WO2012172709A1 - 導電テープ及びその製造方法 - Google Patents

導電テープ及びその製造方法 Download PDF

Info

Publication number
WO2012172709A1
WO2012172709A1 PCT/JP2011/079255 JP2011079255W WO2012172709A1 WO 2012172709 A1 WO2012172709 A1 WO 2012172709A1 JP 2011079255 W JP2011079255 W JP 2011079255W WO 2012172709 A1 WO2012172709 A1 WO 2012172709A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
conductive
mesh fabric
conductive tape
monofilament
Prior art date
Application number
PCT/JP2011/079255
Other languages
English (en)
French (fr)
Inventor
茂一 杉原
高木 進
哲彦 斎木
Original Assignee
セーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社 filed Critical セーレン株式会社
Priority to CN201180050454.4A priority Critical patent/CN103403118B/zh
Priority to KR1020137010022A priority patent/KR101467133B1/ko
Priority to US14/126,246 priority patent/US8921241B2/en
Publication of WO2012172709A1 publication Critical patent/WO2012172709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0009Casings with provisions to reduce EMI leakage through the joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/204Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive coating being discontinuous
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/206Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer comprising non-adhesive protrusions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1462Polymer derived from material having at least one acrylic or alkacrylic group or the nitrile or amide derivative thereof [e.g., acrylamide, acrylate ester, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/109Metal or metal-coated fiber-containing scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2418Coating or impregnation increases electrical conductivity or anti-static quality

Definitions

  • the present invention relates to a conductive tape and a manufacturing method thereof.
  • it is related with the electrically conductive tape which has double-sided adhesiveness, and its manufacturing method.
  • Conductive tape is used as an electromagnetic shielding gasket that is attached to a case such as an electronic device to shield electromagnetic waves. Further, in the field of portable electronic devices typified by mobile phones such as smartphones and electronic devices such as personal computers, miniaturization and higher performance are progressing. As an electromagnetic wave shielding gasket in these electronic devices, high adhesiveness and excellent grounding characteristics are required, and a thinner conductive tape is required.
  • an adhesive layer in which a conductive filler is dispersed is laminated on both surfaces of a fabric such as a metal foil as a base material or a conductive nonwoven fabric.
  • a fabric such as a metal foil as a base material or a conductive nonwoven fabric.
  • the thickness of the adhesive layer must be reduced.
  • the pressure-sensitive adhesive layer sinks into the unevenness of the base material, and the adhesiveness decreases.
  • the latter conductive tape is easy to thin because it does not use a base material, but it has a problem that the filler alone is insufficient in electrical conductivity and is easily broken in handling.
  • the grounding characteristics greatly depend on the exposed state of the conductive filler contained in the adhesive layer and the contact state with the substrate. For this reason, there was also a problem that stable grounding characteristics could not be obtained depending on the pasting conditions and the like. Further, in the case of a conductive tape including a base material, it is conceivable to make the base material itself thin. However, when the nonwoven fabric or the like is thinned, the tensile strength is remarkably lowered, and there is a problem that the conductive tape is cut by handling when being attached. When using metal foil as a base material, there existed a problem that an adhesion layer will peel by deformation
  • Patent Document 2 discloses an adhesive sheet in which an adhesive layer is formed on at least one surface of a conductive base material and a part of the base material protrudes from the adhesive layer.
  • Patent Document 3 discloses an electromagnetic wave shield in which a conductive sheet formed in a woven, knitted or net shape using metal is embedded in an elastomer base material, and the conductive sheet is exposed on both the front and back surfaces of the elastomer base material. A tape is disclosed.
  • the present invention has been made in view of such problems, and as a conductive tape used to shield electromagnetic waves in electronic equipment, it is thinner, has excellent grounding characteristics and high adhesiveness, and is attached.
  • An object of the present invention is to provide a conductive tape that is excellent in handling properties during attachment work.
  • the conductive tape according to the first aspect of the present invention is: A conductive mesh fabric having a metal coating on the surface; An adhesive film made of an adhesive formed only in the opening of the conductive mesh fabric; Have The metal coating is exposed on both sides of the conductive mesh fabric without being covered with the adhesive film, A thermoplastic synthetic fiber monofilament yarn is included in at least a part of the yarn constituting the conductive mesh fabric,
  • the value of M obtained by the following formula 1 is in the range of 0.05 to 0.45.
  • B 1 Average yarn diameter of monofilament in the thickness direction of the conductive tape other than the intersection point
  • B 2 Average yarn diameter of the yarn crossing the monofilament in the thickness direction of the conductive tape other than the intersection point
  • C Other monofilament Conductive tape thickness at the intersection with the yarn
  • thermoplastic synthetic fiber monofilament yarn has an average flatness within a range of 1.1 to 3.0 in a cross-sectional shape.
  • the opening ratio of the conductive mesh fabric is in the range of 45 to 90%.
  • the method for producing a conductive tape comprises: Providing a conductive mesh fabric having a metal coating on the surface and having a thermoplastic synthetic fiber monofilament yarn as at least a part of the component; Applying a fluid pressure-sensitive adhesive on the release sheet to form a pressure-sensitive adhesive layer having a thickness in the range of 50 to 90% of the maximum thickness of the conductive mesh fabric; Laminating the conductive mesh fabric on the pressure-sensitive adhesive layer, and further laminating another laminate sheet thereon; Aging and curing the pressure-sensitive adhesive layer to form a pressure-sensitive adhesive film,
  • the value of M obtained by the following formula 1 is in the range of 0.05 to 0.45.
  • B 1 Average yarn diameter of monofilament in the thickness direction of the conductive tape other than the intersection point
  • B 2 Average yarn diameter of the yarn crossing the monofilament in the thickness direction of the conductive tape other than the intersection point
  • C Other monofilament Conductive tape thickness at the intersection with the yarn
  • the adhesive film is formed only on the opening of the conductive mesh fabric, it is possible to achieve both excellent grounding characteristics and strong adhesiveness, and to make the thickness of the conductive tape extremely thin. Can do. Further, since the value of M obtained by the above mathematical formula 1 is in the range of 0.05 to 0.45, the smoothness of the surface of the conductive tape is ensured, and sufficient grounding characteristics and adhesiveness can be obtained. At the same time, the conductive tape has a sufficient strength and an excellent handling property.
  • FIG. 2 is a schematic longitudinal sectional view showing a cross section taken along line X2-X2 in FIG.
  • FIG. 2 is a schematic longitudinal sectional view showing a YY section in FIG. 1.
  • FIG. 2 is a schematic longitudinal sectional view showing a cross section taken along line X1-X1 in FIG.
  • FIG. 2 is a schematic longitudinal sectional view showing an X1-X1 cross section when the warp is a multifilament yarn in FIG. 1.
  • FIG. 2 is a schematic longitudinal sectional view showing a YY section when the warp is a multifilament yarn in FIG. 1.
  • the conductive mesh fabric used in the embodiment of the present invention is a vapor deposition method, sputtering, or the like, which is a well-known technique, on the surface of a mesh fabric including at least a part of a thermoplastic synthetic fiber monofilament yarn.
  • a metal film is formed by a method, an electroplating method, an electroless plating method, or the like.
  • polyester polyethylene terephthalate, polybutylene terephthalate, etc.
  • polyamide nylon 6, nylon 66, etc.
  • polyolefin polyethylene, polypropylene, etc.
  • polyacrylonitrile A polyvinyl alcohol type, a polyurethane type, etc.
  • polyester fibers are preferable in consideration of processability and durability.
  • the fiber material is not particularly limited, and natural fibers and semi-synthetic fibers can be used in addition to synthetic fibers.
  • the structure of the mesh fabric is not particularly limited, and examples thereof include plain weave, satin weave, twill weave, etc. Plain weave is preferable in terms of high warp and weft binding force and excellent strength.
  • the thermoplastic synthetic fiber yarn used for part of the warp and / or the weft of the mesh fabric is a monofilament yarn.
  • the monofilament yarn is preferably a flat yarn.
  • the flatness is preferably in the range of 1.1 to 3.0, more preferably in the range of 1.1 to 2.5.
  • the flatness refers to a value obtained by dividing the long side a of the rectangle by the short side b when drawing a rectangle circumscribing the cross-sectional shape of the monofilament. If the flatness is less than 1.1, the surface of the yarn is poorly smooth and the contact area with the housing is reduced, so that stable grounding characteristics may not be obtained. When the aspect ratio exceeds 3.0, the strength of the monofilament yarn may be reduced. Moreover, it becomes difficult to ensure the opening rate of the mesh fabric, and as a result, the adhesiveness of the conductive tape may be reduced.
  • the monofilament yarn may be a flat yarn from the time the yarn is formed, or may be a flat yarn by processing after forming a mesh fabric.
  • a stress that promotes deformation is applied in a state where the monofilament yarn is heated to a temperature at which plasticity is exhibited. Specifically, it is pressed with a heated metal plate or the like, or compressed by being sandwiched between superheated rolls or the like. It can also be transformed into a flat yarn by applying tension in the warp and weft directions of the mesh fabric in the heated state.
  • the monofilament yarn may be a heat fusion yarn.
  • the heat-sealing yarn is a yarn composed of fibers having a lower melting point than general synthetic fibers. It behaves as if it melts under the heat treatment conditions in normal fiber processing and deforms or melts and sticks to other yarns.
  • the monofilament yarn may have a core-sheath structure, and only the sheath portion may be a partially heat-sealed yarn made of a heat-sealing component.
  • Mesh fabric is a fabric having more openings than a general fabric.
  • the warp yarns and the weft yarns constituting the fabric are arranged with a predetermined distance therebetween. Therefore, as long as it is a woven fabric, there always exist intersections of warps and wefts (intersection and overlap), but there are many portions where warps and wefts do not intersect (do not overlap) as compared with general fabrics.
  • the mesh fabric used for the conductive tape of the present invention preferably has an opening ratio of 45 to 90%, more preferably 60 to 85%. When the sheet-like mesh fabric is projected on a plane, the aperture ratio refers to the ratio of the area of the opening portion per unit area.
  • the open area ratio exceeds 90%, the area where the mesh fabric surface comes into contact with the housing is reduced, so that sufficient grounding characteristics may not be obtained. In addition, the electromagnetic wave shielding itself may be insufficient. Furthermore, the strength of the mesh fabric may be reduced, and handling properties may be deteriorated. On the other hand, if the aperture ratio is less than 45%, sufficient adhesion may not be obtained. In addition, it becomes difficult to push the pressure-sensitive adhesive into the opening, which may cause a difference in adhesive strength between the front and back sides.
  • the pressure-sensitive adhesive used for the conductive tape is not particularly limited, but a commonly used known acrylic pressure-sensitive adhesive or rubber-based pressure-sensitive adhesive can be used as a base polymer, and various additives and the like can be blended and used.
  • Acrylic adhesives include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, isooctyl methacrylate, nonyl methacrylate, isononyl methacrylate And other monomers containing functional groups such as methacrylic acid, crotonic acid, fumaric acid, itaconic acid, maleic anhydride, vinyl acetate, acrylonitrile styrene, 2-methacrylic acid 2-
  • a known acrylic pressure-sensitive adhesive obtained by copolymerizing hydroxyethyl and 2-methylolethylacrylamide as required can be used.
  • the rubber-based pressure-sensitive adhesive examples include rosin resins for one or a combination of two or more elastomer components such as natural rubber, styrene butadiene rubber, butyl rubber, isoprene rubber, butadiene rubber, and styrene isoprene block copolymer. , Tempel resin, aliphatic petroleum resin, aromatic petroleum, copolymer petroleum resin, alicyclic petroleum resin, coumarone / indene resin, pure monomer resin, phenol resin, xylene resin, etc. A pressure-sensitive adhesive obtained by doing so can be used.
  • the adhesive does not need to contain a conductive filler.
  • a conductive filler may be contained as a role to assist the conductive mesh fabric.
  • the conductive filler include metal fillers such as nickel powder, silver powder, copper powder, and silver-coated copper powder, carbon, and the like.
  • the value of M obtained by the following mathematical formula 1 needs to be in the range of 0.05 to 0.45.
  • B 1 Average yarn diameter of monofilament in the thickness direction of the conductive tape other than the intersection point
  • B 2 Average yarn diameter of the yarn crossing the monofilament in the thickness direction of the conductive tape other than the intersection point
  • C Other monofilament Conductive tape thickness at the intersection with the yarn
  • FIG. 1 is a plan view of a conductive tape 10 based on a conductive mesh fabric using the same monofilament for both warp and weft.
  • the warps 1 and the wefts 2 are arranged at a predetermined interval, and an opening is formed by this interval.
  • An adhesive film 3 is formed in the opening.
  • FIG. 2 is a longitudinal sectional view showing the X2-X2 cross section of FIG. In this part, the warp 1 and the weft 2 do not intersect.
  • Monofilament (warp 1) in this portion the average yarn diameter in the thickness direction of the conductive tape 10 and B 1.
  • 3 is a longitudinal sectional view showing a YY section of FIG. The average yarn diameter of the conductive tape thickness direction of the weft 2 in this portion corresponds to B 2 of formula 1.
  • FIG. 4 is a longitudinal sectional view taken along the line X1-X1 of FIG. The intersection of the warp 1 and the weft 2 is included, and the thickness of the conductive tape 10 at this intersection is C.
  • FIG. 5 is a longitudinal sectional view showing the X1-X1 cross section when the warp 1 is a multifilament yarn.
  • the value of C is the thickness of the conductive tape 10 at the intersection of the warp 1 (multifilament yarn) and the weft 2 (monofilament).
  • FIG. 6 is a longitudinal sectional view showing a YY section when the warp 1 is a multifilament yarn. In this case, it corresponds to a yarn multifilament yarn intersects the monofilament, giving a value of B 2.
  • the arrangement of the single yarns constituting the yarn is not constant, and the average average yarn diameter is not determined to be a specific value. Therefore, the average yarn diameter of each single yarn constituting the multifilament yarn and B 2.
  • a single yarn several species constituting the multifilament yarn, if their average fiber diameter is different, and B 2 have the largest average fiber diameter.
  • a conductive mesh fabric That is, a mesh fabric is woven from fiber yarns by a normal method, and a metal film is formed thereon by a known method.
  • a method for forming the metal film as described above, a vapor deposition method, a sputtering method, an electroplating method, an electroless plating method, or the like can be used.
  • an adhesive is applied on the release sheet to form an adhesive layer.
  • a coating method or an extrusion method can be used.
  • the thickness D of the adhesive layer is formed to be in the range of 50 to 90% with respect to the maximum thickness of the prepared conductive mesh fabric. More preferably, it is in the range of 65 to 85%. If the thickness D of the pressure-sensitive adhesive layer is less than 50% of the maximum thickness of the conductive mesh fabric, sufficient adhesion may not be obtained. On the other hand, when the thickness D of the adhesive layer exceeds 90% of the maximum thickness of the conductive mesh fabric, the surface of the conductive mesh fabric is covered with the adhesive film, and the housing side metal layer and the conductive mesh fabric There is a risk that the contact of the.
  • the contact resistance value becomes high, and sufficient grounding characteristics cannot be obtained.
  • heating and drying can be performed using a drying furnace or the like, and the pressure-sensitive adhesive layer can be semi-cured and used for the next step.
  • the next step is a step in which a conductive mesh fabric is arranged so as to be laminated on the adhesive layer obtained in the above step, and another release sheet is further laminated thereon to laminate the whole.
  • Lamination can be performed continuously with a laminator roll.
  • the temperature of the laminator roll may be normal temperature, but may be heated to 70 to 110 ° C. in order to improve the penetration of the adhesive into the opening of the conductive mesh fabric.
  • the aging step is carried out, for example, by allowing to stand at a temperature of 40 ° C. for 72 to 120 hours.
  • the pressure-sensitive adhesive layer is cured and becomes a pressure-sensitive adhesive film.
  • Thickness measurement Measured with a digital upright gauge R1-205 (manufactured by Ozaki Mfg. Co., Ltd.) according to JIS Z 0237.
  • a conductive tape was sandwiched between two gold-plated copper plates having a size of 25 mm ⁇ 25 mm, and a weight of 500 gf was placed thereon. The resistance value between the two copper plates was measured with a milliohm high tester 3540 (manufactured by Hioki Electric Co., Ltd.).
  • Adhesive strength According to JIS Z 0237, a universal tensile tester STA-1225 (manufactured by Orientec Co., Ltd.) was used, and the adhesive strength of the conductive tape to the SUS plate was measured under the following conditions.
  • Substrate SUS304 Adhesive tape size: 25mm x 120mm
  • Tensile speed 300 mm / min.
  • Tensile direction 180 ° peel peeling
  • a mesh plain woven fabric composed of polyethylene terephthalate monofilament yarns having a diameter of 27 ⁇ m (fineness: 8 dtex) for both the warp and weft yarns and having a warp density and a weft density of 132 yarns / inch was preset at 190 ° C. Thereafter, calendering was performed at a temperature of 150 ° C. and a linear pressure of 30 kg / cm. This mesh plain fabric was immersed in an aqueous solution at 40 ° C.
  • the nickel was immersed in an electric nickel plating solution containing nickel sulfamate 300 g / L, boric acid 30 g / L, nickel chloride 15 g / L, pH 3.7, 35 ° C. for 10 minutes at a current density of 5 A / dm 2. After laminating, it was washed with water.
  • the obtained conductive mesh fabric had a maximum thickness of 32 ⁇ m and an aperture ratio of 65%.
  • Hariacron 508EX 100 parts (acrylic adhesive, solid content 46%, manufactured by Harima Chemical Co., Ltd.)
  • Bansenate B-82 1.5 parts (isocyanate-based curing agent manufactured by Harima Chemicals Co., Ltd.) The mixed solution having the above composition was stirred for 15 minutes to prepare an adhesive coating solution.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the warp flatness was 1.50
  • the weft flatness was 1.30
  • the M value was 0.41.
  • the contact resistance value is 5.4 m ⁇
  • the adhesive strength is 7.28 N / inch on the A side (adhesive layer introduction side), and 4.31 N / inch on the B side (adhesion layer exudation side), both of which are good. Met.
  • the strength was sufficient without the conductive tape being cut when being applied.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 110 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the 40-micrometer-thick adhesion layer was obtained.
  • the produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, it bonded together with the temperature of 90 degreeC and the pressure of 3 kg / cm ⁇ 2 > with the laminator roll, and wound up.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the flatness of warp and weft was 1.10 and the value of M was 0.09.
  • the contact resistance value was 3.1 m ⁇
  • the adhesive strength was 8.83 N / inch for the A side and 8.37 N / inch for the B side, both of which were favorable.
  • the strength was sufficient without the conductive tape being cut when being applied.
  • the plain fabric was preset at 190 ° C. Next, calendering was performed at a temperature of 90 ° C. and a linear pressure of 30 kg / cm. Thereafter, the mesh plain fabric was plated by the same method as in Example 1.
  • the obtained conductive mesh fabric had a maximum thickness of 28 ⁇ m and an aperture ratio of 80%.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 60 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the adhesion layer with a thickness of 23 micrometers was obtained. The produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, it bonded together with the temperature of 90 degreeC and the pressure of 3 kg / cm ⁇ 2 > with the laminator roll, and wound up.
  • SK-80KCT manufactured by Sumika Kogyo Co., Ltd.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the obtained conductive tape had a warp flatness of 1.63, a weft flatness of 1.56, and an M value of 0.37.
  • the contact resistance value was 3.5 m ⁇ , and the adhesive strength was 8.91 N / inch for the A side and 8.66 N / inch for the B side, both of which were favorable.
  • the strength was sufficient without the conductive tape being cut when being applied.
  • Example 1 (Production of conductive mesh fabric)
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 120 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the 45-micrometer-thick adhesion layer was obtained. On this adhesive layer, the conductive mesh fabric having the maximum thickness of 51 ⁇ m and the opening ratio of 72% and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated. Furthermore, it bonded together with the temperature of 90 degreeC and the pressure of 3 kg / cm ⁇ 2 > with the laminator roll, and wound up.
  • SK-80KCT manufactured by Sumika Kogyo Co., Ltd.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the flatness of warps and wefts was 1.1, and the value of M was 0.04.
  • the contact resistance value was 21.6 m ⁇ , and the grounding characteristics were low.
  • the adhesive strength was 9.70 N / inch on the A side and 1.91 N / inch on the B side, and the adhesive strength on the B side was insufficient.
  • the plain fabric was preset at 190 ° C.
  • calendering was performed at a temperature of 160 ° C. and a linear pressure of 30 kg / cm. Thereafter, plating was performed in the same manner as in Example 1.
  • the obtained conductive mesh fabric had a maximum thickness of 23 ⁇ m and an aperture ratio of 81%.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 50 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the 20-micrometer-thick adhesion layer was obtained.
  • the produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, it bonded together with the temperature of 90 degreeC and the pressure of 3 kg / cm ⁇ 2 > with the laminator roll, and wound up.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the warp flatness was 2.41
  • the weft flatness was 2.37
  • the M value was 0.33.
  • the contact resistance value was 2.8 m ⁇
  • the adhesive strength was 9.56 N / inch on the A side and 9.16 N / inch on the B side, both of which were favorable.
  • the handling property the strength was sufficient without the conductive tape being cut when being applied.
  • Example 2 (Production of conductive mesh fabric)
  • a mesh plain fabric composed of polyethylene terephthalate monofilament yarns having a diameter of 27 ⁇ m (fineness: 8 dtex) for both warp and weft yarns and having a warp density and a weft density of 132 yarns / inch is the same as in Example 1 without being preset.
  • the plating process was performed by the method of.
  • the obtained conductive mesh fabric had a maximum thickness of 51 ⁇ m and an aperture ratio of 72%.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 120 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the 45-micrometer-thick adhesion layer was obtained. The produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, the temperature 60 ° C. The laminator rolls, subjected to bonding at a pressure 2 kg / cm 2, was wound up.
  • SK-80KCT manufactured by Sumika Kogyo Co., Ltd.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the warp flatness was 1.06
  • the weft flatness was 1.08
  • the value of M was 0.04.
  • the contact resistance value was 24.3 m ⁇ , and the grounding characteristics were low.
  • the adhesive strength was 8.80 N / inch for the A side and 1.32 N / inch for the B side, and the adhesive strength on the B side was insufficient.
  • a mesh composed of a polyethylene terephthalate monofilament yarn having a diameter of 27 ⁇ m (fineness 8 dtex) and a weft yarn having a diameter of 27 ⁇ m (fineness 8 dtex) and a polyethylene terephthalate monofilament fused yarn having a warp density and a weft density of 100 yarns / inch.
  • the plain fabric was preset at 190 ° C.
  • This mesh plain fabric was plated by the same method as in Example 1.
  • the obtained conductive mesh fabric had a maximum thickness of 44 ⁇ m and an opening ratio of 82%.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 100 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And it passed through the inside of 120 degreeC dryer, and the 37-micrometer-thick adhesion layer was obtained.
  • the produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, it bonded together with the temperature of 90 degreeC and the pressure of 3 kg / cm ⁇ 2 > with the laminator roll, and wound up.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the flatness of warp and weft was 1.1, and the value of M was 0.20.
  • the contact resistance value was 2.0 m ⁇ , and the adhesive strength was 10.80 N / inch on the A side and 8.50 N / inch on the B side, both of which were favorable.
  • the strength was sufficient without the conductive tape being cut when being applied.
  • Example 3 (Production of conductive mesh fabric) A mesh plain woven fabric composed of polyethylene terephthalate monofilament yarns with a diameter of 49 ⁇ m (fineness: 26 dtex) for both warp and weft yarns having a warp density and a weft density of 200 yarns / inch is the same as in Example 1 without being preset. The plating process was performed by the method of. The obtained conductive mesh fabric had a maximum thickness of 94 ⁇ m and an aperture ratio of 37%.
  • Adhesive coating process Using a comma direct coater, adjust the clearance between the release sheet (SLK-80KCT: manufactured by Sumika Kogyo Co., Ltd.) and the comma head to 210 ⁇ m, and apply the same adhesive coating solution as in Example 1 uniformly. did. And the inside of 120 degreeC dryer was passed, and the 78-micrometer-thick adhesion layer was obtained. The produced conductive mesh fabric and another release sheet (EKR90R: manufactured by Lintec Corporation) were laminated on this adhesive layer. Furthermore, the temperature 60 ° C. The laminator rolls, subjected to bonding at a pressure 2 kg / cm 2, was wound up.
  • SK-80KCT manufactured by Sumika Kogyo Co., Ltd.
  • the roll obtained above was aged for 3 days under the condition of 40 ° C. to cure the adhesive layer.
  • the obtained conductive tape had a warp flatness of 1.05, a weft flatness of 1.06, and an M value of 0.04.
  • the contact resistance value was not measurable (infinite), and it was not possible to obtain continuity rather than grounding characteristics.
  • Adhesive strength was 19.63 N / inch for side A and 6.65 N / inch for side B.
  • Table 1 summarizes the above Examples 1 to 5 and Comparative Examples 1 to 3.
  • the measured value of the adhesive force is large on both the A side and the B side, and the double-sided adhesiveness is excellent.
  • Example 1 in which the average flatness of the thermoplastic synthetic fiber monofilament yarn is 1.50 with the warp 1.30, Example 2 with the warp 1.10 and Example 1 with the warp 1.10, warp 1.
  • Example 3 weft 1.56, weft 2.41, weft 2.41, weft 2.37, Example 4, warp 1.10 and weft 1.10, Example 5, all have small contact resistance values and grounding characteristics. Is excellent.
  • the measured value of the adhesive force is large on both the A side and the B side, and the double-sided adhesiveness is excellent.
  • Comparative Example 2 having an average flatness of 1.06 warp and 1.08 weft has a large contact resistance value of 24.3 m ⁇ , and has a lower grounding characteristic than Comparative Example 1. Also, the measured value of the adhesive force is as small as 1.32 N / inch on the B surface, and the adhesive strength on the B surface side is insufficient as compared with Comparative Example 1. Comparative Example 3 with an average flatness of warp 1.05 and weft 1.06 is inferior to Comparative Examples 1 and 2 because the contact resistance value is too large to be measured and does not function as a conductive tape.
  • thermoplastic synthetic fiber monofilament yarn preferably has an average flatness in the range of 1.1 to 3.0 in cross-sectional shape.
  • the average aspect ratio is more preferably in the range of 1.1 to 2.5.
  • the opening ratio of the conductive mesh fabric gradually increases between Example 1 and Example 5.
  • the adhesive force gradually increases as a whole, but the contact resistance value is kept low, indicating excellent grounding characteristics.
  • Comparative Example 3 in which the opening ratio of the conductive mesh fabric is 37% cannot be measured because the contact resistance value is too large, and does not function as a conductive tape. This is because the pressure-sensitive adhesive cannot sufficiently penetrate due to the small opening ratio, and the excessive pressure-sensitive adhesive covers the surface of the conductive tape, and the metal film is not sufficiently exposed.
  • the opening ratio of the conductive mesh fabric is preferably in the range of 45 to 90%.
  • the opening ratio of the conductive mesh fabric is more preferably in the range of 60 to 85%.
  • the conductive tape of the present invention can be used as an ultra-thin electromagnetic shielding gasket for electronic equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Woven Fabrics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

 導電テープ10は、表面に金属被膜を有する導電性メッシュ織物の開口部のみに、粘着剤からなる粘着膜3を有し、該導電性メッシュ織物の両面において該金属被膜が該粘着膜3で被覆されずに露出しており、該導電性メッシュ織物を構成する糸条の一部に熱可塑性合成繊維モノフィラメント糸を含み、数式1で得られるMの値が0.05~0.45の範囲内であることを特徴とする。 M={(B+B)-C}/(B+B) ・・・・(数式1) (B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径、B:モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径、C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)

Description

導電テープ及びその製造方法
 本発明は導電テープ及びその製造方法に関する。詳しくは、両面接着性を有する導電テープ及びその製造方法に関する。
 電子機器等のケースに電磁波を遮蔽するために貼り付ける電磁波シールドガスケットとして、導電テープが用いられる。また、スマートフォン等の携帯電話に代表される携帯型の電子機器、パソコン等の電子機器の分野では、小型化及び高性能化が進んでいる。これらの電子機器における電磁波シールドガスケットとしては、高い接着性と優れたグラウンディング特性が要求されるとともに、より薄い導電テープが求められている。
 従来の導電テープとしては、例えば特許文献1に示されるように、導電性のフィラーを分散させた粘着層を基材となる金属箔や導電性を有する不織布等の布帛の両面に積層させたものと、導電性のフィラーを分散させた粘着剤のみからなるものとの2種類がある。前者の導電テープをより薄くしようとする場合には、粘着層の厚さを薄くしなければならない。すると、粘着層が基材の凹凸に潜り込んで、接着性が低下する。接着性を向上させるためには、導電性のフィラーの量を減らす必要がある。その結果として、導電性能が低下してしまう。後者の導電テープでは、基材を用いないために薄くすることは容易であるが、フィラーのみでは導電性が不十分であり、取り扱いにおいても破れ易いという問題点があった。
 また、グラウンディング特性は粘着層に含まれる導電性のフィラーの露出状態や、基材との接触状態に大きく左右される。このため、貼り付ける条件等によっては安定したグラウンディング特性が得られないという問題もあった。さらに、基材を含む導電テープの場合、基材そのものを薄くすることも考えられる。しかし、不織布等では薄くすると引張強度が著しく低下し、貼り付ける際のハンドリングで導電テープが切断されてしまうという問題があった。基材として金属箔を用いる場合は、金属箔の変形によって粘着層が剥離してしまうという問題があった。
 そこで、かかる問題を解決するために、特許文献2には、導電性を有する基材の少なくとも片面に粘着層を形成し、該基材の一部を粘着層から突出させた粘着性シートが開示されている。また、特許文献3には、金属を用いた織物、編物、またはネット状に形成された導電性シートがエラストマー基材に埋設され、その導電性シートがエラストマー基材の表裏両面に露出した電磁波シールドテープが開示されている。
特許第4511076号公報 特開昭62-227986号公報 特許第3869348号公報
 しかしながら、特許文献2に記載された技術においては、被着体への導電性をよくするために突出部を多くすると、粘着剤の量が少なくなって接着性が低下する。これに対して、接着性を上げるために突出部を少なくすると、導電性が低下してしまうという問題点があった。
 また、特許文献3に記載された技術においては、表裏の露出性をよりよくするために導電性シート全体に凹凸を設けることが好ましいとされている。しかしながら、凹凸が大きい場合は筐体との接触面積は小さくなり、厚さ方向への導電性が不安定になるという問題点がある。テープの使用面積が小さい場合や接地圧が小さい場合には、この問題点が顕著になる。特に、小型化及び高機能化が進む携帯型の電子機器には不向きである。さらに、導電性シートの凹凸が大きくなると、電磁波シールドテープ自体が厚くなってしまうという問題点があった。
 本発明は、かかる問題点に鑑みてなされたものであって、電子機器において電磁波を遮蔽するために使用される導電テープとして、より薄く、優れたグラウンディング特性と高い接着性を兼ね備え、且つ貼り付け作業時のハンドリング性に優れた導電テープを提供することを目的とする。
 上記目的を達成するために、本発明の第1の観点に係る導電テープは、
 表面に金属被膜を有する導電性メッシュ織物と、
 該導電性メッシュ織物の開口部のみに形成された粘着剤からなる粘着膜と、
 を有し、
 前記導電性メッシュ織物の両面において前記金属被膜が前記粘着膜で被覆されずに露出しており、
 前記導電性メッシュ織物を構成する糸条の少なくとも一部に熱可塑性合成繊維モノフィラメント糸を含み、
 下記の数式1で得られるMの値が0.05~0.45の範囲内である。
Figure JPOXMLDOC01-appb-M000003
(B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径
:モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径
C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)
 また、前記熱可塑性合成繊維モノフィラメント糸が、断面形状において平均扁平率が1.1~3.0の範囲内であることが好ましい。
 また、前記導電性メッシュ織物の開口率が45~90%の範囲内であることが好ましい。 
 上記目的を達成するために、本発明の第2の観点に係る導電テープの製造方法は、
 表面に金属被膜を有し、熱可塑性合成繊維モノフィラメント糸を構成要素の少なくとも一部とする導電性メッシュ織物を準備する工程と、
 離型シート上に流動性を有する粘着剤を塗布し、厚さが前記導電性メッシュ織物の最大厚さの50~90%の範囲内となる粘着剤層を形成する工程と、
 前記粘着剤層の上に前記導電性メッシュ織物を積層し、さらにその上にもう一枚の離型シートを積層してラミネートする工程と、
 エージングを行い前記粘着剤層を硬化させて粘着膜を形成する工程とを有し、
 下記の数式1で得られるMの値が0.05~0.45の範囲内である。
Figure JPOXMLDOC01-appb-M000004
(B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径
:モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径
C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)
 本発明によれば、導電性メッシュ織物の開口部のみに粘着膜が形成されているため、優れたグラウンディング特性と強力な接着性を両立することができ、導電テープの厚さも極めて薄くすることができる。また、上記数式1で得られるMの値が0.05~0.45の範囲内であることから、導電テープの表面の平滑性が確保されて、十分なグラウンディング特性と接着性が得られるとともに、強度が確保されてハンドリング性にも優れた導電テープとなる。
本発明の実施形態に係る導電テープの一部を示す平面模式図である。 図1におけるX2-X2断面を示す縦断面模式図である。 図1におけるY-Y断面を示す縦断面模式図である。 図1におけるX1-X1断面を示す縦断面模式図である。 図1において経糸がマルチフィラメント糸条の場合のX1-X1断面を示す縦断面模式図である。 図1において経糸がマルチフィラメント糸条の場合のY-Y断面を示す縦断面模式図である。
 本発明の実施形態に使用される導電性メッシュ織物は、薄さ及び柔軟性という観点から、熱可塑性合成繊維モノフィラメント糸を少なくとも一部に含むメッシュ織物の表面に、公知技術である蒸着法、スパッタリング法、電気メッキ法及び無電解メッキ法等により金属被膜が形成されたものである。
 熱可塑性合成繊維モノフィラメント糸に用いられる繊維素材としては、ポリエステル系(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアミド系(ナイロン6、ナイロン66等)、ポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリアクリロニトリル系、ポリビニルアルコール系、ポリウレタン系等を挙げることができ、これらのうち2種類以上が組み合わされていてもよい。中でも、加工性及び耐久性を考慮した場合、ポリエステル系の繊維が好ましい。
 熱可塑性合成繊維モノフィラメント糸以外の糸条を混用する場合、その繊維素材としては特に限定されず、合成繊維のほか、天然繊維、半合成繊維を用いることもできる。
 メッシュ織物の組織としては特に限定されるものではなく、平織り、朱子織り、綾織り等が挙げられるが、経糸と緯糸の拘束力が高く強度に優れるという点で平織りが好ましい。
 メッシュ織物の経糸及び/または緯糸の一部に用いられる熱可塑性合成繊維糸条はモノフィラメント糸である。モノフィラメント糸は扁平糸であることが好ましい。その扁平率は1.1~3.0の範囲内であることが好ましく、1.1~2.5の範囲内であることがより好ましい。扁平率とは、モノフィラメントの断面形状に外接する長方形を描いた時に、この長方形の長辺aを短辺bで除した値をいう。扁平率が1.1未満であると、糸表面の平滑性が乏しく筐体との接触面積が減ることとなり、安定したグラウンディング特性が得られないおそれがある。扁平率が3.0を超えると、モノフィラメント糸の強度が低下するおそれがある。また、メッシュ織物の開口率を確保することが困難となり、結果として導電テープの接着性を低下させてしまうおそれがある。
 モノフィラメント糸は、その糸条形成時から扁平糸であってもよいし、メッシュ織物を形成した後の加工によって扁平糸としてもよい。加工によって扁平糸とする方法としては、モノフィラメント糸が可塑性を示す温度まで昇温した状態で変形を促す応力を加える。具体的には、熱した金属板等でプレスしたり、過熱ロール等に挟んで圧縮したりする。また、加熱した状態でメッシュ織物の経方向及び緯方向にテンションを加えることによっても、扁平糸に変形させることができる。
 さらに、モノフィラメント糸は熱融着糸であってもよい。熱融着糸とは、一般的な合成繊維と比較して、低い融点を持つ繊維からなる糸条である。通常の繊維加工における熱処理条件で溶融し、変形あるいは他の糸条に融けて貼りつくような挙動を示す。モノフィラメント糸が芯鞘構造となっており、その鞘部分のみが熱融着成分からなる部分熱融着糸であってもよい。
 メッシュ織物は、一般的な織物と比較して開口部が多い織物である。織物を構成している経糸同士及び緯糸同士が、所定の距離をおいて離れて配置される構造となる。したがって、織物である以上必ず経糸と緯糸の交点(交差し重なる部分)が存在するが、一般的な織物と比較して経糸と緯糸が交差しない(重ならない)部分も多く存在する。本発明の導電テープに用いられるメッシュ織物は、その開口率が45~90%であることが好ましく、60~85%であることがより好ましい。開口率とは、シート状のメッシュ織物を平面に投影した場合、その単位面積あたりに占める開口部の面積の比率を言う。開口率が90%を超えると、メッシュ織物表面が筐体に接触する面積が少なくなるため、十分なグラウンディング特性を得られないおそれがある。そのうえ、電磁波シールド性そのものが不足するおそれもある。さらに、メッシュ織物の強度が低下し、ハンドリング性も悪くなるおそれがある。一方、開口率が45%未満の場合には、十分な接着性が得られないおそれがある。また、粘着剤を開口部内に押し込むことが困難となり、表裏での接着力の差が生じる等のおそれがある。
 導電テープに用いられる粘着剤は特に限定されないが、一般的に用いられる公知のアクリル系粘着剤やゴム系粘着剤をベースポリマーとして使用でき、これらに各種添加剤等を配合して用いることができる。
 アクリル系粘着剤としては、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸プロピル、メタアクリル酸n-ブチル、メタアクリル酸2-エチルヘキシル、メタアクリル酸イソオクチル、メタアクリル酸ノニル、メタアクリル酸イソノニル等のメタアクリル酸エステルモノマーを主成分とし、これにメタアクリル酸、クロトン酸、フマル酸、イタコン酸、無水マレイン酸等の官能基を含むモノマーや酢酸ビニル、アクリルニトリルスチレン、メタアクリル酸2-ヒドロキシエチル、2-メチロールエチルアクリルアミドを必要に応じて共重合させることによって得られる公知のアクリル系粘着剤を用いることができる。
 ゴム系粘着剤としては、例えば、天然ゴム、スチレンブタジエンゴム、ブチルゴム、イソプレンゴム、ブタジエンゴム、及びスチレンイソプレンブロックコポリマー等のエラストマー成分の1種、または2種以上の組み合わせに対して、ロジン系樹脂、テンペル系樹脂、脂肪族系石油樹脂、芳香族系石油、共重合系石油樹脂、脂環族系石油樹脂、クマロン・インデン樹脂、ピュア・モノマー系樹脂、フェノール系樹脂、キシレン系樹脂等を混合することによって得られる粘着剤を用いることができる。
 本発明の実施形態においては、粘着剤中には導電性のフィラーを含有する必要はない。ただし、導電性メッシュ織物を補助する役割として導電性のフィラーを含有していてもよい。導電性のフィラーとしては、ニッケル粉、銀粉、銅粉、銀コート銅粉等の金属フィラーやカーボン等が用いられる。
 本発明の実施形態に係る導電テープにおいては、次の数式1で得られるMの値が0.05~0.45の範囲内であることが必要である。
Figure JPOXMLDOC01-appb-M000005
(B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径
:モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径
C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)
 数式1について、図面を用いて詳しく説明をする。図1は経糸、緯糸ともに同一のモノフィラメントを用いた導電性メッシュ織物を基材とした導電テープ10の平面図である。経糸1同士、緯糸2同士は各々所定の間隔で配置され、この間隔によって開口部が形成されている。開口部には粘着膜3が形成されている。
 図2は、図1のX2-X2断面を示す縦断面図である。この部分では、経糸1と緯糸2とは交差していない。この部分におけるモノフィラメント(経糸1)の、導電テープ10の厚さ方向の平均糸径をBとする。図3は、図1のY-Y断面を示す縦断面図である。この部分での緯糸2の導電テープ厚さ方向の平均糸径が、数式1のBに相当する。さらに、図4は、図1のX1-X1断面における縦断面図である。経糸1と緯糸2との交点が含まれており、この交点部における導電テープ10の厚さがCとなる。
 図5は、経糸1がマルチフィラメント糸条の場合のX1-X1断面を示す縦断面図である。この場合も、Cの値は経糸1(マルチフィラメント糸条)と緯糸2(モノフィラメント)との交点における導電テープ10の厚さとなる。図6は、同じく経糸1がマルチフィラメント糸条の場合のY-Y断面を示す縦断面図である。この場合は、マルチフィラメント糸条がモノフィラメントと交差する糸条に相当し、Bの値を与える。ただし、マルチフィラメント糸条は、糸条を構成する各単糸の配置が一定ではなく、全体としての平均糸径は特定の値に定まらない。したがって、マルチフィラメント糸条を構成する各単糸の平均糸径をBとする。マルチフィラメント糸条を構成する単糸が複数種であって、それらの平均糸径が異なる場合には、最大の平均糸径をもってBとする。
 数式1で得られるMの値が0.05未満の場合、経糸1と緯糸2との交点における導電テープ10の厚さが、交点以外の部分での厚さに対して大きくなりすぎる。したがって、導電テープ10の表面の平滑性が低下することから、十分なグラウンディング特性と接着性が得られないおそれがある。Mの値が0.45を超える場合、経糸1あるいは緯糸2の一方、または両方の変形が大きすぎるために、糸条の強度が低下し、導電テープ10の引張強度が不足するおそれがある。
 本実施形態に係る導電テープ10の製造方法について、以下に説明する。
 まず、導電性メッシュ織物を準備する。すなわち、通常の手法によって繊維糸条からメッシュ織物を製織し、これに公知の方法で金属被膜を形成する。金属被膜を形成する方法としては、前述したように、蒸着法、スパッタリング法、電気メッキ法、無電解メッキ法等を用いることができる。
 次に、離型シート上に粘着剤を塗布し、粘着層を形成する。塗布の手段としては、コーティング法や押し出し法を用いることができる。粘着層の厚さDは、用意した導電性メッシュ織物の最大厚さに対し、50~90%の範囲内となるように形成する。さらに好ましくは、65~85%の範囲内である。
 粘着層の厚さDが、導電性メッシュ織物の最大厚さの50%未満の場合には、十分な接着性が得られないおそれがある。一方、粘着層の厚さDが、導電性メッシュ織物の最大厚さの90%を超える場合には、導電性メッシュ織物の表面が粘着膜で覆われ、筐体側金属層と導電性メッシュ織物との接触が阻害されるおそれがある。このような状態になると、接触抵抗値が高くなってしまい、十分なグラウンディング特性が得られない。粘着層を形成した後、乾燥炉等を用いて加熱・乾燥を行い、粘着層を半硬化状態として次の工程に供することもできる。
 次の工程は、前記工程で得られた粘着層に積層するように導電性メッシュ織物を配置し、さらにその上に別の離型シートを重ねて全体をラミネートする工程である。ラミネートは、ラミネーターロールにより連続的に行うことができる。ラミネーターロールの温度は常温でもよいが、導電性メッシュ織物の開口部への粘着剤の侵入をよくするために、70~110℃に加熱してもよい。粘着層の厚さDを上記の範囲内とし、両面を離型シートで挟み込んでラミネートすることにより、流動性を残した粘着層は導電性メッシュ織物の開口部にのみ侵入することができる。
 続いてエージング工程が実施される。エージング工程は、例えば40℃の温度下において72~120時間静置することによって実施される。このエージング工程によって粘着層は硬化し、粘着膜となる。
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、得られた導電テープの性能評価は、以下の方法にしたがって行った。
 厚さ測定:JIS Z 0237に準じ、デジタルアプライトゲージ R1-205(株式会社尾崎製作所製)で測定した。
 接触抵抗値:25mm×25mmの大きさの、金メッキを施した銅板2枚の間に導電テープを挟み、500gfのおもりを乗せた。その2枚の銅板間の抵抗値を、ミリオームハイテスター3540(日置電機株式会社製)で測定した。
 接着力:JIS Z 0237に準じ、万能引張試験機STA-1225(株式会社オリエンテック製)を使用し、以下の条件で導電テープのSUS板への接着力を測定した。
  被着体・・・SUS304
  接着用導電テープサイズ・・・25mm×120mm
  引張速度・・・300mm/min.
  引張方向・・・180°ピール剥離
 (導電性メッシュ織物の作製)
 経糸、緯糸ともに直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸から構成された、経糸密度、緯糸密度がともに132本/インチであるメッシュ平織物を、190℃でプレセットした。その後、温度150℃、線圧30kg/cmでカレンダー加工を行った。このメッシュ平織物を、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む40℃の水溶液に2分間浸漬後、水洗した。続いて、酸濃度0.1N、30℃のホウフッ化水素酸に5分間浸漬後、水洗した。次に、硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lを含む30℃の無電解銅メッキ液に5分間浸漬後、水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/Lを含む、pH3.7、35℃の電気ニッケルメッキ液に10分間、電流密度5A/dmで浸漬しニッケルを積層させた後、水洗した。得られた導電性メッシュ織物の最大厚さは32μmであり、その開口率は65%であった。
 (粘着剤塗工液の調整)
 ハリアクロン508EX                     :100部
 (アクリル系粘着剤、固型分46% ハリマ化成株式会社製)
 バンセネートB-82                      :1.5部
 (イソシアネート系硬化剤 ハリマ化成株式会社製)
 上記配合の混合液を15分攪拌し、粘着剤塗布液を作製した。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを60μmに調整し、粘着剤を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ23μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸の扁平率は1.50、緯糸の扁平率は1.30、Mの値は0.41であった。接触抵抗値は5.4mΩ、接着力はA面(粘着層導入側の面)が7.28N/インチ、B面(粘着層滲出側の面)が4.31N/インチであり、いずれも良好であった。また、ハンドリング性に関しても、貼り付ける際に導電テープが切断されるようなこともなく、強度は十分であった。
 (導電性メッシュ織物の作製)
 経糸、緯糸ともに直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸から構成された、経糸密度、緯糸密度がともに132本/インチであるメッシュ平織物を、190℃でプレセットした。そして、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは47μmであり、その開口率は72%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを110μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ40μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸及び緯糸の扁平率はともに1.10、Mの値は0.09であった。接触抵抗値は3.1mΩ、接着力はA面が8.83N/インチ、B面が8.37N/インチであり、いずれも良好であった。また、ハンドリング性に関しても、貼り付ける際に導電テープが切断されるようなこともなく、強度は十分であった。
 (導電性メッシュ織物の作製)
 経糸が直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸、緯糸が直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント融着糸から構成された、経糸密度、緯糸密度がともに100本/インチであるメッシュ平織物を、190℃でプレセットした。次に、温度90℃、線圧30kg/cmでカレンダー加工を行った。その後、このメッシュ平織物に、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは28μmであり、その開口率は80%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを60μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ23μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸の扁平率は1.63、緯糸の扁平率は1.56、Mの値は0.37であった。接触抵抗値は3.5mΩ、接着力はA面が8.91N/インチ、B面が8.66N/インチであり、いずれも良好であった。また、ハンドリング性に関しても、貼り付ける際に導電テープが切断されるようなこともなく、強度は十分であった。
[比較例1]
 (導電性メッシュ織物の作製)
 経糸、緯糸ともに直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸から構成された、経糸密度、緯糸密度がともに132本/インチであるメッシュ平織物に対して、プレセットせずに、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは51μmであり、その開口率は72%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを120μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ45μmの粘着層を得た。この粘着層に、上記最大厚さ51μm、開口率72%の導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸及び緯糸の扁平率はともに1.1、Mの値は0.04であった。接触抵抗値は21.6mΩで、グラウンディング特性が低かった。接着力はA面が9.70N/インチ、B面が1.91N/インチであり、B面側の接着強度が不十分であった。
 (導電性メッシュ織物の作製)
 経糸が直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸、緯糸が直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント融着糸から構成された、経糸密度、緯糸密度がともに100本/インチであるメッシュ平織物を、190℃でプレセットした。次に、温度160℃、線圧30kg/cmでカレンダー加工を行った。その後、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは23μmであり、その開口率は81%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを50μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ20μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸の扁平率は2.41、緯糸の扁平率は2.37、Mの値は0.33であった。接触抵抗値は2.8mΩ、接着力はA面が9.56N/インチ、B面が9.16N/インチであり、いずれも良好であった。また、ハンドリング性に関しても、貼り付ける際に導電テープが切断されるようなこともなく、強度は十分であった。
[比較例2]
 (導電性メッシュ織物の作製)
 経糸、緯糸ともに直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸から構成された、経糸密度、緯糸密度がともに132本/インチであるメッシュ平織物を、プレセットせずに、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは51μmであり、その開口率は72%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを120μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ45μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度60℃、圧力2kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸の扁平率は1.06、緯糸の扁平率は1.08、Mの値は0.04であった。接触抵抗値は24.3mΩで、グラウンディング特性が低かった。接着力はA面が8.80N/インチ、B面が1.32N/インチであり、B面側の接着強度が不十分であった。
 (導電性メッシュ織物の作製)
 経糸に直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント糸、緯糸に直径27μm(繊度8dtex)のポリエチレンテレフタレート製モノフィラメント融着糸から構成された、経糸密度、緯糸密度がともに100本/インチであるメッシュ平織物を、190℃でプレセットした。このメッシュ平織物に、実施例1と同様の方法でメッキ加工を行った。得られた導電性メッシュ織物の最大厚さは44μmであり、その開口率は82%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを100μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ37μmの粘着層が得られた。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度90℃、圧力3kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸及び緯糸の扁平率はともに1.1、Mの値は0.20であった。接触抵抗値は2.0mΩ、接着力はA面が10.80N/インチ、B面が8.50N/インチであり、いずれも良好であった。また、ハンドリング性に関しても、貼り付ける際に導電テープが切断されるようなこともなく、強度は十分であった。
[比較例3]
 (導電性メッシュ織物の作製)
 経糸、緯糸ともに直径49μm(繊度26dtex)のポリエチレンテレフタレート製モノフィラメント糸から構成された、経糸密度、緯糸密度がともに200本/インチであるメッシュ平織物を、プレセットせずに、実施例1と同様の方法でめっき加工を行った。得られた導電性メッシュ織物の最大厚さは94μmであり、その開口率は37%であった。
 (粘着塗工処理)
 コンマダイレクトコーターを使用し、離型シート(SLK-80KCT:住化加工紙株式会社製)とコンマヘッドのクリアランスを210μmに調整し、実施例1と同様の粘着剤塗工液を均一に塗工した。そして、120℃の乾燥機内を通過させ、厚さ78μmの粘着層を得た。この粘着層に、作製した導電性メッシュ織物及び別の離型シート(EKR90R:リンテック株式会社製)を積層した。さらに、ラミネーターロールにより温度60℃、圧力2kg/cmで貼り合せを行い、巻き取った。
 (エージング及び評価)
 上記で得られたロールを、そのまま40℃の条件下で3日間エージングを行い、粘着層を硬化させた。得られた導電テープについて、経糸の扁平率は1.05、緯糸の扁平率は1.06、Mの値は0.04であった。接触抵抗値は測定不能(無限大)で、グラウンディング特性どころか、導通性が得られなかった。接着力はA面が19.63N/インチ、B面が6.65N/インチであり良好であった。
 以上の実施例1乃至5及び比較例1乃至3について、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示されるように、数式1で表されるMの値が0.41の実施例1、M=0.09の実施例2、M=0.37の実施例3、M=0.33の実施例4、M=0.20の実施例5は、いずれも接触抵抗値が小さくグラウンディング特性に優れている。また、接着力の測定値も、A面・B面ともに大きく、両面接着性に優れている。
 これに対して、数式1で表されるMの値が0.04の比較例1は、接触抵抗値が21.6mΩと大きく、グラウンディング特性が低い。また、接着力の測定値も、B面が1.91N/インチと小さく、B面側の接着強度が不足している。同じくM=0.04の比較例2は、接触抵抗値が24.3mΩとさらに大きく、グラウンディング特性が低い。また、接着力の測定値も、B面が1.32N/インチとさらに小さく、B面側の接着強度が不足している。同じくM=0.04の比較例3は、接触抵抗値が大きすぎて測定不能であり、導電テープとして機能しない。
 さらに、数式1で表されるMの値が0.45を超える導電テープの作製を試みた。しかし、いずれも破れてしまい、織物の体をなさなかった。
 以上の結果より、優れた特性を有する導電テープを得るためには、数式1で表されるMの値が0.05~0.45の範囲内であることが必要である。
 表1に示されるように、熱可塑性合成繊維モノフィラメント糸の平均扁平率が経糸1.50で緯糸1.30の実施例1、経糸1.10で緯糸1.10の実施例2、経糸1.63で緯糸1.56の実施例3、経糸2.41で緯糸2.37の実施例4、経糸1.10で緯糸1.10の実施例5は、いずれも接触抵抗値が小さくグラウンディング特性に優れている。また、接着力の測定値も、A面・B面ともに大きく、両面接着性に優れている。
 これに対して、平均扁平率が経糸1.06で緯糸1.08の比較例2は、接触抵抗値が24.3mΩと大きく、比較例1よりもグラウンディング特性が低い。また、接着力の測定値も、B面が1.32N/インチと小さく、比較例1よりもB面側の接着強度が不足している。平均扁平率が経糸1.05で緯糸1.06の比較例3は、接触抵抗値が大きすぎて測定不能であり、導電テープとして機能しないため、比較例1,2よりも劣っている。
 さらに、平均扁平率が3.0を超える導電テープの作製を試みた。しかし、いずれも破れてしまい、織物の体をなさなかった。
 以上の結果より、優れた特性を有する導電テープを得るためには、熱可塑性合成繊維モノフィラメント糸が、断面形状において平均扁平率が1.1~3.0の範囲内であることが好ましい。そして、平均扁平率が1.1~2.5の範囲内であることが、より好ましい。
 表1に示されるように、導電性メッシュ織物の開口率は、実施例1から実施例5までの間で次第に大きくなっている。これにしたがって、接着力は全体として次第に大きくなりながら、接触抵抗値としては低い値を保っており、優れたグラウンディング特性を示している。しかし、開口率が90%を超える導電性メッシュ織物からの導電テープの作製を試みたが、織物として取り扱うことができず、加工することができなかった。また、導電性メッシュ織物の開口率が37%の比較例3は、接触抵抗値が大きすぎて測定不能であり、導電テープとして機能しない。開口率が小さいために粘着剤が十分に侵入できず、余剰の粘着剤が導電テープ表面を覆ってしまい、金属被膜の露出が不十分であることが原因である。
 以上の結果より、優れた特性を有する導電テープを得るためには、導電性メッシュ織物の開口率が45~90%の範囲内であることが好ましい。そして、導電性メッシュ織物の開口率が60~85%の範囲内であることが、より好ましい。
 本願は、2011年6月16日に出願された日本国特許出願2011-133941を基礎とする優先権を主張し、当該基礎出願の内容をすべて本願にとりこむものとする。
 本発明の導電テープは、電子機器用の極薄の電磁波シールドガスケットとして利用することができる。
 1 経糸
 2 緯糸
 3 粘着膜
10 導電テープ

Claims (4)

  1.  表面に金属被膜を有する導電性メッシュ織物と、
     該導電性メッシュ織物の開口部のみに形成された粘着剤からなる粘着膜と、
     を有し、
     前記導電性メッシュ織物の両面において前記金属被膜が前記粘着膜で被覆されずに露出しており、
     前記導電性メッシュ織物を構成する糸条の少なくとも一部に熱可塑性合成繊維モノフィラメント糸を含み、
     下記の数式1で得られるMの値が0.05~0.45の範囲内である導電テープ。
    Figure JPOXMLDOC01-appb-M000001
    (B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径
    :モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径
    C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)
  2.  前記熱可塑性合成繊維モノフィラメント糸が、断面形状において平均扁平率が1.1~3.0の範囲内である請求項1に記載の導電テープ。
  3.  前記導電性メッシュ織物の開口率が45~90%の範囲内である請求項1または2に記載の導電テープ。
  4.  表面に金属被膜を有し、熱可塑性合成繊維モノフィラメント糸を構成要素の少なくとも一部とする導電性メッシュ織物を準備する工程と、
     離型シート上に流動性を有する粘着剤を塗布し、厚さが前記導電性メッシュ織物の最大厚さの50~90%の範囲内となる粘着剤層を形成する工程と、
     前記粘着剤層の上に前記導電性メッシュ織物を積層し、さらにその上にもう一枚の離型シートを積層してラミネートする工程と、
     エージングを行い前記粘着剤層を硬化させて粘着膜を形成する工程とを有し、
     下記の数式1で得られるMの値が0.05~0.45の範囲内である導電テープの製造方法。
    Figure JPOXMLDOC01-appb-M000002
    (B:モノフィラメントの、交点以外での導電テープ厚さ方向の平均糸径
    :モノフィラメントと交差する糸条の、交点以外での導電テープ厚さ方向の平均糸径
    C:モノフィラメントが他の糸条と交差する交点における導電テープ厚さ)
PCT/JP2011/079255 2011-06-16 2011-12-16 導電テープ及びその製造方法 WO2012172709A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180050454.4A CN103403118B (zh) 2011-06-16 2011-12-16 导电带及其制造方法
KR1020137010022A KR101467133B1 (ko) 2011-06-16 2011-12-16 도전 테이프 및 그 제조 방법
US14/126,246 US8921241B2 (en) 2011-06-16 2011-12-16 Electroconductive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-133941 2011-06-16
JP2011133941 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012172709A1 true WO2012172709A1 (ja) 2012-12-20

Family

ID=46980487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079255 WO2012172709A1 (ja) 2011-06-16 2011-12-16 導電テープ及びその製造方法

Country Status (6)

Country Link
US (1) US8921241B2 (ja)
JP (1) JP5020405B1 (ja)
KR (1) KR101467133B1 (ja)
CN (1) CN103403118B (ja)
TW (1) TWI484505B (ja)
WO (1) WO2012172709A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673126A (zh) * 2015-03-24 2015-06-03 惠州市东铭电工材料有限公司 一种抗阻可灵活调整的网络单面胶
CN105164223A (zh) * 2013-04-19 2015-12-16 Dic株式会社 导电性粘合片、其制造方法和使用其的电子终端

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592272B2 (ja) * 2015-04-20 2019-10-16 株式会社クラベ シールドスリーブ
WO2018061867A1 (ja) * 2016-09-29 2018-04-05 日本ゼオン株式会社 ラテックス組成物
TWI653644B (zh) 2017-12-29 2019-03-11 茂迪股份有限公司 導電膠帶、太陽能電池串及太陽能電池模組
JP2021082501A (ja) * 2019-11-20 2021-05-27 セーレン株式会社 導電テープおよびその製造方法
WO2022270461A1 (ja) 2021-06-22 2022-12-29 セーレン株式会社 導電メッシュ織物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227986A (ja) * 1986-03-31 1987-10-06 Fujikura Rubber Ltd 導電性両面テ−プ
JPH01265432A (ja) * 1988-04-18 1989-10-23 Teraoka Seisakusho:Kk ブラウン管用防爆テープ及びブラウン管の静電気除去回路を形成する方法
JPH06240533A (ja) * 1992-12-16 1994-08-30 Yong-Inn Lee 導電性テープ用基材及びこれを含む導電性粘着テープ
JP2005026622A (ja) * 2003-07-03 2005-01-27 Mitsubishi Rayon Co Ltd 電磁波シールド接着フィルム及び電磁波シールド板材
JP3869348B2 (ja) * 2002-10-29 2007-01-17 北川工業株式会社 電磁波シールドテープ及びその製造方法
JP2009079347A (ja) * 2008-10-20 2009-04-16 Kb Seiren Ltd ポリエステル複合モノフィラメント
WO2010007900A1 (ja) * 2008-07-17 2010-01-21 東レフィルム加工株式会社 ディスプレイ用フィルター
JP2010155973A (ja) * 2008-12-04 2010-07-15 Nitto Denko Corp 太陽電池モジュール用両面粘着テープ
JP4511076B2 (ja) * 2001-04-27 2010-07-28 北川工業株式会社 導電両面テープ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246771A (en) 1988-04-18 1993-09-21 Teraoka Seisakusho Co., Ltd. Adhesive tape for preventing implosion and removing electrostatic charge
US6394613B1 (en) * 1997-08-07 2002-05-28 Canon Kabushiki Kaisha Anti-fogging and anti-reflection optical article
JP3903457B2 (ja) * 2000-03-29 2007-04-11 セーレン株式会社 導電性織物
JP3390917B2 (ja) * 2000-06-29 2003-03-31 美織株式会社 制電性カーペット
WO2010064358A1 (ja) * 2008-12-04 2010-06-10 日東電工株式会社 太陽電池モジュール用両面粘着テープ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227986A (ja) * 1986-03-31 1987-10-06 Fujikura Rubber Ltd 導電性両面テ−プ
JPH01265432A (ja) * 1988-04-18 1989-10-23 Teraoka Seisakusho:Kk ブラウン管用防爆テープ及びブラウン管の静電気除去回路を形成する方法
JPH06240533A (ja) * 1992-12-16 1994-08-30 Yong-Inn Lee 導電性テープ用基材及びこれを含む導電性粘着テープ
JP4511076B2 (ja) * 2001-04-27 2010-07-28 北川工業株式会社 導電両面テープ
JP3869348B2 (ja) * 2002-10-29 2007-01-17 北川工業株式会社 電磁波シールドテープ及びその製造方法
JP2005026622A (ja) * 2003-07-03 2005-01-27 Mitsubishi Rayon Co Ltd 電磁波シールド接着フィルム及び電磁波シールド板材
WO2010007900A1 (ja) * 2008-07-17 2010-01-21 東レフィルム加工株式会社 ディスプレイ用フィルター
JP2009079347A (ja) * 2008-10-20 2009-04-16 Kb Seiren Ltd ポリエステル複合モノフィラメント
JP2010155973A (ja) * 2008-12-04 2010-07-15 Nitto Denko Corp 太陽電池モジュール用両面粘着テープ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105164223A (zh) * 2013-04-19 2015-12-16 Dic株式会社 导电性粘合片、其制造方法和使用其的电子终端
CN104673126A (zh) * 2015-03-24 2015-06-03 惠州市东铭电工材料有限公司 一种抗阻可灵活调整的网络单面胶

Also Published As

Publication number Publication date
TWI484505B (zh) 2015-05-11
KR20130101061A (ko) 2013-09-12
JP2013018956A (ja) 2013-01-31
KR101467133B1 (ko) 2014-11-28
US20140141673A1 (en) 2014-05-22
US8921241B2 (en) 2014-12-30
CN103403118A (zh) 2013-11-20
TW201301309A (zh) 2013-01-01
CN103403118B (zh) 2015-02-11
JP5020405B1 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5020405B1 (ja) 導電テープ及びその製造方法
TWI697915B (zh) 伸縮性導體片、具有黏接性之伸縮性導體片及在布帛上形成由伸縮性導體片構成之配線的方法
US9426878B2 (en) Nonwoven adhesive tapes and articles therefrom
JP6435540B2 (ja) 電磁波シールドフィルム、電磁波シールドフィルム付きフレキシブルプリント配線板、およびそれら製造方法
KR102066730B1 (ko) Emi 차폐필름
US20160333232A1 (en) Electrically conductive adhesive tapes and articles therefrom
KR102061585B1 (ko) 도전성 점착 시트, 그 제조 방법 및 그것을 사용하여 얻은 전자 단말
JP2019527283A (ja) 伸縮性導電性接着テープ
US20160312074A1 (en) Electrically conductive adhesive tapes and articles therefrom
KR20160099651A (ko) 전기 전도성 접착 테이프 및 그로부터의 물품
JP6424092B2 (ja) 導電性粘着テープ及び導電性粘着テープの製造方法
JP4673573B2 (ja) 電磁波シールド材の製造方法
KR20090038994A (ko) 부도체를 지지체로 사용하는 도전성 양면테이프
KR100841042B1 (ko) 부직포를 이용한 초박형 전도성 양면테이프의 제조방법 및그 제조방법에 의한 전도성 양면테이프
JP2017069094A (ja) 導電性テープ、及び導電性テープの製造方法
JP2021082501A (ja) 導電テープおよびその製造方法
KR20190114890A (ko) 전자파 차폐 필름, 차폐 프린트 배선판 및 차폐 프린트 배선판의 제조 방법
JP2021044342A (ja) 電磁波シールドフィルムの製造方法、及び電磁波シールドフィルム付きプリント配線板の製造方法
JP2021044349A (ja) 電磁波シールドフィルムの製造方法、及び電磁波シールドフィルム付きプリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010022

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP