WO2012173142A1 - 受信装置、周波数割当方法、制御プログラムおよび集積回路 - Google Patents

受信装置、周波数割当方法、制御プログラムおよび集積回路 Download PDF

Info

Publication number
WO2012173142A1
WO2012173142A1 PCT/JP2012/065125 JP2012065125W WO2012173142A1 WO 2012173142 A1 WO2012173142 A1 WO 2012173142A1 JP 2012065125 W JP2012065125 W JP 2012065125W WO 2012173142 A1 WO2012173142 A1 WO 2012173142A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
retransmission
unit
transmission
error
Prior art date
Application number
PCT/JP2012/065125
Other languages
English (en)
French (fr)
Inventor
高橋 宏樹
泰弘 浜口
一成 横枕
中村 理
淳悟 後藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/126,082 priority Critical patent/US20140126507A1/en
Publication of WO2012173142A1 publication Critical patent/WO2012173142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • the present invention relates to a transmission method of a wireless communication system that performs retransmission control.
  • a bit error occurs when a received signal is affected by signal distortion caused by a propagation path or thermal noise in a receiving device, and communication quality deteriorates. Such deterioration in communication quality is generally compensated by propagation path equalization processing or error correction codes, but data cannot always be decoded correctly. Therefore, retransmission control (also referred to as automatic retransmission request, ARQ (AutomaticAutoRepeat reQuest)) is used in which the same data is transmitted again when the receiving device cannot correctly decode the data.
  • ARQ AutomaticAutoRepeat reQuest
  • H-ARQ Hybrid ARQ
  • CC Chase Combining
  • IR Incmental Redundancy
  • the same transmission signal as that of the initial transmission is transmitted at the time of retransmission, and the reception signal of the initial transmission and the reception signal of the retransmission are combined by the receiving apparatus.
  • Such combining improves the reception level of the received signal and also obtains time diversity, so that the error rate characteristics are improved each time retransmission is repeated.
  • the retransmission signal is configured so as to include code bits that are not transmitted in the initial transmission (punctured) among the code bits that have been subjected to error correction coding.
  • the receiving apparatus combines the likelihood of the code bits demodulated from the retransmission signal with the likelihood of the code bits demodulated from the initial transmission signal, thereby reducing the coding rate in error correction decoding at the time of retransmission. Correction ability is improved. As described above, in the IR method, since the coding rate at the time of error correction decoding can be lowered for each retransmission, the number of retransmissions can be reduced and the throughput can be improved as compared with normal ARQ.
  • asynchronous retransmissions that can use resources.
  • the synchronous type it is necessary to ensure a fixed resource, and therefore it is necessary to ensure the highest priority when allocating radio resources.
  • asynchronous retransmission it is necessary to allocate radio resources in the same way as other users of the initial transmission.
  • the same transmission signal is retransmitted, so the same transmission signal is transmitted. It is necessary to secure the necessary bandwidth.
  • the present invention has been made in view of such circumstances, and in a communication system using retransmission control, a receiving apparatus, a frequency allocation method, a control program, and a control program that can reduce a decrease in throughput when retransmission frequency is high
  • An object is to provide an integrated circuit.
  • the receiving apparatus of the present invention is a receiving apparatus that includes at least one receiving antenna and requests a retransmission signal from the transmitting apparatus when there is an error in the signal received from the transmitting apparatus, and the transmitting apparatus
  • a determination unit that determines whether or not there is an error in the signal received from the above, and as a result of the determination, if there is an error in the received signal, for the frequency band for transmitting the retransmission signal by the transmission device,
  • a scheduling unit that performs frequency allocation so that different signals exceeding the number of receiving antennas overlap.
  • frequency allocation is performed so that different signals exceeding the number of receiving antennas overlap in the frequency band for transmitting a retransmission signal by the transmission apparatus, so that it is possible to prevent a decrease in throughput of the entire cell due to retransmission. .
  • the scheduling unit includes at least a part of a frequency band used by the transmitting apparatus to transmit a retransmission signal and another transmission different from the transmitting apparatus or the transmitting apparatus.
  • the frequency allocation is performed so that the apparatus overlaps at least a part of a frequency band used for transmitting a signal other than the retransmission signal.
  • the receiving apparatus transmits at least a part of the frequency band used by the transmitting apparatus to transmit the retransmission signal and the transmitting apparatus or another transmitting apparatus different from the transmitting apparatus. Since frequency allocation is performed so that at least a part of a frequency band used for transmitting a signal other than a retransmission signal overlaps, a decrease in throughput of the entire cell due to retransmission can be prevented.
  • the scheduling unit transmits at least a part of a frequency band used by the transmitting apparatus to transmit a retransmission signal and the other transmitting apparatus transmits an initial transmission signal.
  • the frequency allocation is performed so that at least a part of the frequency band used in the process overlaps.
  • the receiving device has at least a part of the frequency band used by the transmitting device for transmitting the retransmission signal and at least a part of the frequency band used by the other transmitting device for transmitting the initial transmission signal. Since frequency allocation is performed so as to overlap, it is possible to avoid occupation of frequency resources by retransmission terminals and increase the amount of frequency resources allocated to initial transmission terminals.
  • the scheduling unit may determine a frequency band to be used by the transmitting apparatus to transmit a retransmission signal based on decoding information when there is an error in the received signal. It is characterized by determining whether or not to perform frequency allocation so that at least a part and at least a part of a frequency band used for transmitting the initial transmission signal by the other transmission device overlap.
  • the receiving apparatus transmits at least a part of the frequency band used by the transmitting apparatus to transmit the retransmission signal and the other transmitting apparatus for the first transmission based on the decoding information. It is determined whether or not to perform frequency allocation so that at least a part of the frequency band used for transmitting the signal overlaps, so that the generated IUI is limited and signal separation between mobile stations by turbo equalization processing Can be facilitated.
  • the decoding information is an average of absolute values of logarithmic likelihood ratios of encoded bits obtained after decoding processing
  • the scheduling section determines the decoding information in advance. If it is equal to or greater than a reference value, at least part of the frequency band used by the transmitting apparatus to transmit a retransmission signal and at least part of the frequency band used by the other transmitting apparatus to transmit an initial transmission signal Are allocated so as to overlap with each other, and when the decoding information is less than a predetermined reference value, the frequency band used by the transmitting apparatus to transmit a retransmission signal and the other transmitting apparatus The frequency allocation is performed so that the frequency band used for transmitting the initial transmission signal does not overlap.
  • the receiving device can transmit at least a part of the frequency band used by the transmitting device to transmit the retransmission signal and the other transmitting device can transmit the initial transmission signal.
  • the transmitting device transmits the retransmission signal. Since the frequency allocation is performed so that the frequency band to be used and the frequency band to be used by another transmitting apparatus for transmitting the initial transmission signal do not overlap, the generated IUI is limited, and the mobile station by the turbo equalization processing is used. Signal separation can be facilitated.
  • the scheduling unit is used by the other transmitting apparatus to transmit an initial transmission signal in a frequency band used by the transmitting apparatus to transmit a retransmission signal. It is characterized in that the ratio of overlapping frequency bands is determined.
  • the receiving device determines the rate at which the frequency band used by another transmitting device to transmit the initial transmission signal overlaps the frequency band used by the transmitting device to transmit the retransmission signal. It is possible to limit the generated IUI and facilitate signal separation between mobile stations by turbo equalization processing.
  • the receiving apparatus of the present invention is further characterized by further comprising a code synthesizing unit that synthesizes the initial transmission signal and the retransmission signal using CC (Chase Combining).
  • the receiving apparatus since the receiving apparatus combines the initial transmission signal and the retransmission signal using CC (Chase Combining), the reception level of the reception signal can be improved and time diversity can also be obtained.
  • the error rate characteristics can be improved each time retransmission is repeated.
  • the receiving apparatus of the present invention is further characterized by further comprising a code synthesizing unit that synthesizes the initial transmission signal and the retransmission signal using IR (Incremental Redundancy).
  • the receiving apparatus since the receiving apparatus combines the initial transmission signal and the retransmission signal using IR (Incremental Redundancy), the encoding rate at the time of error correction decoding can be lowered for each retransmission. Compared to normal ARQ, the number of retransmissions can be reduced and throughput can be improved.
  • IR Incmental Redundancy
  • a buffer unit that stores decoding information and a buffer unit that stores the retransmission signal when receiving a retransmission signal from the transmitting device Based on the decoded decoding information, an interference replica is generated using a soft replica generation unit that generates a replica of the retransmission signal and information indicating interference received from the replica of the retransmission signal and another transmission device
  • An interference replica generation unit, and a soft cancellation unit that removes inter-user interference from the received retransmission signal using the interference replica are provided.
  • the receiving apparatus when the receiving apparatus receives a retransmission signal from the transmitting apparatus, the receiving apparatus generates a replica of the retransmission signal based on the stored decoding information, and the retransmission signal replica and interference received from other transmitting apparatuses
  • the interference replica is generated using the information indicating, and the interference replica is used to remove the inter-user interference from the received retransmission signal. Therefore, it is possible to prevent a decrease in the throughput of the entire cell due to the retransmission.
  • the frequency allocation method of the present invention is a frequency allocation method of a receiving apparatus that requests a retransmission signal to the transmitting apparatus when there is an error in the signal received from the transmitting apparatus.
  • the frequency allocation is performed so that different signals exceeding the number of the receiving antennas overlap with each other in the frequency band for the transmitting apparatus to transmit the retransmission signal.
  • the receiving apparatus when there is an error in the received signal, the receiving apparatus performs frequency allocation so that different signals exceeding the number of receiving antennas overlap in the frequency band for the transmitting apparatus to transmit the retransmission signal. Therefore, it is possible to prevent a decrease in throughput of the entire cell due to retransmission.
  • the control program of the present invention is a control program for a receiving apparatus that requests a retransmission signal from the transmitting apparatus when there is an error in the signal received from the transmitting apparatus.
  • the receiving apparatus when there is an error in the received signal, the receiving apparatus performs frequency allocation so that different signals exceeding the number of receiving antennas overlap in the frequency band for the transmitting apparatus to transmit the retransmission signal. Therefore, it is possible to prevent a decrease in throughput of the entire cell due to retransmission.
  • the integrated circuit of the present invention is an integrated circuit that causes the receiving device to perform a plurality of functions by being mounted on the receiving device, and there is an error in the signal received from the transmitting device.
  • the receiving apparatus when there is an error in the received signal, the receiving apparatus performs frequency allocation so that different signals exceeding the number of receiving antennas overlap in the frequency band for the transmitting apparatus to transmit the retransmission signal. Therefore, it is possible to prevent a decrease in throughput of the entire cell due to retransmission.
  • FIG. 3 is a block diagram showing an internal configuration of a data signal detection unit 213-u according to the first embodiment of the present invention. It is a flowchart explaining operation
  • FIG. 10 is a block diagram showing an example of an internal configuration of data signal detection units 401-1 to 401 -U according to a second embodiment of the present invention. It is a figure which shows the band allocation method to the mobile station apparatus in the scheduling part 211 which concerns on the 2nd Embodiment of this invention. It is a block diagram which shows an example of the basic composition of the mobile station apparatus which concerns on the 3rd Embodiment of this invention. It is a figure which shows an example of the encoding bit produced
  • FIG. 10 It is a block diagram which shows the structure of the base station apparatus which concerns on the 3rd Embodiment of this invention. It is a figure which shows an example of the synthetic
  • the IUI is removed using a repetitive equalization technique which is a nonlinear process based on the replica generated by the above, and the signal of each mobile station is separated.
  • a repetitive equalization technique which is a nonlinear process based on the replica generated by the above, and the signal of each mobile station is separated.
  • FIG. 14 is a diagram illustrating an example of a concept of a retransmission method in a conventional wireless communication system.
  • synchronous retransmission is used, and an example is shown in which retransmission is performed using the same radio resources as at the time of initial transmission after a predetermined time defined in the system.
  • the same allocation method can also be applied to asynchronous retransmission. In this case, the same resource amount is allocated to an arbitrary frequency so that the same transmission rate as that at the time of initial transmission is ensured.
  • the first mobile station apparatus, the second mobile station apparatus, and the third mobile station apparatus place signals on the frequency axis like the first transmission signal, the second transmission signal, and the third transmission signal. Place and send.
  • the transmission signals of the respective mobile station apparatuses are assigned to different frequencies so as to be orthogonal in the frequency domain.
  • the base station apparatus transmits an ACK (Acknowledgement) to the first mobile station apparatus and the third mobile station apparatus as a response signal.
  • NACK Negative ACK; negative response
  • the second mobile station apparatus transmits a retransmission signal using the same frequency resource after a certain time from the initial transmission. Therefore, when the second mobile station apparatus retransmits, the scheduling unit of the base station apparatus first allocates the same band to the second mobile station apparatus at the time of initial transmission, and then transmits new data. For the device and the third mobile station device, only frequencies that are not used by the second mobile station device are assigned as assignable frequencies. Therefore, the throughput of the entire cell decreases as the ratio of the frequency resource of the mobile station apparatus that performs retransmission like the second mobile station apparatus to the system band increases.
  • FIG. 1 is a diagram illustrating an example of a concept of a retransmission method in the wireless communication system according to the first embodiment of the present invention.
  • the frequency to which the retransmission signal is assigned is set as an assignable frequency, and other mobile station devices are allowed to transmit using that frequency.
  • an example is shown in which the transmission signals of the first mobile station device and the third mobile station device use a part of the same frequency as the retransmission signal of the second mobile station device.
  • the base station apparatus When such allocation is performed, at least a part of the initial transmission signal and the retransmission signal are received by the base station apparatus that receives the signal.
  • the number of duplicated signals is larger than the number of receiving antennas (for example, when the number of receiving antennas of the base station apparatus is one, the number of overlapping is two or more, and when the number of receiving antennas is two, the number of overlapping is three or more).
  • SINR ISignal to Interference and Noise power Ratio
  • the base station apparatus is provided with a feedback loop that feeds back reliability or decoded bits related to transmission bits after error correction decoding to an equalization unit that performs equalization processing.
  • This may be a decision feedback type that feeds back a hard decision value, or may use a method such as turbo equalization that feeds back the reliability of transmission bits such as a log likelihood ratio (LLR; Log Likelihood Ratio).
  • LLR log likelihood ratio
  • turbo equalization a separation method using turbo equalization will be described, but the present invention is not limited to this.
  • FIG. 2 is a block diagram showing a basic configuration of the mobile station apparatus according to the first embodiment of the present invention.
  • the mobile station apparatus receives the control signal notified from the base station apparatus on the downlink by the antenna 101.
  • the reception processing unit 103 down-converts the received control information into a baseband signal, converts the control information into a digital signal by A / D (Analog-to-Digital) conversion, and inputs the digital signal to the control signal detection unit 105 and the response signal detection unit 107.
  • a / D Analog-to-Digital
  • the control signal detection unit 105 includes information on a modulation scheme and a coding rate necessary for generating a data signal from the input baseband signal (also called MCS (Modulation and Coding Scheme)), frequency allocation information, Information related to the reference signal sequence is detected and input to the data signal generation unit 109, the frequency allocation unit 111, and the reference signal generation unit 113, respectively.
  • the response signal detection unit 107 receives an ACK (Acknowledgement) when the signal transmitted at the previous transmission opportunity is correctly received by the base station apparatus described later, and NACK (Negative ACK) when the signal is not correctly received. Is received, information on these response signals is detected and input to the initial transmission / retransmission switching unit 115.
  • the information bit string transmitted from the mobile station apparatus to the base station apparatus is first input to the CRC adding unit 117, and a CRC (Cyclic Redundancy Check) code for checking whether the base station apparatus has correctly decoded is added.
  • a CRC Cyclic Redundancy Check
  • a time signal of transmission data is generated based on the control information obtained from the control signal detection unit 105 with respect to the input from the CRC addition unit 117.
  • an error correction coding process such as a convolutional code, a turbo code, or an LDPC (Low Density Parity Check) code, which is an error correction code, is performed so that the notified coding rate is obtained.
  • the encoded bits are notified as control information among modulation schemes such as QPSK (Quaternary Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), and 64 QAM. Modulation processing is performed using the data, and the generated modulation symbols are input to the initial transmission / retransmission switching unit 115 and the buffer unit 119.
  • modulation schemes such as QPSK (Quaternary Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), and 64 QAM.
  • the buffer unit 119 has a function of storing the modulation symbol input from the data signal generation unit 109, and stores the modulation symbol stored when the response signal for the modulation symbol is received to the initial transmission / retransmission switching unit 115. input.
  • the initial transmission / retransmission switching unit 115 switches the modulation symbol input to the DFT unit 121 in accordance with the response signal input from the response signal detection unit 107.
  • the response signal is ACK
  • the first modulation symbol input from the data signal generation unit 109 is output.
  • the modulation symbol stored in the buffer unit 119 is DFT. Output to the unit 121.
  • the buffer unit 119 and the initial transmission / retransmission switching unit 115 are configured to store and switch in the time domain after modulation, but may be configured to be arranged after the DFT unit 121 and perform processing in the frequency domain. . Further, in the case of a synchronous retransmission method using the same frequency resource at the time of initial transmission and retransmission, it may be arranged after the frequency allocation unit 111.
  • the DFT unit 121 the modulation symbols that is input from the initial transmission / retransmission switch unit 115 is input to each N DFT symbol, the discrete Fourier transform of the N DFT points: is converted to (DFT Discrete Fourier Transform) by a frequency signal.
  • the frequency allocation unit 111 is arranged at the frequency of the designated N DFT point among the system band N FFT points.
  • DFT-S-OFDM also called Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, also referred to as SC-FDMA
  • SC-FDMA Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • the IFFT unit 123 a frequency signal of the N FFT points after allocation inverse fast Fourier transform of N FFT points (IFFT: Inverse Fast Fourier Transform) by converting a time signal.
  • IFFT Inverse Fast Fourier Transform
  • the reference signal generation unit 113 generates a reference signal (RS: Reference Signal) for channel estimation based on the information related to the reference signal sequence input from the control signal detection unit 105, and the reference signal multiplexing unit 125 multiplexes it with the data signal. Is done.
  • the reference signal is multiplexed in the time domain.
  • the reference signal may be multiplexed in the frequency domain.
  • CP cyclic prefix
  • the transmission processing unit 127 a part of the rear of the time signal on which the reference signal is multiplexed is copied as a cyclic prefix (CP: cCyclic) Prefix), converted to an analog signal by D / A conversion, and then increased to the carrier frequency.
  • the data is converted and transmitted from the antenna 101.
  • FIG. 3 is a block diagram showing the configuration of the base station apparatus according to the first embodiment of the present invention.
  • the reception signal received by the antenna 201 is down-converted into a baseband signal by the reception processing unit 203, converted into a digital signal by A / D conversion, and then the CP is removed.
  • the reference signal separation unit 205 separates the reference signal of each mobile station apparatus multiplexed on the received signal, and inputs the separated received signal to the FFT unit 207 and the separated reference signal to the propagation path estimation unit 209. .
  • the propagation path estimation unit 209 estimates the propagation path characteristics of each mobile station apparatus from the input reference signal, and outputs the estimation result to the scheduling unit 211 and the data signal detection units 213-1 to 213-1U.
  • the FFT unit 207 converts the received signal from which the reference signal has been separated into a frequency signal by N FFT point fast Fourier transform (FFT) and inputs the frequency signal to the frequency demapping unit 215.
  • the frequency demapping unit 215 extracts the frequency signal of the NDFT point band used by each mobile station device according to the allocation information determined when the scheduling unit 211 generates the control information.
  • the extracted frequency signal is input to the data signal detectors 213-1 to 213-U for each mobile station apparatus, and signal detection using a repetitive equalization technique is performed.
  • FIG. 4 is a block diagram showing an internal configuration of the data signal detection unit 213-u according to the first embodiment of the present invention.
  • the data signal detection unit 213-u shown in FIG. 4 is one of the data signal detection units 213-1 to 213-1u.
  • the soft cancellation unit 301-u subtracts the replica signal input from the interference replica generation unit 303-u from the frequency signal input from the frequency demapping unit 215, and is generated due to the delay wave of the radio propagation path Inter-symbol interference (ISI: Inter-Symbol Interference) and IUI generated when another mobile station apparatus uses the same frequency during retransmission are removed.
  • ISI Inter-Symbol Interference
  • the equalization unit 305-u multiplies a MMSE (Minimum Mean Square Error) weight, a ZF (Zero Forcing) weight, and the like using the propagation path estimation value input from the propagation path estimation unit 209, thereby remaining the ISI and IUI.
  • the interference component is suppressed, and the desired signal is synthesized by the soft replica input from the DFT unit 307-u.
  • IDFT unit 309-u is the inverse discrete Fourier transform of the frequency signal output from the equalization unit 305-u N DFT points (IDFT: Inverse DFT) by converting a time signal.
  • the demodulator 311-u calculates a log likelihood ratio (LLR) representing the reliability of each coded bit by demodulation processing according to the modulation method used for transmission.
  • LLR log likelihood ratio
  • the log likelihood ratio is expressed by the natural logarithm (the logarithm of e (Napier number) at the base) of the ratio of the probability that the encoded bit is 1 and the probability that it is 0.
  • the decoding unit 313-u performs error correction processing based on the maximum a posteriori (MAP: ⁇ Maximum (A Posteriori) estimation for the LLR of each coded bit, and the soft replica generating unit 315 generates an external LLR of the coded bit with improved likelihood.
  • MAP maximum a posteriori
  • the soft replica generating unit 315 generates an external LLR of the coded bit with improved likelihood.
  • -U is output to the CRC determination unit (determination unit) 217-u with the decoded bit obtained by hard-decision of the a posteriori LLR of the information bit.
  • the external LLR of the coded bit is input to the buffer unit 317-u.
  • the external LLR is a value obtained by subtracting the LLR of the encoded bit input to the decoding unit 313-u from the a posteriori LLR of the encoded bit with improved likelihood by error correction processing, and only error correction processing is performed. Represents improved reliability.
  • the information bit represents a bit before encoding of each mobile station apparatus.
  • the buffer unit 317-u has a function of storing the external LLR input from the decoding unit 313-u when the iterative equalization process is ended until the opportunity to receive a retransmission signal.
  • the response signal input from the response signal generation unit 219-u is ACK
  • the response signal is NACK
  • the external LLR stored when the retransmission signal for the response signal is received is input to the soft replica generation unit 315-u.
  • the soft replica generation unit 315-u calculates an expected value of the amplitude of each modulation symbol called a soft replica from the external LLR of the input code bit, and the DFT unit 307-u performs frequency domain replicas by DFT of N DFT points.
  • the replica signal output from the DFT unit 307-u is used for combining desired signals in the equalization unit 305-u and also input to the interference replica generation unit 303-u of each mobile station apparatus.
  • the output of the DFT unit 307-u is not shown in FIG. 3, it is input to the data signal detection units 213-1 to U for all the mobile stations.
  • the interference replica generation unit 303-u receives the propagation path estimation value of each mobile station input from the propagation path estimation unit 209 in response to the replica signal input from the data signal detection units 213-1 to 21-U corresponding to each mobile station. Is multiplied by all the mobile stations, and a replica signal of the received signal is generated. Further, based on the allocation information determined by the scheduling unit 211, only the replica signal in the band used by the signal for data detection is extracted and input to the soft cancellation unit 301-u.
  • the repetition of a series of processes in the data signal detection units 213-1 to U is generally referred to as a turbo equalization technique. After this is repeated an arbitrary number of times, the decoded bits obtained from the decoding unit 313-u are converted into CRC. The data is output to determination units 217-1 to U. However, it is also possible to output to the CRC determination units 217-1 to 21-U at each repetition, and to end the repetition process when it is determined that there is no error.
  • the above processing has shown the case where the retransmission signal is not included in the received signal, but if any of the mobile stations of the U station is the retransmission signal, the retransmission signal is canceled at the first iteration process.
  • the external LLR stored in the buffer unit 317-u is input to the soft replica generation unit 315-u to generate a replica signal of the retransmission signal.
  • the generated replica signal is converted into a frequency signal via the DFT unit 307-u, and input to the interference replica generation unit 303-u of the data signal detection units 213-1 to 213-1U of all mobile stations.
  • Interference replica generators 303-1 to U of each mobile station generate interference components from the replica signals of all of the input retransmission signals, and input them to soft cancellation unit 301-u. Therefore, in the soft cancellation unit 301-u, the interference component input from the interference replica generation unit 303-u is subtracted at the first iteration, and the IUI can be reduced. However, the processing after the second repetition is the same as the case where there is no retransmission signal.
  • the CRC determination units 217-1 to 21-U in FIG. 3 receive the decoded bits from the data signal detection units 213-1 to 213-1 to collate the CRC code added to the bit sequence by the mobile station apparatus and the CRC code generated from the decoded bits. Then, it is determined whether or not decoding has been correctly performed. Only when the decoding is successful, the decoded bit string is output as transmission data transmitted from the mobile station apparatus. In addition, the determination result (whether or not decoding has been correctly performed) is input to response signal generation units 219-1 to 219-1U.
  • the response signal generation units 219-1 to 219-1U generate an ACK signal when it is input that the decoding has been correctly performed, and generate a NACK signal when it has been input that the decoding has not been correctly performed.
  • the signal is input to the buffer units 317-1 to 31-U of the signal detection units 213-1 to 213-1.
  • the channel estimation value of each mobile station apparatus estimated by the channel estimation unit 209 is input to the scheduling unit 211 to determine the frequency allocation, the modulation scheme to be used, and the coding rate, and the control information generation unit 221 is input.
  • the control information generation unit 221 generates control information from the output of the scheduling unit 211 and outputs the control information to the transmission processing unit 223.
  • the control information includes information necessary for other mobile station devices to transmit signals (for example, information on reference signal sequences when a reference signal sequence can be set for each mobile station device). Also good.
  • the transmission processing unit 223 performs D / A conversion and up-conversion to a radio frequency on the control information or response signal at a predetermined timing, and then transmits the result from the antenna 201 to each mobile station apparatus. However, since these control information and response signal are also required for data reception processing, it is assumed that they are stored until reception of data transmitted based on the notified information.
  • FIG. 5 is a flowchart for explaining the operation of the base station apparatus according to the first embodiment of the present invention.
  • the base station apparatus receives a signal in which an initial transmission signal or a retransmission signal is multiplexed (step S1).
  • the base station apparatus determines whether or not a retransmission signal is included in the received signal (step S2). If the retransmission signal is not included (step S2: No), step 3 is skipped. If a retransmission signal is included (step S2: Yes), a soft replica is generated from the external LLR of the previous transmission opportunity stored in the buffer units 317-1 to U, and a soft cancellation unit 301 corresponding to each mobile station apparatus is generated. -I cancels IUI and ISI (step S3).
  • the base station apparatus performs equalization processing and demodulation processing based on the estimated propagation path estimation value, and detects a signal (step S4).
  • the base station apparatus performs error correction decoding processing (step S5).
  • the base station apparatus determines whether there is an error with respect to the signal (step S6).
  • the base station apparatus determines whether to perform a repeated process (step S7).
  • the base station apparatus transmits NACK to the mobile station apparatus (step S8), and is obtained in step S5 in order to cancel interference in the initial process at the time of retransmission.
  • the LLR of the encoded bit is stored (step S9).
  • step S7 When it is determined in step S7 that the iterative process is performed (step S7: No), the base station apparatus generates a replica signal from the LLR obtained in step S5 (step S10). The base station apparatus cancels interference using the replica signal generated in step S10 (step S11), and then returns to step S4. Thereafter, the iterative process is performed until no error is detected in step S6 or until it is determined in step S7 that the iterative process is terminated. If no error is detected in step S6, in step S12, the base station apparatus transmits an ACK to the mobile station apparatus and ends.
  • the allocated bands of the mobile station that performs the initial transmission and the mobile station that performs the retransmission are overlapped, and the decoding information stored at the previous transmission of the mobile station that performs the retransmission is used for signal separation. showed that.
  • the stored decoded information contains an error and the reliability of the decoded information is low, it is considered that the effect of reducing the IUI by soft cancellation is small. Therefore, in the present embodiment, whether or not duplication of mobile stations performing initial transmission is permitted or the amount of duplication is determined according to the LLR size of code bits given after the repetition processing of the mobile station performing retransmission. Will be described. Since the basic configuration of the mobile station apparatus in the present embodiment is the same as the configuration example of FIG. 2 in the first embodiment, description thereof is omitted.
  • FIG. 6 is a block diagram illustrating an example of a basic configuration of a base station apparatus according to the second embodiment of the present invention. Blocks having the same functions as those in FIG. 3 in the first embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the data signal detection units 213-1 to U in FIG. 3 are the data signal detection units 401-1 to U in FIG. It has a function of determining whether or not it is allowed to overlap the allocated bands of mobile station apparatuses that perform transmission.
  • FIG. 7 is a block diagram showing an example of the internal configuration of the data signal detection units 401-1 to 401 -U according to the second embodiment of the present invention. 7 is different from the data signal detectors 213-1 to 213-1-U in FIG. 4 in that it has a duplication allowance determining unit 501-u and the functions of the buffer units 503-1 to U-3 are different. The other blocks have the same function, and thus description thereof is omitted.
  • Duplication allowance determining section 501-u when the response signal for the u-th mobile station apparatus input from response signal generating section 219-u is NACK, the LLR of the coded bit output from decoding section 313-u Based on the above, it is determined whether another mobile station apparatus is allowed to overlap with the allocated band of the u-th mobile station apparatus.
  • the allowance for duplication is determined depending on whether the average of the absolute values of the LLRs of the coded bits is equal to or greater than the determination criterion value.
  • That overlapping tolerance determination unit 501-u is holds determination reference value L C, k-th code bit LLR of the mobile station apparatus of the u is L u input from the decoding unit 313-u (k) ⁇ C Nsym If x1 (where Nsym is the number of code bits), the average value L u, ave of the LLR is calculated by the following equation.
  • the code bit output from the decoding unit 313 at that time Store the LLR.
  • the stored external LLR is output to the soft replica generation unit 315-u when the retransmitted signal is received. In other cases, the external LLR input from the decoding unit 313 is directly input to the soft replica generation unit 315-u. Is output.
  • the channel estimation value of each mobile station is input from the channel estimation unit 209 to the scheduling unit 211 in FIG.
  • data signal detection units 401-1 to 401 -U receive determination results as to whether duplication of other mobile stations that perform initial transmission is allowed for the allocated bandwidth of each mobile station.
  • response signals of the mobile stations are input from response signal generation units 219-1 to 219-1U.
  • the scheduling unit 211 in FIG. 6 determines the frequency allocation and the modulation scheme and coding rate to be used based on these pieces of information.
  • FIG. 8 is a diagram showing a bandwidth allocation method to the mobile station apparatus in the scheduling unit 211 according to the second embodiment of the present invention.
  • the first mobile station apparatus, the second mobile station apparatus, the third mobile station apparatus, and the fourth mobile station apparatus are the first transmission signal, the second transmission signal, the third transmission signal, and The fourth transmission signal is arranged so as to be orthogonal on the frequency axis, and the initial transmission is performed.
  • these transmission signals are received by the base station apparatus, it is assumed that there is no error in the first mobile station apparatus and the third mobile station apparatus, and signal detection is performed in the second mobile station apparatus and the fourth mobile station apparatus.
  • the base station apparatus sends an ACK to the first mobile station apparatus and the third mobile station apparatus as a response signal, and sends it to the second mobile station apparatus and the fourth mobile station apparatus.
  • NACK is transmitted.
  • the scheduling unit 211 assigns a transmission band to each mobile station apparatus as shown in FIG. 8B.
  • the second mobile station apparatus assigns the first band to all bands excluding the allocated band of the fourth mobile station apparatus that does not allow duplication.
  • the transmission bands of the first mobile station apparatus and the third mobile station apparatus are allocated.
  • the fifth mobile station apparatus newly performs initial transmission at the time of retransmission
  • the first mobile station apparatus and the third mobile station apparatus are allowed after duplication with the second mobile station apparatus is permitted.
  • Allocation may be performed to use different bands between the fifth mobile station apparatuses. By performing such allocation, duplication to a mobile station apparatus in which IUI removal is difficult due to decoding information at the time of initial transmission is prohibited, and initial transmission is performed compared to the case where conventional retransmission control is used.
  • the band that can be allocated to the mobile station apparatus can be increased.
  • whether or not duplication is permitted is determined based on the result of comparing the average value of the LLRs of the encoded bits output from the decoding unit 313 with only one criterion value. It is good also as a structure which prepares multiple and restrict
  • the determination is performed based on the absolute value average of the LLRs of the encoded bits output from the decoding unit 313, but different criteria may be used as long as they are indices indicating the reliability of the decoded information.
  • the retransmission signal from the mobile station device that performs retransmission and the mobile station device that performs initial transmission.
  • the form of overlapping the initial transmission signal was shown.
  • the IR method which is one of the H-ARQ schemes, is used as a retransmission method, the retransmission signal and the initial transmission signal are overlapped, and after the IUI is removed by non-linear repetition processing, signal synthesis by the IR method is performed.
  • the form to perform is shown.
  • FIG. 9 is a block diagram showing an example of a basic configuration of a mobile station apparatus according to the third embodiment of the present invention.
  • the mobile station apparatus of FIG. 9 differs from the mobile station apparatus of FIG. 2 in the configuration of the data signal generation unit 601 and the function of the buffer unit 603.
  • Other blocks to which the same reference numerals are assigned have the same functions as those of the mobile station apparatus in FIG.
  • the data signal generation unit 601 includes an encoding unit 605, a buffer unit 603, a puncturing unit 607, and a modulation unit 609.
  • error correction codes place constraints and redundancy on information bits.
  • how to give constraint and redundancy is determined by the encoder configuration. For example, in the case of a turbo code, if the information bit length is N bits, 2N parity bits are added and 3N code bits are output. This means that the turbo encoder itself encodes at a coding rate of 1/3, which is defined as base coding.
  • Arbitrary coding rate is realized.
  • a convolutional code there are various base coding encoder configurations, but one with a coding rate of 1/2 is often used, and a puncture pattern is obtained from the obtained 2N-bit code bits.
  • Arbitrary coding rate (3/4, 7/8, etc.) is realized by thinning out based on.
  • the puncturing unit 607 receives the coding rate information R from the control signal detection unit 105, and performs a process of decimating a part of the coded bits (puncturing) based on an erasure law (puncture pattern) that differs depending on the number of transmissions. It is.
  • the encoded bits generated by puncturing become N / R bits and are output to the modulation unit 609.
  • FIG. 10 is a diagram illustrating an example of encoded bits generated by the encoding unit 605 and the puncturing unit 607.
  • the base coding rate in coding section 605 is 1/3
  • the coding rate R of information bits to be transmitted that is input as control information to puncturing section 607 is 2/3.
  • 6 encoded bits are generated by error correction encoding.
  • the generated encoded bits are stored in the buffer unit 603 and then punctured by the puncturing unit 607.
  • the third, fifth, and sixth bits are deleted from the six encoded bits, and only the first, second, and fourth bits are output. .
  • the mobile station apparatus outputs 6 bits of stored encoded bits from the buffer unit 603 to the puncturing unit 607, and the puncturing unit 607 uses the puncture pattern P2. And puncturing.
  • the first, second, and fourth of the encoded bits are deleted, and the third, fifth, and sixth bits are output.
  • the modulation unit 609 performs modulation processing such as QPSK, 16QAM, and 64QAM based on the modulation scheme information input from the control signal detection unit 105.
  • FIG. 11 is a block diagram showing a configuration of a base station apparatus according to the third embodiment of the present invention.
  • the configuration of the base station apparatus according to the third embodiment is the same as the configuration of the base station apparatus of FIG. 3 in the first embodiment, but the configuration of the data signal detection unit 701-u is partially different.
  • the data signal detection unit 701-u in FIG. 11 includes a code synthesis unit 703-u.
  • the first buffer unit 705-u stores the LLR of the coded bits obtained by the demodulation unit 707-u at the time of initial transmission and at the end of repetition for each retransmission opportunity.
  • the stored LLR value is output to code synthesis section 703-u at the next retransmission.
  • the code synthesis unit 703-u synthesizes the coded bits input from the demodulation unit 707-u and the coded bits stored in the first buffer unit 705-u when the signal to be detected is a retransmission signal.
  • a bit having a different encoding bit is punctured at each retransmission opportunity, so that a higher encoding gain than the encoding rate used for transmission can be obtained by combining.
  • FIG. 12 is a diagram illustrating an example of a combining method when the initial transmission signal and the retransmission signal illustrated in FIG. 10 are transmitted by the mobile station apparatus according to the third embodiment of the present invention.
  • the LLRs stored in the first buffer are L1, L2, and L3, these correspond to the bits transmitted in the initial transmission signal, and the first, second, and second bits in the encoded bits before puncturing, respectively. This corresponds to the LLR of the fourth bit.
  • the LLRs input from the demodulator 707-u at the time of retransmission are L4, L5, and L6, these correspond to the bits transmitted in the retransmission signal, and therefore, the third and fifth bits in the encoded bits before puncturing, respectively.
  • the code synthesis unit 703-u synthesizes these LLRs and outputs L1, L2, L4, L3, L5, and L6 to the decoding unit 313 as the first to sixth LLRs of the coded bits.
  • Decoding section 313-u performs error correction processing on the LLR of each coded bit, outputs the external LLR of the coded bit with improved likelihood to puncturing section 709-u, and performs CRC determination on the posterior LLR of the information bit To the unit 217-u. However, when the iterative process is ended, the external LLR of the coded bit is output to the second buffer unit 711-u.
  • the second buffer unit 711-u stores the external LLR input from the decoding unit 313-u until the next retransmission when the NACK is notified from the response signal generation unit 219-u. The stored external LLR is output to puncturing section 709-u before iterative processing when a retransmission signal is received.
  • Puncturing section 709-u performs puncturing on the outer LLR of the coded bits input using the puncture pattern determined according to the number of retransmissions as in the mobile station apparatus.
  • the soft cancel unit 301-u has the same function as that shown in FIG.
  • FIG. 13 is a flowchart for explaining the operation of the base station apparatus according to the third embodiment of the present invention. Steps having the same reference numerals as those in the flowchart in FIG. 5 have the same functions.
  • the base station apparatus determines whether the detected signal is an initial transmission signal. (Step S101). If it is an initial transmission signal (step S101: Yes), step S102 is skipped. If it is not the initial transmission signal (retransmission signal) (step S101: No), the base station apparatus combines the obtained encoded bit LLR and the encoded bit LLR stored at the previous transmission opportunity, An LLR is generated for the bit (step S102).
  • the IR method for performing different puncturing for initial transmission and retransmission has been described, but the present invention can also be applied to the CC method.
  • the same puncturing is performed for the initial transmission and the retransmission, and the code synthesis unit 703-u in the base station apparatus performs the process of combining the maximum ratio of the LLR of the initial transmission signal and the LLR of the retransmission signal. Is possible.
  • the IR method when used as the retransmission method, it is allowed to overlap the allocated bandwidth of the mobile station that performs the initial transmission. As a result, it is possible to suppress the number of retransmissions by a coding gain that is improved by retransmission while preventing a decrease in throughput of the entire cell due to retransmission.
  • the program that operates in the mobile station apparatus and the base station apparatus related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program can be stored and distributed in a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • part or all of the mobile station apparatus and the base station apparatus in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the mobile station apparatus and the base station apparatus may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 再送制御を用いた通信システムにおいて、再送頻度が高い場合のスループット低下を軽減する。送信装置から受信した信号に誤りがあった場合、送信装置に対して再送信号を要求する受信装置であって、送信装置から受信した信号に誤りがあるかどうかを判定する判定部217-1~Uと、判定の結果、受信した信号に誤りがあった場合は、送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と送信装置またはその送信装置とは異なる他の送信装置が再送信号以外の信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうスケジューリング部211と、を備える。

Description

受信装置、周波数割当方法、制御プログラムおよび集積回路
 本発明は、再送制御を行なう無線通信システムの伝送方法に関する。
 無線通信では、受信信号が伝搬路による信号の歪みや受信装置での熱雑音の影響を受けた場合にビット誤りが生じ、通信品質が劣化する。このような通信品質の劣化は、一般に伝搬路の等化処理もしくは誤り訂正符号によって補償されるが、必ずしも正しくデータを復号できるとは限らない。そのため、受信装置で正しくデータを復号できない場合に、同一データを再度送信する再送制御(自動再送要求、ARQ(Automatic Repeat reQuest)とも称される)が用いられる。特に近年では検出誤りが発生した初回の送信(初送)あるいは再送の受信信号の情報を次回の再送時まで保存しておき、再送信号と合成することで再送効率を高めるH-ARQ(Hybrid ARQ)が採用されている。H-ARQの例として、チェイス合成法(CC:Chase Combining)(非特許文献1)やIR(Incremental Redundancy)法(非特許文献2)の2つの方式が主に用いられている。
 CC法は、再送時に初送と同一の送信信号を送信し、受信装置で初送の受信信号と再送の受信信号との合成を行なう。このような合成により受信信号の受信レベルを向上させるとともに、時間ダイバーシチも獲得する事ができるため、再送を繰り返すごとに誤り率特性が改善される。
 一方、IR法の再送時では、誤り訂正符号化された符号ビットのうち初送で送信していない(パンクチャリングされた)符号ビットを含むように再送信号を構成する。受信装置は、初送信号から復調された符号ビットの尤度に対し、再送信号から復調された符号ビットの尤度を組み合わせることで、再送時の誤り訂正復号において符号化率が低くなり、誤り訂正能力が向上する。このように、IR法では、再送のたびに誤り訂正復号時の符号化率を低くすることができるため、通常のARQに比べ再送回数を低減され、スループットを向上させる事ができる。
 次に、再送信号の送信方法について述べる。再送方法としては、一定時間後に初送と同一の無線リソースを用いて再送信号を送信する同期式再送と、どのパケット(ブロック、フレーム)に対する再送信号かを再送信号とともに送信することで任意の無線リソースを使用することができる非同期式再送がある。同期式の場合には、決まったリソースを必ず確保する必要があるため、無線リソースの割当時には、最優先して確保する必要がある。非同期式再送の場合には、初送の他のユーザと同じように無線リソースを割り当てる必要があり、特にCCの場合には同一の送信信号を再送することから、同一の送信信号を送信するのに必要な帯域幅は必ず確保する必要がある。
 しかしながら、上述の再送制御にあっては、いずれの方法も再送時に無線リソースを確保する必要があるため、同一送信機会に初送信号を送信する端末(初送端末)に割り当てることができる無線リソースの量を相対的に減らしてしまうことになり、再送頻度に応じてセルスループットが低下してしまうという問題がある。
 本発明は、この様な事情に鑑みてなされたものであり、再送制御を用いた通信システムにおいて、再送頻度が高い場合のスループット低下を軽減することのできる受信装置、周波数割当方法、制御プログラムおよび集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の受信装置は、少なくとも一つの受信アンテナを備え、送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置であって、前記送信装置から受信した信号に誤りがあるかどうかを判定する判定部と、前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうスケジューリング部と、を備えることを特徴としている。
 このように、送信装置が再送信号を送信するための周波数帯域で、受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうので、再送によるセル全体のスループットの低下を防ぐことができる。
 (2)また、本発明の受信装置において、前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記送信装置または前記送信装置とは異なる他の送信装置が前記再送信号以外の信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうことを特徴としている。
 このように、受信装置は、受信した信号に誤りがあった場合は、送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と送信装置または送信装置とは異なる他の送信装置が再送信号以外の信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうので、再送によるセル全体のスループット低下を防ぐことができる。
 (3)また、本発明の受信装置において、前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうことを特徴としている。
 このように、受信装置は、送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうので、再送端末による周波数リソースの占有を回避し、初送端末に割り当てる周波数リソース量を増大できる。
 (4)また、本発明の受信装置において、前記スケジューリング部は、前記受信した信号に誤りがあった場合、復号情報に基づいて、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうか否かを判断することを特徴としている。
 このように、受信装置は、受信した信号に誤りがあった場合、復号情報に基づいて、送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうか否かを判断するので、発生するIUIを制限し、ターボ等化処理による移動局間の信号分離を容易にすることが可能となる。
 (5)また、本発明の受信装置において、前記復号情報は、復号処理後に得られる符号化ビットの対数尤度比の絶対値平均であり、前記スケジューリング部は、前記復号情報が予め定められた基準値以上である場合は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なう一方、前記復号情報が予め定められた基準値未満である場合は、前記送信装置が再送信号を送信するために使用する周波数帯域と前記他の送信装置が初送信号を送信するために使用する周波数帯域とが重複しないように周波数割当を行なうことを特徴としている。
 このように、受信装置は、復号情報が予め定められた基準値以上である場合は、送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なう一方、復号情報が予め定められた基準値未満である場合は、送信装置が再送信号を送信するために使用する周波数帯域と他の送信装置が初送信号を送信するために使用する周波数帯域とが重複しないように周波数割当を行なうので、発生するIUIを制限し、ターボ等化処理による移動局間の信号分離を容易にすることが可能となる。
 (6)また、本発明の受信装置において、前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域に、前記他の送信装置が初送信号を送信するために使用する周波数帯域が重複する割合を決定することを特徴としている。
 このように、受信装置は、送信装置が再送信号を送信するために使用する周波数帯域に、他の送信装置が初送信号を送信するために使用する周波数帯域が重複する割合を決定するので、発生するIUIを制限し、ターボ等化処理による移動局間の信号分離を容易にすることが可能となる。
 (7)また、本発明の受信装置において、CC(Chase Combining)を用いて、前記初送信号と前記再送信号との合成を行なう符号合成部を更に備えることを特徴としている。
 このように、受信装置は、CC(Chase Combining)を用いて、初送信号と再送信号との合成を行なうので、受信信号の受信レベルを向上させるとともに、時間ダイバーシチも獲得する事ができるため、再送を繰り返すごとに誤り率特性が改善することができる。
 (8)また、本発明の受信装置において、IR(Incremental Redundancy)を用いて、前記初送信号と前記再送信号との合成を行なう符号合成部を更に備えることを特徴としている。
 このように、受信装置は、IR(Incremental Redundancy)を用いて、初送信号と再送信号との合成を行なうので、再送のたびに誤り訂正復号時の符号化率を低くすることができるため、通常のARQに比べ再送回数を低減され、スループットを向上させる事ができる。
 (9)また、本発明の受信装置において、前記受信した信号に誤りがあった場合は、復号情報を記憶するバッファ部と、前記送信装置から再送信号を受信した際に、前記バッファ部に記憶されている復号情報に基づいて、前記再送信号のレプリカを生成するソフトレプリカ生成部と、前記再送信号のレプリカと他の送信装置から受けた干渉を示す情報とを用いて、干渉レプリカを生成する干渉レプリカ生成部と、前記干渉レプリカを用いて、前記受信した再送信号からユーザ間干渉を除去するソフトキャンセル部と、を備えることを特徴としている。
 このように、受信装置は、送信装置から再送信号を受信した際に、記憶されている復号情報に基づいて、再送信号のレプリカを生成し、再送信号のレプリカと他の送信装置から受けた干渉を示す情報とを用いて、干渉レプリカを生成し、干渉レプリカを用いて、受信した再送信号からユーザ間干渉を除去するので、再送によるセル全体のスループット低下を防ぐことができる。
 (10)また、本発明の周波数割当方法は、送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置の周波数割当方法であって、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうことを特徴としている。
 このように、受信装置は、受信した信号に誤りがあった場合は、送信装置が再送信号を送信するための周波数帯域で、受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうので、再送によるセル全体のスループット低下を防ぐことができる。
 (11)また、本発明の制御プログラムは、送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置の制御プログラムであって、前記送信装置から受信した信号に誤りがあるかどうかを判定する処理と、前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なう処理と、の一連の処理を、コンピュータに実行させることを特徴としている。
 このように、受信装置は、受信した信号に誤りがあった場合は、送信装置が再送信号を送信するための周波数帯域で、受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうので、再送によるセル全体のスループット低下を防ぐことができる。
 (12)また、本発明の集積回路は、受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する機能と、前記送信装置から受信した信号に誤りがあるかどうかを判定する機能と、前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なう機能と、の一連の機能を、前記受信装置に発揮させることを特徴としている。
 このように、受信装置は、受信した信号に誤りがあった場合は、送信装置が再送信号を送信するための周波数帯域で、受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうので、再送によるセル全体のスループット低下を防ぐことができる。
 本発明を適用することにより、再送端末による周波数リソースの占有を回避し、初送端末に割り当てる周波数リソース量を増大できるため、周波数利用効率およびスループットの向上を実現できる。
本発明の第1の実施形態に係る無線通信システムにおける再送方法の概念の一例を示す図である。 本発明の第1の実施形態に係る移動局装置の基本構成を示すブロック図である。 本発明の第1の実施形態に係る基地局装置の構成を示すブロック図である。 本発明の第1の実施形態に係るデータ信号検出部213-uの内部構成を示すブロック図である。 本発明の第1の実施形態に係る基地局装置の動作を説明するフローチャートである。 本発明の第2の実施形態に係る基地局装置の基本構成の一例を示すブロック図である。 本発明の第2の実施形態に係るデータ信号検出部401-1~Uの内部構成の一例を示すブロック図である。 本発明の第2の実施形態に係るスケジューリング部211における移動局装置への帯域割当方法を示す図である。 本発明の第3の実施形態に係る移動局装置の基本構成の一例を示すブロック図である。 符号化部605およびパンクチャリング部607により生成される符号化ビットの一例を示す図である。 本発明の第3の実施形態に係る基地局装置の構成を示すブロック図である。 本発明の第3の実施形態に係る移動局装置で図10に示される初送信号および再送信号が送信された場合の合成法の一例を示す図である。 本発明の第3の実施形態における基地局装置の動作を説明するフローチャートである。 従来の無線通信システムにおける再送方法の概念の一例を示す図である。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の実施形態では、送信装置を移動局とし、受信装置を基地局とする伝送の上り回線について説明するが、下り回線(基地局から移動局へ伝送)にも適用可能である。
 (第1の実施形態)
 本実施形態では、再送時に初回の送信(初送)と同一データを送信する再送方法を用いる無線通信システムにおいて、同一送信機会で初送信号を送信する移動局と再送信号を送信する移動局に対し、同一周波数への重複割り当てを許容する形態を示す。ただし、複数の移動局が割り当てられた周波数においては互いの送信信号がユーザ間干渉(IUI : Inter-User Interference)となるため、本実施形態における基地局装置は初送時の復号ビットの尤度により生成されるレプリカを基に非線形処理である繰り返し等化技術を用いてIUIを除去し、各移動局の信号を分離する。本実施形態における移動局装置への帯域割当法を示すため、従来の帯域割当法と比較しながらその特徴について示す。
 図14は、従来の無線通信システムにおける再送方法の概念の一例を示す図である。ここでは同期式再送が用いられるものとし、システムで予め定義された一定時間後に初送時と同一の無線リソースを用いて再送を行なう例を示している。ただし、同様の割当法は非同期式再送においても適用可能であり、その場合、再送時の割当帯域は初送時と同じ伝送レートが確保されるよう任意の周波数に同じリソース量だけ割り当てられる。
 まず、第1の移動局装置、第2の移動局装置および第3の移動局装置は、第1の送信信号、第2の送信信号および第3の送信信号のように信号を周波数軸上に配置し、送信する。このとき各移動局装置の送信信号は周波数領域で直交するように、異なる周波数に対して割り当てられる。これらの送信信号を基地局装置で受信した際、第1の移動局装置および第3の移動局装置からの送信信号は誤りなく伝送できたものとし、第2の移動局装置からの送信信号は復号後のビットに誤り(信号検出誤り)があったものとすると、基地局装置は応答信号として、第1の移動局装置および第3の移動局装置に対してはACK(Acknowledgement;肯定応答)を、第2の移動局装置に対してはNACK(Negative ACK;否定応答)を送信する。同期式再送ではNACKを受信した第2の移動局装置は初送時の一定時間後に同一の周波数リソースを用いて再送信号を送信する。よって、基地局装置のスケジューリング部は第2の移動局装置の再送時において、まず第2の移動局装置に対し初送時と同じ帯域を割り当てた後、新しいデータを送信する第1の移動局装置および第3の移動局装置に対しては第2の移動局装置が使用しない周波数のみを割当可能な周波数として割当を行なう。そのため、第2の移動局装置のように再送を行なう移動局装置の周波数リソースのシステム帯域に占める割合が大きくなるほどセル全体のスループットが低下する。
 図1は、本発明の第1の実施形態に係る無線通信システムにおける再送方法の概念の一例を示す図である。同図に示されるように、本実施形態では、再送信号が割り当てられた周波数を割当可能な周波数とし、他の移動局装置がその周波数を使用して送信することを許容する。同図では、第1の移動局装置と第3の移動局装置の送信信号が、第2の移動局装置の再送信号と一部同一の周波数を使用している例を示している。このような割当を行なうことで、セル内の割当可能な帯域は再送時の信号により制限されることが無くなり、再送によるセル全体の伝送レート低下を防ぐことが可能となる。
 このような割当を行なった場合、信号を受信する基地局装置では、少なくとも一部で初送信号と再送信号が重複されて受信される。このとき、重複された信号の数が受信アンテナ本数より多い(例えば、基地局装置の受信アンテナが1本の場合は重複数が2以上、受信アンテナが2本の場合は重複数が3以上)場合、セル内でIUIが発生することを意味している。このとき、勿論、IUIを含めた受信信号対干渉雑音電力比(SINR : Signal to Interference and Noise power Ratio)によっては分離することができる場合もあるが、一般的には従来の方法に比べると誤り率は悪くなる。そこで、本実施形態では、誤り訂正復号後の送信ビットに関する信頼性あるいは復号ビットを、等化処理を行なう等化部へフィードバックするフィードバックループを基地局装置に具備させる。これは、硬判定値をフィードバックする判定帰還型でもよいし、対数尤度比(LLR;Log Likelihood Ratio)のような送信ビットの信頼性をフィードバックするターボ等化のような方法を用いてもよい。以下では、ターボ等化を用いた分離方法について記載するものとするが、これに限定されない。
 図2は、本発明の第1の実施形態に係る移動局装置の基本構成を示すブロック図である。まず、移動局装置はアンテナ101において基地局装置から下り回線で通知された制御信号を受信する。受信処理部103では、受信した制御情報をベースバンド信号にダウンコンバートし、A/D(Analog to Digital)変換によりデジタル信号に変換した後、制御信号検出部105と応答信号検出部107に入力する。制御信号検出部105は、入力されたベースバンド信号から、データ信号を生成するために必要な変調方式や符号化率に関する情報(合わせてMCS(Modulation and Coding Scheme)とも呼ばれる)や周波数割当情報、参照信号の系列に関する情報などを検出し、それぞれデータ信号生成部109、周波数割当部111、参照信号生成部113に入力する。一方、応答信号検出部107では、前回の伝送機会で送信した信号が後述する基地局装置において正しく受信された際にはACK(Acknowledgement)が、正しく受信されなかった場合にはNACK(Negative ACK)が受信されているため、これらの応答信号に関する情報を検出し、初送/再送切替部115へ入力する。
 一方、移動局装置から基地局装置に伝送される情報ビット列は、まずCRC付加部117に入力され、基地局装置で正しく復号できたかをチェックするためのCRC(Cyclic Redundancy Check)符号が付加される。データ信号生成部109では、CRC付加部117からの入力に対し、制御信号検出部105より得られた制御情報に基づき、送信データの時間信号の生成が行なわれる。まず、通知された符号化率となる様に誤り訂正符号である畳み込み符号やターボ符号、LDPC(Low Density Parity Check)符号などの誤り訂正符号化処理を施す。次に、符号化されたビットに対し、QPSK(Quaternary Phase Shift Keying : 四相位相偏移変調)や16QAM(Quadrature Amplitude Modulation : 16直交振幅変調)および64QAM等の変調方式のうち制御情報として通知されたものを用いて変調処理が行なわれ、生成された変調シンボルが初送/再送切替部115およびバッファ部119に入力される。
 バッファ部119は、データ信号生成部109から入力される変調シンボルを記憶する機能を有し、該変調シンボルに対する応答信号を受信した際に記憶されている変調シンボルを初送/再送切替部115に入力する。初送/再送切替部115は、応答信号検出部107より入力される応答信号に応じて、DFT部121に入力する変調シンボルを切り替える。応答信号がACKである場合には、データ信号生成部109より入力される初送の変調シンボルを出力し、応答信号がNACKである場合には、バッファ部119に記憶されている変調シンボルをDFT部121に出力する。ただし、応答信号がNACKである場合、データ信号生成部109より入力された初送の変調シンボルは次の送信機会において再度使用される。ただし、本例ではバッファ部119および初送/再送切替部115は変調後の時間領域において記憶・切替を行なう構成としたが、DFT部121の後に配置し周波数領域で処理を行なう構成としても良い。また、初送時と再送時で、同一周波数リソースを使用する同期式の再送法である場合には周波数割当部111以降に配置しても良い。
 DFT部121には、初送/再送切替部115より入力された変調シンボルがNDFTシンボル毎に入力され、NDFTポイントの離散フーリエ変換(DFT : Discrete Fourier Transform)により周波数信号に変換される。周波数割当部111では制御信号検出部105より入力される周波数割当情報に基づいてシステム帯域NFFTポイントのうち指定されたNDFTポイントの周波数に配置される。ただし、割当方式としては連続した周波数帯域に割り当てられるDFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)や離散した周波数帯域に割り当てられるClustered DFT-S-OFDM等が挙げられるが送受信間で定められた任意の方式が用いられて良い。IFFT部123では、割当後のNFFTポイントの周波数信号をNFFTポイントの逆高速フーリエ変換(IFFT : Inverse Fast Fourier Transform)により時間信号に変換する。
 参照信号生成部113では制御信号検出部105より入力される参照信号の系列に関する情報に基づき伝搬路推定用の参照信号(RS : Reference Signal)が生成され、参照信号多重部125においてデータ信号と多重される。ただし、本例では時間領域で参照信号を多重する構成としたが、周波数領域で参照信号を多重する構成としても良い。送信処理部127では参照信号が多重された時間信号の後方の一部をサイクリックプレフィックス(CP : Cyclic Prefix)として前方にコピーし、D/A変換によりアナログ信号に変換した後、搬送波周波数にアップコンバートし、アンテナ101から送信する。
 図3は、本発明の第1の実施形態に係る基地局装置の構成を示すブロック図である。ただし本例では具備する受信アンテナの本数は1としているが複数本備えていても良い。ここでは、U局の移動局装置が基地局装置と接続しているものとする。アンテナ201で受信された受信信号は、受信処理部203において、ベースバンド信号にダウンコンバートされ、A/D変換によりデジタル信号に変換された後、CPが除去される。参照信号分離部205では受信信号に多重されている各移動局装置の参照信号を分離し、分離後の受信信号をFFT部207へ、分離された参照信号を伝搬路推定部209へそれぞれ入力する。伝搬路推定部209では入力された参照信号から各移動局装置の伝搬路特性を推定し、スケジューリング部211およびデータ信号検出部213-1~Uに出力する。
 一方、FFT部207では、参照信号が分離された受信信号をNFFTポイントの高速フーリエ変換(FFT : Fast Fourier Transform)により周波数信号に変換し、周波数デマッピング部215に入力する。周波数デマッピング部215は、スケジューリング部211が制御情報を生成する際に決定された割当情報に従い各移動局装置が使用したNDFTポイントの帯域の周波数信号をそれぞれ抽出する。抽出された周波数信号は移動局装置毎にデータ信号検出部213-1~213-Uに入力され、繰り返し等化技術を用いた信号検出が行なわれる。
 図4は、本発明の第1の実施形態に係るデータ信号検出部213-uの内部構成を示すブロック図である。図4に示すデータ信号検出部213-uは、データ信号検出部213-1~uのうちの一つである。ソフトキャンセル部301-uは周波数デマッピング部215より入力された周波数信号に対し、干渉レプリカ生成部303-uより入力されるレプリカ信号の減算を行ない、無線伝搬路の遅延波に起因して生じるシンボル間干渉(ISI : Inter-Symbol Interference)、および再送時に他の移動局装置が同一周波数を使用したことにより発生するIUIを除去する。ただし、同一セル内に再送を行なった移動局装置が存在しない場合の繰り返し1回目の処理では、ISIやIUIに関する情報が未知であることから何もキャンセルされない。再送を行なう移動局装置が存在する場合については後述する。
 等化部305-uでは、伝搬路推定部209より入力される伝搬路推定値を用いてMMSE(Minimum Mean Square Error)重みやZF(Zero Forcing)重み等を乗算する事によりISIおよびIUIに関する残留干渉成分の抑圧が行なわれ、DFT部307-uより入力されるソフトレプリカにより希望信号の合成が行なわれる。IDFT部309-uは等化部305-uの出力である周波数信号をNDFTポイントの逆離散フーリエ変換(IDFT : Inverse DFT)により時間信号に変換する。復調部311-uでは伝送に使用された変調方式に従い復調処理により各符号化ビットの信頼性を表す対数尤度比(LLR : Log Likelihood Ratio)が算出される。ここで、対数尤度比は、符号化ビットが1である確率と0である確率の比の自然対数(底がe(ネイピア数)の対数)で表現される。
 復号部313-uでは各符号化ビットのLLRについて、最大事後確率(MAP : Maximum A Posteriori)推定に基づく誤り訂正処理を行ない、尤度の向上した符号化ビットの外部LLRをソフトレプリカ生成部315-uに出力し、情報ビットの事後LLRを硬判定した復号ビットをCRC判定部(判定部)217-uに出力する。ただし、繰り返し処理を終了する場合には、符号化ビットの外部LLRはバッファ部317-uへ入力される。ここで、外部LLRは、誤り訂正処理により、尤度の向上した符号化ビットの事後LLRから、復号部313-uに入力された符号化ビットのLLRを減算した値であり、誤り訂正処理のみで向上した信頼性を表す。また、情報ビットは、各移動局装置の符号化前のビットを表す。
 バッファ部317-uは、繰り返し等化処理を終了する際に復号部313-uより入力される外部LLRを、再送信号を受信する機会まで記憶する機能を有する。ただし、応答信号生成部219-uより入力される応答信号がACKである場合には再送が行なわれないため記憶されない。応答信号がNACKであった場合、該応答信号に対する再送信号を受信した際に記憶した外部LLRをソフトレプリカ生成部315-uに入力する。ソフトレプリカ生成部315-uでは入力された符号ビットの外部LLRから、ソフトレプリカと呼ばれる各変調シンボルの振幅の期待値が算出され、DFT部307-uにおいてNDFTポイントのDFTにより周波数領域のレプリカ信号に変換される。DFT部307-uより出力されるレプリカ信号は、等化部305-uにおける希望信号の合成に使用されると共に、各移動局装置の干渉レプリカ生成部303-uに入力される。ただし、DFT部307-uの出力は図3において記載していないが、全移動局に対するデータ信号検出部213-1~Uに対して入力される。
 干渉レプリカ生成部303-uは、各移動局に対応したデータ信号検出部213-1~Uから入力されるレプリカ信号に対し、伝搬路推定部209から入力される各移動局の伝搬路推定値を乗算した後に全移動局分加算することで受信信号のレプリカ信号を生成する。さらにスケジューリング部211で決定された割当情報に基づき、データ検出する信号が使用した帯域のレプリカ信号のみを抽出し、ソフトキャンセル部301-uへ入力する。
 このデータ信号検出部213-1~U内の一連の処理の繰り返しがターボ等化技術と一般的に称され、これを任意の回数繰り返した後、復号部313-uより得られる復号ビットがCRC判定部217-1~Uへ出力される。ただし、繰り返しの毎回でCRC判定部217-1~Uへ出力し、誤りが無いと判定された場合に繰り返し処理を終了しても良い。
 以上の処理は、受信信号に再送信号が含まれない場合を示したが、U局の移動局のうちいずれかが再送信号であった場合、繰り返し処理の初回において再送信号のキャンセル処理が行なわれる。再送信号である移動局のデータ信号検出部213-1~Uでは、まずバッファ部317-uに記憶された外部LLRをソフトレプリカ生成部315-uに入力し、再送信号のレプリカ信号を生成する。生成されたレプリカ信号はDFT部307-uを介して周波数信号に変換され、全ての移動局のデータ信号検出部213-1~Uの干渉レプリカ生成部303-uに入力される。各移動局の干渉レプリカ生成部303-1~Uは入力された全ての再送信号のレプリカ信号から干渉成分を生成し、ソフトキャンセル部301-uに入力する。よってソフトキャンセル部301-uでは繰り返し初回において、干渉レプリカ生成部303-uより入力される干渉成分の減算が行なわれ、IUIの低減が可能となる。ただし、繰り返し2回目以降の処理は再送信号が存在しない場合と同様である。
 図3のCRC判定部217-1~Uではデータ信号検出部213-1~Uより復号ビットが入力され、移動局装置でビット系列に付加したCRC符号と復号ビットから生成されるCRC符号を照合し、正しく復号できたかどうかを判定する。正しく復号できた場合にのみ、復号ビット列を移動局装置から送信された送信データとして出力する。また、判定の結果(正しく復号できたか否か)は、応答信号生成部219-1~Uに入力される。応答信号生成部219-1~Uは、正しく復号できたことが入力された場合はACK信号を、正しく復号できなかったことが入力された場合はNACK信号を生成し、送信処理部223およびデータ信号検出部213-1~Uのバッファ部317-1~Uに入力する。
 一方で、伝搬路推定部209で推定された各移動局装置の伝搬路推定値はスケジューリング部211へ入力され、周波数割当および使用される変調方式、符号化率の決定を行ない、制御情報生成部221に入力される。周波数割当の決定法については後述する。制御情報生成部221では、スケジューリング部211の出力から制御情報が生成され、送信処理部223に出力される。ただし、制御情報にはその他の移動局装置が信号を送信するために必要な情報(例えば、参照信号系列が移動局装置毎に設定できる場合の、参照信号の系列に関する情報など)が含まれても良い。送信処理部223は所定のタイミングにおいて制御情報あるいは応答信号に対しD/A変換および無線周波数へのアップコンバートを行なった後、アンテナ201から各移動局装置に送信される。ただし、これらの制御情報および応答信号は、データの受信処理にも必要なため、通知した情報に基づいて伝送されたデータの受信時まで記憶されているものとする。
 図5は、本発明の第1の実施形態に係る基地局装置の動作を説明するフローチャートである。基地局装置は初送信号あるいは再送信号が多重された信号を受信する(ステップS1)。次に、基地局装置は受信信号に再送信号が含まれるかを判定する(ステップS2)。再送信号が含まれない場合は(ステップS2:No)ステップ3をスキップする。再送信号が含まれる場合(ステップS2:Yes)、バッファ部317-1~Uに保管されている前回の送信機会の外部LLRからソフトレプリカを生成し、各移動局装置に対応したソフトキャンセル部301-uにおいてIUIおよびISIのキャンセルを行なう(ステップS3)。
 続いて、基地局装置は、推定された伝搬路推定値に基づいた等化処理、復調処理が行なわれ、信号が検出される(ステップS4)。次に、基地局装置は、誤り訂正復号処理を行なう(ステップS5)。基地局装置は、該信号に対して誤りがあるかを判定する(ステップS6)。誤りが検出された場合(ステップS6:Yes)、基地局装置は、繰り返し処理を行なうかを判定する(ステップS7)。繰り返し処理を終了する場合(ステップS7:Yes)、基地局装置は、移動局装置に対しNACKを送信し(ステップS8)、再送時の初回処理において干渉キャンセルを行なうために、ステップS5で得られた符号化ビットのLLRを記憶する(ステップS9)。ステップS7において繰り返し処理を行なうと判定された場合(ステップS7:No)、基地局装置は、ステップS5で得られたLLRからレプリカ信号を生成する(ステップS10)。基地局装置は、ステップS10で生成したレプリカ信号を用いて干渉キャンセルを行なった後(ステップS11)、ステップS4に戻る。以降、ステップS6で誤りが検出されないか、ステップS7で繰り返し処理を終了すると判定されるまで、繰り返し処理が行なわれる。ステップS6で誤りが検出されない場合、ステップS12では、基地局装置は、移動局装置に対しACKを送信し、終了する。
 本実施形態では、再送を行なう移動局の割当帯域に対し、初送を行なう移動局の割当帯域を重複させることを許容する。この結果、再送によるセル全体のスループット低下を防ぐことができる。なお、重複した帯域に対しては、再送を行なう移動局の前回の伝送時に記憶された復号情報を用いたソフトキャンセルを行なうことで、IUIによる劣化を抑えることができる。
 (第2の実施形態)
 第1の実施形態では、初送を行なう移動局と再送を行なう移動局の割当帯域を重複させ、信号分離の際に、再送を行なう移動局の前回の伝送時に記憶された復号情報を用いる形態を示した。しかしながら、記憶された復号情報は誤りが存在しており、復号情報の信頼性が低い場合にはソフトキャンセルによるIUIの低減効果は小さいことが考えられる。そこで本実施形態では、再送を行なう移動局の繰り返し処理後に与えられる符号ビットのLLRの大きさに応じて、初送を行なう移動局の重複を許容するか否か、あるいは重複量を決定する形態について説明する。本実施形態における移動局装置の基本構成は、第1の実施形態における図2の構成例と同様であるため説明を省略する。
 図6は、本発明の第2の実施形態に係る基地局装置の基本構成の一例を示すブロック図である。第1の実施形態における図3と同様の機能を有するブロックについては同一の符号を割り振っており説明を省略する。一方、図3におけるデータ信号検出部213-1~Uが図6ではデータ信号検出部401-1~Uであり、次回の伝送機会において再送を行なう移動局装置の割当帯域に対し、他の初送を行なう移動局装置の割当帯域が重複することを許容するか否かを判定する機能を有する。
 図7は、本発明の第2の実施形態に係るデータ信号検出部401-1~Uの内部構成の一例を示すブロック図である。図7のデータ信号検出部401-1~Uは図4におけるデータ信号検出部213-1~Uとは重複許容判定部501-uを有する点、およびバッファ部503-1~Uの機能が異なり、その他のブロックについては同様の機能を有するため説明を省略する。
 重複許容判定部501-uは、応答信号生成部219-uより入力される第uの移動局装置に対する応答信号がNACKである場合に、復号部313-uより出力される符号化ビットのLLRに基づき、第uの移動局装置の割当帯域に対し他の移動局装置が重複することを許容するか判定を行なう。ここでは判定基準として符号化ビットのLLRの絶対値の平均が、判定基準値以上であるか否かに応じて重複の許容を決定する。すなわち重複許容判定部501-uは判定基準値Lを保有し、復号部313-uより入力される第uの移動局装置のk番目の符号ビットのLLRがL(k)∈CNsym×1(ただし、Nsymは符号ビット数)であるとすると、LLRの平均値Lu,aveを次式で算出する。
Figure JPOXMLDOC01-appb-M000001
 そして、「Lu,ave≧L」である場合には第uの移動局の割当帯域に対する他の移動局の重複を許容すると判定し、「Lu,ave<L」である場合には重複を許容しないと判定する。ただし、判定結果はバッファ部503-uおよび図6のスケジューリング部211へ出力される。
 バッファ部503-uには、重複許容判定部501-uより判定結果が入力され、重複を許容する旨が入力された場合には、その時点での復号部313より出力された符号ビットの外部LLRを記憶する。記憶された外部LLRは再送された信号を受信した際にソフトレプリカ生成部315-uに出力され、その他の場合においては復号部313より入力された外部LLRがそのままソフトレプリカ生成部315-uに出力される。
 図6のスケジューリング部211には、伝搬路推定部209より各移動局の伝搬路推定値が入力される。また、データ信号検出部401-1~Uより、各移動局の割当帯域に対し、初送を行なう他の移動局の重複を許容するかの判定結果が入力される。また、応答信号生成部219-1~Uより各移動局の応答信号が入力される。図6のスケジューリング部211は、これらの情報を基に周波数割当および使用される変調方式、符号化率の決定を行なう。
 図8は、本発明の第2の実施形態に係るスケジューリング部211における移動局装置への帯域割当方法を示す図である。ここでは、第1の移動局装置、第2の移動局装置、第3の移動局装置および第4の移動局装置が、第1の送信信号、第2の送信信号、第3の送信信号および第4の送信信号を周波数軸上に直交するように配置し、初送を行なう。これらの送信信号を基地局装置で受信した際、第1の移動局装置および第3の移動局装置において誤りが無かったものとし、第2の移動局装置および第4の移動局装置に信号検出誤りがあったものとすると、基地局装置は応答信号として、第1の移動局装置および第3の移動局装置に対してはACKを、第2の移動局装置および第4の移動局装置に対してはNACKを送信する。
 そしてデータ信号検出部401-1~Uにおいて第2の移動局装置および第4の移動局装置における重複許容判定を行なった結果、第2の移動局装置はLLRの値が十分に高いため重複可能となり、第4の移動局装置はLLRの値が小さいため重複不可となった場合、スケジューリング部211は図8(b)の様に各移動局装置に対し伝送帯域を割り当てる。まず再送を行なう第2の移動局装置および第4の移動局装置に対し初送と同じ帯域を割り当てた後、重複を許容しない第4の移動局装置の割当帯域を除く全ての帯域に対し第1の移動局装置および第3の移動局装置の伝送帯域を割り当てる。ただし、再送時において新たに第5の移動局装置が初送を行なう場合には、第2の移動局装置との重複を許容した上で、第1の移動局装置、第3の移動局装置および第5の移動局装置間で異なる帯域を使用するよう割り当てが行なわれてよい。このような割当を行なうことで、初送時の復号情報によりIUIの除去が困難である移動局装置への重複を禁止した上で、従来の再送制御を用いた場合に比べ、初送を行なう移動局装置の割当可能な帯域を増加させる事ができる。
 ただし、本実施形態は復号部313より出力される符号化ビットのLLRの平均値とただ1つの判定基準値を比較した結果により重複を許容するか許容しないかを判定したが、判定基準値を複数用意し、判定結果により重複量を制限する構成としても良い。例として、判定基準値をLc1<Lc2の2つを用意し、Lu,aveとの比較を行なう。Lu,ave<Lc1であった場合、第uの移動局の再送信号には重複を許容せず、Lc1≦Lu,ave<Lc2であった場合には、第uの移動局の再送信号の割当帯域の50%まで重複を許容し、Lu,ave≧Lc2であった場合は、第uの移動局に対して他の初送信号の重複を許容する。このように初送信号の符号化ビットのLLRの大きさ、すなわち信頼性により重複量を制限することで、発生するIUIを制限し、ターボ等化処理による移動局間の信号分離を容易にすることが可能となる。
 ただし、本実施形態は復号部313より出力される符号化ビットのLLRの絶対値平均により判定を行なったが、復号情報の信頼性を示す指標であれば異なる基準が用いられても良い。
 (第3の実施形態)
 第1の実施形態および第2の実施形態では、再送時に初送時と同一の信号を送信することを前提とし、再送を行なう移動局装置からの再送信号と初送を行なう移動局装置からの初送信号を重複させる形態を示した。本実施形態では再送方法としてH-ARQ方式の1つであるIR法を用いることを想定し、再送信号と初送信号を重複させ、非線形繰り返し処理によりIUIを除去した後にIR法による信号合成を行なう形態を示す。
 図9は、本発明の第3の実施形態に係る移動局装置の基本構成の一例を示すブロック図である。図9の移動局装置は、図2の移動局装置とはデータ信号生成部601の構成およびバッファ部603の機能が異なる。その他の同一符号が割り当てられているブロックは図2の移動局装置と同様の機能を有するため説明を省略する。
 データ信号生成部601は符号化部605と、バッファ部603と、パンクチャリング部607と変調部609とを備える。一般に、誤り訂正符号は、情報ビットに拘束と冗長を与える。このとき、どのように拘束と冗長を与えるかは符号器構成で決定されている。例えば、ターボ符号の場合、情報ビット長をNビットとすると、2Nビットのパリティビットが付加され、3Nビットの符号ビットが出力される。これは、ターボ符号器そのものは符号化率1/3で符号化することを意味しており、これを基底符号化と定義する。さらに、受信SINRなど受信品質に応じて符号化率を変更する場合には、基底符号化率で符号化された符号ビットに対し、一部を消去法則(パンクチャパターン)に基づいて間引くことで、任意の符号化率を実現している。畳み込み符号の場合は、さまざまな基底符号化の符号器構成があるが、よく使用されるのは符号化率1/2のものであり、得られた2Nビットの長さの符号ビットからパンクチャパターンに基づいて間引くことで任意の符号化率(3/4や7/8など)を実現する。
 パンクチャリング部607では制御信号検出部105より符号化率情報Rが入力され、送信回数に応じて異なる消去法則(パンクチャパターン)に基づき、符号化ビットの一部を間引く(パンクチャリング)処理が行なわれる。パンクチャリングにより生成される符号化ビットはN/Rビットとなり変調部609へ出力される。
 図10は、符号化部605およびパンクチャリング部607により生成される符号化ビットの一例を示す図である。図10では符号化部605における基底符号化率を1/3、パンクチャリング部607に制御情報として入力される、伝送する情報ビットの符号化率Rを2/3とする。また、パンクチャリング部607におけるパンクチャパターンが初送時において「P1=1、1、0、1、0、0」、再送時において「P2=0、0、1、0、1、1」である場合を示している。符号化部605に送信データが2ビット入力されると、誤り訂正符号化により6ビットの符号化ビットが生成される。生成された符号化ビットはバッファ部603に記憶された後、パンクチャリング部607でパンクチャリングされる。
 初送時においてはパンクチャパターンP1が使用されるため、6ビットの符号化ビットのうち3番目、5番目、6番目のビットが削除され、1番目、2番目、4番目のビットのみ出力される。次に初送に対する応答信号でNACKを受信した場合、移動局装置はバッファ部603より6ビットの記憶された符号化ビットをパンクチャリング部607に出力し、パンクチャリング部607においてパンクチャパターンP2を使用してパンクチャリングを行なう。符号化ビットの1番目、2番目、4番目が削除され、3番目、5番目、6番目のビットが出力される。このように初送信号と再送信号で異なるビットを削除することで、初送信号時の誤りの原因が誤り訂正に寄与しない間引かれた符号ビットであるという考えに基づき、再送時に補完することで低い符号化率の誤り訂正復号が可能となる。変調部609は、制御信号検出部105より入力される変調方式情報に基づきQPSKや16QAM、64QAM等の変調処理を行なう。
 図11は、本発明の第3の実施形態に係る基地局装置の構成を示すブロック図である。第3の実施形態に係る基地局装置の構成は第1の実施形態における図3の基地局装置の構成と同様であるが、データ信号検出部701-uの構成が一部異なる。図11におけるデータ信号検出部701-uは符号合成部703-uを具備する。第1のバッファ部705-uは、初送時および再送機会毎の繰り返し終了時に復調部707-uで得られた符号化ビットのLLRを記憶する。記憶されたLLRの値は次回以降の再送時において符号合成部703-uに出力される。符号合成部703-uは、検出する信号が再送信号である場合に復調部707-uより入力された符号化ビットと第1のバッファ部705-uに記憶された符号化ビットを合成する。IR法では再送機会毎に符号化ビットの異なるビットをパンクチャリングするため、合成を行なうことで伝送に使用された符号化率より高い符号化利得を獲得することができる。
 図12は、本発明の第3の実施形態に係る移動局装置で図10に示される初送信号および再送信号が送信された場合の合成法の一例を示す図である。第1のバッファに記憶されたLLRがL1、L2、L3とすると、これらは初送信号で送信されたビットに相当するものであり、それぞれパンクチャリング前の符号化ビットにおける1番目、2番目、4番目のビットのLLRに相当する。一方、再送時に復調部707-uより入力されるLLRをL4、L5、L6とすると、これらは再送信号で送信されたビットに相当するため、それぞれパンクチャリング前の符号化ビットにおける3番目、5番目、6番目のビットの尤度に相当する。そのため符号合成部703-uはこれらのLLRを合成し、L1、L2、L4、L3、L5、L6を符号化ビットの1番目から6番目のLLRとして復号部313に出力する。
 復号部313-uは各符号化ビットのLLRについて、誤り訂正処理を行ない、尤度の向上した符号化ビットの外部LLRをパンクチャリング部709-uに出力し、情報ビットの事後LLRをCRC判定部217-uに出力する。ただし繰り返し処理を終了する場合、符号化ビットの外部LLRは第2のバッファ部711-uへ出力される。第2のバッファ部711-uは応答信号生成部219-uよりNACKが通知された場合に、復号部313-uより入力された外部LLRを次回の再送時まで記憶する。記憶された外部LLRは再送信号を受信した際の繰り返し処理が行なわれる前にパンクチャリング部709-uへ出力される。パンクチャリング部709-uは移動局装置と同様に再送回数に応じて決定されるパンクチャパターンを用いて入力された符号化ビットの外部LLRに対してパンクチャリングが行なわれる。なお、ソフトキャンセル部301-uは、図4で示したものと同様の機能を有する。
 図13は、本発明の第3の実施形態における基地局装置の動作を説明するフローチャートである。図5におけるフローチャートと同一符号を振っているステップは同一の機能を有するが、本実施形態ではステップS4にて信号検出後、基地局装置は、検出された信号が初送信号であるかを判定する(ステップS101)。初送信号である場合(ステップS101:Yes)、ステップS102をスキップする。初送信号でない(再送信号である)場合(ステップS101:No)、基地局装置は、得られた符号化ビットのLLRと前回の送信機会で記憶された符号化ビットのLLRの合成し、符号化ビットのLLR生成を行なう(ステップS102)。
 ただし、本実施形態では初送と再送で異なるパンクチャリングを行なうIR方式について説明したが、CC法においても適用可能である。CC法を用いる場合、初送と再送で同一のパンクチャリングを行ない、基地局装置における符号合成部703-uで初送信号のLLRと再送信号のLLRを最大比合成する処理を行なうことで実現可能である。
 本実施形態では、再送方式としてIR法を用いた場合において、初送を行なう移動局の割当帯域を重複させることを許容する。この結果、再送によるセル全体のスループット低下を防ぎつつ、再送により向上する符号化利得によって再送回数を少なく抑えることができる。
 本発明に関わる移動局装置および基地局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。
 また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。
 また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置および基地局装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
101 アンテナ
103 受信処理部
105 制御信号検出部
107 応答信号検出部
109 データ信号生成部
111 周波数割当部
113 参照信号生成部
115 初送/再送切替部
117 CRC付加部
119 バッファ部
121 DFT部
123 IFFT部
125 参照信号多重部
127 送信処理部
201 アンテナ
203 受信処理部
205 参照信号分離部
207 FFT部
209 伝搬路推定部
211 スケジューリング部
213-1~213-U、213 データ信号検出部
215 周波数デマッピング部
217-1~217-U、217 CRC判定部
219-1~219-U、219 応答信号生成部
221 制御情報生成部
223 送信処理部
301-1~301-U、301 ソフトキャンセル部
303-1~303-U、303 干渉レプリカ生成部
305-1~305-U、305 等化部
307-1~307-U、307 DFT部
309-1~309-U、309 IDFT部
311-1~311-U、311 復調部
313-1~313-U、313 復号部
315-1~315-U、315 ソフトレプリカ生成部
317-1~317-U、317 バッファ部
401-1~401-U、401 データ信号検出部
501-1~501-U、501 重複許容判定部
503-1~503-U、503 バッファ部
601 データ信号生成部
603 バッファ部
605 符号化部
607 パンクチャリング部
609 変調部
701-1~701-U、701 データ信号検出部
703-1~703-U、703 符号合成部
705-1~705-U、705 第1のバッファ部
707-1~707-U、707 復調部
709-1~709-U、709 パンクチャリング部
711-1~711-U、711 第2のバッファ部

Claims (12)

  1.  少なくとも一つの受信アンテナを備え、送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置であって、
     前記送信装置から受信した信号に誤りがあるかどうかを判定する判定部と、
     前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうスケジューリング部と、を備えることを特徴とする受信装置。
  2.  前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記送信装置または前記送信装置とは異なる他の送信装置が前記再送信号以外の信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうことを特徴とする請求項1記載の受信装置。
  3.  前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうことを特徴とする請求項1記載の受信装置。
  4.  前記スケジューリング部は、前記受信した信号に誤りがあった場合、復号情報に基づいて、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なうか否かを判断することを特徴とする請求項1記載の受信装置。
  5.  前記復号情報は、復号処理後に得られる符号化ビットの対数尤度比の絶対値平均であり、
     前記スケジューリング部は、前記復号情報が予め定められた基準値以上である場合は、前記送信装置が再送信号を送信するために使用する周波数帯域の少なくとも一部と前記他の送信装置が初送信号を送信するために使用する周波数帯域の少なくとも一部とが重複するように周波数割当を行なう一方、前記復号情報が予め定められた基準値未満である場合は、前記送信装置が再送信号を送信するために使用する周波数帯域と前記他の送信装置が初送信号を送信するために使用する周波数帯域とが重複しないように周波数割当を行なうことを特徴とする請求項4記載の受信装置。
  6.  前記スケジューリング部は、前記送信装置が再送信号を送信するために使用する周波数帯域に、前記他の送信装置が初送信号を送信するために使用する周波数帯域が重複する割合を決定することを特徴とする請求項4記載の受信装置。
  7.  CC(Chase Combining)を用いて、前記初送信号と前記再送信号との合成を行なう符号合成部を更に備えることを特徴とする請求項1記載の受信装置。
  8.  IR(Incremental Redundancy)を用いて、前記初送信号と前記再送信号との合成を行なう符号合成部を更に備えることを特徴とする請求項1記載の受信装置。
  9.  前記受信した信号に誤りがあった場合は、復号情報を記憶するバッファ部と、
     前記送信装置から再送信号を受信した際に、前記バッファ部に記憶されている復号情報に基づいて、前記再送信号のレプリカを生成するソフトレプリカ生成部と、
     前記再送信号のレプリカと他の送信装置から受けた干渉を示す情報とを用いて、干渉レプリカを生成する干渉レプリカ生成部と、
     前記干渉レプリカを用いて、前記受信した再送信号からユーザ間干渉を除去するソフトキャンセル部と、を備えることを特徴とする請求項1記載の受信装置。
  10.  送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置の周波数割当方法であって、
     前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なうことを特徴とする周波数割当方法。
  11.  送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する受信装置の制御プログラムであって、
     前記送信装置から受信した信号に誤りがあるかどうかを判定する処理と、
     前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なう処理と、の一連の処理を、コンピュータに実行させることを特徴とする制御プログラム。
  12.  受信装置に実装されることにより、前記受信装置に複数の機能を発揮させる集積回路であって、
     送信装置から受信した信号に誤りがあった場合、前記送信装置に対して再送信号を要求する機能と、
     前記送信装置から受信した信号に誤りがあるかどうかを判定する機能と、
     前記判定の結果、前記受信した信号に誤りがあった場合は、前記送信装置が再送信号を送信するための周波数帯域に対し、前記受信アンテナの数を超える異なる信号が重複するように周波数割当を行なう機能と、の一連の機能を、前記受信装置に発揮させることを特徴とする集積回路。
PCT/JP2012/065125 2011-06-15 2012-06-13 受信装置、周波数割当方法、制御プログラムおよび集積回路 WO2012173142A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/126,082 US20140126507A1 (en) 2011-06-15 2012-06-13 Receiving apparatus, frequency assignment method, control program, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-132949 2011-06-15
JP2011132949A JP2013005139A (ja) 2011-06-15 2011-06-15 受信装置、周波数割当方法、制御プログラムおよび集積回路

Publications (1)

Publication Number Publication Date
WO2012173142A1 true WO2012173142A1 (ja) 2012-12-20

Family

ID=47357128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065125 WO2012173142A1 (ja) 2011-06-15 2012-06-13 受信装置、周波数割当方法、制御プログラムおよび集積回路

Country Status (3)

Country Link
US (1) US20140126507A1 (ja)
JP (1) JP2013005139A (ja)
WO (1) WO2012173142A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160080101A1 (en) * 2014-09-12 2016-03-17 Nokia Corporation Method and apparatus for mitigating interference
JP6188106B2 (ja) * 2014-09-24 2017-08-30 株式会社日立国際電気 Mimo受信装置及びmimo受信方法
JP2017038305A (ja) * 2015-08-12 2017-02-16 富士通株式会社 伝送装置、伝送システム、及び伝送方法
DE102016013653B4 (de) * 2016-11-16 2021-06-17 Diehl Metering Systems Gmbh Verfahren und Einrichtung zum Senden haustechnischer Daten
KR20180062227A (ko) * 2016-11-30 2018-06-08 삼성전자주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
JP2019004320A (ja) * 2017-06-15 2019-01-10 シャープ株式会社 基地局装置、端末装置およびその通信方法
US11695431B2 (en) * 2018-10-24 2023-07-04 Star Ally International Limited LPWAN communication protocol design with turbo codes
US11108497B2 (en) * 2019-10-24 2021-08-31 Samsung Electronics Co., Ltd. Method and system for hierarchical decoding of data packets in cellular communication system
US20210135796A1 (en) * 2019-11-05 2021-05-06 Qualcomm Incorporated Sidelink identification for multi-path downlink retransmisson

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114556A (ja) * 2009-11-26 2011-06-09 Sharp Corp 無線通信システム、基地局装置、および周波数割当方法
JP2012044611A (ja) * 2010-08-23 2012-03-01 Sharp Corp 無線通信システム、通信制御装置、通信端末装置および制御プログラム
JP2012129752A (ja) * 2010-12-14 2012-07-05 Sharp Corp 通信システム、送信装置、受信装置、及び、プロセッサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566241B1 (ko) * 2001-11-19 2006-03-29 삼성전자주식회사 이동통신시스템에서 연성 심볼 결합 장치 및 방법
KR101466959B1 (ko) * 2007-01-08 2014-12-03 한국전자통신연구원 무선 통신 시스템의 자원 할당 방법 및 장치
US8897235B2 (en) * 2009-12-18 2014-11-25 Qualcomm Incorporated Protection of broadcast signals in heterogeneous networks
WO2011122835A2 (en) * 2010-03-29 2011-10-06 Samsung Electronics Co., Ltd. Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting mimo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114556A (ja) * 2009-11-26 2011-06-09 Sharp Corp 無線通信システム、基地局装置、および周波数割当方法
JP2012044611A (ja) * 2010-08-23 2012-03-01 Sharp Corp 無線通信システム、通信制御装置、通信端末装置および制御プログラム
JP2012129752A (ja) * 2010-12-14 2012-07-05 Sharp Corp 通信システム、送信装置、受信装置、及び、プロセッサ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUMINORI TAKAHASHI ET AL.: "Throughout Performance of Predetermined-Rate Hybrid ARQ Method Using Hierarchical Modulation with Turbo Coding", IEICE TECHNICAL REPORT, 14 January 2010 (2010-01-14), pages 37 - 42 *
HIROKI TAKAHASHI ET AL.: "A Study on Multiple Access Scheme using Turbo Equalization", IEICE TECHNICAL REPORT, 3 February 2011 (2011-02-03), pages 349 - 354 *
LG ELECTRONICS: "Modifications of Uplink Synchronous HARQ scheme", 3GPP TSG RAN WG1 MEETING #47BIS, R1-070245, 15 July 2007 (2007-07-15) *

Also Published As

Publication number Publication date
US20140126507A1 (en) 2014-05-08
JP2013005139A (ja) 2013-01-07

Similar Documents

Publication Publication Date Title
WO2012173142A1 (ja) 受信装置、周波数割当方法、制御プログラムおよび集積回路
JP5213271B2 (ja) 通信装置、通信システム、受信方法およびプログラム
US8271842B2 (en) Reducing harq retransmissions using peak power management techniques
US20100325505A1 (en) Communication device, communication system, reception method, and communication method
TWI434545B (zh) 用以增加混合自動重複請求(harq)協定之通量的方法及系統
US20110041023A1 (en) Communication device, communication system, reception method, and program
US20110007729A1 (en) Reception device, transmission device, communication system, and communication method
JP5622404B2 (ja) 無線通信システム、および通信装置
US8874985B2 (en) Communication system, transmission device, reception device, program, and processor
US20100325510A1 (en) Transmission device, reception device, communication system, and communication method
JP5660705B2 (ja) 通信装置、無線通信システム、および周波数割当方法
JP5860885B2 (ja) 送信装置及び送信方法
JP2010028762A (ja) 通信装置、通信システムおよび受信方法
JP5653129B2 (ja) 無線通信システム、通信制御装置、通信端末装置および制御プログラム
JP2012060407A (ja) 受信装置、通信システム、受信装置の制御プログラムおよび集積回路
JPWO2009104702A1 (ja) 通信装置、通信システム、受信方法及び通信方法
JP5679771B2 (ja) 無線通信装置及び無線通信方法
JP5178320B2 (ja) 無線通信システム、通信装置、無線通信方法、無線通信プログラム、及びプロセッサ
Latif et al. Link abstraction for variable bandwidth with incremental redundancy HARQ in LTE
JP5036062B2 (ja) 通信装置、通信システムおよび通信方法
WO2024058761A1 (en) A retransmission method for multiple access networks
JP2010219747A (ja) 送信装置、通信システム、通信装置、送信方法、受信方法、送信制御プログラム、及び受信制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14126082

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800552

Country of ref document: EP

Kind code of ref document: A1