WO2012173262A1 - エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法 - Google Patents

エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法 Download PDF

Info

Publication number
WO2012173262A1
WO2012173262A1 PCT/JP2012/065437 JP2012065437W WO2012173262A1 WO 2012173262 A1 WO2012173262 A1 WO 2012173262A1 JP 2012065437 W JP2012065437 W JP 2012065437W WO 2012173262 A1 WO2012173262 A1 WO 2012173262A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
droplets
micro
reaction
reaction field
Prior art date
Application number
PCT/JP2012/065437
Other languages
English (en)
French (fr)
Inventor
昭弘 脇坂
ひとみ 小原
豊 兵藤
内田 邦夫
茂寿 遠藤
大古 善久
小野 泰蔵
由夫 早川
土原 健治
俊行 福嶋
美穂 桜井
松浦 一雄
Original Assignee
独立行政法人産業技術総合研究所
ナノミストテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, ナノミストテクノロジーズ株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2013520615A priority Critical patent/JP5892708B2/ja
Publication of WO2012173262A1 publication Critical patent/WO2012173262A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • B01F25/231Mixing by intersecting jets the intersecting jets having the configuration of sheets, cylinders or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/051Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being electrical energy working on the ingredients or compositions for mixing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0888Liquid-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/06Use of electric fields

Definitions

  • the present invention is based on electrospraying (electrostatic spraying) in order to minimize the mixing volume between liquid samples and to maximize the mixing speed (efficiency) related to the control of chemical reactions that proceed through the mixing of liquid samples.
  • the present invention relates to a micro reaction field forming apparatus that uses electrostatic interaction between generated micro droplets, and a chemical reaction control method.
  • the chemical reaction referred to here includes control reactions such as crystal growth and substance aggregation.
  • a micromixer is known as a method for mixing different liquids with high efficiency.
  • the micromixer is a method of mixing liquids by forming a liquid flow path on the order of ⁇ m on a metal or glass substrate and joining a plurality of flow paths. Since the moving distance for mixing is short within several tens to several hundreds ⁇ m, the mixing volume can be reduced and the mixing speed (efficiency) can be increased. Attempts have been made to control chemical reactions in the liquid phase using the characteristics of the micromixer.
  • controlling the volume of the reaction solution is a very effective method.
  • Patent Document 1 a method for producing polymer fine particles using an electrospray method has been proposed (Patent Document 1).
  • a solution containing a predetermined polymer is sprayed between the nozzle capillary 193 and the counter electrode 195 in the treatment tank 191 using the electrospray apparatus shown in FIG. 19, and polymer fine particles deposited on the counter electrode 195 are removed. to recover.
  • Such an electrospray method is an effective method as a method for uniformly spraying and applying finely divided droplets on a work surface, and is widely used for spraying devices such as spraying chemicals or powder coating devices. It's being used.
  • the polymer fine particles obtained by this method have a particle size of about 1.2 to 1.7 ⁇ m. This indicates that the polymer present in the solution is agglomerated particles due to evaporation of the solvent during the spraying process and is not suitable for the production of fine particles having a smaller diameter (for example, several nm to several tens of nm). ing.
  • this method originally intends to attach and fix fine particles by spraying and applying to a grounded sprayed object, and it is difficult to collect only the fine particles.
  • 19 proposes a method of collecting the polymer fine particles deposited on the counter electrode 195 by scraping or flowing water on the surface of the counter electrode 195.
  • the object of the present invention is to achieve the minimum limit value of the mixing volume and the maximum limit value of the mixing speed (efficiency) in order to solve the above-mentioned problems, and to control the mixing volume easily and at low cost, thereby improving the efficiency of the product. It is an object of the present invention to provide a microreaction field forming apparatus and chemical reaction control method by electrospray that can be well recovered. Means for Solving the Problems and Effects of the Invention
  • the first solution supply source 12 for supplying the first solution and the first solution supply source 12 are connected.
  • a second spraying means 20 constituting an electrospray, a voltage applying means 30 for applying a potential difference to the first spraying means 10 and the second spraying means 20, and the first spraying means 10 and the second spraying means. 20 respectively,
  • the first solution and the collision with a second solution and the reaction space RA became droplets tinged
  • One charge can comprise a recovery unit 40 for recovering the reaction product obtained by fusing. Thereby, it becomes possible to react the raw material as a fine mist and collect the reaction product.
  • the first injection nozzle 11 and the second injection nozzle 21 are arranged so as to face each other on the same straight line or the same plane,
  • a positive or negative potential or a potential difference to the first spray nozzle 11 and the second spray nozzle 21 respectively, the positively or negatively charged droplet group generated is transferred to the first spray nozzle 11 and the second spray nozzle 21. It moves along the electrostatic field formed between the jet nozzle 21 and collides and fuses by electrostatic attraction between the positively and negatively charged droplets, and electrostatic repulsion occurs between droplets of the same polarity.
  • the combination of impinging droplets can be controlled by electrostatic interaction.
  • an electrostatic filter can be provided in the previous stage of the collecting means 40.
  • an electrostatic filter can be provided in the previous stage of the collecting means 40.
  • unreacted droplets with positive or negative charges are trapped or excluded by an electrostatic filter, and only droplets whose charges have disappeared or decreased due to collisions between positively and negatively charged droplets are collected. Is possible.
  • a collecting electrode or a repeller electrode can be suitably used.
  • the recovery means 40 can be provided with a liquid trap for recovery into the liquid and a suction means connected to the liquid trap.
  • generated by the reaction field can be collect
  • An aspirator or the like can be used as such a suction means. Further, not only the recovery into the liquid, but also the micro droplet after the reaction can be collected and recovered on the substrate.
  • the micro reaction field forming apparatus it is possible to provide particle size control means for controlling the particle size of charged droplets generated by electrospray.
  • This particle size control means adds the kind of solvent used in the first solution and the second solution, the mixing ratio of the mixed solvent, or a solute such as an electrolyte to the first solution and the second solution, thereby adjusting the dielectric constant of each solution.
  • the particle diameter of the charged droplet generated by the electrospray method is controlled. Thereby, the volume of the droplet forming the reaction space can be controlled.
  • the particle size control means adjusts the voltage applied to the first solution and the second solution, thereby generating charged droplets generated by electrospray.
  • either the first solution or the second solution is sprayed as fine droplets charged to a positive charge by electrospray, and the other is electrosprayed.
  • the droplets are sprayed as fine droplets charged negatively with the electrostatic attraction between the positively and negatively charged droplets by the electrostatic lens system, and the droplets collide and fuse with each other.
  • a 1st solution and a 2nd solution can be mixed highly efficiently.
  • collision / fusion and aggregation between droplets can be controlled, and mixing with a minimum volume while maintaining a liquid state can be ensured. .
  • the particle size control means can be constituted by an electrostatic lens system.
  • the liquid phase is continuously generated by mixing the two kinds of solutions, the first solution and the second solution, which are caused by using the micro reaction field forming apparatus.
  • the reaction product can be controlled by starting the reaction by collision and fusion between the two liquid droplets. This makes it possible to limit the reaction field to microdroplets that have collided and fused, and the reaction field can be made as small as possible to control the agglomeration of reaction products and the aggregation state, crystal growth, polymerization degree, etc. It becomes possible.
  • the above mixing volume that is, the volume of the micro reaction field is determined by the size of the droplets generated by electrospray. Since the particle size of the droplets can be controlled to 10 ⁇ m or less, mixing in an extremely small amount is possible than the mixing volume of the existing micromixer.
  • the mixing volume can be adjusted by controlling the voltage applied to the electrospray, the dielectric constant of the solution, the temperature of the solution, etc., while the existing micromixer has a new flow rate. The road must be made.
  • the mixing efficiency of the present invention can be increased to the limit by utilizing electrostatic attraction and electrostatic repulsion between droplets.
  • the micro reaction field formed by mixing the liquid according to the present invention is suitable for controlling continuous or chain reaction in a solution.
  • the minute droplets have a high surface area ratio, they can be used to mix (emulsify) liquids that are difficult to mix, such as water and oil, and can promote a chemical reaction in which the interface serves as a reaction field.
  • the present reaction can be carried out without a phase transfer catalyst or an emulsifier.
  • FIG. 6 is a schematic diagram showing a micro reaction field forming apparatus according to Embodiment 2.
  • FIG. FIG. 3 is a schematic diagram showing a micro reaction field forming apparatus according to Embodiment 3, in which a reaction space using a ring electrode having a small inner diameter is formed in FIG. 3A and a ring electrode having a large inner diameter is formed in FIG. Each of them is shown.
  • 4 is a photograph showing a reaction space generated by the micro reaction field forming apparatus according to Embodiment 1;
  • FIG. 6 is a schematic plan view showing a fine particle synthesizer according to Embodiment 4.
  • FIG. 6A is a photograph of the gold nanocolloid solution obtained in Examples 1 to 7
  • FIG. 6A is a photograph after 20 minutes from the adjustment
  • FIG. 6B is an image showing a photograph after one week after the adjustment. is there.
  • FIG. 7A is an image showing a photograph after 60 minutes from the adjustment
  • FIG. 7B is an image showing a photograph after 24 hours.
  • 6 is a graph showing light absorption spectra of gold nanocolloid solutions obtained in Examples 1 to 7. It is a graph of the dynamic light-scattering spectrum which shows the particle size distribution of the gold nanoparticle obtained in Example 4.
  • 3 is a dynamic light scattering spectrum graph showing the particle size distribution of gold nanoparticles obtained by the solution mixing method of Comparative Example 1.
  • FIG. 6 is an image diagram showing a TEM image of gold nanoparticles obtained in Example 4.
  • FIG. 6 is an image view showing a TEM image of gold nanoparticles obtained by the solution mixing method of Comparative Example 1.
  • FIG. FIG. 13A is a schematic diagram showing the positional relationship of the first spraying means, the second spraying means, and the recovery means
  • FIG. 13B shows the particle size distribution of the gold nanoparticles obtained by the arrangement of FIG.
  • FIG. 13C is a graph of the dynamic light scattering spectrum shown
  • FIG. 13C is an image diagram showing a TEM image of gold nanoparticles obtained by the arrangement of FIG.
  • FIG. 14A is a schematic diagram showing the positional relationship of the first spraying means, the second spraying means, and the recovery means, and FIG.
  • FIG. 14B shows the particle size distribution of the gold nanoparticles obtained by the arrangement of FIG.
  • FIG. 14C is a graph of a dynamic light scattering spectrum shown
  • FIG. 14C is an image diagram showing a TEM image of gold nanoparticles obtained by the arrangement of FIG. HAuCl a 4 solution graph showing the relationship between the supply amount and concentration of a graph showing the absorption spectra at each feed rate.
  • HAuCl 4 is a graph showing the relationship between the supply amount and concentration of the solution is a graph showing the absorbance relations at a feed rate and 530 nm.
  • 6 is a dynamic light scattering spectrum graph showing the particle size distribution of polymer particles obtained in Example 8.
  • FIG. 6 is a size exclusion chromatograph showing the molecular weight distribution of the polymer obtained in Example 8. It is a schematic diagram which shows the structure of the conventional electrostatic spraying apparatus.
  • FIG. 20A is a schematic diagram illustrating an electrostatic lens system according to Example 9, and FIG. 20B illustrates the droplet size distribution at point A with and without the electrostatic lens system. It is a graph which shows the result of comparison.
  • FIG. 21A is a schematic diagram showing an electrostatic lens system according to Example 10, and FIG. 21B is a graph showing the result of measuring the size distribution of gold nanoparticles by the DLS method.
  • FIG. 22A is a schematic diagram showing an electrostatic lens system according to Example 11, FIG. 22B is a droplet size distribution before passing through the ring electrode, and FIG. 22C is after passing through the ring electrode. 2 is a graph showing the particle size distribution of each droplet.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • FIG. 1 shows a micro reaction field forming apparatus 100 according to Embodiment 1 of the present invention.
  • the micro reaction field forming apparatus 100 includes a first spraying means 10, a second spraying means 20, and a collecting means 40.
  • the 1st spraying means 10 is connected to the 1st solution supply source 12, supplies a 1st solution, and electrosprays (electrostatic spraying) a 1st solution.
  • the 1st spraying means 10 is provided with the 1st injection nozzle 11 which electrosprays a 1st solution at the front-end
  • the 2nd spraying means 20 is connected to the 2nd solution supply source 22, is supplied with a 2nd solution, and electrosprays a 2nd solution.
  • the 2nd spraying means 20 is also provided with the 2nd injection nozzle 21 which elect sprays the 2nd raw material solution at the front-end
  • both the first solution and the second solution can be sprayed as droplets having a size of ⁇ m or less.
  • the supply speed of the solution to be sprayed can be set to an arbitrary speed, but the droplet size can be controlled to a preferable size by controlling to a constant speed.
  • a solution supply source for supplying the solution to the spraying means for example, a syringe pump capable of supplying the solution at an arbitrary rate can be suitably used. (Voltage applying means 30)
  • the first injection nozzle 11 and the second injection nozzle 21 are connected to the voltage application means 30 and given a potential difference.
  • the droplets of the first solution are positively charged and the droplets of the second solution are negatively charged. Both are attracted by electrostatic force. That is, ⁇ m-sized droplets having opposite charges sprayed from the respective spray nozzles fuse together by electrostatic interaction, thereby forming a reaction field of ⁇ m size (volume 1 femtoliter or less).
  • the potential difference applied by the voltage applying means 30 can be in the range of 3 kV to 20 kV, for example.
  • the first injection nozzle 11 and the second injection nozzle 21 are arranged in a posture in which the tips connect each other at the intersection.
  • the mist-like first solution sprayed from the first injection nozzle 11 and the mist-like second solution sprayed from the second injection nozzle 21 are collided and fused by electrostatic interaction, and these are combined.
  • the micro reaction field means a minute reaction space formed by causing droplets to collide with each other.
  • a plurality of micro reaction fields can exist discretely. That is, the chemical reaction proceeds in the droplets that are made fine by the first spraying means 10 and the second spraying means 20 and that are charged and collided by the electrostatic interaction in the reaction space RA.
  • a micro reaction field is formed.
  • Fig. 4 shows a photograph of the reaction space formed by the electrospray micro reaction field forming device.
  • Ethanol is fed to the first injection nozzle and the second injection nozzle at 0.02 mL / min by a syringe pump.
  • the voltage application means 30 supplies +3 kV to the first injection nozzle 11 (left side in the figure), and the second injection nozzle 21. -3 kV is applied to each (right side in the figure), and a potential difference of 6 kV is given between them.
  • positive and negative charged droplets of ⁇ m size are respectively ejected from the respective ejection nozzles, and the mists collide at the center to form a reaction space RA.
  • the droplets are fused by electrostatic interaction.
  • an electric field is formed between the first injection nozzle 11 and the second injection nozzle 21, and it can be confirmed that the mist collides and merges at the center so as to trace the lines of electric force.
  • the collision between droplets can be controlled by adjusting the shape of the lines of electric force using an electrostatic lens system.
  • this microreaction field forming apparatus When this microreaction field forming apparatus is used for the synthesis of gold nanoparticles, droplets generated from both solutions using the first solution as the alcohol solution of chloroauric acid containing Au 3+ ions and the second solution as the ascorbic acid. Are collided and fused by electrostatic interaction, causing a redox reaction in the droplets to synthesize gold nanoparticles.
  • the present invention is not limited to this, and other metal ion solutions and combinations of reducing agents can be used.
  • not only a single metal but also alloy nanoparticles can be generated. Examples thereof include platinum-gold and palladium-gold. Alternatively, it can be used for a metal core-shell structure.
  • a metal that can be used as a catalyst can also be produced.
  • the size of droplets generated when each solution is sprayed can be reduced, and smaller particles can be obtained.
  • An aqueous solution can be used for the first solution and the second solution, but in this case, the particle size of the obtained product is larger than that when alcohol is used.
  • the size of the droplet can be reduced.
  • the size of the droplet can be increased by increasing the dielectric constant by adding salt. The particle size of the droplets can be controlled with these solvents and salts.
  • the micro reaction field forming apparatus 100 shown in FIG. 1 includes a recovery means 40 for recovering the product.
  • the recovery means 40 includes a recovery nozzle 41 that sucks the product, and is arranged so that the recovery nozzle 41 protrudes toward the reaction space RA where the first solution and the second solution collide. As a result, the product can be quickly taken into the collecting means 40 and the metal nanoparticles can be collected.
  • the collecting means 40 is disposed in a posture that intersects the straight line, preferably in a posture that is orthogonal to the first spray nozzle 11 and the second spray nozzle 21 that are arranged on a straight line.
  • generated in reaction space RA can be collect
  • a liquid trap 40A is used as the recovery means 40, and the recovered product is recovered in the liquid trap 40A.
  • the recovery means is not limited to this configuration, and the product is recovered on the substrate 40B as the recovery means, for example, as shown in the second embodiment in FIG. (Reaction space RA)
  • the spray nozzles arranged in the postures facing each other are separated to some extent. If the tips of the injection nozzles are too close to each other, metal ions may be reduced and deposited on the nozzles. On the other hand, if the spray nozzles are too far apart, the potential difference decreases and the reaction field is not sufficiently formed. For this reason, the distance which separates the 1st injection nozzle 11 and the 2nd injection nozzle 21 is set so that reaction space RA of appropriate intensity
  • the reaction space RA can be controlled by an electrostatic lens system in addition to or instead of the injection nozzle.
  • an electrostatic lens system in addition to or instead of the injection nozzle.
  • FIGS. 3A and 3B Such an example is shown in FIGS. 3A and 3B as Embodiment 3.
  • FIG. the ring electrode 13 is installed at both ends of the reaction space RA, and the diameter of the ring electrode 13 and the potential difference between the ring electrodes 13 are adjusted, so that the space of the droplet group sprayed from the spray nozzle is spatially reduced. Control the energy of diffusion and impact between droplets. Thereby, the efficiency of the chemical reaction that proceeds by collision between droplets can be increased, and aggregation of droplets after collision / fusion can be limited.
  • the 1st spraying means 10B and the 2nd spraying means 20B are comprised by the 1st injection nozzle 11B and the ring electrode 13, and the 2nd injection nozzle 21B and the ring electrode 13, respectively.
  • Electric lens system Electrostatic lens system
  • the ring electrode 13 can function as an electrostatic lens system that enlarges the reaction space RA. Furthermore, the diameter of the reaction space RA can be adjusted to a desired size by changing the inner diameter of the ring electrode 13. For example, in the example of FIG. 3A, by reducing the inner diameter of the ring electrode 13, a high-density reaction space RA with a reduced diameter is formed. On the other hand, in the example of FIG. 3 (b), by using the ring electrode 13 ′ having a large inner diameter, the reaction space RA is expanded over a wide area, and aggregation of particles generated in the reaction space is suppressed and smaller particles are formed. Can be formed.
  • the reaction space RA can also be formed by applying a high voltage only to the ring electrode without applying a high voltage to the spray nozzle. That is, electrospray can be performed by forming an electric field between the spray nozzle and the ring electrode 13. As long as a potential difference is given between the ejection nozzle and the ring electrode 13, the potential of the ejection nozzle may be a ground level, a positive potential, or a negative potential. (Dispersant DI)
  • the product recovered in the liquid trap is discharged into the dispersant DI, so that the product once recovered can be monodispersed with the dispersant DI, held in a colloidal state, and stabilized.
  • a dispersant DI a polymer solution can be suitably used.
  • the product particles are aggregated and aggregated to increase the particle size.
  • PVP polyvinyl pyrrolidone
  • gold nanoparticles generated in the droplets by the collision of the charged droplets are sucked with an aspirator and introduced into the PVP. .
  • Encapsulating the gold nanoparticles with PVP to form a colloid prevents the association and stabilizes the nanoparticles.
  • the dispersant DI is not limited to PVP, and can be appropriately selected depending on the fine particles to be collected. (Embodiment 4)
  • each spray means includes one spray nozzle
  • a plurality of spray nozzles may be provided in one spray means.
  • each of the spraying means 10D and 20D can be provided with five spray nozzles.
  • the efficiency of the pair of the first injection nozzle 11D and the second injection nozzle 21D is increased.
  • the mist can collide well and be mixed.
  • the micro reaction field forming apparatus 100 can also include a filter means 50 for removing unreacted droplets.
  • a filter means 50 for removing unreacted droplets There may also be components that are caused to flow without droplets colliding due to air convection in the reaction chamber 1 or the like.
  • the recovery rate decreases if unreacted droplets are mixed. Therefore, by providing the filter unit 50 in front of the recovery unit 40 and removing the unreacted droplets, only the reactants can be taken into the recovery unit 40, and more efficient recovery can be realized.
  • the unreacted droplets are charged, while the product after the reaction is electrically neutral. Adsorption can be performed using electric charges.
  • a filter means 50 for example, an electrostatic filter that passes through electrically neutral particles and supplements the charged particles can be suitably used. As a result, the aggregation of particles can be prevented, and only the produced product can be efficiently recovered. Moreover, the provision of the filter means 50 can also be expected to increase the reactivity by increasing the residence time of the unreacted mist.
  • the above micro reaction field forming apparatus 100 is applied to a reaction system that obtains fine particles through an oxidation-reduction reaction.
  • a reaction system that obtains fine particles through an oxidation-reduction reaction.
  • these fine particles are further associated with other fine particles present in the periphery and aggregate to become larger particles.
  • the reaction field by using the collision between droplets as a micro reaction field, the reaction field itself is limited to a small area between the collided droplets, and the reaction does not proceed any more. By using the reaction field, the reaction can be suppressed and the reaction can be stopped while the particles are still in a small state.
  • a plurality of discrete micro reaction fields called collisions between droplets are independently formed in the reaction space RA, so that each reaction field is spatially separated and the reaction is limited to the collision field. And succeeding in suppressing the occurrence of aggregation due to continuous reaction.
  • the reactant obtained by the collision can be taken out as it is with a small particle size, and the reactant can be obtained with a particle size of nm size (details will be described later). That is, a microreactor using a collision between mists as a reaction field is configured.
  • the micro reaction field forming apparatus 100 described above is an example applied to a fine particle synthesizer for synthesizing metal nanoparticles by mixing fine particles.
  • the present invention can also be applied to reactions other than fine particle synthesis.
  • micro-mixer Micro-Mixer
  • the micro reaction field forming apparatus 100 according to the first embodiment by spraying to reduce the particle size of the liquid droplets, it is possible to increase the surface area for mixing and reacting, which can be used. The advantage is that the combination of raw materials can be greatly expanded.
  • this method does not use a high temperature for synthesis, there is also an advantage that energy consumption for heating can be suppressed and energy efficiency can be carried out.
  • the conventional electrospray technique is used for painting or the like, and is a method in which droplets of paint are charged and the object to be applied is dropped to the ground for spraying. In other words, a plurality of droplets were not generated and collided.
  • the present invention realizes a micro reaction field forming apparatus that can be used for fine particle synthesis reaction by using a completely new configuration while utilizing electrospray technology. That is, a micromixer that mixes in the air generated by electrospray is formed, and electrostatic traction between positive and negatively charged mists is used to efficiently cause mists to collide with each other. To start the chemical reaction.
  • a metal salt solution and a reducing agent solution can be misted and collided to produce metal nanoparticles.
  • Au is obtained by reducing chloroauric acid containing gold ions Au 3+ as a metal salt solution with ascorbic acid as a reducing agent. That is, gold nanoparticles having a particle size of nanosize were obtained by causing a reduction reaction between the sprayed mist particles.
  • Example 1 a synthesis experiment of gold nanoparticles by electrospray was performed using the micro reaction field forming apparatus 100 of FIG.
  • an ethanol solution of chloroauric acid (HAuCl 4 ) as a metal ion solution of the first solution is applied to the first spraying means 10 serving as the positive electrode, and a reducing agent of the second solution is applied to the second spraying means 20 serving as the negative electrode.
  • Ascorbic acid (AS) in ethanol-water (90:10 vol%) mixed solution was used.
  • the concentration of the HAuCl 4 solution was 0.001 mol / L in Example 1, 0.01 mol / L in Example 2, 0.05 mol / L in Example 3, 0.1 mol / L in Example 4, and Example.
  • Example 5 was 0.2 mol / L
  • Example 6 was 0.5 mol / L
  • Example 7 was 1 mol / L.
  • the AS concentration was constant at 0.1 mol / L.
  • the first spraying means 10 and the second spraying means 20 are respectively supplied at a rate of 20 ⁇ L / min, and the voltage applying means 30 supplies +5.9 kV to the first injection nozzle 11 at the first speed.
  • Each solution was sprayed by applying ⁇ 3.2 kV to the two-injection nozzle 21.
  • the collecting means 40A shown in FIG. 1 the particles produced were collected in a 1% PVP aqueous solution by sucking with an aspirator for 20 minutes.
  • FIG. 6 (a) shows a photograph after 20 minutes from the adjustment
  • FIG. 6 (b) shows a photograph after one week.
  • Examples 1, 2, 4, 5, 6, and 7 are shown in order from the left.
  • FIG. 7 an example in which gold particles are obtained by a solution mixing method in which conventional solutions are mixed and stirred is shown in FIG.
  • an aqueous solution of chloroauric acid HuCl 4
  • PVP polyvinylpyrrolidone
  • the chloroauric acid concentration is set to 0.00002, 0.0002, 0.002, 0.004, 0.01. , 0.02 mol / L, respectively.
  • 0.1 mol / L ascorbic acid as a reducing agent was added in an amount equivalent to Au, and stirred rapidly.
  • gold ions in the liquid phase are reduced, and a colloidal solution of gold particles is obtained.
  • FIG. 7 The results are shown in FIG. 7. In these drawings, FIG.
  • FIG. 7 (a) shows a photograph after 60 minutes from the adjustment
  • FIG. 7 (b) shows a photograph after 24 hours.
  • the reduction reaction is performed at a concentration higher than 0.001 mol / L
  • particles of sub-micron order or more are generated and aggregated immediately, and a product having a small particle size can be obtained.
  • a product having a small particle size can be obtained.
  • the light absorption spectrum of the gold nanocolloid solution obtained by electrospray in Examples 1 to 7 is shown in the graph of FIG. As shown in this figure, the maximum value of the absorption spectrum is shown in the vicinity of 530 nm at any concentration. It can also be confirmed that the gold nanocolloid produced increases as the concentration of the chloroauric acid used increases. That is, it was confirmed that more metal nanoparticles can be obtained while maintaining the particle size without agglomeration even when the concentration of metal ions is increased.
  • FIG. 9 is a graph showing the particle size distribution of the gold nanoparticles obtained in Example 4 (chloroauric acid concentration: 0.1 mol / L)
  • FIG. 10 is Comparative Example 1 (chloroauric acid concentration: The graph which shows the particle size distribution of the gold nanoparticle adjusted using the 0.002 mol / L) solution mixing method is shown, respectively.
  • the average particle diameter is about 4 nm, and it can be confirmed that the distribution range is narrow.
  • Comparative Example 1 has large particles of several hundred nm or more and has a wide distribution. From this, it was confirmed that Example 4 yielded small-diameter metal particles having a uniform particle diameter.
  • FIG. 11 is a TEM image of the gold nanoparticles obtained in Example 4
  • FIG. 12 chloroauric acid concentration: 0.002 mol / L
  • It is an image figure which shows the TEM image of particle
  • the black dots indicate gold particles, and it was confirmed that Example 4 produced metal particles with a clearly smaller particle diameter than Comparative Example 1.
  • Example 4
  • Example 4 the micro reaction field formed by electrospray as described above is applied to the synthesis of gold nanoparticles.
  • This reaction is a synthesis reaction of gold particles by the reduction reaction of chloroauric acid described in the background art.
  • a reducing agent ascorbic acid
  • chloroauric acid is reduced in the fused droplets.
  • the produced gold nanoparticles are stabilized by being sucked and collected by an aspirator in a liquid trap coexisting with a dispersant (polyvinylpyrrolidone).
  • Typical operating conditions are shown below.
  • First solution (positive potential applied): a solution prepared by adjusting chloroauric acid (HAuCl 4 ) to a concentration of 0.1 mol / L in an ethanol solvent
  • Second solution (negative potential applied): ethanol 90 / water 10 vol% in a mixed solvent Solution in which ascorbic acid is adjusted to a concentration of 0.1 mol / L ⁇ Solution in liquid trap of recovery means 40>
  • the solution in the liquid trap is a solution in which polyvinylpyrrolidone (PVP) is adjusted to a concentration of 1 wt% in an aqueous solvent, and gold nanoparticles produced by the reduction reaction of chloroauric acid in the droplets are colloidalized by PVP and stabilized. Made it. ⁇ Speed of liquid delivery>
  • PVP polyvinylpyrrolidone
  • Comparative Example 1 In order to evaluate the effect of the reaction performed in the micro reaction field formed by the electspray, the DLS and TEM measurement results of the particles generated by the two-component mixing in the beaker are shown in FIGS.
  • the two liquids used for mixing are: ⁇ First and second raw material solutions>
  • First solution A solution obtained by adding 0.002 mol / L of chloroauric acid (HAuCl 4 ) and PVP (1 wt%) in an ethanol solvent.
  • Second solution a solution obtained by adding 0.002 mol / L of ascorbic acid in a mixed solvent of ethanol 90 / water 10 vol%.
  • the average particle diameter of particles obtained by simple mixing of these two liquids was about 300 nm.
  • the average particle diameter of the generated gold particles was increased.
  • FIGS. 13A and 14A are examples in which an aspirator is used for the recovery means.
  • the injection nozzles of the first spray means 10 and the second spray means 20 and the recovery nozzle of the recovery means 40A are shown.
  • the positional relationship with 41 is shown in a schematic diagram.
  • FIG.13 (b) and FIG.14 (b) have shown the graph of the particle size distribution of the gold nanoparticle collect
  • FIG. 13 (c) shows a TEM image of gold nanoparticles obtained in the arrangement of FIG. 13 (a)
  • FIG. 14 (c) shows a TEM image of gold nanoparticles obtained in the arrangement of FIG. 14 (a). Each is shown.
  • the first spraying means 10 and the second spraying means 20 are arranged so that the first spray nozzle 11 and the second spray nozzle 21 are aligned substantially in a straight line, so that the most particle diameter is obtained. It was confirmed that metal nanoparticles having a small particle size and a uniform particle size can be obtained. That is, as shown in the schematic diagram of FIG. 13A, the sprayed mist-like particles can be reacted most efficiently by the frontal collision, and the DLS in FIG. 13B and FIG. 13C. As shown in the TEM image, gold nanoparticles having a small particle size and a uniform particle size can be obtained.
  • the particle size of the recovered particles depends on the positional relationship between the first injection nozzle 11 and the second injection nozzle 21, that is, the degree of collision / fusion between charged droplets. (Solution supply amount and concentration)
  • FIG. 15 is a graph showing the absorption spectrum at each supply rate
  • FIG. 16 is a graph showing the relationship between the supply rate and the absorbance at 530 nm.
  • the generation amount is the largest when the supply rate is 10 ⁇ L / min, and the generation amount is decreased when the supply rate is increased. For this reason, it can be said that the supply rate is preferably about 5 ⁇ L / min to 15 ⁇ L / min.
  • Example 8 is applied to the synthesis of polymer nanoparticles.
  • each methanol solution of monomer and catalyst is atomized by the micro reaction field forming device shown in FIG. 1 to collide and fuse, the polymerization reaction is carried out in the fused droplets, and the produced polymer particles are placed in a liquid trap by an aspirator. Aspirate and collect. Typical operating conditions are shown below. ⁇ First and second solutions>
  • First solution (positive charge applied): A solution prepared by adjusting phenylacetylene in methanol to a concentration of 0.2 mol / L
  • Second solution (negative charge applied): A solution prepared by adding bicyclo [2,2,1] hepta-2,5-diene rhodium chloride dimer in methanol to a concentration of 0.01 mol / L and triethylamine to a concentration of 0.2 mol / L ⁇ Speed of liquid delivery>
  • DLS dynamic light scattering
  • SEC size exclusion chromatograph
  • the first spraying means 10 and the second spraying means 20 are arranged so that the first spray nozzle 11 and the second spray nozzle 21 are arranged in a substantially straight line, and the monomer solution and the catalyst solution are arranged.
  • the monomer solution and the catalyst solution are arranged.
  • the micro reaction field forming apparatus can include a particle size control means for controlling the particle size of the charged droplets generated by electrospray.
  • the particle size control means adjusts the dielectric constant of each solution by adding the solute such as the type of solvent used in the first solution and the second solution, the mixing ratio of the mixed solvent, or the electrolyte to the first solution and the second solution. By doing so, the particle size of the charged droplets generated by the electrospray method is controlled. Thereby, the volume of the droplet forming the reaction space can be controlled.
  • a particle size control means means for controlling the electric field formed between the injection nozzles by an electrostatic lens system can be suitably used. By using an electrostatic lens system, it is possible to select the size of charged droplets. (Example 9: Size selection of charged droplet by ring electrode)
  • Example 9 a ring-shaped electrode shown in FIG. 20A is used as the electrostatic lens system.
  • the ring electrode 13 is the same as the electrostatic lens system shown in FIG.
  • D r 2 cm
  • l 1 cm.
  • E N + + 4.5 kV
  • E N ⁇ ⁇ 4.5 kV
  • E r + + 2 kV
  • E r ⁇ ⁇ 2 kV.
  • ethanol was allowed to flow at a flow rate of 0.02 mL / min to both the positive and negative injection nozzles 11B and 21B, and it was confirmed that electrospray occurred stably.
  • FIG. 20 (b) shows the result of comparison between the cases with and without.
  • indicates a state in which both ring electrodes are installed, and ⁇ indicates a state in which both ring electrodes are removed.
  • the particle size range that can be observed by this measurement method was 0.3 to 10 ⁇ m.
  • FIG. 21 shows an experimental result of Example 10 in which the effect of size selection of charged droplets by a ring electrode was confirmed by a synthesis reaction of gold nanoparticles.
  • the same chloroauric acid solution and ascorbic acid solution as in Example 4 were used as the first solution and the second solution, respectively, in the PVP solution.
  • the particle size distribution of the gold nanoparticles collected was measured by dynamic light scattering measurement (DLS).
  • d N 4 cm
  • d r 2 cm
  • l between two ring electrodes 13 having an inner diameter of 7 mm and an outer diameter of 9 mm facing each other. It installed so that it might become 1 cm.
  • a solution prepared by adjusting chloroauric acid (HAuCl 4 ) to a concentration of 0.1 mol / L in an ethanol solvent was used as the first solution (positive potential application) under the same conditions as in Example 4, while the second solution (negative As a potential application), a solution in which ascorbic acid was adjusted to a concentration of 0.1 mol / L in a mixed solvent of ethanol 90 / water 10 vol% was used.
  • the solution in the liquid trap is a solution in which polyvinylpyrrolidone (PVP) is adjusted to a concentration of 1 wt% in an aqueous solvent, and the gold nanoparticles generated by the reduction reaction of chloroauric acid in the droplets are made colloidal by PVP.
  • PVP polyvinylpyrrolidone
  • FIG. 21B shows the result of measuring the size distribution of the gold nanoparticles thus obtained by the DLS method.
  • the minimum detectable particle diameter is 3.8 nm
  • the maximum distribution is considered to be below the detection limit. That is, FIG. 21 (b) suggests that gold nanoparticles having a detection limit of 3.8 nm or less are generated. Comparing this result with the size distribution of Example 4 shown in FIG. 9, it can be seen that the distribution is shifted to a smaller size. Therefore, by performing size selection of droplets using an electrostatic lens system constituted by ring electrodes, the synthesis reaction volume of gold nanoparticles is controlled to be small, and the size of the resulting gold nanoparticles is further reduced. I was able to confirm that it was possible. (Example 11: Effect of ring electrode)
  • FIG. 22A shows a state in which ethanol is flowed from an electrospray nozzle at 0.02 mL / min, and a grounded (grounded) ring electrode 13 and a needle-like counter electrode CE are installed.
  • the liquid is not sprayed from the counter electrode CE.
  • the potential applied to the electrospray nozzle serving as the anode (positive electrode) AN and the counter electrode CE by changing the potential applied to the electrospray nozzle serving as the anode (positive electrode) AN and the counter electrode CE, the particle size distribution of the charged droplets at the points A and B shown in FIG. It was measured by the scattering particle measurement method.
  • FIG. 22B and FIG. 22C The results are FIG.
  • FIG. 22B shows the particle size distribution of the ethanol droplets measured before passing through the ring electrode 13 (point A).
  • the potentials of the anode electrode AN and the counter electrode CE are shown.
  • FIG. 22C shows the particle size distribution of ethanol droplets measured after passing through the ring electrode 13 (point B), and similarly shows the potentials of the anode electrode AN and the counter electrode CE.
  • the size distribution is 1 ⁇ m or more before passing the ring electrode (point A), whereas the size distribution is mainly 1 ⁇ m or less after passing the ring electrode (point B). Turned out to be. From this, it was shown that size selection occurs effectively using a ring electrode.
  • FIG. 22B shows that when the potential of the anode electrode AN is increased, the size distribution at the point A changes in the direction of decreasing size. That is, it is shown that the size of the charged droplet can be controlled by the voltage applied to the first solution and the second solution.
  • the electrostatic lens system can be used not only to control collision, fusion, and aggregation of solutions, but also to control the particle size of charged droplets by voltage, and can be used as an electrostatic filter.
  • microspray field forming apparatus and chemical reaction control method using electrospray of the present invention can be suitably applied to the production of fine particles such as gold nanoparticles, the production of polymer particles, and powder coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】複数の液体試料間の混合体積を小さくして、混合速度、効率を向上させる。【解決手段】複数の液体試料間の混合体積を極限まで小さくする液体混合法は、エレクトロスプレー法(静電噴霧法)によって生成した電荷を有する液滴間の静電的相互作用に基づく。2つ又はそれ以上の対向する噴射ノズルに正及び負電位を供給し、液体試料を一定の流速で供給することによって正及び負に帯電した微小液滴(<10μm)を各ノズルから噴霧させ、反対符号の電荷を有する液滴間の静電的相互作用によってそれらを衝突・融合させ、混合体積の最小化と混合速度(効率)の最大化を実現できる。これにより、液滴のスケールを保ったマイクロ反応場で連続的あるいは連鎖的化学反応の進行が制御できる。

Description

エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法
 本発明は、液体試料の混合を経て進行する化学反応の制御に係る液体試料間の混合体積の最小化と混合速度(効率)の最大化を達成するために、エレクトロスプレー(静電噴霧)によって生成した極微小液滴間の静電的相互作用を利用するマイクロ反応場形成装置、及び化学反応の制御方法に関する。なお、ここで言う化学反応とは、結晶成長や物質の凝集等の制御反応を含むものとする。
 異なる液体を高効率で混合する方法としてマイクロミキサーが知られている。マイクロミキサーとは、金属やガラスの基板上にμmオーダーの液体流路を形成させて、複数の流路を合流させることによって液体を混合する手法である。混合のための移動距離が数十~数百μm以内で短いために混合体積を小さく、また混合速度(効率)を大きくすることができる。このマイクロミキサーの特徴を利用した液相の化学反応制御が試みられている。
 例えば、塩化金酸(HAuCl)液と還元剤を含む溶液(水素化ホウ素ナトリウム、クエン酸、アスコルビン酸溶液等)を混合することによって塩化金酸を還元し金原子を生成する反応について、両溶液をマイクロミキサーで混合することによって微小混合体積内で高効率の混合による還元反応を起こし、共存させた分散剤によって金原子の自己会合を抑えて金ナノ粒子を合成する方法が提案されている。
 ここで、金ナノ粒子のサイズをより小さく制御するためには、混合する反応溶液の体積をできるだけ小さくする必要がある。この例のような溶液中の連続的あるいは連鎖的な化学反応の制御方法として、反応溶液の体積を制御することは極めて有効な方法である。
 既存のマイクロミキサー技術で液体の混合体積をさらに小さくするためには、数十~数百μmオーダーの液体の流路をさらに狭くする必要がある。しかし、流路を狭くすると、液体は流路の壁の効果を一層強く受けることになり、その結果、流れが不均一になり、均一な混合が困難となる。さらに、上の例のように混合の結果、粒子状の物質が得られる系では、流路を狭くすることによって生成物による閉塞が起こりやすくなり、高濃度試料溶液を用いた実験が困難となる。また、混合体積を最適に制御するためには流路自体を変化させる必要があり、そのためには装置自体を作り変える等、多大な手間とコストをかける必要があった。
 一方でエレクトロスプレー法を用いてポリマー微粒子を製造する方法が提案されている(特許文献1)。この方法では、図19に示すエレクトロスプレー装置を用いて、処理槽191内において、所定のポリマーを含む溶液をノズル細管193と対極電極195間に噴霧し、対極電極195上に沈着したポリマー微粒子を回収する。このようなエレクトロスプレー法は、微細化された液滴を作業面に均一に噴霧、塗布することができる方法として有効な方法であり、薬液の散布等のスプレー装置あるいは粉体塗装装置等に広く利用されている。
 しかしながら、この方法で得られるポリマー微粒子は、粒径が1.2~1.7μm程度に止まる。これは、溶液中に存在する高分子が噴霧の過程で溶媒が蒸発する等して凝集した粒子であり、より小径(例えば数nm~数十nm)の微粒子の生成には適さないことを示している。またこの方法では本来的に、接地された噴霧対象物に対して噴霧、塗布することで微粒子を付着、固定することを企図しており、微粒子のみを回収することは困難であった。また図19の装置では、対極電極195上に沈着したポリマー微粒子を、掻き取りや対極電極195の表面に水を流すことで回収する方法を提案している。この方法では、付着による損失が相当大きく、回収率が悪い上、このような掻き取りや水洗の際に、微粒子の凝集が起こりやすい。特に微粒子は、一旦生成されても、微粒子同士が会合して凝集し、粒径が大きくなってしまう性質があるため、微粒子を粒径の小さいままで安定的に維持することが容易でないという問題があった。
特開2008−169275号公報
H.Tsunoyama,N.Ichikuni,T.Tsukuda,"Microfluidic Synthesis and Catalytic Application of PVP−Stabilized,~1 nm Gold Clusters",Langmuir,ACS Publications,vol.24,11327−11330(2008).
 本発明の目的は、上記問題点を解決するため、混合体積の最小極限値と混合速度(効率)の最大極限値を達成し、また簡便かつ低コストで混合体積をコントロールし、生成物を効率よく回収可能なエレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法を提供することにある。
課題を解決するための手段及び発明の効果
 前述の目的を達成するために、本発明の第1の側面に係るマイクロ反応場形成装置によれば、第一溶液を供給する第一溶液供給源12と、前記第一溶液供給源12と接続され、該第一溶液供給源12から供給される第一溶液を霧状にして噴霧するための第一噴射ノズル11とを備えたエレクトロスプレーを構成する第一噴霧手段10と、第二溶液を供給する第二溶液供給源22と、前記第二溶液供給源22と接続され、該第二溶液供給源22から供給される第二溶液を霧状にして噴霧するための第二噴射ノズル21とを備えたエレクトロスプレーを構成する第二噴霧手段20と、前記第一噴霧手段10及び第二噴霧手段20に電位差を与えるための電圧印加手段30と、前記第一噴霧手段10及び第二噴霧手段20でそれぞれ微細化され、かつ電荷を帯びた液滴となった第一溶液と第二溶液とが反応空間RAで衝突、融合することで得られる反応生成物を回収するための回収手段40とを備えることができる。これにより、原材料を微細な霧状として反応させ、かつ反応生成物を回収することが可能となる。
 また、第2の側面に係るマイクロ反応場形成装置によれば、前記第一噴射ノズル11と第二噴射ノズル21とを、同一直線上、又は同一平面上で向かい合いように配置してなり、前記第一噴射ノズル11と第二噴射ノズル21に、それぞれ正又は負の電位あるいは電位差を印加することで、発生される正又は負に帯電した液滴群を、前記第一噴射ノズル11と第二噴射ノズル21との間に形成された静電場に沿って移動させ、正−負に帯電した液滴間の静電引力によって衝突、融合させると共に、同極の電荷の液滴間で静電反発力を働かせることにより、衝突する液滴の組み合わせを静電的相互作用によって制御することができる。
 さらに、第3の側面に係るマイクロ反応場形成装置によれば、前記回収手段40の前段に、静電フィルターを設けることができる。これにより、正又は負の電荷を有する未反応の液滴を静電フィルターでトラップ又は除外し、正−負に帯電した液滴間の衝突によって電荷が消滅あるいは減少した液滴のみを回収することが可能となる。この結果、液滴間の反応生成物のみを回収し、未反応の原料溶液の混入を排除することができる。このような静電フィルターとしては、捕集電極又はリペラー電極が好適に利用できる。
 さらにまた、第4の側面に係るマイクロ反応場形成装置によれば、前記回収手段40として、液体中への回収を行う液体トラップと、前記液体トラップと連結した吸引手段とを備えることができる。これにより、反応場で生成される生成物を、第一溶液や第二溶液の供給を妨げることなく回収し、液中に安定化させることができる。このような吸引手段は、アスピレータ等が利用できる。また、液体中への回収のみならず、基板上に反応後の微小液滴を捕集して回収することもできる。
 さらにまた、第5の側面に係るマイクロ反応場形成装置によれば、エレクトロスプレーにより生成する荷電液滴の粒径を制御するための粒径制御手段を備えることができる。この粒径制御手段は、第一溶液及び第二溶液で使用する溶媒の種類、混合溶媒の混合比、あるいは電解質等の溶質を第一溶液や第二溶液に添加して各溶液の誘電率を調整することにより、エレクトロスプレー法により生成する荷電液滴の粒径を制御する。これにより、反応空間を形成する液滴の体積を制御可能とできる。
 さらにまた、第6の側面に係るマイクロ反応場形成装置によれば、前記粒径制御手段は、第一溶液及び第二溶液に印加する電圧を調整することで、エレクトロスプレーにより生成する荷電液滴の粒径を制御するよう構成できる。これにより、反応空間を形成する液滴の体積を制御可能とできる。
 さらにまた、第7の側面に係るマイクロ反応場形成装置によれば、第一溶液又は第二溶液のいずれか一方を、エレクトロスプレーによって正電荷に帯電した微小液滴として噴霧し、他方をエレクトロスプレーによって負電荷に帯電した微小液滴として噴霧し、正−負に帯電した液滴間の静電引力を、静電レンズ系により制御して、該液滴同士を衝突・融合させて、これらを混合することができる。これにより、第一溶液と第二溶液を高効率に混合できる。さらに、噴射ノズル間に形成される電場を静電レンズ系により制御することで、液滴間の衝突・融合及び凝集を制御でき、液体状態を保った最小体積での混合が確実に可能となる。
 さらにまた、第8の側面に係るマイクロ反応場形成装置によれば、前記粒径制御手段を、静電レンズ系で構成することができる。
 さらにまた、第9の側面に係る化学反応制御方法によれば、上記のマイクロ反応場形成装置を用いて起こさせる第一溶液と第二溶液の二種の溶液の混合によって起こる液相の連続的あるいは連鎖的化学反応について、該二液の微小液滴間の衝突・融合によって反応を開始させて反応生成物を制御することができる。これにより、反応場を衝突・融合した微小液滴内に限定することが可能となり、極限まで反応場を小さくして反応生成物の凝集及び凝集状態・結晶成長・重合度等を制御することが可能となる。
 以上の混合体積、即ちマイクロ反応場の体積は、エレクトロスプレーにより生成する液滴のサイズによって決まる。液滴の粒径を10μm以下に制御できることから、既存のマイクロミキサーの混合体積よりも極微量での混合が可能である。混合体積の調整は、本発明ではエレクトロスプレーに印加する電圧、溶液の誘電率、溶液温度等によって液滴のサイズを制御することが可能となるのに対し、既存のマイクロミキサーでは、新たな流路を製作しなければならない。本発明の混合効率は、液滴間の静電引力と静電反発力を利用することにより、極限まで高めることができる。液滴を微小化することにより液滴間の衝突確率が小さくなるが、液滴間の静電的相互作用により、該衝突確率の低下を補償できる。本発明に係る液体の混合によって形成される極微小反応場は、溶液中の連続的あるいは連鎖的反応の制御に適している。また、微小な液滴は表面積の割合が高いため、水と油のような混合し難い液体同士を混合(乳化)させることにも利用でき、界面が反応場となる化学反応を促進できる。また、従来、相関移動触媒や乳化剤を必要とした反応系でも、本マイクロ反応場形成装置によれば相関移動触媒や乳化剤なしで反応を行うことができる。
本発明の実施の形態1に係るマイクロ反応場形成装置を示す模式図である。 実施の形態2に係るマイクロ反応場形成装置を示す模式図である。 実施の形態3に係るマイクロ反応場形成装置を示す模式図であり、図3(a)は内径の小さいリング電極を、図3(b)は内径の大きいリング電極を用いた反応空間が形成される様子を、それぞれ示している。 実施の形態1に係るマイクロ反応場形成装置で反応空間が生成される様子を示す写真である。 実施の形態4に係る微粒子合成装置を示す模式平面図である。 実施例1~7で得られた金ナノコロイド溶液の写真、図6(a)は調整後20分経過後の写真、図6(b)は調整後1週間経過後の写真をそれぞれ示すイメージ図である。 比較例1に係る攪拌混合の結果として、図7(a)は調整後60分経過後の写真、図7(b)は24時間経過後の写真を、それぞれ示すイメージである。 実施例1~7で得られた金ナノコロイド溶液の光吸収スペクトルを示すグラフである。 実施例4で得られた金ナノ粒子の粒度分布を示す動的光散乱スペクトルのグラフである。 比較例1の溶液混合法で得られた金ナノ粒子の粒度分布を示す動的光散乱スペクトルのグラフである。 実施例4で得られた金ナノ粒子のTEM像を示すイメージ図である。 比較例1の溶液混合法で得られた金ナノ粒子のTEM像を示すイメージ図である。 図13(a)は第一噴霧手段、第二噴霧手段、回収手段の位置関係を示す模式図、図13(b)は図13(a)の配置によって得られた金ナノ粒子の粒度分布を示す動的光散乱スペクトルのグラフ、図13(c)は図13(a)の配置によって得られた金ナノ粒子のTEM像を示すイメージ図である。 図14(a)は第一噴霧手段、第二噴霧手段、回収手段の位置関係を示す模式図、図14(b)は図14(a)の配置によって得られた金ナノ粒子の粒度分布を示す動的光散乱スペクトルのグラフ、図14(c)は図14(a)の配置によって得られた金ナノ粒子のTEM像を示すイメージ図である。 HAuCl溶液の供給量と濃度の関係を示すグラフであり、各供給速度での吸収スペクトルを示すグラフである。 HAuCl溶液の供給量と濃度の関係を示すグラフであり、供給速度と530nmでの吸光度の関係を示すグラフである。 実施例8で得られたポリマー粒子の粒径分布を示す動的光散乱スペクトルのグラフである。 実施例8で得られたポリマーの分子量分布を示すサイズ排除クロマトグラフである。 従来の静電噴霧装置の構成を示す模式図である。 図20(a)は実施例9に係る静電レンズ系を示す概略図であり、図20(b)はA点における液滴の粒径分布を静電レンズ系のある場合とない場合とで比較した結果を示すグラフである。 図21(a)は実施例10に係る静電レンズ系を示す概略図であり、図21(b)は金ナノ粒子のサイズ分布をDLS法により計測した結果を示すグラフである。 図22(a)は実施例11に係る静電レンズ系を示す概略図であり、図22(b)はリング電極通過前の液滴の粒径分布、図22(c)はリング電極通過後の液滴の粒径分布を、それぞれ示すグラフである。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、液相のマイクロ反応場形成装置及び化学反応制御方法を例示するものであって、以下のものに特定しない。特に本明細書は、特許請求の範囲を理解し易いように、実施の形態に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、これらは特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
(実施の形態1)
 本発明の実施の形態1に係るマイクロ反応場形成装置100を図1に示す。このマイクロ反応場形成装置100は、第一噴霧手段10と、第二噴霧手段20と、回収手段40とを備える。第一噴霧手段10は、第一溶液供給源12に接続されて第一溶液を供給し、第一溶液をエレクトロスプレー(静電噴霧)する。このため第一噴霧手段10は、その先端に第一溶液をエレクトロスプレーする第一噴射ノズル11を備えている。同様に第二噴霧手段20は、第二溶液供給源22に接続されて第二溶液を供給され、第二溶液をエレクトロスプレーする。このため第二噴霧手段20も、その先端に第二原料溶液をエレクトスプレーする第二噴射ノズル21を備えている。これにより、第一溶液と第二溶液は共にμmサイズ以下の液滴にして噴霧できる。噴霧される溶液の供給速度は任意の速度とできるが、一定速度に制御することにより、液滴サイズを好ましいサイズに制御することができる。また、噴霧手段に溶液を供給するための溶液供給源としては、例えば任意の速度で溶液を供給可能なシリンジポンプが好適に利用できる。
(電圧印加手段30)
 これら第一噴射ノズル11と第二噴射ノズル21は、電圧印加手段30に接続されて、電位差を与えられている。ここでは第一噴射ノズル11に正電圧を、第二噴射ノズル21に負電圧を印加することで、第一溶液の液滴を正に帯電させ、第二溶液の液滴を負に帯電させて、両者が静電力によって引き合うようにしている。すなわち、各噴射ノズルから噴霧された反対電荷を有するμmサイズの液滴同士が静電的相互作用によって融合することにより、μmサイズ(体積1フェムトリットル以下)の反応場が形成される。また、電圧印加手段30で印加される電位差は、例えば3kV~20kVの範囲とできる。
 さらに、第一噴射ノズル11と第二噴射ノズル21とは、互いに先端が交点を結ぶ姿勢に配置されている。これによって、第一噴射ノズル11から噴霧される霧状の第一溶液と、第二噴射ノズル21から噴霧される霧状の第二溶液とを静電的相互作用によって衝突・融合させ、これらを混合することができる。このように、第一溶液と第二溶液とが液滴状(ミスト状)のまま衝突・融合する反応空間RAを形成することができる。なお本明細書においてマイクロ反応場とは、液滴同士を衝突させることによって形成される微小な反応空間を意味する。反応空間RA内には、複数のマイクロ反応場が離散的に存在することができる。すなわち、第一噴霧手段10と第二噴霧手段20とで微細化され、電荷を帯びた液滴が、反応空間RAで静電的相互作用により衝突・融合した液滴内で化学反応が進行するマイクロ反応場を形成する。
 エレクトロスプレーマイクロ反応場形成装置により反応空間が形成された写真を図4に示す。第一噴射ノズルと第二噴射ノズルに共にエタノールをシリンジポンプにより0.02mL/minで送液し、電圧印加手段30によって第一噴射ノズル11(図において左側)には+3kV、第二噴射ノズル21(図において右側)には−3kVをそれぞれ印加し、両者間に6kVの電位差を与えている。これにより、図に示すように各噴射ノズルから正及び負に帯電したμmサイズの液滴がそれぞれ噴射され、霧同士が中央で衝突して反応空間RAを形成している。また反応空間RAにおいて、静電的相互作用によって液滴の融合が生じる。ここでは、第一噴射ノズル11、第二噴射ノズル21の間で電場が形成され、その電気力線をトレースするように霧が流れ中央で衝突、融合している様子が確認できる。また、電気力線の形状を静電レンズ系により調整することにより、液滴間の衝突を制御することができる。
 本マイクロ反応場形成装置を金ナノ粒子の合成に利用する場合には、第一溶液をAu3+イオンを含む塩化金酸のアルコール溶液、第二溶液をアスコルビン酸として、両溶液から生成した液滴を静電的相互作用によって衝突・融合させ、液滴内で酸化還元反応を起こし、金ナノ粒子を合成する。ただ、本発明はこれに限られず、他の金属イオンの溶液や還元剤の組み合わせも利用できる。また単一の金属のみならず、合金のナノ粒子を生成することもできる。例えば白金−金やパラジウム−金等が挙げられる。あるいは、金属のコアシェル構造にも利用できる。さらには、触媒として利用可能な金属を生成することもできる。
 また、第一溶液及び第二溶液をアルコール溶液とすることで、各溶液を噴霧した際に生成する液滴のサイズを小さくでき、より小さい微粒子を得ることが可能となる。第一溶液や第二溶液に水溶液を用いることもできるが、この場合は得られる生成物の粒径がアルコールを用いた場合よりも大きくなる。アルコール以外でも誘電率及び表面張力が小さい液体を溶媒に使用することで、液滴のサイズを小さくすることができる。また、塩を添加することによって誘電率を大きくすることにより、液滴のサイズを大きくすることができる。これら溶媒や塩による液滴の粒径制御が可能である。
(回収手段40)
 さらに図1に示すマイクロ反応場形成装置100は、生成物を回収する回収手段40を備えている。回収手段40は生成物を吸引する回収ノズル41を備えており、第一溶液と第二溶液とが衝突される反応空間RAに向けて回収ノズル41を突出させるように配置される。これによって、生成物を速やかに回収手段40に取り込んで、金属ナノ粒子を回収できる。
 回収手段40は、図1に示すように、一直線上に配置された第一噴射ノズル11と第二噴射ノズル21に対して、この直線と交差する姿勢、好ましくは直交する姿勢に配置する。これにより、反応空間RAで生成される生成物を、第一溶液や第二溶液の供給を妨げることなくスムーズに回収できる。
(実施の形態2)
 また図1の例では、回収手段40として、液体トラップ40Aを用いており、回収した生成物を液体トラップ40A中に回収している。ただ、回収手段はこの構成に限られず、例えば図2の実施の形態2に示すように、回収手段として基板40B上に生成物を回収している。
(反応空間RA)
 また、互いに対向する姿勢に配置する噴射ノズル同士の間は、ある程度離間させることが好ましい。噴射ノズルの先端同士が近すぎると、金属イオンが還元されてノズルに析出することがある。一方、噴射ノズル同士の間が離れすぎると、電位差が低下して反応場の形成が不十分となる。このため、第一噴射ノズル11と第二噴射ノズル21とを離間させる距離は、適切な強度の反応空間RAが両者の間に形成されるように設定される。また、反応空間RAが両者の間に形成されるよう、第一溶液、第二溶液の供給量、ノズルの電位及び電位差等を調整することが好ましい。
(実施の形態3)
 また、反応空間RAは、噴射ノズルに加えて、若しくはこれに代わって、静電レンズ系により制御することもできる。このような例を実施の形態3として図3(a)、(b)に示す。この例では、反応空間RAの両端に、リング電極13を設置し、そのリング電極13の直径及びリング電極13間の電位差を調整することで、噴射ノズルから噴霧される液滴群の空間的な拡散と液滴間の衝突エネルギーを制御できる。これにより、液滴間の衝突によって進行する化学反応の効率を高めたり、衝突・融合後の液滴同士の凝集を制限することができる。この場合、第一噴霧手段10B及び第二噴霧手段20Bは、それぞれ第一噴射ノズル11Bとリング電極13、第二噴射ノズル21Bとリング電極13で構成される。
(静電レンズ系)
 このように、リング電極13でもって反応空間RAの直径を拡大できるので、リング電極13を、反応空間RAを拡大する静電レンズ系として機能させることができる。さらに、リング電極13の内径を変化させることで、反応空間RAの直径を所望のサイズに調整することもできる。例えば図3(a)の例では、リング電極13の内径を小さくすることで、直径を絞った高密度の反応空間RAを形成している。一方、図3(b)の例では、内径の大きいリング電極13’を用いることで、反応空間RAを広域に拡大して、反応空間内で生成される粒子の凝集を抑制してより小さい粒子を形成できる。
 なお、図3(a)、(b)の例では、噴射ノズルに±5kV、リング電極に±0.5kVをそれぞれ印加して電場を構成している例を説明したが、これに限らず、例えば噴射ノズルには高電圧を印加せずに、リング電極のみに高電圧を印加することでも、反応空間RAを形成できる。つまり、噴射ノズルとリング電極13の間に電場を形成させることによってエレクトロスプレーを行わせることができる。噴射ノズルとリング電極13の間に電位差が与えられていれば、噴射ノズルの電位はグランドレベルでも正電位でも負電位でも良い。
(分散剤DI)
 また液体トラップ中に回収された生成物は、分散剤DI中に排出することで、一旦回収した生成物を分散剤DIにより単分散性を高め、コロイド状にして保持して安定化できる。このような分散剤DIとしては、ポリマーの溶液が好適に利用できる。これにより、生成物の粒子同士が会合して凝集し、粒径が大きくなる事態を回避できる。例えば、上述した塩化金酸の還元反応においては、ポリビニルピロリドン(PVP)を利用し、帯電した液滴同士の衝突によって液滴中で生成した金ナノ粒子をアスピレータで吸引してPVP中に導入する。金ナノ粒子をPVPで囲みコロイド状とすることで、会合を防いでナノ粒子を安定化させる。このように微細粒子を液中で安定化して保存することにより、ハンドリングも容易となり、汎用性が向上し、触媒等への応用が容易になる。また分散剤DIは、PVPに限られず、回収する微粒子によって適宜選択できる。
(実施の形態4)
 さらに、上記の例では各噴霧手段がそれぞれ一の噴射ノズルを備える例を説明したが、一の噴霧手段に複数の噴射ノズルを設けることもできる。例えば実施の形態4として図5の模式図に示すように、各噴霧手段10D、20Dにそれぞれ、各5本の噴射ノズルを設けることもできる。この場合は5本の第一噴射ノズル11Dを、同じく5本の第二噴射ノズル21Dとそれぞれ対向する姿勢に配置することで、第一噴射ノズル11D、第二噴射ノズル21D同士の対でそれぞれ効率よくミストを衝突させ、混合させることができる。このように第一噴射ノズルと第二噴射ノズルをそれぞれ複数本並列に接続して、複数の第一噴射ノズル及び第二噴射ノズルを対向させることにより、第一溶液及び第二溶液の噴霧量を増加させることができる。これにより、噴射ノズルの数を増やすことによって、容易に規模を拡大することができる。
(フィルタ手段50)
 さらにマイクロ反応場形成装置100は、未反応の液滴を排除するフィルタ手段50を備えることもできる。反応室1内の空気の対流等によって、液滴同士が衝突せずに流される成分も存在し得る。このような場合に回収手段40で反応物を回収する際、未反応の液滴が混入すると回収率が低下する。そこで、回収手段40の前段にフィルタ手段50を設けて、未反応の液滴を除去することで、回収手段40には反応物のみを取り込むことができ、より高効率な回収が実現できる。特に、上述したマイクロ反応場形成装置100では、未反応の液滴は帯電しており、一方で反応後の生成物は電気的に中性となっていることから、未反応の液滴をその電荷を利用して吸着することができる。よってこのようなフィルタ手段50としては、例えば電気的に中性の粒子を通過し、電荷を有する粒子を補足する静電フィルタが好適に利用できる。これによって粒子の凝集を防ぎ、生成された生成物のみを効率よく回収できる。またフィルタ手段50を設けることで、未反応ミストの滞留時間を長くして、反応性を高める効果も期待できる。
 以上のマイクロ反応場形成装置100は、酸化還元反応を経て微粒子を得る反応系に適用している。液相における微粒子の合成反応では、微粒子が得られても、これがさらに周囲に存在する他の微粒子と会合し、凝集してより大きな粒子となる傾向があった。これに対して上記の方法では、液滴同士の衝突をマイクロ反応場として用いることで、反応場自体が衝突した液滴同士の小さな領域に制限され、それ以上反応が進まない、いわば離散的な反応場としたことで反応を抑制し、粒子が小さい状態のままで反応を停止できるという利点が得られる。上記方法では、液滴同士の衝突という離散的なマイクロ反応場を、反応空間RA内で複数個独立に形成したことで、各反応場を空間的に隔離して、反応をその衝突の場限りに抑えて、連続的な反応による凝集の発生を抑制することに成功したものである。この結果、衝突によって得られた反応物を粒径の小さな粒子のままで取り出すことができ、nmサイズの粒径で反応物を得ることができる(詳細は後述)。すなわち、霧同士の衝突を反応場として用いているマイクロリアクターを構成している。同様の考え方で、連鎖的又は逐次的な重合反応を制御して、高分子化合物の分子量・分子量分布及び高分子ナノ粒子の粒径・表面構造・内部構造・表面物性を制御することが可能となり、塗料・医薬品等の目的に適したナノ粒子の制御が可能となる。この他、無機結晶、有機結晶を問わず結晶サイズを制御することが可能になり、医薬品等の目的に適した結晶構造・サイズ制御が可能になる。また、溶液中では逐次的反応が連続的に進行する化学反応や分子中に複数の反応点を有する化学反応において、第一段階で終了させたり、特定部位を反応させたり等、選択的な反応制御が可能となる。
 また、上述したマイクロ反応場形成装置100は、微粒子を混合して金属ナノ粒子を合成する微粒子合成装置に適用した一例を示している。ただ、微粒子合成以外の反応にも、本発明を適用できる。例えば、二液以上の異なる液体を混合するマイクロミキシング(Micro Liquid Mixing:微小混合)を行うためのマイクロミキサー(Micro−Mixer)や、連鎖的あるいは逐次的化学反応の制御、短寿命反応中間体の回収及び安定化等への利用が挙げられる。特に従来のマイクロミキサーでは、例えば水と油のような異質の液体同士を界面活性剤を用いずに混合することは容易でなかった。これに対して、実施の形態1に係るマイクロ反応場形成装置100では、噴霧して液滴の粒径を小さくすることで、表面積を大きくして混合、反応させることが可能となり、利用可能な原料の組み合わせを大幅に拡大できる利点が得られる。また、この方法であれば合成に高温を用いないので、加熱のためのエネルギー消費量を抑制して、エネルギー効率よく実施できる利点も得られる。
 なお従来のエレクトロスプレー技術は塗装等に用いられており、塗料の液滴を帯電させ、塗布対象をグランドに落として噴霧する方式であった。いいかえると、複数の液滴同士を生成して衝突させることは行われていなかった。これに対して本発明は、エレクトロスプレー技術を利用しつつも、全く新しい構成によって微粒子の合成反応に利用可能なマイクロ反応場形成装置を実現したものである。すなわち、エレクトロスプレーにより発生させた気中で混合させるマイクロミキサーを形成して、正及び負に帯電させたミスト間の静電引力を利用して、ミスト同士を効率よく衝突させ、微小液滴内で化学反応を開始させる。この方法によって、例えば金属塩溶液と還元剤溶液をそれぞれミスト化して衝突させ、金属ナノ粒子を製造することができる。ここでは、金属塩溶液として金イオンAu3+を含む塩化金酸を、還元剤としてアスコルビン酸で還元して、Auを得ている。すなわち、噴霧した霧の粒同士の中で還元反応をそれぞれ生じさせることで、粒径がナノサイズである金のナノ粒子を得た。
(実施例1~7:金属ナノ粒子の生成)
 次に実施例1~7として、図1のマイクロ反応場形成装置100を用いて、エレクトロスプレーによる金ナノ粒子の合成実験を行った。ここでは、正極となる第一噴霧手段10に、第一溶液の金属イオンの溶液として塩化金酸(HAuCl)のエタノール溶液を、負極となる第二噴霧手段20に第二溶液の還元剤としてアスコルビン酸(AS)のエタノール−水(90:10vol%)混合溶液を、それぞれ使用した。またHAuCl溶液の濃度は、実施例1で0.001mol/L、実施例2で0.01mol/L、実施例3で0.05mol/L、実施例4で0.1mol/L、実施例5で0.2mol/L、実施例6で0.5mol/L、実施例7で1mol/Lとした。またAS濃度は0.1mol/Lで一定とした。そして各実施例1~7について、第一噴霧手段10及び第二噴霧手段20でそれぞれ、20μL/minの速度で供給し、また電圧印加手段30から、第一噴射ノズル11に+5.9kV、第二噴射ノズル21に−3.2kVを印加して各溶液を噴霧した。さらに図1に示す回収手段40Aとして、20分間アスピレータで吸引して、生成した粒子を1%PVP水溶液に捕集した。このようにして実施例1~7(実施例3を除く)で得られた金属ナノ粒子のコロイド溶液を、図6の写真に示す。これらの図において図6(a)は調整後20分経過後、図6(b)は一週間経過後の写真を、それぞれ示している。各図において、左から順に実施例1、2、4、5、6、7を示している。
 このように、図6(a)に示すように、すべての実施例で金の粒子が均一に分散した溶液が得られた。また図6(b)に示すように、一週間経過後も粒子の凝集は見られず、安定であることが確認できた。このように時間の経過と共に凝集することなく、安定的に保持できる信頼性の高い金属ナノ粒子合成法を確立した。また液相中で保持することで、その後の取り扱いを容易にできる利点も得られる。
(比較例1:溶液混合法)
 ここで比較のため、従来の溶液同士を混合して攪拌する溶液混合法で金の粒子を得た例を、比較例1として図7に示す。ここでは、1%のPVP(ポリビニルピロリドン)25mLに、塩化金酸(HAuCl)水溶液を加えて、塩化金酸濃度を0.00002、0.0002、0.002、0.004、0.01、0.02mol/Lにそれぞれ調製する。これらに対し、還元剤として0.1mol/Lのアスコルビン酸をAuと等量となるようそれぞれ加えて、すばやく撹拌した。この結果、液相中の金イオンが還元されて、金の粒子のコロイド溶液が得られる。この結果が図7であり、これらの図において、図7(a)は調整後60分経過後の写真、図7(b)は24時間経過後の写真を、それぞれ示している。これらの図に示すように、0.001mol/Lよりも高濃度で還元反応を行うと、サブミクロンオーダー以上の粒子が生成してすぐに凝集してしまい、粒径の小さい物を得ることができない。また時間の経過と共に、凝集がさらに激しくなって粒径が大きくなっていることが視認できる。
 このように、従来の方法では安定したナノ粒子が得られず、また濃度を高くすると粒径が大きくなるという問題がある。これに対して本発明の実施例によれば、上述の通り霧状で衝突させた反応場にて反応させることで、濃度を高くしても急激に粒径が大きくなることがなく、粒径の小さいままナノ粒子を安定して得られるという優れた利点を達成している。
 また、実施例1~7のエレクトロスプレーで得られた金ナノコロイド溶液の光吸収スペクトルを図8のグラフに示す。この図に示すように、いずれの濃度でも一定して530nm付近に吸収スペクトルの極大値を示している。また使用する塩化金酸の濃度が増加するに伴い、生成される金ナノコロイドも増加していることが確認できる。すなわち、金属イオンの濃度を高くしても凝集が進むことなく、粒径を維持したままより多くの金属ナノ粒子が得られることが確認できた。
 さらに、得られた金のナノ粒子の粒径を確認するため、動的光散乱測定(DLS)により金ナノ粒子の粒度分布を測定した結果を図9、図10に示す。これらの図において、図9は実施例4(塩化金酸濃度:0.1mol/L)で得られた金ナノ粒子の粒度分布を示すグラフを、図10は比較例1(塩化金酸濃度:0.002mol/L)の溶液混合法を用いて調整した金ナノ粒子の粒度分布を示すグラフを、それぞれ示している。ここで実施例4では約4nmの平均粒子径となり、分布範囲も狭いことが確認できる。一方、比較例1では数百nm以上の大きな粒子となっており、分布も広範にわたっている。このことから、実施例4の方が、粒径の揃った小径の金属粒子が得られていることが確認できた。
 さらにまた、得られた粒子の電子顕微鏡写真を図11、図12に示す。これらの図において、図11は実施例4で得られた金ナノ粒子のTEM像、図12(塩化金酸濃度:0.002mol/L)は比較例1の溶液混合法で得られた金ナノ粒子のTEM像を示すイメージ図である。これらの図において、黒い点状が金の粒子を示しており、実施例4では比較例1に比べ明らかに粒径が小さい金属粒子が得られていることが確認できた。
(実施例4)
 ここで、実施例4及び比較例1の実験条件の詳細を示す。実施例4では、上述の通りエレクトロスプレーが形成するマイクロ反応場を金ナノ粒子の合成に適用したものである。本反応は背景技術で述べた塩化金酸の還元反応による金粒子の合成反応である。図1のエレクトロスプレーを用いたマイクロ反応場形成装置により、塩化金酸と還元剤(アスコルビン酸)の各溶液を霧化して衝突・融合させ、融合した液滴中で塩化金酸を還元し、生成した金ナノ粒子を分散剤(ポリビニルピロリドン)の共存する液体トラップ中にアスピレータにより吸引・回収して安定化させる。典型的な実施条件を以下に示す。
<第一及び第二原料溶液>
 第一溶液(正電位印加):エタノール溶媒中に塩化金酸(HAuCl)を濃度0.1mol/Lに調整した溶液
 第二溶液(負電位印加):エタノール90/水10vol%混合溶媒中にアスコルビン酸を濃度0.1mol/Lに調整した溶液
<回収手段40の液体トラップ内の溶液>
 液体トラップ内の溶液は、水溶媒中にポリビニルピロリドン(PVP)を濃度1wt%に調整した溶液とし、液滴内における塩化金酸の還元反応によって生成した金ナノ粒子をPVPによってコロイド状にして安定化させた。
<送液の速度>
 第一及び第二溶液のシリンジポンプによる送液速度は0.02mL/minとした。
<印加電圧>
 第一噴射ノズルに+5.9kV、第二噴射ノズルに−3.2kVを印加した。
<粒子計測>
 液体トラップ中に回収された金ナノ粒子の粒径を調べるために、回収溶液の動的光散乱(DLS)測定、回収溶液中の粒子の透過型電子顕微鏡(TEM)像観測を行い、金ナノ粒子の平均粒径約4nmを確認した。DLS及びTEMの測定結果を図9、図11に示す。
 なお上記の例では塩化金酸とアスコルビン酸の反応を例に説明したが、本発明はこれに限られず、他の金属イオンの溶液や還元剤の組み合わせも利用できる。また単一の金属のみならず、白金−金やパラジウム−金等の合金のナノ粒子の合成やコアシェル構造金属微粒子の合成にも利用できる。これらは、触媒の活性制御に利用できる。
(比較例1)
 次に比較例1の詳細を示す。エレクトスプレーが形成するマイクロ反応場で行った反応の効果を評価するため、ビーカー中で二液混合によって生成した粒子のDLS及びTEM測定結果を図10、図12に示す。混合に使用した二液は:
<第一及び第二原料溶液>
 第一溶液:エタノール溶媒中に塩化金酸(HAuCl)0.002mol/LとPVP(1wt%)を加えた溶液。
 第二溶液:エタノール90/水10vol%混合溶媒中にアスコルビン酸0.002mol/Lを加えた溶液。
 これら二液の単純混合によって得られた粒子の平均粒径は約300nmとなった。本発明を用いた実験(図9、図11)よりも低濃度の原料溶液を用いているにもかかわらず、生成した金の粒子の平均粒径は大きくなった。比較例1(図10、図12)と実施例4に係るマイクロ反応場を用いた実験(図9、図11)で生成した金ナノ粒子の平均粒径に顕著な違いが見られ、本発明が溶液中の金ナノ粒子の連続的な凝集を制御する方法に適していることを示している。
(回収手段の比較)
 次に、回収方法と粒度分布について検討した結果を図13、図14に示す。これらの図において、図13(a)、図14(a)は回収手段にアスピレータを使用した例であり、第一噴霧手段10及び第二噴霧手段20の噴射ノズルと、回収手段40Aの回収ノズル41との位置関係を模式図で示している。また図13(b)、図14(b)はそれぞれの回収手段で回収された金ナノ粒子の粒度分布のグラフを示している。さらに図13(c)は図13(a)の配置で得られた金ナノ粒子のTEM像、図14(c)は図14(a)の配置で得られた金ナノ粒子のTEM像を、それぞれ示している。
 これらの図に示すように、第一噴霧手段10と第二噴霧手段20とを、第一噴射ノズル11と第二噴射ノズル21とがほぼ一直線上に並ぶように配置することで、最も粒径が小さく、かつ粒径の揃った金属ナノ粒子が得られることが確認された。すなわち図13(a)の模式図に示すように噴霧される霧状の粒子同士を正面衝突させることで、最も効率よく反応させることができ、図13(b)のDLS及び図13(c)のTEM像が示すように、粒径が小さくかつ粒径のそろった金ナノ粒子が得られる。一方、図14(a)の模式図に示すように第一噴射ノズル11と第二噴射ノズル21とを斜めに配置すると、図14(b)のDLSが示すように粒径が大きく、広い粒度分布となった。また、図14(c)のTEM像においても粒径の大きな粒子が散見される。これは、未反応の霧(ミスト)が一部取り込まれたものと推察される。このように第一噴射ノズル11と第二噴射ノズル21の位置関係によって、すなわち帯電した液滴間の衝突・融合の程度によって回収された粒子の粒径が左右されることが判明した。
(溶液の供給量と濃度)
 さらに、第一溶液及び第二溶液の供給量と濃度の関係を調べた。この結果を図15、図16に示す。これらの図において、図15は各供給速度での吸収スペクトルを示すグラフ、図16は供給速度と530nmでの吸光度の関係を示すグラフである。図15、図16に示すように、供給速度が10μL/minで最も生成量が大きくなり、供給速度が大きくなると生成量が減少している。このため、供給速度は5μL/min~15μL/min程度とすることが好ましいと言える。供給速度を大きくするとエレクトロスプレーで生成する液滴のサイズが大きくなるため、静電的相互作用による液滴間の衝突速度が低下し、さらに、液滴の体積に対する表面積の割合が小さくなるため、液滴間の衝突・融合が起こり難くなる。これにより溶液の最適な供給速度が決まる。
(実施例8)
 実施例8はポリマーナノ粒子の合成に適用したものである。本反応は図1のマイクロ反応場形成装置によりモノマーと触媒の各メタノール溶液を霧化して衝突・融合させ、融合した液滴中で重合反応を行い、生成したポリマー粒子を液体トラップ中にアスピレーターにより吸引・回収する。典型的な実施条件を以下に示す。
<第一及び第二溶液>
 第一溶液(正電荷印加):メタノール中にフェニルアセチレンを濃度0.2mol/Lに調製した溶液
 第二溶液(負電荷印加):メタノール中にビシクロ[2,2,1]ヘプタ−2,5−ジエンロジウムクロリドダイマーを濃度0.01mol/L、トリエチルアミンを濃度0.2mol/Lに調製した溶液
<送液の速度>
 第一及び第二溶液のシリンジポンプによる送液速度は0.02mL/minとした。
<液体トラップ>
 液体トラップには、メタノールを使用した。
<印加電圧>
 第一噴射ノズルに+2.8kV、第二噴射ノズルに−6.0kVを印加した。
<粒子計測>
 液体トラップ中に回収されたポリマーナノ粒子の粒径を調べるために動的光散乱(DLS)測定を行ったところ、平均粒径約6.3nmであった。DLSの測定結果を図17に示す。
<重合度>
 液体トラップ中に回収されたポリマーの分子量を調べるためにサイズ排除クロマトグラフ(SEC)測定を行ったところ、重合度5~30のポリマーの生成が確認された。SECの測定結果を図18に示す。
 これらの図に示すように、第一噴霧手段10と第二噴霧手段20とを、第一噴射ノズル11と第二噴射ノズル21とがほぼ一直線上に並ぶように配置し、モノマー溶液と触媒溶液をそれぞれのノズルより噴霧することにより、図17のグラフに示すように粒径が小さく、かつ粒径の揃った粒子が得られ、生成した粒子は図18のグラフより微小液滴中での重合反応により生成したポリマーにより構成されることが確認された。
(粒径制御手段)
 またマイクロ反応場形成装置は、エレクトロスプレーにより生成する荷電液滴の粒径を制御するための粒径制御手段を備えることができる。粒径制御手段は、第一溶液及び第二溶液で使用する溶媒の種類、混合溶媒の混合比、あるいは電解質等の溶質を第一溶液や第二溶液に添加して各溶液の誘電率を調整することにより、エレクトロスプレー法により生成する荷電液滴の粒径を制御する。これにより、反応空間を形成する液滴の体積を制御できる。このような粒径制御手段には、噴射ノズル間に形成される電場を静電レンズ系により制御する手段も、好適に利用できる。静電レンズ系を用いることで、荷電液滴のサイズの選別を行うことが可能となる。
(実施例9:リング電極による荷電液滴のサイズ選別)
 ここで、リング状の電極を静電レンズ系として用いることにより、荷電液滴のサイズ選別が可能かどうかを確認した。この結果を実施例9として、図20に示す。ここでは、静電レンズ系として、図20(a)に示すリング状の電極を用いた。このリング電極13は、図3で示した静電レンズ系と同様のものである。ここでは、内径7mm、外径9mmのリング電極13を2枚、対向する第一噴霧手段10B及び第二噴霧手段20Bの第一噴射ノズル11B、第二噴射ノズル21Bの間に、d=4cm、d=2cm、l=1cmとなるように設置した。また各噴射ノズル11B、21Bと各リング電極13、13に対し、EN+=+4.5kV,EN−=−4.5kV,Er+=+2kV,Er−=−2kVとなるように電位を印加した。さらにこれら正負の両噴射ノズル11B、21Bに対し、エタノールを0.02mL/minの流速で流し、エレクトロスプレーが安定して起こることを確認した。
 このようなマイクロ反応場形成装置でエレクトロスプレーを発生させ、図20(a)で示すA点において、液滴の粒径分布を光散乱式粒子計測法によって計測し、静電レンズ系のある場合とない場合とで比較した結果を、図20(b)に示す。図において、○はリング電極を2枚とも設置した状態、●はリング電極を2枚とも除いた状態を、それぞれ示している。なお、この計測法で観測できる粒径の範囲は0.3~10μmであった。
 図20(b)より、リング電極を用いないときは、1μmに極大を示す液滴がA点で観測されたのに対し、リング電極を用いると、1μm以下の小さい荷電液滴のみが各リング電極を通過し、A点で衝突していることが示された。つまり、リング電極によって、1μm以上の大きな荷電液滴が除かれ、1μm以下にサイズ選別された正・負荷電液滴間の衝突・融合を可能にしていることが確認された。このリング電極によるサイズ選別は、荷電液滴の電荷密度がサイズによって異なることに起因している。つまり、電荷密度の大きなサイズの小さい液滴は、電場中で大きな運動エネルギーを得てリング電極を通過し、対向電極に向かう。これに対し、電荷密度の小さいサイズの大きな液滴は、リング電極に衝突し通過できなくなっている。
(実施例10:金ナノ粒子の合成反応)
 次に、リング電極による荷電液滴のサイズ選別の効果を、金ナノ粒子の合成反応で確認した実験結果を、実施例10として図21に示す。ここでは、図20(a)と同様の噴射ノズルとリング電極の配置例を用いて、実施例4と同じ塩化金酸溶液とアスコルビン酸溶液をそれぞれ第一溶液及び第二溶液として、PVP溶液中に回収した金ナノ粒子の粒径分布を動的光散乱測定法(DLS)により計測した。ここでも、リング電極13を静電レンズ系に用いることにより、1μm以上の大きな荷電液滴を排除して、1μm以下の小さな荷電液滴のみの衝突・融合により反応場を形成させ、よりサイズの小さな金ナノ粒子の合成が可能であることが確認された。
 具体的には、図21(a)に示すように、内径7mm、外径9mmのリング電極13を2枚、対向させた噴射ノズルの間に、d=4cm,d=2cm,l=1cmとなるように設置した。また各噴射ノズル11B、21Bと各リング電極13、13に、EN+=+8kV,EN−=−7kV,Er+=+2kV,Er−=−2kVとなるように電位をそれぞれ印加した。また、実施例4と同じ条件で第一溶液(正電位印加)として、エタノール溶媒中に塩化金酸(HAuCl)を濃度0.1mol/Lに調整した溶液を用い、一方第二溶液(負電位印加)として、エタノール90/水10vol%混合溶媒中に、アスコルビン酸を濃度0.1mol/Lに調整した溶液を用いた。さらに液体トラップ内の溶液は、水溶媒中にポリビニルピロリドン(PVP)を濃度1wt%に調整した溶液とし、液滴内における塩化金酸の還元反応によって生成した金ナノ粒子を、PVPによってコロイド状にして安定化させた。このようにして得られた金ナノ粒子のサイズ分布を、DLS法により計測した結果を図21(b)に示す。ここでは検出可能な最小粒径が3.8nmであることから、極大分布は検出限界以下にあると考えられる。すなわち、図21(b)から、検出限界である3.8nm以下の金ナノ粒子が生成されていることが示唆される。この結果を、図9に示した実施例4のサイズ分布と比較すると、よりサイズの小さい方に分布がシフトしていることが分かる。よって、リング電極によって構成された静電レンズ系を用いて液滴のサイズ選別を行うことで、金ナノ粒子の合成反応体積が小さく制御され、その結果生成される金ナノ粒子のサイズをさらに小さくできることが確認できた。
(実施例11:リング電極の効果)
 さらに、リング電極によるサイズ選別の効果を詳細に検討した結果を、実施例11として図22に示す。この図において、図22(a)は、エレクトロスプレーノズルからエタノールを0.02mL/minで流し、接地(アース)したリング電極13と針状の対向電極CEを設置した状態を示している。ここでは、対向電極CEからは液体の噴霧は行わない。代わりに、アノード(正極)ANとなるエレクトロスプレーノズルと対向電極CEに印加する電位を変化させて、図22(a)に示したA点とB点における荷電液滴の粒径分布を、光散乱式粒子計測法で計測した。この結果が図22(b)、図22(c)であり、図22(b)は、リング電極13の通過前(A点)で計測したエタノール液滴の粒径分布を示している。ここでは、アノード電極AN、対向電極CEの電位を示している。また図22(c)は、リング電極13の通過後(B点)で計測したエタノール液滴の粒径分布を示しており、同様にアノード電極AN、対向電極CEの電位を示す。これら図22(b)、(c)より、リング電極通過前(A点)では1μm以上にサイズ分布があるのに対して、リング電極通過後(B点)では、主に1μm以下にサイズ分布があることが判明した。このことから、リング電極を用いて、サイズ選別が効果的に生じることが示された。
 さらに図22(b)から、アノード電極ANの電位を高くすると、A点におけるサイズ分布がサイズの小さい方向に変化することが示される。すなわち、第一溶液及び第二溶液に印加する電圧によって荷電液滴のサイズを制御することが可能であることを示している。このように、静電レンズ系を利用して、溶液同士の衝突や融合、凝集の制御のみならず、電圧による荷電液滴の粒径制御も実現でき、静電フィルターとして利用できる。
 本発明のエレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法は、金ナノ粒子等の微粒子の生成、ポリマー粒子の生成、粉体塗装等に好適に適用できる。
100…マイクロ反応場形成装置
1…反応室
10、10B、10D…第一噴霧手段
11、11B、11D…第一噴射ノズル
12…第一溶液供給源
13、13’…リング電極
20、20B、20D…第二噴霧手段
21、21B、21D…第二噴射ノズル
22…第二溶液供給源
30…電圧印加手段
40…回収手段;40A…液体トラップ;40B…基板
41…回収ノズル
50…フィルタ手段
191…処理槽
193…ノズル細管
195…対極電極
RA…反応空間
DI…分散剤
AN…アノード電極
CE…対向電極

Claims (9)

  1.  第一溶液を供給する第一溶液供給源(12)と、
     前記第一溶液供給源(12)と接続され、該第一溶液供給源(12)から供給される第一溶液を霧状にして噴霧するための第一噴射ノズル(11)と
    を備えたエレクトロスプレーを構成する第一噴霧手段(10)と、
     第二溶液を供給する第二溶液供給源(22)と、
     前記第二溶液供給源(22)と接続され、該第二溶液供給源(22)から供給される第二溶液を霧状にして噴霧するための第二噴射ノズル(21)と
    を備えたエレクトロスプレーを構成する第二噴霧手段(20)と、
     前記第一噴霧手段(10)及び第二噴霧手段(20)に電位差を与えるための電圧印加手段(30)と、
     前記第一噴霧手段(10)及び第二噴霧手段(20)でそれぞれ微細化され、かつ電荷を帯びた液滴となった第一溶液と第二溶液とが反応空間(RA)で衝突、融合することで得られる反応生成物を回収するための回収手段(40)と、
    を備えることを特徴とするマイクロ反応場形成装置。
  2.  請求項1に記載のマイクロ反応場形成装置であって、
     前記第一噴射ノズル(11)と第二噴射ノズル(21)とを、同一直線上、又は同一平面上で向かい合いように配置してなり、
     前記第一噴射ノズル(11)と第二噴射ノズル(21)に、それぞれ正又は負の電位あるいは電位差を印加することで、発生される正又は負に帯電した液滴群を、前記第一噴射ノズル(11)と第二噴射ノズル(21)との間に形成された静電場に沿って移動させ、正−負に帯電した液滴間の静電引力によって衝突、融合させると共に、同極の電荷の液滴間で静電反発力を働かせることにより、衝突する液滴の組み合わせを静電的相互作用によって制御することを特徴とするマイクロ反応場形成装置。
  3.  請求項2に記載のマイクロ反応場形成装置であって、
     前記回収手段(40)の前段に、静電フィルターを設けてなることを特徴とするマイクロ反応場形成装置。
  4.  請求項1から3のいずれか一に記載のマイクロ反応場形成装置であって、
     前記回収手段(40)として、液体中への回収を行う液体トラップと、前記液体トラップと連結した吸引手段とを備えることを特徴とするマイクロ反応場形成装置。
  5.  請求項1から4のいずれか一に記載のマイクロ反応場形成装置であって、さらに、
     エレクトロスプレーにより生成する荷電液滴の粒径を制御するための粒径制御手段を備えることを特徴とするマイクロ反応場形成装置。
  6.  請求項5に記載のマイクロ反応場形成装置であって、
     前記粒径制御手段は、第一溶液及び第二溶液に印加する電圧を調整することで、エレクトロスプレーにより生成する荷電液滴の粒径を制御するよう構成してなることを特徴とするマイクロ反応場形成装置。
  7.  請求項1から6のいずれか一に記載のマイクロ反応場形成装置であって、
     第一溶液又は第二溶液のいずれか一方を、エレクトロスプレーによって正電荷に帯電した微小液滴として噴霧し、他方をエレクトロスプレーによって負電荷に帯電した微小液滴として噴霧し、正−負に帯電した液滴間の静電引力を静電レンズ系により制御して、該液滴同士を衝突・融合させてこれらを混合することを特徴とするマイクロ反応場形成装置。
  8.  請求項5から7のいずれか一に記載のマイクロ反応場形成装置であって、
     前記粒径制御手段が、静電レンズ系で構成されてなることを特徴とするマイクロ反応場形成装置。
  9.  請求項1から8のいずれか一のマイクロ反応場形成装置を用いる化学反応制御方法であって、
     第一溶液と第二溶液の二種の溶液の混合によって起こる液相の連続的あるいは連鎖的化学反応について、該二液の微小液滴間の衝突・融合によって反応を開始させて反応生成物を制御することを特徴とする化学反応制御方法。
PCT/JP2012/065437 2011-06-16 2012-06-11 エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法 WO2012173262A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520615A JP5892708B2 (ja) 2011-06-16 2012-06-11 エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011134022 2011-06-16
JP2011-134022 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012173262A1 true WO2012173262A1 (ja) 2012-12-20

Family

ID=47357240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065437 WO2012173262A1 (ja) 2011-06-16 2012-06-11 エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法

Country Status (2)

Country Link
JP (1) JP5892708B2 (ja)
WO (1) WO2012173262A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014804A (zh) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 一种粒子可控的纳米银粉的制备方法
WO2015060342A1 (ja) * 2013-10-22 2015-04-30 独立行政法人産業技術総合研究所 金属粒子の添着方法、抗菌消臭化方法、繊維材料の製造方法、及び金属粒子添着装置
JP2015174945A (ja) * 2014-03-17 2015-10-05 国立大学法人金沢大学 発光性ナノカーボン製造方法および製造装置
JP2015213905A (ja) * 2015-05-15 2015-12-03 国立研究開発法人産業技術総合研究所 液中エレクトロスプレー法及び液中エレクトロスプレー装置
WO2016031695A1 (ja) * 2014-08-28 2016-03-03 国立研究開発法人産業技術総合研究所 分散体の製造方法及び製造装置
JP2016532547A (ja) * 2013-07-29 2016-10-20 アピール テクノロジー インコーポレイテッド 農業用スキングラフト
WO2017005132A1 (zh) * 2015-07-03 2017-01-12 王东 纳米金属颗粒及其制备方法
JPWO2015060341A1 (ja) * 2013-10-22 2017-03-09 国立研究開発法人産業技術総合研究所 繊維材料への塗料の塗着方法、繊維材料の製造方法、及び繊維材料加工装置
JP2017101016A (ja) * 2015-07-22 2017-06-08 国立研究開発法人産業技術総合研究所 シロキサンオリゴマーの製造方法
WO2018043696A1 (ja) * 2016-09-02 2018-03-08 国立研究開発法人産業技術総合研究所 ラジカル重合による分子量分布を制御されたポリマーの製造方法
KR20180044367A (ko) 2015-08-25 2018-05-02 닛산 가가쿠 고교 가부시키 가이샤 발광성 나노카본의 제조 방법
DE112016003311T5 (de) 2015-07-23 2018-05-24 National Institute Of Advanced Industrial Science And Technology Vorrichtung und Verfahren zum Herstellen einer Metall-Nanopartikel-Dispersion, Verfahren zum Herstellen eines Metall-Nanopartikel-Trägers, Metall-Nanopartikel, Metall-Nanopartikel-Dispersion und Metall-Nanopartikel-Träger
JP2018104751A (ja) * 2016-12-26 2018-07-05 日華化学株式会社 複合粒子分散体の製造方法
WO2018139446A1 (ja) * 2017-01-25 2018-08-02 国立研究開発法人産業技術総合研究所 半導体ナノ粒子製造装置及び半導体ナノ粒子の製造方法
WO2018139447A1 (ja) * 2017-01-25 2018-08-02 日立化成株式会社 半導体ナノ粒子の製造方法
CN108380129A (zh) * 2018-04-02 2018-08-10 段建锋 一种基于蜗轮蜗杆自转动原理的液体物料用混合设备的工作方法
CN108435006A (zh) * 2018-04-02 2018-08-24 段建锋 一种基于蜗轮蜗杆自转动原理的液体物料用混合设备
WO2020080347A1 (ja) * 2018-10-17 2020-04-23 住友化学株式会社 静電噴霧装置
JP2020169271A (ja) * 2019-04-03 2020-10-15 国立研究開発法人産業技術総合研究所 含フッ素ポリマーの製造方法
JP2021115526A (ja) * 2020-01-27 2021-08-10 株式会社ルミカ 混合装置
WO2022064186A1 (en) * 2020-09-22 2022-03-31 Andrew Brian King Methods and apparatus for inducing reactions using electrostatics
US11447646B2 (en) 2015-09-16 2022-09-20 Apeel Technology, Inc. Precursor compounds for molecular coatings
CN115943122A (zh) * 2020-06-15 2023-04-07 信越化学工业株式会社 量子点的制造方法
US11641865B2 (en) 2020-03-04 2023-05-09 Apeel Technology, Inc. Compounds and formulations for protective coatings
US11723377B2 (en) 2016-01-26 2023-08-15 Apeel Technology, Inc. Method for preparing and preserving sanitized products
US11827591B2 (en) 2020-10-30 2023-11-28 Apeel Technology, Inc. Compositions and methods of preparation thereof
JP7406668B1 (ja) 2023-07-13 2023-12-27 株式会社Roki 生成装置及び生成方法
JP7411846B1 (ja) 2023-07-13 2024-01-11 株式会社Roki 生成装置及び生成方法
EP3645092B1 (en) * 2017-06-30 2024-04-03 Avectas Limited Electrospray catheter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169736B (zh) * 2020-09-30 2022-01-07 沈阳化工研究院有限公司 一种微碰撞流搅拌反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504126A (ja) * 1992-12-01 1996-05-07 エレクトロソルズ・リミテッド 調剤装置
JP2000512893A (ja) * 1996-06-27 2000-10-03 テクニシェ ユニバシテイト デルフト 乾燥粉体粒子の製造方法、前記方法により製造された粉体、および前記方法で使用する電極及び装置
JP2007525321A (ja) * 2004-02-27 2007-09-06 アン,ガン−ホ コロナ放電を用いた超微粒子製造装置及びその方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504126A (ja) * 1992-12-01 1996-05-07 エレクトロソルズ・リミテッド 調剤装置
JP2000512893A (ja) * 1996-06-27 2000-10-03 テクニシェ ユニバシテイト デルフト 乾燥粉体粒子の製造方法、前記方法により製造された粉体、および前記方法で使用する電極及び装置
JP2007525321A (ja) * 2004-02-27 2007-09-06 アン,ガン−ホ コロナ放電を用いた超微粒子製造装置及びその方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532547A (ja) * 2013-07-29 2016-10-20 アピール テクノロジー インコーポレイテッド 農業用スキングラフト
JPWO2015060342A1 (ja) * 2013-10-22 2017-03-09 国立研究開発法人産業技術総合研究所 金属粒子の添着方法、抗菌消臭化方法、繊維材料の製造方法、及び金属粒子添着装置
WO2015060342A1 (ja) * 2013-10-22 2015-04-30 独立行政法人産業技術総合研究所 金属粒子の添着方法、抗菌消臭化方法、繊維材料の製造方法、及び金属粒子添着装置
EP3061848A4 (en) * 2013-10-22 2017-06-14 National Institute Of Advanced Industrial Science Impregnation method for metal particles, antibacterial and deodorizing method, method for manufacturing fiber material, and metal particle impregnation device
JPWO2015060341A1 (ja) * 2013-10-22 2017-03-09 国立研究開発法人産業技術総合研究所 繊維材料への塗料の塗着方法、繊維材料の製造方法、及び繊維材料加工装置
JP2015174945A (ja) * 2014-03-17 2015-10-05 国立大学法人金沢大学 発光性ナノカーボン製造方法および製造装置
CN104014804A (zh) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 一种粒子可控的纳米银粉的制备方法
KR101849157B1 (ko) 2014-08-28 2018-04-16 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 분산체의 제조 방법 및 제조 장치
WO2016031695A1 (ja) * 2014-08-28 2016-03-03 国立研究開発法人産業技術総合研究所 分散体の製造方法及び製造装置
JPWO2016031695A1 (ja) * 2014-08-28 2017-07-06 国立研究開発法人産業技術総合研究所 分散体の製造方法及び製造装置
CN107073432A (zh) * 2014-08-28 2017-08-18 国立研究开发法人产业技术综合研究所 分散体的制备方法及其制备装置
US10086353B2 (en) 2014-08-28 2018-10-02 National Institute Of Advanced Industrial Science And Technology Method and apparatus for producing dispersion
CN107073432B (zh) * 2014-08-28 2019-11-29 国立研究开发法人产业技术综合研究所 分散体的制备方法及其制备装置
EP3195928A4 (en) * 2014-08-28 2018-07-04 National Institute of Advanced Industrial Science and Technology Dispersion production method and production device
JP2015213905A (ja) * 2015-05-15 2015-12-03 国立研究開発法人産業技術総合研究所 液中エレクトロスプレー法及び液中エレクトロスプレー装置
WO2017005132A1 (zh) * 2015-07-03 2017-01-12 王东 纳米金属颗粒及其制备方法
US10926335B2 (en) 2015-07-03 2021-02-23 Dong Wang Nano-metal particles and preparation process thereof
JP2017101016A (ja) * 2015-07-22 2017-06-08 国立研究開発法人産業技術総合研究所 シロキサンオリゴマーの製造方法
DE112016003311T5 (de) 2015-07-23 2018-05-24 National Institute Of Advanced Industrial Science And Technology Vorrichtung und Verfahren zum Herstellen einer Metall-Nanopartikel-Dispersion, Verfahren zum Herstellen eines Metall-Nanopartikel-Trägers, Metall-Nanopartikel, Metall-Nanopartikel-Dispersion und Metall-Nanopartikel-Träger
US10710162B2 (en) 2015-07-23 2020-07-14 National Institute Of Advanced Industrial Science And Technology Apparatus and method for manufacturing metal nanoparticle dispersion, method for manufacturing metal nanoparticle support, metal nanoparticle, metal nanoparticle dispersion, and metal nanoparticle support
US10858580B2 (en) 2015-08-25 2020-12-08 Nissan Chemical Industries, Ltd. Method of manufacturing luminescent nanocarbon
KR20180044367A (ko) 2015-08-25 2018-05-02 닛산 가가쿠 고교 가부시키 가이샤 발광성 나노카본의 제조 방법
US11447646B2 (en) 2015-09-16 2022-09-20 Apeel Technology, Inc. Precursor compounds for molecular coatings
US11472970B2 (en) 2015-09-16 2022-10-18 Apeel Technology, Inc. Precursor compounds for molecular coatings
US11723377B2 (en) 2016-01-26 2023-08-15 Apeel Technology, Inc. Method for preparing and preserving sanitized products
WO2018043696A1 (ja) * 2016-09-02 2018-03-08 国立研究開発法人産業技術総合研究所 ラジカル重合による分子量分布を制御されたポリマーの製造方法
JP2018104751A (ja) * 2016-12-26 2018-07-05 日華化学株式会社 複合粒子分散体の製造方法
CN110268035A (zh) * 2017-01-25 2019-09-20 日立化成株式会社 半导体纳米粒子的制造方法
WO2018139447A1 (ja) * 2017-01-25 2018-08-02 日立化成株式会社 半導体ナノ粒子の製造方法
WO2018139446A1 (ja) * 2017-01-25 2018-08-02 国立研究開発法人産業技術総合研究所 半導体ナノ粒子製造装置及び半導体ナノ粒子の製造方法
EP3645092B1 (en) * 2017-06-30 2024-04-03 Avectas Limited Electrospray catheter
CN108435006A (zh) * 2018-04-02 2018-08-24 段建锋 一种基于蜗轮蜗杆自转动原理的液体物料用混合设备
CN108435006B (zh) * 2018-04-02 2020-07-24 浙江兴舟纸业有限公司 一种基于蜗轮蜗杆自转动原理的液体物料用混合设备
CN108380129A (zh) * 2018-04-02 2018-08-10 段建锋 一种基于蜗轮蜗杆自转动原理的液体物料用混合设备的工作方法
WO2020080347A1 (ja) * 2018-10-17 2020-04-23 住友化学株式会社 静電噴霧装置
JP2020169271A (ja) * 2019-04-03 2020-10-15 国立研究開発法人産業技術総合研究所 含フッ素ポリマーの製造方法
JP7297235B2 (ja) 2019-04-03 2023-06-26 国立研究開発法人産業技術総合研究所 含フッ素ポリマーの製造方法
JP2021115526A (ja) * 2020-01-27 2021-08-10 株式会社ルミカ 混合装置
US11641865B2 (en) 2020-03-04 2023-05-09 Apeel Technology, Inc. Compounds and formulations for protective coatings
CN115943122A (zh) * 2020-06-15 2023-04-07 信越化学工业株式会社 量子点的制造方法
WO2022064186A1 (en) * 2020-09-22 2022-03-31 Andrew Brian King Methods and apparatus for inducing reactions using electrostatics
US11827591B2 (en) 2020-10-30 2023-11-28 Apeel Technology, Inc. Compositions and methods of preparation thereof
JP7406668B1 (ja) 2023-07-13 2023-12-27 株式会社Roki 生成装置及び生成方法
JP7411846B1 (ja) 2023-07-13 2024-01-11 株式会社Roki 生成装置及び生成方法

Also Published As

Publication number Publication date
JPWO2012173262A1 (ja) 2015-02-23
JP5892708B2 (ja) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5892708B2 (ja) エレクトロスプレーによるマイクロ反応場形成装置及び化学反応制御方法
EP3195928A1 (en) Dispersion production method and production device
Jaworek Micro-and nanoparticle production by electrospraying
JP5500597B2 (ja) 強制超薄膜回転式処理法を用いた微粒子の製造方法
JP2556471B2 (ja) 静電噴霧方法および装置
Yurteri et al. Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles-A review
US6479077B1 (en) Method of manufacturing powder particles
JP6666011B2 (ja) 金属ナノ粒子分散液の製造装置及び製造方法並びに金属ナノ粒子担持体の製造方法、金属ナノ粒子、金属ナノ粒子分散液、金属ナノ粒子担持体
JP2002529224A (ja) 反応剤供給装置
JP2004535930A (ja) ナノメートルサイズの粉末及びナノメートルサイズの粒子疎集合体粉末の製造方法
KR20150139552A (ko) 분산물 및 고체를 제조하기 위한 장치 및 방법
CN108698010B (zh) 纳米颗粒生产
KR101620046B1 (ko) 정전분무 노즐 및 이의 제조 방법, 이를 이용한 나노입자 합성 장치 및 방법
WO2006086654A2 (en) Nanoformulations
WO2005115088A2 (en) Nano particle generator and a method for generating nanoparticles by said device
Kobara et al. Size-selected synthesis of metal nanoparticles by using electrospray in a liquid medium
JP2018130659A (ja) 分散体の製造方法
CN111727095A (zh) 高熔点金属或合金粉末雾化制造方法
JP2015213905A (ja) 液中エレクトロスプレー法及び液中エレクトロスプレー装置
Sun et al. Controlled production of size-tunable Janus droplets for submicron particle synthesis using an electrospray microfluidic chip
Zhang et al. Janus particle synthesis via aligned non-concentric angular nozzles and electrohydrodynamic co-flow for tunable drug release
JP3740152B2 (ja) 微細ゲル粒子の製造方法および製造装置
JPH1043502A (ja) 超微粒結晶化生成物の製造法
Hussain et al. Growth-controlled synthesis of polymer-coated colloidal-gold nanoparticles using electrospray-based chemical reduction
Baghel et al. Dispensing uniform droplets of phosphate buffer saline using electrohydrodynamic jetting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801025

Country of ref document: EP

Kind code of ref document: A1