveform signal is less than
  • the second threshold where the second threshold may be a value set according to actual needs.
  • the present application obtains the mixed frequency signal by converting the compensated signal of the first waveform signal (for example, LO leakage), corrects the mixed frequency signal, and obtains the fourth waveform signal, based on the fourth waveform signal
  • the difference information between the waveform signal and the target waveform signal (for example, the ideal waveform signal) is compensated for the obtained waveform signal, so that the fourth waveform signal and the target waveform signal are as consistent as possible, thereby realizing the purpose of improving the accuracy of the waveform signal processing
  • the technical effect solves the technical problem of low accuracy in waveform signal processing.
  • the embodiment of the present invention also provides another signal processing method.
  • Fig. 3 is a flowchart of another signal processing method according to an embodiment of the present invention. As shown in Fig. 3, the method may include the following steps.
  • Step S302 performing defect detection on the surface of the target object to obtain a first waveform signal.
  • the defect detection is performed on the surface of the target object to obtain a first waveform signal, wherein the target object can be an industrial object to be detected, and the first waveform signal can be a bias DC signal.
  • the waveform signal output by the wave generator is used for defect detection on the surface of the target object, and the first waveform signal is obtained based on the surface defect detection result of the target object.
  • Step S304 eliminating the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • the size of the output first waveform signal is adjusted to eliminate the local oscillator leakage signal in the first waveform signal to obtain the second waveform signal,
  • the leakage signal of the local oscillator can be represented by LO leakage
  • the wave generator can be represented by AWG
  • the second waveform signal can be an optimal bias DC signal with the leakage signal of the local oscillator eliminated.
  • the first waveform signal (for example, a bias DC signal) is obtained, and the size of the first waveform signal is adjusted to eliminate the local oscillator leakage signal from the first waveform signal, so as to obtain a second waveform signal, for example, the most Excellent bias DC signal for AWG.
  • a bias DC signal for example, a bias DC signal
  • Step S306 converting the second waveform signal into a third waveform signal in the target signal channel.
  • the obtained second waveform signal is converted to obtain the third waveform signal in the target signal channel, wherein the third waveform signal can be a sub-waveform signal in the target signal channel
  • the target signal channel can be the channel I/Q
  • the I channel controls the rotation in the X direction
  • the Q channel controls the rotation in the Y direction, which is beneficial to the control of the qubit.
  • demodulate and low-pass filter the obtained second waveform signal for example, the bias DC signal of the optimal AWG
  • demodulate and low-pass filter the obtained second waveform signal for example, the bias DC signal of the optimal AWG
  • the channel phase difference is based on the determined phase difference to compensate the sub-waveform signal in the target signal channel to obtain a third waveform signal.
  • Step S308 correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • the mixing signal is input, and the third waveform signal in the mixer is corrected to obtain the fourth waveform signal, wherein the mixing signal can be a wave packet signal with a constant input
  • the fourth waveform signal of the qubit driving signal obtained after frequency mixing may be a waveform signal compensated by the IQ channel after correction.
  • a constant value wave packet signal obtains an RF signal after mixing in a mixer, connect the RF signal to a spectrum analyzer, and adjust the amplitude of the wave packet signal of the target channel (for example, channel I/Q) Value until there is only one peak on the spectrum analyzer to complete the correction of the third waveform signal in the mixer, and output the fourth waveform signal, which can be the optimal IQ channel compensation waveform signal.
  • the target channel for example, channel I/Q
  • Step S310 based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensate the fourth waveform signal.
  • the fourth waveform signal and the target waveform signal of the wave generator are subjected to an identification algorithm to obtain the difference between the fourth waveform signal and the target waveform signal of the wave generator. Compensation is performed on the fourth waveform signal, wherein the waveform compensation can be realized by modifying the amplitude and phase codes of the generated waveform on the terminal, and the target waveform signal can be an ideal waveform signal.
  • a constant-value wave packet signal obtain an RF signal after mixing in a mixer, correct the RF signal, output a fourth waveform signal, connect the fourth waveform signal to an oscilloscope, and analyze the fourth waveform
  • the signal is demodulated and low-pass filtered, and then an identification algorithm is performed to obtain the difference between the amplitude and phase of the fourth waveform signal and the target waveform signal (for example, an ideal waveform signal) of the wave generator.
  • Step S312 determining a defect detection result on the surface of the target object based on the compensated fourth waveform signal.
  • step S312 of the present invention due to the effect of the wire and the mixer, the actual signal amplitude obtained must have a large attenuation compared with the target waveform signal. If you want to achieve the target waveform signal, it is If the amplitude compensation must be performed, the fourth waveform signal is compensated, and the defect detection result on the surface of the target object is determined based on the compensated fourth waveform signal.
  • the industrial object is a quantum chip
  • performing defect detection on the surface of the target object to obtain the first waveform signal includes: performing defect detection on the surface plate of the quantum chip based on the probe to obtain the first waveform signal A waveform signal; determining the defect detection result of the surface of the target object based on the compensated fourth waveform signal, including: determining the defect detection result of the surface plate of the quantum chip based on the compensated fourth waveform signal.
  • the surface plate of the quantum chip is detected based on the probe to obtain the first waveform signal, the local oscillator leakage signal is eliminated from the first waveform signal, the second waveform signal is obtained, and the second waveform signal is converted into the target
  • the third waveform signal in the signal channel the third waveform signal is corrected based on the frequency mixing signal to obtain the fourth waveform signal, based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform The signal is compensated, and the defect detection result of the surface plate of the quantum chip is determined based on the compensated fourth waveform signal.
  • the industrial object is a quantum chip, wherein the quantum chip includes a fluxonium type qubit, or the quantum chip includes a transmon type qubit.
  • the quantum chip as a kind of chip, is the basic constituent unit of a quantum computer. It is based on the principle of the superposition effect of quantum states and uses qubits as the carrier of information processing.
  • the quantum chip has at least one Quantum bits, quantum chips can include superconducting quantum chips, semiconductor quantum chips, quantum dot chips, ion traps and diamond (NV) color centers, etc., wherein the quantum chips can include fluxonium type qubits, or quantum chips include transmon type qubits .
  • this embodiment detects defects on the surface plate of the fluxonium type qubit or the transmon type qubit based on the probe, and determines the surface pole of the fluxonium type qubit or the transmon type qubit based on the compensated fourth waveform signal.
  • the defect detection results of the plate thus preventing the detection of the surface plate of the fluxonium type qubit or transmon type qubit, directly using the probe to touch the fluxonium type qubit or
  • the positive plate and the negative plate of the transmon type qubit are used for detection, resulting in excessive contact pressure, which causes damage to the surface of the fluxonium type qubit or the transmon type qubit.
  • the terminal for example, computer terminal
  • demodulate the waveform signal by inputting the demodulation code on the terminal to obtain the demodulated waveform signal.
  • the demodulated waveform signal After obtaining the demodulated waveform signal, it can be identified by least squares An algorithm or a curve fitting method, determining the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel, and determining the first phase difference between the first phase and the second phase Compensating the first phase difference to the sub-waveform signal of the second waveform signal in the target signal channel to obtain a third waveform signal, correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal, and Compensating the fourth waveform signal by comparing the fourth waveform signal with the target waveform signal, obtaining the compensated fourth waveform signal, and combining the compensated fourth waveform signal with the fluxonium type qubit or transmon type qubit
  • the ideal waveform signal detected when the surface is smooth is compared to achieve the purpose of determining the defect detection result of the surface of the fluxonium type qubit or the transmon type qubit.
  • the embodiment of the present invention also provides another signal processing method.
  • Fig. 4 is a flowchart of another signal processing method according to an embodiment of the present invention. As shown in Fig. 4, the method may include the following steps.
  • Step S402 acquiring the first waveform signal by calling the first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter is the first waveform signal.
  • the first interface may be an interface for data interaction between the server and the client.
  • the client can transmit at least one detected first waveform signal to the first interface as a first parameter of the first interface, so as to realize the purpose of uploading the detected first waveform signal of the target object to the server.
  • defect detection is performed on the surface of the target object to obtain a first waveform signal.
  • the platform obtains the first waveform signal of the detected target object by calling the first interface, wherein the first interface can be used for the first waveform signal to be connected to the measurement system, thereby obtaining the first waveform signal of the detected target object.
  • Step S404 eliminating the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • Step S406 converting the second waveform signal into a third waveform signal in the target signal channel.
  • Step S408 correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • Step S410 outputting the compensated fourth waveform signal by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the compensated fourth waveform signal.
  • the second interface may be an interface for data interaction between the server and the client, and the server may transmit the compensated fourth waveform signal to the second interface as the second interface.
  • the platform outputs the compensated fourth waveform signal by calling the second interface, wherein the second interface is used to transfer the compensated fourth waveform signal through the interactive Network deployment and access to the measurement system, so as to output the compensated fourth waveform signal.
  • the application eliminates the local oscillator leakage signal from the first waveform signal to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted into the target signal channel The third waveform signal; based on the mixing signal, the third waveform signal is corrected to obtain the fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal is compensated , and output the compensated fourth waveform signal.
  • this application obtains the mixed frequency signal by converting the compensated signal of the first waveform signal (for example, LO leakage), corrects the mixed frequency signal, and obtains the fourth waveform signal, based on the fourth waveform signal and the target waveform
  • the difference information between the signals (for example, the ideal waveform signal) is compensated for the obtained waveform signal, so that the fourth waveform signal and the target waveform signal are as consistent as possible, thereby achieving the technical effect of improving the accuracy of the waveform signal processing, The technical problem of low accuracy of waveform signal processing is solved.
  • the qubit gate will cause waveform errors due to equipment defects.
  • LO leakage compensation and mixer calibration methods are proposed, but the above methods do not discuss the phase of the two AWG channels I/Q due to the wave packet frequency. In the worst case, there is a problem that the obtained signal cannot be guaranteed to be close to the ideal waveform in amplitude and phase.
  • a four-step correction waveform scheme which can include: the first step, through compensation to deal with LO leakage; the second step, by inputting cos wave packets of different frequencies, and demodulating to obtain the phase of the two channels of AWG IQ difference; the third step is to perform mixer calibration through compensation; the fourth step is to pre-correct the input signal to make it as consistent as possible with the ideal waveform.
  • the solutions are based on error models, and different error models have different solutions.
  • the DC signal can be biased for the input AWG, and the size of the DC signal can be adjusted until the frequency domain signal on the spectrum analyzer approximates a straight line.
  • the straight line means that the leakage of the LO is eliminated, and the output is the most Optimal AWG bias DC signal size.
  • the second step is to consider the wave packet correction.
  • the phase difference caused by the wave packet frequency is solved by compensating the phase difference.
  • input wave packet signals of different frequencies measure the RF signal with an oscilloscope after mixing, demodulate and low-pass filter the RF signal, and obtain the IQ two channels through the identification algorithm
  • the phase difference is compensated for this phase difference.
  • FIG. 5 is a schematic diagram of obtaining a demodulated wave packet signal according to an embodiment of the present invention.
  • the RF signal V RT (t)
  • the collected data V RT (t)
  • write codes on the terminal to achieve demodulation.
  • Demodulation may include: multiplying a high-frequency signal on the RF signal first, for example, it can be multiplied by 2cos( ⁇ LO + ⁇ AWG )t and 2sin( ⁇ LO + ⁇ AWG )t, it should be noted that the high-frequency signal here is only for illustration and not specifically limited, and then through a low-pass filter, the demodulated wave packet signal is obtained, and the demodulated wave packet signal is obtained wave packets After receiving the signal, the phases of the two channels are respectively obtained by least squares identification algorithm or curve fitting method and Then do the difference to get the phase difference of the two channels, and then compensate the difference to any channel.
  • the wave packet frequency is one-twentieth to one-twentieth of the AWG bias frequency.
  • the wave packet frequency can be 5-100 MHz.
  • the wave packet correction can be performed every time a cos wave packet of a specified frequency is corrected, for example, considering the frequency of 5MHz-50MHz, it can be corrected every 5MHz, that is, the 5MHz wave packet can be corrected first, and then Correct the 10MHz wave packet, and so on. Finally, modify the 50MHz wave packet to shorten the interval.
  • the type of wave packet can be Sin wave or cos wave. Sin wave and cos wave are essentially the same.
  • the advantage of the cos wave packet is that there are few parameters that need to be adjusted, only the amplitude and frequency need to be adjusted.
  • the cos wave packet has a clear start and end time, and does not need to be normalized like the sin wave packet.
  • the I channel controls the rotation in the X direction
  • the Q channel controls the rotation in the Y direction, which is beneficial to control the qubits.
  • the third step is to calibrate the mixer through compensation, which can include inputting a constant wave packet on the basis of the first two steps, and obtaining an RF signal after mixing, connecting the RF signal to the spectrum analyzer, and adjusting the IQ two The amplitude of the wave packet of the channel, until there is only one peak on the spectrum analyzer, in order to realize the correction of the mixer, and output the amplitude of the optimal IQ channel compensation.
  • the fourth step is to pre-correct the input signal to make it as consistent as possible with the ideal waveform. It can include, on the basis of the first three steps, output the cos wave packet, and obtain the RF signal after mixing.
  • the processing is to connect the RF to the oscilloscope After the data is obtained, demodulation and low-pass filtering are carried out, and then the identification algorithm is carried out to obtain the gap between the amplitude and phase of the ideal signal, and these gaps are compensated. It should be noted that all the compensations mentioned above are realized by modifying the code of the amplitude and phase of the generated waveform on the terminal.
  • the mixed frequency signal is obtained by converting the compensated signal of the first waveform signal (for example, LO leakage), and the mixed frequency signal is corrected to obtain the fourth waveform signal, based on the fourth waveform signal and the target waveform
  • the difference information between the signals (for example, the ideal waveform signal) is compensated for the obtained waveform signal, so that the fourth waveform signal and the target waveform signal are as consistent as possible, thereby achieving the technical effect of improving the accuracy of the waveform signal processing, The technical problem of low accuracy of waveform signal processing is solved.
  • the signal processing method according to the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases The former is a better implementation.
  • the technical solution of the present invention essentially or The contribution made by the prior art can be embodied in the form of software products.
  • the computer software products are stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and include several instructions to make a terminal device ( It may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in various embodiments of the present invention.
  • a signal processing device for implementing the signal processing method shown in FIG. 2 is also provided.
  • Fig. 6 is a schematic diagram of a signal processing device according to an embodiment of the present invention.
  • the signal processing apparatus 600 may include: a first elimination unit 602 , a first conversion unit 604 , a first correction unit 606 and a first compensation unit 608 .
  • the first elimination unit 602 is configured to eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • the first conversion unit 604 is configured to convert the second waveform signal into a third waveform signal in the target signal channel.
  • the first correction unit 606 is configured to correct the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • the first compensation unit 608 is configured to compensate the fourth waveform signal based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, and output the compensated fourth waveform signal.
  • first elimination unit 602 corresponds to steps S202 to S208 in Embodiment 1
  • first correction unit 606 corresponds to steps S202 to S208 in Embodiment 1
  • first compensation unit 608 corresponds to steps S202 to S208 in Embodiment 1
  • the four units correspond to The examples and application scenarios implemented by the steps are the same, but are not limited to the content disclosed in the first embodiment above. It should be noted that, as a part of the device, the above units can run in the computer terminal 10 provided in the first embodiment.
  • a signal processing device for implementing the signal processing method shown in FIG. 3 is also provided.
  • Fig. 7 is a schematic diagram of another signal processing device according to an embodiment of the present invention.
  • the signal processing device 700 may include: a detection unit 702 , a second elimination unit 704 , a second conversion unit 706 , a second correction unit 708 , a second compensation unit 710 and a determination unit 712 .
  • the detection unit 702 is configured to detect defects on the surface of the target object to obtain a first waveform signal.
  • the second elimination unit 704 is configured to eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • the second conversion unit 706 is configured to convert the second waveform signal into a third waveform signal in the target signal channel.
  • the second correction unit 708 is configured to correct the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • the second compensating unit 710 is configured to compensate the fourth waveform signal based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator.
  • the determination unit 712 is configured to determine the defect detection result of the surface of the target object based on the compensated fourth waveform signal.
  • the detection unit 702, the second elimination unit 704, the second conversion unit 706, the second The correction unit 708, the second compensation unit 710, and the determination unit 712 correspond to steps S302 to S312 in Embodiment 1.
  • the examples and application scenarios realized by the six units are the same as those of the corresponding steps, but they are not limited to those in Embodiment 1 above. public content. It should be noted that, as a part of the device, the above units can run in the computer terminal 10 provided in the first embodiment.
  • a signal processing device for implementing the signal processing method shown in FIG. 4 is also provided.
  • Fig. 8 is a schematic diagram of another signal processing device according to an embodiment of the present invention.
  • the signal processing apparatus 800 may include: an acquisition unit 802 , a third elimination unit 804 , a third conversion unit 806 , a third correction unit 808 and an output unit 810 .
  • the obtaining unit 802 is configured to obtain the first waveform signal by calling the first interface, wherein the first interface includes a first parameter, and the parameter value of the first parameter is the first waveform signal.
  • the third elimination unit 804 is configured to eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator.
  • the third conversion unit 806 is configured to convert the second waveform signal into a third waveform signal in the target signal channel.
  • the third correction unit 808 is configured to correct the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal.
  • the output unit 810 is configured to output the compensated fourth waveform signal by calling the second interface, wherein the second interface includes a second parameter, and the parameter value of the second parameter is the compensated fourth waveform signal.
  • the acquisition unit 802, the third elimination unit 804, the third conversion unit 806, the third correction unit 808 and the output unit 810 correspond to steps S402 to S410 in Embodiment 1, and the four units are the same as
  • the examples and application scenarios implemented by the corresponding steps are the same, but are not limited to the content disclosed in the first embodiment above.
  • the above units can run in the computer terminal 10 provided in the first embodiment.
  • the local oscillator leakage signal is eliminated from the first waveform signal by the first elimination unit to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; through the first conversion The unit converts the second waveform signal into the third waveform signal in the target signal channel; through the first correction unit, corrects the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal; through the first compensation unit, based on The difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal is compensated, and the compensated fourth waveform signal is output, thereby achieving the technical effect of improving the accuracy of waveform signal processing , which solves the technical problem of low accuracy in waveform signal processing.
  • Embodiments of the present invention may provide a signal processing system, and the signal processing system may include a computer terminal, and the computer terminal may be any computer terminal device in a group of computer terminals.
  • the foregoing computer terminal may also be replaced with a terminal device such as a mobile terminal.
  • the foregoing computer terminal may be located in at least one network device among multiple network devices of the computer network.
  • the above-mentioned computer terminal can execute the program of the following steps in the signal processing method of the application program Code: Eliminate the local oscillator leakage signal from the first waveform signal to obtain the second waveform signal, where the first waveform signal is output by the wave generator; convert the second waveform signal into the third waveform signal in the target signal channel; based on The frequency mixing signal corrects the third waveform signal to obtain a fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal is compensated, and the compensated first waveform signal is output Four wave signals.
  • FIG. 9 is a structural block diagram of a computer terminal according to an embodiment of the present invention.
  • the computer terminal A may include: one or more (only one is shown in the figure) processors 902 , memory 904 , and transmission means 906 .
  • the memory can be used to store software programs and modules, such as the program instructions/modules corresponding to the signal processing method and device in the embodiment of the present invention, and the processor executes various functional applications by running the software programs and modules stored in the memory. and signal processing, that is, realizing the above-mentioned signal processing method.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory may further include a memory that is remotely located relative to the processor, and these remote memories may be connected to the computer terminal A through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the processor can call the information stored in the memory and the application program through the transmission device to perform the following steps: eliminate the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator ; converting the second waveform signal into a third waveform signal in the target signal channel; correcting the third waveform signal based on the frequency mixing signal to obtain a fourth waveform signal; based on the fourth waveform signal and the target waveform signal of the wave generator Compensate the fourth waveform signal, and output the compensated fourth waveform signal.
  • the above-mentioned processor may also execute the program code of the following steps: obtaining the first phase of the second waveform signal in the first signal channel and the second phase in the second signal channel, wherein the wave generator includes a first A signal channel and a second signal channel, the target signal channel is the first signal channel or the second signal channel; the third waveform signal in the target signal channel is determined based on the first phase and the second phase.
  • the above-mentioned processor can also execute the program code of the following steps: obtaining the first phase difference between the first phase and the second phase; On the waveform signal, a third waveform signal is obtained.
  • the above-mentioned processor may also execute the program code of the following steps: determine a plurality of wave packet signals corresponding to the second waveform signal, wherein the wave packet frequencies of the plurality of wave packet signals are different, and the wave packet frequencies are generated by wave The bias frequency of the detector is determined; the first phase and the second phase are determined based on the plurality of wave packet signals.
  • the above-mentioned processor can also execute the program code of the following steps: performing frequency mixing processing on multiple wave packet signals to obtain a target wave packet signal; detecting the target wave packet signal to obtain a driving qubit signal; The qubit signal is demodulated to obtain the first phase and the second phase.
  • the above-mentioned processor can also execute the program code of the following steps: obtaining the amplitude difference between the first amplitude of the fourth waveform signal and the second amplitude of the target waveform signal; The first amplitude of the signal is compensated.
  • the above-mentioned processor can also execute the program code of the following steps: obtaining the third phase of the fourth waveform signal A second phase difference between the fourth phase of the target waveform signal and the second phase difference; based on the second phase difference, the third phase of the fourth waveform signal is compensated.
  • the above-mentioned processor may further execute the program code of the following step: in response to the second phase difference being greater than the first threshold, then compensate the third phase of the fourth waveform signal based on the second phase difference.
  • the processor can call the information and application program stored in the memory through the transmission device to perform the following steps: perform defect detection on the surface of the target object to obtain the first waveform signal; from the first waveform signal Eliminate the leakage signal of the local oscillator to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; convert the second waveform signal into the third waveform signal in the target signal channel; based on the mixing signal to the third waveform signal Perform correction to obtain a fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, compensate the fourth waveform signal; determine the surface of the target object based on the compensated fourth waveform signal Defect detection results.
  • the above-mentioned processor can also execute the program code of the following steps: perform defect detection on the surface pole plate of the quantum chip based on the probe to obtain the first waveform signal; determine the surface pole plate of the quantum chip based on the compensated fourth waveform signal. Board defect inspection results.
  • the processor may call the information and the application program stored in the memory through the transmission device to perform the following steps: obtain the first waveform signal by calling the first interface, where the first interface includes a first parameter, The parameter value of the first parameter is the first waveform signal; the local oscillator leakage signal is eliminated from the first waveform signal to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted to the target The third waveform signal in the signal channel; correct the third waveform signal based on the mixed signal to obtain the fourth waveform signal; output the compensated fourth waveform signal by calling the second interface, wherein the second interface includes the second parameter , the parameter value of the second parameter is the compensated fourth waveform signal.
  • An embodiment of the present invention provides a signal processing method.
  • a second waveform signal is obtained, wherein the first waveform signal is output by a wave generator; the second waveform signal is converted is the third waveform signal in the target signal channel; the third waveform signal is corrected based on the mixing signal to obtain the fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the first The four waveform signals are compensated, and the compensated fourth waveform signal is output, thereby realizing the technical effect of improving the accuracy of waveform signal processing and solving the technical problem of low accuracy of waveform signal processing.
  • the structure shown in Figure 9 is only for illustration, and the computer terminal A can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (Mobile Internet Devices, MID ), PAD and other terminal equipment.
  • FIG. 9 does not limit the structure of the computer terminal A above.
  • the computer terminal A may also include more or less components than those shown in FIG. 9 (such as a network interface, a display device, etc.), or have a configuration different from that shown in FIG. 9 .
  • the embodiment of the present invention also provides a computer-readable storage medium.
  • the above-mentioned computer-readable storage medium may be used to store the program code executed by the signal processing method provided in the first embodiment above.
  • the above-mentioned computer-readable storage medium may be located in any computer terminal in the group of computer terminals in the computer network, or in any mobile terminal in the group of mobile terminals.
  • the computer-readable storage medium is configured to store program codes for performing the following steps: eliminating the local oscillator leakage signal from the first waveform signal to obtain a second waveform signal, wherein the first waveform signal Output by the wave generator; convert the second waveform signal into the third waveform signal in the target signal channel; correct the third waveform signal based on the mixed frequency signal to obtain the fourth waveform signal; based on the fourth waveform signal and the wave generator The difference information between the target waveform signals is compensated for the fourth waveform signal, and the compensated fourth waveform signal is output.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: acquiring the first phase of the second waveform signal in the first signal channel and the first phase of the second waveform signal in the second signal channel In the second phase, wherein the wave generator includes a first signal channel and a second signal channel, the target signal channel is the first signal channel or the second signal channel; determine the target signal channel based on the first phase and the second phase The third waveform signal.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: obtaining the first phase difference between the first phase and the second phase; calculating the first phase difference Compensate until the second waveform signal is on the sub-waveform signal in the target signal channel to obtain a third waveform signal.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: determining a plurality of wave packet signals corresponding to the second waveform signal, wherein the plurality of wave packet signals The wave packet frequencies are different, and the wave packet frequency is determined by the offset frequency of the wave generator; the first phase and the second phase are determined based on a plurality of wave packet signals.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: perform frequency mixing processing on a plurality of wave packet signals to obtain a target wave packet signal; The signal is detected to obtain the driving qubit signal; at least the driving qubit signal is demodulated to obtain the first phase and the second phase.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: obtaining the distance between the first amplitude of the fourth waveform signal and the second amplitude of the target waveform signal The amplitude difference; based on the amplitude difference, the first amplitude of the fourth waveform signal is compensated.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: acquiring a third phase between the third phase of the fourth waveform signal and the fourth phase of the target waveform signal Two phase differences; based on the second phase difference, the third phase of the fourth waveform signal is compensated.
  • the above-mentioned computer-readable storage medium is set to store program codes for performing the following steps: in response to the second phase difference being greater than the first threshold, then based on the second phase difference, the fourth waveform The third phase of the signal is compensated.
  • the computer-readable storage medium is configured to store program codes for performing the following steps: performing defect detection on the surface of the target object to obtain a first waveform signal; eliminating local oscillation from the first waveform signal Leaking the signal to obtain a second waveform signal, wherein the first waveform signal is output by the wave generator; converting the second waveform signal into a third waveform signal in the target signal channel; correcting the third waveform signal based on the mixed frequency signal, Obtain the fourth waveform signal; based on the difference information between the fourth waveform signal and the target waveform signal of the wave generator, the fourth waveform signal performing compensation; determining a defect detection result on the surface of the target object based on the compensated fourth waveform signal.
  • the above-mentioned computer-readable storage medium is configured to store program codes for performing the following steps: perform defect detection on the surface plate of the quantum chip based on the probe, and obtain the first waveform signal;
  • the compensated fourth waveform signal determines the defect detection result of the surface plate of the quantum chip.
  • the computer-readable storage medium is configured to store program codes for performing the following steps: acquiring the first waveform signal by calling the first interface, where the first interface includes a first parameter, and the first parameter The parameter value of is the first waveform signal; the local oscillator leakage signal is eliminated from the first waveform signal to obtain the second waveform signal, wherein the first waveform signal is output by the wave generator; the second waveform signal is converted into the target signal channel the third waveform signal; correct the third waveform signal based on the frequency mixing signal to obtain the fourth waveform signal; output the compensated fourth waveform signal by calling the second interface, wherein the second interface includes the second parameter, and the second The parameter value of the parameter is the fourth waveform signal after compensation.
  • the disclosed technical content can be realized in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种信号处理方法和存储介质。其中,该方法包括:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。本发明解决了对波形信号处理的准确性低的技术问题。

Description

信号处理方法和存储介质
本申请要求于2022年03月03日提交中国专利局、申请号为202210200389.9、申请名称为“信号处理方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算机领域,具体而言,涉及一种信号处理方法和存储介质。
背景技术
目前,在进行波形信号的处理时,通常是通过本振泄露补偿和混频器校准,对波形误差进行修正,但是该方法考虑不全面,存在对波形信号信号处理的准确性低的技术问题。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种信号处理方法和存储介质,以至少解决对波形信号处理的准确性低的技术问题。
根据本发明实施例的一个方面,提供了一种信号处理方法。该方法可以包括:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
根据本发明实施例的另一方面,还提供了一种信号处理方法。该方法可以包括:对目标对象的表面进行缺陷检测,得到第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿;基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
根据本发明实施例的另一方面,还提供了一种信号处理方法。该方法可以包括:通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
根据本发明实施例的一个方面,提供了一种信号处理装置。该装置可以包括:第一消除单元,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形 信号由波发生器输出;第一转换单元,用于将第二波形信号转换为目标信号通道中的第三波形信号;第一校正单元,用于基于混频信号对第三波形信号进行校正,得到第四波形信号;第一补偿单元,用于基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
根据本发明实施例的另一方面,还提供了一种信号处理装置。该装置可以包括:检测单元,用于对目标对象的表面进行缺陷检测,得到第一波形信号;第二消除单元,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;第二转换单元,用于将第二波形信号转换为目标信号通道中的第三波形信号;第二校正单元,用于基于混频信号对第三波形信号进行校正,得到第四波形信号;第二补偿单元,用于基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿;第一确定单元,用于基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
根据本发明实施例的另一方面,还提供了一种信号处理装置。该装置可以包括:获取单元,用于通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号;第三消除单元,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;第三转换单元,用于将第二波形信号转换为目标信号通道中的第三波形信号;第三校正单元,用于基于混频信号对第三波形信号进行校正,得到第四波形信号;输出单元,用于通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
根据本发明实施例的另一方面,还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述任意一项的信号处理的方法。
根据本发明实施例的另一方面,还提供了一种处理器,处理器用于运行程序,其中,在程序运行时执行上述任意一项的信号处理的方法。
根据本发明实施例的另一方面,还提供了一种信号处理系统,包括:处理器;存储器,与处理器相连接,用于为处理器提供处理以下处理步骤的指令:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
在本发明实施例中,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。也就是说,本申请通过对第一波形信号(比如,LO泄露)补偿后的信号进行转换得到混频信号,对混频信号进行校正,得到第四波形信号,基于第四波形信号和目标波形信 号(比如,理想波形信号)之间的差异信息对得到的波形信号进行补偿,以使第四波形信号和目标波形信号尽可能一致,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种信号处理方法的计算机终端(或移动设备)的硬件结构框图;
图2是根据本发明实施例的一种信号处理方法的流程图;
图3是根据本发明实施例的另一种信号处理方法的流程图;
图4是根据本发明实施例的另一种信号处理方法的流程图;
图5是根据本发明实施例的得到解调波包信号的示意图;
图6是根据本发明实施例的一种信号处理装置的示意图;
图7是根据本发明实施例的另一种信号处理装置的示意图;
图8是根据本发明实施例的另一种信号处理装置的示意图;
图9是根据本发明实施例的一种计算机终端的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
首先,在对本申请实施例进行描述的过程中出现的部分名词或术语适用于如下解释:
任意波发生器(Arbitrary Waveform Generator,简称为AWG),是一种特殊的信号源,综合具有其它信号源波形生成能力,因而适合各种仿真实验需要;
高频载波(local oscillator,简称为LO),是一种高频率的无线电波;
任意波发生器的I通道(Arbitrary Waveform Generator I channel,简称为AWG I  channel),是一种标准化线规通道;
任意波发生器的Q通道(Arbitrary Waveform Generator I channel,简称为AWG Q channel),是一种标准化线规通道;
超声射频信号(RF signal),用于驱动量子比特的信号;
频谱分析仪(spectrum analyzer),用于研究电信号频谱结构的仪器;
高速示波器(high-speed oscilloscope),是一种电子测量仪器;
本振泄露(LO泄露)补偿,是指泄露到输出口或输入口的本振信号,本振可以指的是本机震荡;
解调,是从携带消息的已调信号中回复消息的过程,可以为发送端用所欲传达的信息对载波进行调制,产生携带这一消息的信号,接收端必须恢复所传达的消息才能加以利用;
混频器校准,指的是输出精准的频率;
fluxonium,为超导量子比特中的感性量子比特(flux qubit,也称磁通量子比特)下的一级量子比特(quantum bit,简称为Qubit),用于将很多的大结(大的电容)串联起来,然后将串联后的大结与小结并联.整个回路中不存在小的超导岛,以避免了电荷漂移的影响,同时大结串联提供了足够大的电感,使得电荷分布的量子涨落小于一个库伯对电荷;当系统振荡频率远低于大结的等离子振荡频率时,fluxonium可以很好地抑制了低频电荷漂移,同时又保留了电荷的高频振荡部分;当fluxonium的环路磁通改变时,其能级结构能够在很大范围(0.5-10GHz)内可调;
transmon(transmission line shunted plasma oscillation qubit),为超导量子比特中的容性量子比特(charge qubit,也称为电荷量子比特copper-pairbox)下的一级量子比特,用于增大约瑟夫森能(EJ)和电荷能(EC)之间的比值,以将系统能态对门电荷的色散关系趋于平坦化,其是在约瑟夫森结两端并联了一个较大的电容,以降低对电荷噪声的灵敏度,并且其与一个线性谐振腔之间的耦合电容使得其与线性谐振腔构成一个电路量子电动力学(circuit-QED)系统,可以实现对量子比特的操控和读出。
实施例1
根据本发明实施例,还提供了一种信号处理的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。图1示出了一种用于实现信号处理方法的计算机终端(或移动设备)的硬件结构框图。如图1所示,计算机终端10(或移动设备10)可以包括一个或多个(图中采用102a、102b,……,102n来示出)处理器(处理器可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输模块106。除此以外,还可以包括:显示器、输入/输出接口(I/O接口)、通用串行总线 (USB)端口(可以作为BUS总线的端口中的一个端口被包括)、网络接口、电源和/或相机。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算机终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
应当注意到的是上述一个或多个处理器和/或其他信号处理电路在本文中通常可以被称为“信号处理电路”。该信号处理电路可以全部或部分的体现为软件、硬件、固件或其他任意组合。此外,信号处理电路可为单个独立的处理模块,或全部或部分的结合到计算机终端10(或移动设备)中的其他元件中的任意一个内。如本申请实施例中所涉及到的,该信号处理电路作为一种处理器控制(例如与接口连接的可变电阻终端路径的选择)。
存储器104可用于存储应用软件的软件程序以及模块,如本发明实施例中的信号处理方法对应的程序指令/数据存储装置,处理器通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及信号处理,即实现上述的信号处理方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
显示器可以例如触摸屏式的液晶显示器(LCD),该液晶显示器可使得用户能够与计算机终端10(或移动设备)的用户界面进行交互。
此处需要说明的是,在一些可选实施例中,上述图1所示的计算机设备(或移动设备)可以包括硬件元件(包括电路)、软件元件(包括存储在计算机可读介质上的计算机代码)、或硬件元件和软件元件两者的结合。应当指出的是,图1仅为特定具体实例的一个实例,并且旨在示出可存在于上述计算机设备(或移动设备)中的部件的类型。
在图1所示的运行环境下,本申请提供了如图2所示的信号处理方法。需要说明的是,该实施例的信号处理方法可以由图1所示实施例的移动终端执行。
图2是根据本发明实施例的一种信号处理方法的流程图,如图2所示,该方法可以包括以下步骤:
步骤S202,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
在本发明上述步骤S202提供的技术方案中,由波发生器输出第一波形信号,对输出的第一波形信号的大小进行调节,消除第一波形信号中的本振泄露信号,得到第二波形信号,其中,第一波形信号可以为由波发生器输出的偏置直流信号,第二波形信号可以为消 除了本振泄露信号的最优的偏置直流信号。
可选地,得到第一波形信号(比如,偏置直流信号),对第一波形信号的大小进行调节,以从第一波形信号中消除本振泄露信号,得到第二波形信号,比如,最优的AWG的偏置直流信号。
步骤S204,将第二波形信号转换为目标信号通道中的第三波形信号。
在本发明上述步骤S204提供的技术方案中,对得到的第二波形信号进行转换,得到目标信号通道中的第三波形信号,其中,第三波形信号可以为对目标信号通道中的子波形信号进行补偿之后得到的波形信号,目标信号通道可以为通道I/Q,其中,I通道用于控制X方向旋转,Q通道用于控制Y方向旋转,有利于对量子比特的控制。
可选地,对得到的第二波形信号(比如,最优的AWG的偏置直流信号)进行解调与低通滤波,得到解调后的波形信号,确定解调后的波形信号在目标信号通道的相位差,基于确定的相位差对目标信号通道中的子波形信号进行补偿,得到第三波形信号。
步骤S206,基于混频信号对第三波形信号进行校正,得到第四波形信号。
在本发明上述步骤S206提供的技术方案中,输入混频信号,对混频器中的第三波形信号进行校正,得到第四波形信号,其中,混频信号可以为输入常值的波包信号经过混频后得到的驱动量子比特的信号(RF信号),第四波形信号可以为经过校正之后IQ通道补偿的波形信号。
可选地,输入常值的波包信号,在混频器中混频之后得到RF信号,将RF信号接到频谱仪上,调节目标通道(比如,通道I/Q)的波包信号的幅值,直到频谱仪上只有一个峰值,以完成混频器中的第三波形信号进的校正,输出第四波形信号,可以为最优的IQ通道补偿的波形信号。
步骤S208,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
在本发明上述步骤S208提供的技术方案中,将第四波形信号与波发生器的目标波形信号进行辨识算法,得到第四波形信号与波发生器的目标波形信号的差距,基于得到的差距对第四波形信号进行补偿,输出补偿后的第四波形信号,其中,可以通过在终端上修改生成波形的幅值与相位的代码来实现对波形的补偿,目标波形信号可以为理想的波形信号。
可选地,输入常值的波包信号,在混频器中混频之后得到RF信号,对RF信号进行校正,输出第四波形信号,将第四波形信号接到示波器上,对第四波形信号进行解调与低通滤波,再进行辨识算法,以得到第四波形信号与波发生器的目标波形信号(比如,理想的波形信号)的幅值与相位的差距,通过在终端上输入或者修改生成波形的幅值与相位的代码,对第四波形信号进行补偿,输出补偿后的第四波形信号。
通过本申请上述步骤S202至步骤S208,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且 输出补偿后的第四波形信号。也就是说,本申请通过对第一波形信号(比如,LO泄露)补偿后的信号进行转换得到混频信号,对混频信号进行校正,得到第四波形信号,基于第四波形信号和目标波形信号(比如,理想波形信号)之间的差异信息对得到的波形信号进行补偿,以使第四波形信号和目标波形信号尽可能一致,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
下面对该实施例的上述方法进行进一步地介绍。
作为一种可选的实施方式,步骤S204,将第二波形信号转换为目标信号通道中的第三波形信号,包括:获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,其中,波发生器包括第一信号通道和第二信号通道,目标信号通道为第一信号通道或第二信号通道;基于第一相位和第二相位确定目标信号通道中的第三波形信号。
在该实施例中,波发生器包括第一信号通道和第二信号通道,获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,将第二波形信号转换为目标信号通道中的第三波形信号,基于第一相位和第二相位确定目标信号通道中的第三波形信号,其中,第一信号通道可以为AWG的I信号通道,第二信号通道可以为AWG的Q信号通道。
可选地,从第一波形信号中消除本振泄露信号,得到第二波形信号,将第二波形信号传递到终端上(比如,电脑端),然后通过在终端上输入解调代码,实现对波形信号的解调,得到解调后的波形信号,得到解调后的波形信号后,通过最小二乘辨识算法或者曲线拟合的方法,确定第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,基于第一相位和第二相位确定目标信号通道中的第三波形信号,其中,解调代码可以用于先给第二波形信号上乘以一个根据实际设定的一个高频信号,再通过低通滤波器,得到解调后的波形信号。
作为一种可选的实施方式,基于第一相位和第二相位确定目标信号通道中的第三波形信号,包括:获取第一相位和第二相位之间的第一相位差;将第一相位差补偿到第二波形信号在目标信号通道中的子波形信号上,得到第三波形信号。
在该实施例中,通过最小二乘辨识算法或者曲线拟合的方法,获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,确定第一相位和第二相位之间的第一相位差,将第一相位差补偿到第二波形信号在目标信号通道中的子波形信号上,得到第三波形信号,其中,第一相位差可以为第一相位和第二相位之间的差值。
可选地,通过最小二乘辨识算法或者曲线拟合的方法,确定第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,对第一相位和第二相位做差,得到第一相位和第二相位之间的第一相位差,将第一相位差补充至第二波形信号在目标信号通道中的子波形信号,得到第三波形信号。
举例而言,第一信号通道中的第一相位和在第二信号通道中的第二相位的第一相位差为1度,即,I-Q=1度,可以在产生第二信号通道信号时,加上这1度的相位差,也可以在产生第一信号通道信号时,减去这1度的相位差,上述过程的实现可通过修改终端生成波包信号的代码实现。
作为一种可选的实施方式,获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,包括:确定与第二波形信号对应的多个波包信号,其中,多个波包信号的波包频率不同,且波包频率由波发生器的偏置频率确定;基于多个波包信号确定第一相位和第二相位。
在该实施例中,确定与第二波形信号对应的多个波包信号,基于多个波包信号确定第一相位和第二相位,以达到获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位的目的,其中,多个波包信号的波包频率不同;波包信号可以为指定频率的余弦波包(cosine波包,简称为cos波包);确定多个波包信号对应的波包频率,波包频率由波发生器的偏置频率确定,比如,波包频率可以为波发生器的偏置频率的二十分之一到二十分之一,当波发生器的偏置频率为100MHz时,可以计算出波包频率为5-100MHz。
可选地,确定与第二波形信号对应的多个波包信号,输入不同频率的余弦波包,利用对输入的阻尼余弦波包解调得到的第一信号通道中的第一相位和在第二信号通道中的第二相位。
需要说明的是,对某个指定频率的cos波包进行修正,可以为当考虑5MHz-50MHz的频率,可以先对5MHz波包修正,再对10MHz波包修正,再对15MHz波包修正,再对20MHz波包修正,以此类推,每隔5MHz修正一次,最后对50MHz波包修正(也可以把间隔缩短,那就要修正更多的频率),其中正弦波(Sin波)与cos波本质是一样的,使用cos波的好处是需要调节的参数少,只需要调节幅值与频率,且cos波包有明确的开始和结束时间,不需要像Sin波一样进行归一化的操作,因此,该实施例使用的是不同频率的余弦波包。
作为一种可选的实施方式,基于多个波包信号确定第一相位和第二相位,包括:对多个波包信号进行混频处理,得到目标波包信号;对目标波包信号进行检测,得到驱动量子比特信号;至少对驱动量子比特信号进行解调,得到第一相位和第二相位。
在该实施例中,对多个波包信号进行混频处理,得到目标波包信号,对目标波包信号进行检测,得到驱动量子比特信号,对驱动量子比特信号进行解调与低通滤波,通过辨识算法,得到第一相位和第二相位,其中,驱动量子比特信号可以为混频后用示波器测得的RF信号,可以用于驱动量子比特。
可选地,输入不同频率的波包信号,对输入的多个波包信号进行混频处理,得到目标波包信号,用示波器对目标波包信号进行检测,得到驱动量子比特信号(比如,RF信号),对驱动量子比特信号进行解调与低通滤波,通过辨识算法,得到第一相位和第二相位。
作为一种可选的实施方式,波包信号为余弦波包信号。
在该实施例中,由于余弦波包信号需要调节的参数少,只需要调节幅值与频率,有明确的开始和结束时间,因此该实施例中的波包信号为余弦波包信号。
作为一种可选的实施方式,步骤S208,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,包括:获取第四波形信号的第一幅值和目标波形信号的第二幅值之间的幅值差;基于幅值差对第四波形信号的第一幅值进行补偿。
可选地,由于导线和混频器的作用,得到的第四波形信号(可以为实际得到的信号) 的幅值与波发生器的目标波形信号相比,一定会有很大的衰减,可以通过对幅值进行补偿,得到目标波形信号;对于相位,如果相位差在允许的阈值,可以不用修正。
在该实施例中,对第四波形信号和波发生器的目标波形信号进行比较,确定第四波形信号的第一幅值和目标波形信号的第二幅值之间的幅值差,基于第四波形信号和波发生器的目标波形信号之间的幅值差,对第四波形信号的第一幅值进行补偿,其中,波发生器的目标波形信号可以为最初设定的波形信号。
作为一种可选的实施方式,步骤S208,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,包括:获取第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差;基于第二相位差对第四波形信号的第三相位进行补偿。
在该实施例中,对第四波形信号和波发生器的目标波形信号进行比较,确定第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差,基于第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差,对第四波形信号的第三相位进行补偿。
可选地,通过最小二乘辨识算法或者曲线拟合的方法,确定第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差,将第二相位差补偿到第二相位差。比如,第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差为1度,那么可以对第四波形信号的第三相位加上1度,需要说明的是,是通过在终端上修改生产波形的代码对相位进行补偿。
作为一种可选的实施方式,基于第二相位差对第四波形信号的第三相位进行补偿,包括:响应于第二相位差大于第一阈值,则基于第二相位差对第四波形信号的第三相位进行补偿。
在该实施例中,确定第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差,如果第二相位差大于第一阈值,响应于第二相位差大于第一阈值,则基于第二相位差对第四波形信号的第三相位进行补偿,其中,第一阈值可以为根据实际需求设定的值。
可选地,如果第二相位差小于第一阈值(第二相位差在允许的阈值),可以不用对第四波形信号的第三相位进行修正。
作为一种可选的实施方式,补偿后的第四波形信号与目标波形信号之间的差异信息小于第二阈值。
在该实施例中,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,补偿后的第四波形信号与目标波形信号之间的差异信息小于第二阈值,其中,第二阈值可以为根据实际需求设定的值。
在本发明实施例中,本申请通过对第一波形信号(比如,LO泄露)补偿后的信号进行转换得到混频信号,对混频信号进行校正,得到第四波形信号,基于第四波形信号和目标波形信号(比如,理想波形信号)之间的差异信息对得到的波形信号进行补偿,以使第四波形信号和目标波形信号尽可能一致,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
本发明实施例还提供了另一种信号处理方法。
图3是根据本发明实施例的另一种信号处理方法的流程图。如图3所示,该方法可以包括以下步骤。
步骤S302,对目标对象的表面进行缺陷检测,得到第一波形信号。
在本发明上述步骤S302提供的技术方案中,对目标对象的表面进行缺陷检测,得到第一波形信号,其中,目标对象可以为待检测的工业对象,第一波形信号可以为偏置直流信号。
可选地,由波发生器输出波形信号对目标对象的表面进行缺陷检测,基于对目标对象的表面缺陷检测结果,得到第一波形信号。
步骤S304,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
在本发明上述步骤S304提供的技术方案中,基于得到的第一波形信号,对输出的第一波形信号的大小进行调节,消除第一波形信号中的本振泄露信号,得到第二波形信号,其中,本振泄露信号可以用LO泄露表示,波发生器可以用AWG表示,第二波形信号可以为消除了本振泄露信号的最优的偏置直流信号。
可选地,得到第一波形信号(比如,偏置直流信号),对第一波形信号的大小进行调节,以从第一波形信号中消除本振泄露信号,得到第二波形信号,比如,最优的AWG的偏置直流信号。
步骤S306,将第二波形信号转换为目标信号通道中的第三波形信号。
在本发明上述步骤S306提供的技术方案中,对得到的第二波形信号进行转换,得到目标信号通道中的第三波形信号,其中,第三波形信号可以为对目标信号通道中的子波形信号进行补偿之后得到的波形信号,目标信号通道可以为通道I/Q,I通道控制X方向旋转,Q通道控制Y方向旋转,有利于对量子比特的控制。
可选地,对得到的第二波形信号(比如,最优的AWG的偏置直流信号)进行解调与低通滤波,得到解调后的波形信号,确定解调后的波形信号在目标信号通道的相位差,基于确定的相位差对目标信号通道中的子波形信号进行补偿,得到第三波形信号。
步骤S308,基于混频信号对第三波形信号进行校正,得到第四波形信号。
在本发明上述步骤S308提供的技术方案中,输入混频信号,对混频器中的第三波形信号进行校正,得到第四波形信号,其中,混频信号可以为输入常值的波包信号经过混频后得到的驱动量子比特的信号,第四波形信号可以为经过校正之后IQ通道补偿的波形信号。
可选地,输入常值的波包信号,在混频器中混频之后得到RF信号,将RF信号接到频谱仪上,调节目标通道(比如,通道I/Q)的波包信号的幅值,直到频谱仪上只有一个峰值,以完成混频器中的第三波形信号进的校正,输出第四波形信号,可以为最优的IQ通道补偿的波形信号。
步骤S310,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿。
在本发明上述步骤S310提供的技术方案中,将第四波形信号与波发生器的目标波形信号进行辨识算法,得到第四波形信号与波发生器的目标波形信号的差距,基于得到的差距对第四波形信号进行补偿,其中,可以通过在终端上修改生成波形的幅值与相位的代码来实现对波形的补偿,目标波形信号可以为理想的波形信号。
可选地,输入常值的波包信号,在混频器中混频之后得到RF信号,对RF信号进行校正,输出第四波形信号,将第四波形信号接到示波器上,对第四波形信号进行解调与低通滤波,再进行辨识算法,以得到第四波形信号与波发生器的目标波形信号(比如,理想的波形信号)的幅值与相位的差距,通过在终端上输入或者修改生成波形的幅值与相位的代码,对第四波形信号进行补偿。
步骤S312,基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
在本发明上述步骤S312提供的技术方案中,由于导线和混频器的作用,实际得到的信号幅值与目标波形信号相比,一定会有很大的衰减,如果想达到目标波形信号,是一定要进行幅值补偿的,对第四波形信号进行补偿,基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
作为一种可选的实施方式,工业对象为量子芯片,其中,对目标对象的表面进行缺陷检测,得到第一波形信号,包括:基于探针对量子芯片的表面极板进行缺陷检测,得到第一波形信号;基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果,包括:基于补偿后的第四波形信号确定量子芯片的表面极板的缺陷检测结果。
可选地,基于探针对量子芯片的表面极板进行缺陷检测,得到第一波形信号,从第一波形信号中消除本振泄露信号,得到第二波形信号,将第二波形信号转换为目标信号通道中的第三波形信号,基于混频信号对第三波形信号进行校正,得到第四波形信号,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,基于补偿后的第四波形信号确定量子芯片的表面极板的缺陷检测结果。
作为一种可选的实施方式,工业对象为量子芯片,其中,量子芯片包括fluxonium类型量子位,或者量子芯片包括transmon类型量子位。
在该实施例中,量子芯片作为芯片的一种,是量子计算机的基本构成单元,是以量子态的叠加效应为原理,以量子比特为信息处理的载体的处理器,量子芯片内部至少具有一个量子比特,量子芯片可以包含超导量子芯片、半导体量子芯片、量子点芯片、离子阱及金刚石(NV)色心等,其中,量子芯片可以包括fluxonium类型量子位,或者量子芯片包括transmon类型量子位。
可选地,该实施例通过基于探针对fluxonium类型量子位或transmon类型量子位的表面极板进行缺陷检测,基于补偿后的第四波形信号确定fluxonium类型量子位或transmon类型量子位的表面极板的缺陷检测结果,从而防止了在fluxonium类型量子位或transmon类型量子位的表面极板的检测中,直接使用探针接触fluxonium类型量子位或 transmon类型量子位的正极板和负极板来进行检测,导致接触压力过大,使fluxonium类型量子位或transmon类型量子位的表面造成损坏的问题。
可选地,对fluxonium类型量子位或transmon类型量子位的表面进行缺陷检测,得到第一波形信号,从第一波形信号中消除本振泄露信号,得到第二波形信号,将第二波形信号传递到终端上(比如,电脑端),然后通过在终端上输入解调代码,实现对波形信号的解调,得到解调后的波形信号,得到解调后的波形信号后,通过最小二乘辨识算法或者曲线拟合的方法,确定第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,确定第一相位和第二相位之间的第一相位差,将第一相位差补偿到第二波形信号在目标信号通道中的子波形信号上,得到第三波形信号,基于混频信号对所述第三波形信号进行校正,得到第四波形信号,将第四波形信号与目标波形信号之间进行比较对所述第四波形信号进行补偿,得到补偿之后的第四波形信号,将补偿后的第四波形信号,与fluxonium类型量子位或transmon类型量子位的表面在平滑时所检测得到的理想波形信号进行比较,以达到确定fluxonium类型量子位或transmon类型量子位的表面的缺陷检测结果的目的。
本发明实施例还提供了另一种信号处理方法。
图4是根据本发明实施例的另一种信号处理方法的流程图。如图4所示,该方法可以包括以下步骤。
步骤S402,通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号。
在本发明上述步骤S402提供的技术方案中,第一接口可以是服务器与客户端之间进行数据交互的接口。客户端可以将至少一个检测的第一波形信号传入第一接口,作为第一接口的一个第一参数,实现将检测的目标对象的第一波形信号上传至服务器的目的。
可选地,对目标对象的表面进行缺陷检测,得到第一波形信号。
可选地,平台通过调用第一接口获取检测的目标对象的第一波形信号,其中第一接口可以用于第一波形信号接入测量系统中,从而获取检测的目标对象的第一波形信号。
步骤S404,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
步骤S406,将第二波形信号转换为目标信号通道中的第三波形信号。
步骤S408,基于混频信号对第三波形信号进行校正,得到第四波形信号。
步骤S410,通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
在本发明上述步骤S410提供的技术方案中,第二接口可以是服务器与客户端之间进行数据交互的接口,服务器可以将补偿后的第四波形信号传入第二接口,作为第二接口的一个参数,实现将补偿后的第四波形信号下发至客户端的目的。可选地,平台通过调用第二接口输出补偿后的第四波形信号,其中,第二接口用于将补偿后的第四波形信号通过互 联网部署及接入测量系统中,从而输出补偿后的第四波形信。
在本发明实施例中,本申请从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。也就是说,本申请通过对第一波形信号(比如,LO泄露)补偿后的信号进行转换得到混频信号,对混频信号进行校正,得到第四波形信号,基于第四波形信号和目标波形信号(比如,理想波形信号)之间的差异信息对得到的波形信号进行补偿,以使第四波形信号和目标波形信号尽可能一致,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
实施例2
下面对该实施例的上述方法的优选实施方式进行进一步介绍,具体以基于仪器缺陷的控制脉冲校准的方法进行举例说明。
量子比特门因为设备缺陷会造成波形的误差,为了修正这些误差,提出了LO泄露补偿和混频器校准的方法,但上述方法没有讨论AWG两个通道I/Q因为波包频率带来的相位差的情况,存在不能保证得到的信号和理想波形在幅值和相位上接近的问题。
为解决上述问题,提出了四步修正波形方案,可以包括:第一步,通过补偿处理LO的泄露;第二步,通过输入不同频率的cos波包,解调得到AWG IQ两个通道的相位差;第三步,通过补偿来进行混频器校准;第四步,对输入信号做预修正,使得和理想波形尽可能一致。需要说明的是,解决方案基于误差模型,不同的误差模型的解决方案不同。
下面对该实施例的上述方法从输入输出的角度进行进一步地介绍。
第一步,通过补偿处理LO的泄露,可以为输入AWG的偏置直流信号,调节直流信号的大小直到频谱仪上频域信号近似于一条直线,直线意味着消去了LO的泄露,输出是最优的AWG的偏置直流信号大小。
第二步,考虑波包修正,通过输入不同频率的cos ine波包来解调得到IQ两个通道的相位差,通过补偿相位差解决波包频率带来的相位差的问题。
可选地,在第一步的基础上,输入不同频率的波包信号,混频后用示波器测得RF信号,对RF信号进行解调与低通滤波,通过辨识算法得到IQ两个通道的相位差,对这个相位差进行补偿。
可选地,图5是根据本发明实施例的得到解调波包信号的示意图,如图5所示,采集到RF信号(VRT(t)),把采集到的数据(VRT(t))传递到终端上,然后在终端上写代码实现解调,解调可以包括:先在RF信号上乘以一个高频信号,比如,可以乘以2cos(ωLOAWG)t和2sin(ωLOAWG)t,需要说明的是,此处的高频信号仅为举例说明,并不做具体限定,再通过低通滤波器,得到解调后的波包信号,得到解调后的波包 信号后,通过最小二乘辨识算法或者曲线拟合的方法,分别得到两个通道的相位然后做差,得到两个通道的相位差,再把这个差值补偿到任意一个通道即可。比如,I-Q=1度,那么可以在产生Q通道信号时,加上这1度的相位差,也可以在产生I通道信号时,减去上这1度的相位差,实际操作是在终端上修改生产波形的代码来实现补偿。
可选地,波包频率是AWG偏置频率的二十分之一到二十分一,比如,AWG偏置频率为100MHz,可以得到波包频率是5-100MHz。
可选地,波包修正可以为每次对某个指定频率的cos波包进行修正,比如,考虑5MHz-50MHz的频率,可以每隔5MHz修正一次,即,可以先对5MHz波包修正,再对10MHz波包修正,以此类推,最后对50MHz波包修正,也可以把间隔缩短,其中,波包的类型可以为Sin波,也可以为cos波,Sin波与cos波本质是一样的,cos的波包的好处是需要调节的参数少,只需要调节幅值与频率,另外cos波包有明确的开始和结束时间,不需要像Sin波包一样进行归一化的操作。
可选地,IQ通道中I通道控制X方向旋转,Q通道控制Y方向旋转,有利于对量子比特进行控制。
第三步,通过补偿来进行混频器校准,可以包括在前两步的基础上,输入常值的波包,混频后得到RF信号,将RF信号接到频谱仪上,调节IQ两个通道的波包的幅值,直到频谱仪上只有一个峰值,以实现混频器的校正,输出最优的IQ通道补偿的幅值。
第四步,对输入信号做预修正,使得和理想波形尽可能一致,可以包括,在前三步的基础上,输出cos波包,混频后得到RF信号,处理是把RF接到示波器上,得到数据后进行解调与低通滤波,再进行辨识算法,得到与理想信号幅值与相位的差距,对这些差距进行补偿。需要说明的是,上文中所有提到的补偿都是通过终端上修改生成波形的幅值与相位的代码来实现的。
在该实施例中,通过对第一波形信号(比如,LO泄露)补偿后的信号进行转换得到混频信号,对混频信号进行校正,得到第四波形信号,基于第四波形信号和目标波形信号(比如,理想波形信号)之间的差异信息对得到的波形信号进行补偿,以使第四波形信号和目标波形信号尽可能一致,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的信号处理方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对 现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
根据本发明实施例,还提供了一种用于实施上述图2所示的信号处理方法的信号处理装置。
图6是根据本发明实施例的一种信号处理装置的示意图。如图6所示,该信号处理装置600可以包括:第一消除单元602、第一转换单元604、第一校正单元606和第一补偿单元608。
第一消除单元602,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
第一转换单元604,用于将第二波形信号转换为目标信号通道中的第三波形信号。
第一校正单元606,用于基于混频信号对第三波形信号进行校正,得到第四波形信号。
第一补偿单元608,用于基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
此处需要说明的是,上述第一消除单元602、第一转换单元604、第一校正单元606和第一补偿单元608对应于实施例1中的步骤S202至步骤S208,四个单元与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述单元作为装置的一部分可以运行在实施例一提供的计算机终端10中。
根据本发明实施例,还提供了一种用于实施上述图3所示的信号处理方法的信号处理装置。
图7是根据本发明实施例的另一种信号处理装置的示意图。如图7所示,该信号处理装置700可以包括:检测单元702、第二消除单元704、第二转化单元706、第二校正单元708、第二补偿单元710和确定单元712。
检测单元702,用于对目标对象的表面进行缺陷检测,得到第一波形信号。
第二消除单元704,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
第二转换单元706,用于将第二波形信号转换为目标信号通道中的第三波形信号。
第二校正单元708,用于基于混频信号对第三波形信号进行校正,得到第四波形信号。
第二补偿单元710,用于基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿。
确定单元712,用于基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
此处需要说明的是,上述检测单元702、第二消除单元704、第二转化单元706、第二 校正单元708、第二补偿单元710和确定单元712对应于实施例1中的步骤S302至步骤S312,六个单元与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述单元作为装置的一部分可以运行在实施例一提供的计算机终端10中。
根据本发明实施例,还提供了一种用于实施上述图4所示的信号处理方法的信号处理装置。
图8是根据本发明实施例的另一种信号处理装置的示意图。如图8所示,该信号处理装置800可以包括:获取单元802、第三消除单元804、第三转换单元806、第三校正单元808和输出单元810。
获取单元802,用于通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号。
第三消除单元804,用于从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出。
第三转换单元806,用于将第二波形信号转换为目标信号通道中的第三波形信号。
第三校正单元808,用于基于混频信号对第三波形信号进行校正,得到第四波形信号。
输出单元810,用于通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
此处需要说明的是,上述获取单元802、第三消除单元804、第三转换单元806、第三校正单元808和输出单元810对应于实施例1中的步骤S402至步骤S410,四个单元与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述单元作为装置的一部分可以运行在实施例一提供的计算机终端10中。
在该实施例的信号处理装置中,通过第一消除单元,从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;通过第一转换单元,将第二波形信号转换为目标信号通道中的第三波形信号;通过第一校正单元,基于混频信号对第三波形信号进行校正,得到第四波形信号;通过第一补偿单元,基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
实施例4
本发明的实施例可以提供一种信号处理系统,该信号处理系统可以包括计算机终端,该计算机终端可以是计算机终端群中的任意一个计算机终端设备。可选地,在本实施例中,上述计算机终端也可以替换为移动终端等终端设备。
可选地,在本实施例中,上述计算机终端可以位于计算机网络的多个网络设备中的至少一个网络设备。
在本实施例中,上述计算机终端可以执行应用程序的信号处理方法中以下步骤的程序 代码:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
可选地,图9是根据本发明实施例的一种计算机终端的结构框图。如图9所示,该计算机终端A可以包括:一个或多个(图中仅示出一个)处理器902、存储器904、以及传输装置906。
其中,存储器可用于存储软件程序以及模块,如本发明实施例中的信号处理方法和装置对应的程序指令/模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及信号处理,即实现上述的信号处理方法。存储器可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端A。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
可选地,上述处理器还可以执行如下步骤的程序代码:获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,其中,波发生器包括第一信号通道和第二信号通道,目标信号通道为第一信号通道或第二信号通道;基于第一相位和第二相位确定目标信号通道中的第三波形信号。
可选地,上述处理器还可以执行如下步骤的程序代码:获取第一相位和第二相位之间的第一相位差;将第一相位差补偿到第二波形信号在目标信号通道中的子波形信号上,得到第三波形信号。
可选地,上述处理器还可以执行如下步骤的程序代码:确定与第二波形信号对应的多个波包信号,其中,多个波包信号的波包频率不同,且波包频率由波发生器的偏置频率确定;基于多个波包信号确定第一相位和第二相位。
可选地,上述处理器还可以执行如下步骤的程序代码:对多个波包信号进行混频处理,得到目标波包信号;对目标波包信号进行检测,得到驱动量子比特信号;至少对驱动量子比特信号进行解调,得到第一相位和第二相位。
可选地,上述处理器还可以执行如下步骤的程序代码:获取第四波形信号的第一幅值和目标波形信号的第二幅值之间的幅值差;基于幅值差对第四波形信号的第一幅值进行补偿。
可选地,上述处理器还可以执行如下步骤的程序代码:获取第四波形信号的第三相位 和目标波形信号的第四相位之间的第二相位差;基于第二相位差对第四波形信号的第三相位进行补偿。
可选地,上述处理器还可以执行如下步骤的程序代码:响应于第二相位差大于第一阈值,则基于第二相位差对第四波形信号的第三相位进行补偿。
作为一种可选的示例,处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:对目标对象的表面进行缺陷检测,得到第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿;基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
可选地,上述处理器还可以执行如下步骤的程序代码:基于探针对量子芯片的表面极板进行缺陷检测,得到第一波形信号;基于补偿后的第四波形信号确定量子芯片的表面极板的缺陷检测结果。
作为一种可选的示例,处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行下述步骤:通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
本发明实施例,提供了一种信号处理方法,通过从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号,从而实现了提高对波形信号处理的准确性的技术效果,解决了对波形信号处理的准确性低的技术问题。
本领域普通技术人员可以理解,图9示的结构仅为示意,计算机终端A也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。图9并不对上述计算机终端A的结构造成限定。例如,计算机终端A还可包括比图9所示更多或者更少的组件(如网络接口、显示装置等),或者具有与图9所示不同的配置。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
实施例5
本发明的实施例还提供了一种计算机可读存储介质。可选地,在本实施例中,上述计算机可读存储介质可以用于保存上述实施例一所提供的信号处理方法所执行的程序代码。
可选地,在本实施例中,上述计算机可读存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。
作为一种可选的示例,计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号进行补偿,且输出补偿后的第四波形信号。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:获取第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,其中,波发生器包括第一信号通道和第二信号通道,目标信号通道为第一信号通道或第二信号通道;基于第一相位和第二相位确定目标信号通道中的第三波形信号。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:获取第一相位和第二相位之间的第一相位差;将第一相位差补偿到第二波形信号在目标信号通道中的子波形信号上,得到第三波形信号。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:确定与第二波形信号对应的多个波包信号,其中,多个波包信号的波包频率不同,且波包频率由波发生器的偏置频率确定;基于多个波包信号确定第一相位和第二相位。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:对多个波包信号进行混频处理,得到目标波包信号;对目标波包信号进行检测,得到驱动量子比特信号;至少对驱动量子比特信号进行解调,得到第一相位和第二相位。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:获取第四波形信号的第一幅值和目标波形信号的第二幅值之间的幅值差;基于幅值差对第四波形信号的第一幅值进行补偿。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:获取第四波形信号的第三相位和目标波形信号的第四相位之间的第二相位差;基于第二相位差对第四波形信号的第三相位进行补偿。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:响应于第二相位差大于第一阈值,则基于第二相位差对第四波形信号的第三相位进行补偿。
作为一种可选的示例,计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:对目标对象的表面进行缺陷检测,得到第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;基于第四波形信号和波发生器的目标波形信号之间的差异信息,对第四波形信号 进行补偿;基于补偿后的第四波形信号确定目标对象的表面的缺陷检测结果。
可选地,在本实施例中,上述计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:基于探针对量子芯片的表面极板进行缺陷检测,得到第一波形信号;基于补偿后的第四波形信号确定量子芯片的表面极板的缺陷检测结果。
作为一种可选的示例,计算机可读存储介质被设置为存储用于执行以下步骤的程序代码:通过调用第一接口获取第一波形信号,其中,第一接口包括第一参数,第一参数的参数值为第一波形信号;从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,第一波形信号由波发生器输出;将第二波形信号转换为目标信号通道中的第三波形信号;基于混频信号对第三波形信号进行校正,得到第四波形信号;通过调用第二接口输出补偿后的第四波形信号,其中,第二接口包括第二参数,第二参数的参数值为补偿后的第四波形信号。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种信号处理方法,其特征在于,包括:
    从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,所述第一波形信号由波发生器输出;
    将所述第二波形信号转换为目标信号通道中的第三波形信号;
    基于混频信号对所述第三波形信号进行校正,得到第四波形信号;
    基于所述第四波形信号和所述波发生器的目标波形信号之间的差异信息,对所述第四波形信号进行补偿,且输出补偿后的所述第四波形信号。
  2. 根据权利要求1所述的方法,其特征在于,将所述第二波形信号转换为目标信号通道中的第三波形信号,包括:
    获取所述第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,其中,所述波发生器包括所述第一信号通道和所述第二信号通道,所述目标信号通道为所述第一信号通道或所述第二信号通道;
    基于所述第一相位和所述第二相位确定所述目标信号通道中的所述第三波形信号。
  3. 根据权利要求2所述的方法,其特征在于,基于所述第一相位和所述第二相位确定所述目标信号通道中的所述第三波形信号,包括:
    获取所述第一相位和所述第二相位之间的第一相位差;
    将所述第一相位差补偿到所述第二波形信号在所述目标信号通道中的子波形信号上,得到所述第三波形信号。
  4. 根据权利要求2所述的方法,其特征在于,获取所述第二波形信号在第一信号通道中的第一相位和在第二信号通道中的第二相位,包括:
    确定与所述第二波形信号对应的多个波包信号,其中,所述多个波包信号的波包频率不同,且所述波包频率由所述波发生器的偏置频率确定;
    基于所述多个波包信号确定所述第一相位和所述第二相位。
  5. 根据权利要求4所述的方法,其特征在于,基于所述多个波包信号确定所述第一相位和所述第二相位,包括:
    对所述多个波包信号进行混频处理,得到目标波包信号;
    对所述目标波包信号进行检测,得到驱动量子比特信号;
    至少对所述驱动量子比特信号进行解调,得到所述第一相位和所述第二相位。
  6. 根据权利要求4所述的方法,其特征在于,所述波包信号为余弦波包信号。
  7. 根据权利要求1所述的方法,其特征在于,基于所述第四波形信号和所述波发生器的目标波形信号之间的差异信息,对所述第四波形信号进行补偿,包括:
    获取所述第四波形信号的第一幅值和所述目标波形信号的第二幅值之间的幅值差;
    基于所述幅值差对所述第四波形信号的所述第一幅值进行补偿。
  8. 根据权利要求1所述的方法,其特征在于,基于所述第四波形信号和所述波发生器的目标波形信号之间的差异信息,对所述第四波形信号进行补偿,包括:
    获取所述第四波形信号的第三相位和所述目标波形信号的第四相位之间的第二相位差;
    基于所述第二相位差对所述第四波形信号的所述第三相位进行补偿。
  9. 根据权利要求8所述的方法,其特征在于,基于所述第二相位差对所述第四波形信号的所述第三相位进行补偿,包括:
    响应于所述第二相位差大于第一阈值,则基于所述第二相位差对所述第四波形信号的所述第三相位进行补偿。
  10. 根据权利要求1至9中任意一项所述的方法,其特征在于,补偿后的所述第四波形信号与所述目标波形信号之间的差异信息小于第二阈值。
  11. 一种信号处理方法,其特征在于,包括:
    对目标对象的表面进行缺陷检测,得到第一波形信号;
    从所述第一波形信号中消除本振泄露信号,得到第二波形信号,其中,所述第一波形信号由波发生器输出;
    将所述第二波形信号转换为目标信号通道中的第三波形信号;
    基于混频信号对所述第三波形信号进行校正,得到第四波形信号;
    基于所述第四波形信号和所述波发生器的目标波形信号之间的差异信息,对所述第四波形信号进行补偿;
    基于补偿后的所述第四波形信号确定所述目标对象的表面的缺陷检测结果。
  12. 根据权利要求11所述的方法,其特征在于,所述目标对象为待检测的工业对象。
  13. 根据权利要求12所述的方法,其特征在于,所述工业对象为量子芯片,其中,
    对目标对象的表面进行缺陷检测,得到第一波形信号,包括:基于探针对所述量子芯片的表面极板进行缺陷检测,得到所述第一波形信号;
    基于补偿后的所述第四波形信号确定所述目标对象的表面的缺陷检测结果,包括:基于补偿后的所述第四波形信号确定所述量子芯片的表面极板的缺陷检测结果。
  14. 根据权利要求12所述的方法,其特征在于,所述工业对象为量子芯片,其中,所述量子芯片包括fluxonium类型量子位,或者所述量子芯片包括transmon类型量子位。
  15. 一种信号处理方法,其特征在于,包括:
    通过调用第一接口获取第一波形信号,其中,所述第一接口包括第一参数,所述第一参数的参数值为所述第一波形信号;
    从第一波形信号中消除本振泄露信号,得到第二波形信号,其中,所述第一波形信号由波发生器输出;
    将所述第二波形信号转换为目标信号通道中的第三波形信号;
    基于混频信号对所述第三波形信号进行校正,得到第四波形信号;
    通过调用第二接口输出补偿后的所述第四波形信号,其中,所述第二接口包括第二参数,所述第二参数的参数值为补偿后的所述第四波形信号。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的程序,其中,在所述程序被处理器运行时控制所述计算机可读存储介质所在设备执行权利要求1至14中任意一项所述的方法。
PCT/CN2023/075657 2022-03-03 2023-02-13 信号处理方法和存储介质 WO2023165322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210200389.9 2022-03-03
CN202210200389.9A CN114326924B (zh) 2022-03-03 2022-03-03 信号处理方法和存储介质

Publications (1)

Publication Number Publication Date
WO2023165322A1 true WO2023165322A1 (zh) 2023-09-07

Family

ID=81030405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075657 WO2023165322A1 (zh) 2022-03-03 2023-02-13 信号处理方法和存储介质

Country Status (2)

Country Link
CN (2) CN115033053A (zh)
WO (1) WO2023165322A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033053A (zh) * 2022-03-03 2022-09-09 阿里巴巴达摩院(杭州)科技有限公司 信号处理方法和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004242428A1 (en) * 2004-01-07 2005-07-21 Mercury Computer Systems, Inc. Wideband signal generators, measurement devices, methods of signal generation, and methods of signal analysis
WO2015079098A1 (en) * 2013-11-28 2015-06-04 Nokia Technologies Oy Method and apparatus for generating oscillator signals
CN104821826A (zh) * 2015-04-20 2015-08-05 中国人民解放军63892部队 一种宽带矢量信号的自动校正方法及系统
WO2017063415A1 (zh) * 2015-10-15 2017-04-20 中兴通讯股份有限公司 一种收发信机及工作方法
CN107357352A (zh) * 2017-06-21 2017-11-17 北京理工大学 一种宽功率动态范围微波信号精确产生方法及装置
CN109120265A (zh) * 2018-08-06 2019-01-01 上海玮舟微电子科技有限公司 一种信号的校正方法、装置、芯片和存储介质
CN112904060A (zh) * 2020-02-28 2021-06-04 加特兰微电子科技(上海)有限公司 信号相位补偿的方法及装置、信号加解扰的方法、传感器
CN114326924A (zh) * 2022-03-03 2022-04-12 阿里巴巴达摩院(杭州)科技有限公司 信号处理方法和存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577242B1 (ko) * 2004-01-19 2006-05-10 엘지전자 주식회사 광디스크의 결함 검출 장치 및 방법
JP2008004641A (ja) * 2006-06-20 2008-01-10 Toshiba Corp 不良検出システム、不良検出方法及びプログラム
US20090131006A1 (en) * 2007-11-20 2009-05-21 Mediatek Inc. Apparatus, integrated circuit, and method of compensating iq phase mismatch
US20110042646A1 (en) * 2009-08-21 2011-02-24 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
CN101799704B (zh) * 2010-03-23 2012-04-25 电子科技大学 一种具有精密相位控制功能的多通道dds信号发生器
CN103916345A (zh) * 2012-12-28 2014-07-09 北京中电华大电子设计有限责任公司 一种无线局域网芯片发射机本振泄漏校正的方法和装置
CN106817337B (zh) * 2016-11-30 2020-08-25 北京集创北方科技股份有限公司 信号处理方法及装置
CN107682087B (zh) * 2017-09-22 2019-05-07 西南交通大学 一种消除无源相位校正中本振泄露的微波光纤稳相传输方法
US10705556B2 (en) * 2017-09-29 2020-07-07 International Business Machines Corporation Phase continuous signal generation using direct digital synthesis
KR102385105B1 (ko) * 2018-02-27 2022-04-08 삼성전자주식회사 크랙 검출용 칩 및 이를 이용한 크랙 검출 방법
CN108614271B (zh) * 2018-07-06 2023-10-20 中国计量大学 一种带反馈校正的多通道超声波任意波形信号发生器
CN111313920B (zh) * 2020-02-19 2021-12-03 特金智能科技(上海)有限公司 零中频接收机、其信号处理方法、装置、电子设备与介质
EP4109833A4 (en) * 2020-03-13 2023-07-26 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SIGNAL PRE-COMPENSATION
CN114050874B (zh) * 2022-01-12 2022-04-12 中星联华科技(北京)有限公司 调制校准电路及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004242428A1 (en) * 2004-01-07 2005-07-21 Mercury Computer Systems, Inc. Wideband signal generators, measurement devices, methods of signal generation, and methods of signal analysis
WO2015079098A1 (en) * 2013-11-28 2015-06-04 Nokia Technologies Oy Method and apparatus for generating oscillator signals
CN104821826A (zh) * 2015-04-20 2015-08-05 中国人民解放军63892部队 一种宽带矢量信号的自动校正方法及系统
WO2017063415A1 (zh) * 2015-10-15 2017-04-20 中兴通讯股份有限公司 一种收发信机及工作方法
CN107357352A (zh) * 2017-06-21 2017-11-17 北京理工大学 一种宽功率动态范围微波信号精确产生方法及装置
CN109120265A (zh) * 2018-08-06 2019-01-01 上海玮舟微电子科技有限公司 一种信号的校正方法、装置、芯片和存储介质
WO2020029478A1 (zh) * 2018-08-06 2020-02-13 上海玮舟微电子科技有限公司 电路参数的校正方法、装置、芯片和存储介质
CN112904060A (zh) * 2020-02-28 2021-06-04 加特兰微电子科技(上海)有限公司 信号相位补偿的方法及装置、信号加解扰的方法、传感器
CN114326924A (zh) * 2022-03-03 2022-04-12 阿里巴巴达摩院(杭州)科技有限公司 信号处理方法和存储介质

Also Published As

Publication number Publication date
CN114326924B (zh) 2022-06-17
CN115033053A (zh) 2022-09-09
CN114326924A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US8224269B2 (en) Vector modulator calibration system
CN104052507B (zh) 使用回送电路检测和校正发射器lo泄漏的电路和方法
CN107132027B (zh) 光器件宽带频率响应值的测量方法及装置
WO2023165322A1 (zh) 信号处理方法和存储介质
CN101562598B (zh) 正交调制器的调整装置及调整方法、以及通信装置
TWI463847B (zh) 傳接器的同相與正交校正系統與方法
US9467238B2 (en) On-chip stimulus generation for test and calibration of NFC reader receivers
CN107135065A (zh) 一种量子密钥分配方法及发送装置、接收装置
JP6254720B2 (ja) 相互変調測定のための方法及び測定デバイス
TWI582439B (zh) High - frequency signal transmission path on the wrong location of the method
Rampa I/Q compensation of broadband direct-conversion transmitters
CN104980388B (zh) 用于窄带信号正交误差校正的系统和方法
JP2008122255A (ja) 距離測定装置
US11528179B1 (en) System, apparatus, and method for IQ imbalance correction for multi-carrier IQ transmitter
JP2008113411A (ja) 直接変換構造のデジタルクワドラチャ送受信器で不整合を補償する方法及び装置
CN111766451B (zh) 一种高精度电容参数测试的系统及方法
CN103840896B (zh) 向量调制器中的iq不平衡的测量
CN104022834A (zh) Iq调制器中dc偏移的测量
CN101518014A (zh) 发射机的模拟i/q调制器的i/q不均衡和dc偏移校准
CN102959561A (zh) Rfid读写器、rfid系统及通信方法
CN106603166B (zh) 一种用于宽带调制信号的矢量测量装置及方法
JPH0568060A (ja) 歪補償直交変調器
GB1565166A (en) Measuring radio-frequency impedandce
TW201926914A (zh) 訊號發送裝置、偵測電路與其訊號偵測方法
Cabanillas et al. Automated phase offset correction using reflectometry in fault detection systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762723

Country of ref document: EP

Kind code of ref document: A1