WO2012172676A1 - 等化装置及び等化方法 - Google Patents

等化装置及び等化方法 Download PDF

Info

Publication number
WO2012172676A1
WO2012172676A1 PCT/JP2011/063885 JP2011063885W WO2012172676A1 WO 2012172676 A1 WO2012172676 A1 WO 2012172676A1 JP 2011063885 W JP2011063885 W JP 2011063885W WO 2012172676 A1 WO2012172676 A1 WO 2012172676A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filtered
distortion
error
statistical
Prior art date
Application number
PCT/JP2011/063885
Other languages
English (en)
French (fr)
Inventor
大介 新保
勝崇 今尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/063885 priority Critical patent/WO2012172676A1/ja
Priority to DE112011105345.2T priority patent/DE112011105345T5/de
Priority to JP2013520381A priority patent/JP5518261B2/ja
Priority to CN201180071489.6A priority patent/CN103620992B/zh
Publication of WO2012172676A1 publication Critical patent/WO2012172676A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier

Definitions

  • the present invention relates to an equalizing apparatus and an equalizing method for compensating for transmission path distortion of a received signal modulated using an orthogonal frequency division multiplexing modulation system.
  • transmission line equalization technique As one of the techniques for performing such accurate signal reception.
  • a signal arriving at the receiver is multiplied by an appropriate filtering coefficient to compensate (equalize) fluctuations in the transmission path environment (transmission path distortion) caused by noise or the like. be able to. That is, according to this technique, it is possible to reduce the influence of signal distortion accompanying multipath fading and high-speed movement and noise superimposed on the receiver.
  • FIG. 1 shows an example of an equalization apparatus to which a transmission path estimation technique is applied, related to the equalization apparatus according to the present invention.
  • the equalization apparatus shown in FIG. 1 is referred to as a “relevant equalization apparatus”.
  • a receiver that receives an orthogonal frequency division multiplex modulation broadcast signal as a reception signal is provided in the preceding stage of the related equalizer, and the received signal is input to the related equalizer.
  • the first reference signal detection unit 1 extracts a reference signal included in the received signal.
  • the reference signal is a signal transmitted using a specific frequency and amplitude.
  • the reference signal is at regular intervals in the frequency direction and the time direction. This corresponds to the scattered reference signal 11 (sandy hatching) inserted into the data signal 12.
  • the first reference signal detection unit 1 outputs the extracted reference signal to the distortion detection unit 2.
  • the distortion detector 2 calculates a distortion component of the reference signal when the reference signal is input. For example, the distortion detection unit 2 detects the amplitude component of the reference signal extracted by the first reference signal detection unit 1, and divides the amplitude component by a known ideal amplitude value, that is, the amplitude value of the reference signal at the time of transmission. . Then, the distortion detection unit 2 uses the value obtained by the division as a distortion component of the reference signal, and outputs a distortion signal indicating the distortion component to the time interpolation filtering unit 3. According to such a method, the degree of distortion of the reference signal 11 can be quantified.
  • the time interpolation unit 3 performs signal processing on the distortion signal from the distortion detection unit 2, thereby adding a part of the data signal (hereinafter “partial data signal”) in addition to the distortion component of the reference signal indicated by the distortion signal.
  • partial data signal a part of the data signal in addition to the distortion component of the reference signal indicated by the distortion signal.
  • the partial data signal is, for example, a data signal located between reference signals adjacent in the time direction, and its distortion component is estimated based on the reference signal and the filtering coefficient.
  • the frequency interpolation filtering unit 4 performs signal processing on the first filtered signal from the time interpolation filtering unit 3, whereby in addition to the reference signal indicated by the first filtered signal and the distortion component of the partial data signal, the data signal A second filtered signal is also generated that also indicates the distortion component of the remaining portion (hereinafter also referred to as “residual data signal”).
  • the residual data signal is, for example, a data signal located between a reference signal and a part of data signals that are adjacent in the frequency direction, and its distortion component is based on the first filtered signal and the filtering coefficient. Presumed.
  • the frequency interpolation filtering unit 4 generates the second filtered signal indicating the distortion component of the reference signal and the distortion components of all the data signals (partial data signal and residual data signal), and The 2 filtered signal is output to the equalization unit 5.
  • the equalization unit 5 divides the received signal by the second filtered signal. As a result, transmission path distortion included in the received signal is compensated.
  • the transmission line equalization technique transmission path distortion estimation method
  • learning to improve the distortion compensation capability by appropriately determining the operating parameters used by the coefficient calculation algorithm when estimating the transmission path environment.
  • the algorithm is known. For example, if the filtering coefficients of the time interpolation filtering unit 3 and the frequency interpolation filtering unit 4 are appropriately determined using a learning algorithm, the estimation accuracy of the time interpolation filtering unit 3 and the frequency interpolation filtering unit 4 is improved. And distortion compensation capability can be improved.
  • the filtering of the frequency interpolation filtering unit 4 is performed. The coefficient is appropriately determined by the learning algorithm.
  • the second filtered signal generated by the frequency interpolation filtering unit 4 is input to the equalization unit 5 and also to the second reference signal detection unit 6.
  • the second reference signal detection unit 6 extracts the distortion component of the reference signal from the distortion components indicated by the second filtered signal, and outputs the distortion component to the error calculation unit 7.
  • the error calculation unit 7 is an error signal based on a comparison result between the distortion component of the reference signal from the distortion detection unit 2 and the distortion component of the reference signal from the second reference signal detection unit 6 (for example, indicates a difference between both distortion components). Error signal) is output to the coefficient calculator 8.
  • the coefficient calculation unit 8 calculates the filtering coefficient of the frequency interpolation filtering unit 4 by using a learning algorithm that refers to the first filtering signal from the time interpolation filtering unit 3 and the error signal from the error calculation unit 7. To do.
  • the related equalization apparatus taking the above-described method, it is possible to appropriately estimate the transmission path distortion.
  • CNR signal power-to-noise power ratio
  • this method is used in a weak electric field environment where the received electric field strength is constantly weak, there is a problem that the coefficient calculation speed decreases and the transmission path following performance deteriorates.
  • the learning algorithm for calculating the coefficient of the frequency interpolation filter 4 in the related equalizer operates only at the timing when the reference signal is input, the calculation speed and convergence accuracy of the algorithm are limited. There is.
  • the follow-up speed and accuracy of the coefficient calculation algorithm are improved by using a decision signal (for example, a signal indicating a hard decision result) obtained by a decision unit after transmission path distortion compensation.
  • a decision signal for example, a signal indicating a hard decision result
  • Patent Document 1 a value obtained by dividing a received signal by a hard decision result is compared with a transmission path estimated value, and a coefficient of the frequency interpolation filtering unit 4 is calculated based on an error signal indicating the comparison result.
  • the technique to do is disclosed. According to this method, it is possible to apply the coefficient calculation algorithm not only to the reference signal but also to all data signals, so that improvement in transmission path estimation accuracy can be expected.
  • Patent Document 2 an error signal indicating a difference between signals before and after a hard decision is defined, and the operation of the coefficient calculation algorithm is controlled by estimating the CNR of the signal after channel distortion compensation using the error signal.
  • a technique is disclosed. According to this method, the operation of the coefficient calculation algorithm can be stabilized when the transmission path distortion component and the noise component remaining after transmission path distortion compensation are large.
  • Patent Document 1 does not take into account the accuracy of the transmission path estimation value, so that the accuracy of the transmission path estimation value tends to be low, that is, the received signal power and the noise power are competitive.
  • the filtering coefficient may not be optimized in an environment where the reception electric field strength is constantly weak.
  • Patent Document 2 there is a possibility that a desired operation cannot be performed in an environment where the CNR of the signal after transmission path distortion compensation is low. Specifically, in an environment where the noise power included in the signal after compensation for transmission path distortion and the desired signal power antagonize, there is a high possibility that an erroneous hard decision will be made. A CNR may be estimated based on the results. In such a case, there is a possibility that the received signal cannot be compensated correctly.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a technique capable of correctly compensating a received signal under various environments.
  • An equalization apparatus is an equalization apparatus that compensates for transmission path distortion in a reception signal of an orthogonal frequency division multiplexing modulation system including a reference signal and a data signal, and the distortion of the reference signal included in the reception signal
  • a distortion detector is provided that generates a distortion signal indicating the component.
  • the equalization device generates, based on the distortion signal, a first filter that generates a first filtered signal indicating a distortion component of a part of the data signal and a distortion component of the reference signal; and the first filtering
  • a second filter for generating a second filtered signal indicating all distortion components of the data signal and a distortion component of the reference signal based on a signal and a filtering coefficient; and the second filtering signal based on the second filtered signal.
  • a compensator for compensating for a distortion component of the received signal.
  • the equalizer determines the accuracy of an error signal for calculating the filtering coefficient based on at least one of the distortion signal and the first filtered signal and the second filtered signal, and determines the accuracy. Based on the error adjuster for correcting the error signal based on the first filtered signal and the error signal corrected by the error adjuster, the filtering coefficient used in the second filter is calculated.
  • a coefficient calculator Based on the error adjuster for correcting the error signal based on the first filtered signal and the
  • the accuracy of the error signal for calculating the filtering coefficient is determined based on at least one of the distortion signal and the first filtered signal and the second filtered signal, and the error signal is determined based on the accuracy. Correct. Therefore, since the operation of the coefficient calculation algorithm can be adaptively controlled, the received signal can be compensated correctly under various environments.
  • FIG. 1 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a strain detector according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration example of a first filter according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration example of a second filter according to Embodiment 1.
  • FIG. 3 is a block diagram showing a configuration of a compensator according to Embodiment 1.
  • FIG. 3 is a block diagram showing a configuration of an error adjuster according to Embodiment 1.
  • FIG. 1 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 1.
  • FIG. 2 is a block diagram showing a configuration of a strain detector according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration of a strain detector according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration of
  • FIG. 6 is a diagram for explaining the operation of the equalization apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for explaining the operation of the equalization apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for explaining the operation of the equalization apparatus according to Embodiment 1.
  • FIG. 6 is a diagram for explaining the operation of the equalization apparatus according to Embodiment 1.
  • FIG. 6 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 2.
  • FIG. 6 is a block diagram illustrating a configuration of an error adjuster according to Embodiment 2.
  • FIG. 10 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating a configuration of an error adjuster according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a signal strength determiner according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a noise intensity determiner according to a third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of an error adjuster according to a fourth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a signal strength determiner according to a fourth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a noise intensity determiner according to a fourth embodiment.
  • FIG. 3 is a block diagram showing the configuration of the equalization apparatus according to Embodiment 1 of the present invention.
  • the equalization apparatus 300 includes a distortion detector 301, a first filter 302 that filters an input signal using the first filter coefficient, and a second filter coefficient that is a variable filter coefficient. Is provided with a second filter 303 for filtering the input signal, a compensator 304, a coefficient calculator 305, and an error adjuster 306.
  • the equalization apparatus 300 includes a received signal r (t). And an error signal e (t). Note that (t) attached to each signal in the text represents the time at which signal processing is performed, but (t) is omitted for the sake of simplicity for each signal in the figure.
  • the equalization apparatus 300 compensates (equalizes) transmission path distortion of the received signal r (t) using signals obtained through the distortion detector 301, the first filter 302, and the second filter 303. And the equalized signal q (t) obtained thereby is output to the determiner 307.
  • the equalization apparatus 300 is configured such that the error signal e (t) for calculating the second filtering coefficient based on the output of the first filter 302 and the output of the second filter 303. Determine the accuracy of. Then, the equalization apparatus 300 corrects the error signal e (t) based on the accuracy, and calculates the second filtering coefficient of the second filter 303 based on the correction error signal g (t) obtained thereby. To do.
  • the operation of the coefficient calculation algorithm for performing the above-described compensation (equalization) can be adaptively controlled.
  • the noise power included in the received signal r (t) It is possible to stably compensate the received signal stably even in an environment where the desired signal power antagonizes, or in a weak electric field environment where the received electric field strength is constantly weak.
  • the configuration of the equalization apparatus 300 according to the present embodiment will be described.
  • the received signal r (t) input to the equalization apparatus 300 is input to the distortion detector 301.
  • the reception signal r (t) input to the equalization apparatus 300 is a signal of an orthogonal frequency division multiplexing modulation system including a reference signal and a data signal.
  • the received signal r (t) is an output signal from a time domain-frequency domain converter represented by a discrete Fourier transform (DCT: Discrete Fourier Transform) or a fast Fourier transform (FFT: Fast Fourier Transform). It is desirable to be.
  • DCT discrete Fourier transform
  • FFT Fast Fourier Transform
  • the reference signal included in the received signal r (t) is preferably a signal transmitted using a specific frequency and amplitude. Specifically, as shown in FIG.
  • the scattered reference signal 11 is preferably inserted into the data signal 12 at regular intervals in the direction.
  • the reference signal included in the received signal r (t) is described as the scattered reference signal 11, but the reference signal is not limited to the scattered reference signal 11.
  • the scattered reference signal 11 may be referred to as “reference signal 11”.
  • the distortion detector 301 detects a distortion component of the reference signal 11 from the received signal r (t), and generates a distortion signal p (t) indicating the distortion component. Then, the distortion detector 301 outputs the distortion signal p (t) to the first filter 302.
  • FIG. 4 is a block diagram showing a configuration example of the strain detector 301.
  • the distortion detector 301 includes a reference signal extractor 401, a distortion detection divider 402, and an ideal signal generator 403.
  • the reference signal extractor 401 extracts the reference signal 11 from the received signal r (t). Since the reference signal 11 is inserted into the data signal 12 at predetermined intervals in terms of time and frequency, for example, a time switch that becomes conductive every predetermined time, and a signal modulated to a predetermined carrier wave
  • the reference signal extractor 401 can be composed of a selector that selects and takes out.
  • the reference signal extractor 401 outputs the extracted scattered reference signal 11 to the distortion detection divider 402.
  • the distortion detection divider 402 divides the reference signal from the reference signal extractor 401 by a known ideal signal generated by the ideal signal generator 403, and outputs the result as a distortion signal p (t).
  • the ideal signal is desirably the same as the ideal reference signal expected to be output from the reference signal extractor 401 when it is not affected by transmission path distortion or noise at all.
  • the distortion detector 301 taking such a method, it is possible to generate a distortion signal p (t) in which the degree of distortion of the reference signal 11 is quantified.
  • the first filter 302 estimates a distortion component of a part of the data signal 12 (partial data signal 12) based on the distortion signal p (t) from the distortion detector 301, and A first filtered signal s (t) indicating a distortion component of the partial data signal 12 and a distortion component of the reference signal 11 is generated. Then, the first filter 302 outputs the first filtered signal s (t) to the second filter 303, the coefficient calculator 305, and the error adjuster 306.
  • the received signal r (t) includes the reference signal 11 as shown in FIG.
  • a filter not only the distortion component of the reference signal 11 indicated by the distortion signal p (t) but also the distortion component of the partial data signal 12 positioned between the reference signals 11 adjacent to each other in the time direction.
  • a first filtered signal s (t) can also be generated.
  • FIG. 5 is a block diagram showing a specific configuration example when a finite impulse response type filter by digital signal processing is applied to the first filter 302.
  • the first filter 302 shown in FIG. 5 includes a first delay group 501 composed of m first filter first delay elements to m first filter m delay elements, and m first multipliers. 502, a first adder 503, and a first filtering coefficient storage 504 that stores m first filtering first coefficients to m first filtering coefficients corresponding to the first filtering coefficients.
  • the distortion signal p (t) input to the first filter 302 is input to the first delay group 501 in the order of time.
  • Each delay unit of the first delay group 501 outputs a signal obtained by delaying such an input signal by a predetermined time T 1 .
  • the input signal of the first delay for the first filtering is the distortion signal p (t)
  • the input and output of the first filtering k-th delay (2 ⁇ k ⁇ m ⁇ 1) are These delay devices are connected so as to be the output of the (k-1) delay device for the first filtering and the input of the (k + 1) delay device for the first filtering, respectively.
  • the first filtering j-th coefficient (1 ⁇ j ⁇ m) of the first filtering coefficient storage 504 is multiplied by the output of the first filtering j-th delay in the corresponding first multiplier 502, and the multiplication result is obtained. It is output to the first adder 503.
  • the first adder 503 adds the input m multiplication results and outputs the result as the first filtered signal s (t).
  • the above-described first filtered signal s (t) can be generated based on the distortion component of the reference signal 11.
  • the first filter 302 is a finite impulse response type filter by digital signal processing.
  • the present invention is not limited to this, and the first filter 302 is an infinite impulse type filter by digital signal processing.
  • a filter by analog signal processing may be used.
  • the second filter 303 includes the first filtered signal s (t) generated by the first filter 302 and the second filtered coefficient w (t) calculated by the coefficient calculator 305. Some n second filtering j-th coefficients w j (t) (1 ⁇ j ⁇ n) are input.
  • the coefficient calculator 305 will be described in detail later.
  • the second filter 303 is based on the first filtered signal s (t) from the first filter 302 and the second filtered coefficient w (t) from the coefficient calculator 305, so that the remainder of the data signal 12 ( The distortion component of the residual data signal 12) is estimated. Then, the second filter 303 outputs the second filtered signal c (t) indicating the distortion components of the partial data signal 12 and the residual data signal 12, that is, all the distortion components of the data signal 12 and the distortion component of the reference signal 11. ) Is generated. The second filter 303 outputs the second filtered signal c (t) to the compensator 304 and the error adjuster 306.
  • the received signal r (t) includes the reference signal 11 as shown in FIG.
  • a filter not only the distortion components of the reference signal 11 and the partial data signal 12 indicated by the first filtered signal s (t), but also the reference signal 11 and the partial data signal 12 that are adjacent in the frequency direction.
  • a second filtered signal c (t) can also be generated that also indicates the distortion component of the residual data signal 12 located between.
  • FIG. 6 is a block diagram showing a specific configuration example when a finite impulse response type filter by digital signal processing is applied to the second filter 303.
  • the second filter 303 shown in FIG. 6 includes a second delay group 601 composed of n second filtering first delay elements to n second filtering n delay elements, and a plurality of second multipliers 602. And a second adder 603.
  • the first filtered signal s (t) input to the second filter 303 is input to the second delay group 601 in descending order of the frequency of the subcarrier (subcarrier) for each fixed symbol unit. Is done.
  • Each delay unit of the second delay group 601 outputs a signal obtained by delaying such an input signal by a predetermined time T 2 .
  • the input signal of the second filter first delay device becomes the first filter signal s (t), and the input of the second filter k-th delay device (2 ⁇ k ⁇ n ⁇ 1) and These delays are connected such that the outputs are the output of the (k-1) delay unit for the second filtering and the input of the (k + 1) delay unit for the second filtering, respectively.
  • the output of the j delay unit is multiplied, and the multiplication result is output to the second adder 603.
  • the second adder 603 adds the inputted n multiplication results and outputs the result as the second filtered signal c (t).
  • the above-described second filtered signal c (t) can be generated based on the distortion components of the reference signal 11 and the partial data signal 12.
  • the second filter 303 is a finite impulse response type filter by digital signal processing.
  • the present invention is not limited to this, and the second filter 303 is an infinite impulse type filter by digital signal processing.
  • a filter by analog signal processing may be used.
  • the delay time T 1 of the first filter 302, and the delay time T 2 of the second filter 303 may be the same value, the number of delay units of the first delay unit group 501 m, and, the The number n of the two delay unit groups 601 may be the same value.
  • the first multiplier 502 and the second multiplier 602 may have the same configuration, and the first adder 503 and the second adder 603 may have the same configuration.
  • the compensator 304 compensates (equalizes) the distortion component of the received signal r (t) based on the second filtered signal c (t) from the second filter 303 and is thereby obtained.
  • the equalized signal q (t) is output to the determiner 307.
  • FIG. 7 is a block diagram showing a specific configuration example of the compensator 304 that performs such an operation.
  • the compensator 304 shown in FIG. 7 includes an equalizing divider 701 to which the received signal r (t) and the second filtered signal c (t) are input.
  • the equalization divider 701 divides the received signal r (t) including the transmission path distortion by the second filtered signal c (t) indicating the transmission path distortion estimation component that is the distortion component estimated as described above. . Therefore, the compensator 304 can obtain the equalized signal q (t) in which the transmission path distortion component is compensated.
  • the determiner 307 receives the equalization signal q (t) from the compensator 304 as the output of the equalization apparatus 300. Then, the determiner 307 decodes the equalized signal q (t) and outputs a decoded signal d (t) obtained thereby.
  • the determination unit 307 may be configured by, for example, an arithmetic unit that performs a hard decision, or may be configured by an arithmetic unit that performs a soft determination.
  • the error adjuster 306 generates an error signal e (t) based on the first filtered signal s (t) from the first filter 302 and the second filtered signal c (t) from the second filter 303. Correction is performed to generate a correction error signal g (t).
  • the error adjuster 306 will be described in detail later.
  • the coefficient calculator 305 uses the second filtered coefficient w (t) used by the second filter 303 based on the first filtered signal s (t) and the error signal e (t) corrected by the error adjuster 306. ) Is calculated.
  • the coefficient calculator 305 based on the first filtered signal s (t) and the correction error signal g (t), n second j-th coefficients for filtering w j (t) ( 1 ⁇ j ⁇ n) is calculated.
  • the coefficient calculator 305 includes the second filtering coefficient w (t ⁇ ) obtained in the past by the error adjuster 306 and n correction error signals g (t ⁇ ), .., G (t ⁇ n ⁇ ) and n first filtered signals s (t ⁇ ),..., S (t ⁇ n ⁇ ) are substituted into the following expression (1) to obtain the current second filtered signal.
  • the coefficient w (t) (the second filtering j-th coefficient w j (t) (1 ⁇ j ⁇ n)) is calculated.
  • is a predetermined amount of time.
  • the error adjuster 306 receives the first filtered signal s (t), the second filtered signal c (t), and the error signal e (t).
  • the error signal e (t) is a signal for calculating the second filtering coefficient w (t).
  • the first filtering signal s (t) and the second filtering signal c (t) are used.
  • equation (2) can be defined.
  • the error signal e (t) is defined as the following equation (3) using the equalized signal q (t) from the compensator 304 and the decoded signal d (t) from the determiner 307, for example. You can also If it is defined as the following equation (3), both the transmission path distortion component and the noise component can be considered.
  • the error signal e (t) can also be defined as the following equation (4) in consideration of the accuracy corresponding to the degree of transmission path distortion, for example.
  • the error signal e (t) can also be defined as the following equation (5) in consideration of the degree of transmission path distortion and the accuracy corresponding to the received signal amplitude, for example.
  • the error adjuster 306 determines the accuracy of the error signal e (t) based on the first filtered signal s (t) and the second filtered signal c (t). Then, the error adjuster 306 corrects the error signal e (t) based on the accuracy, and generates a corrected error signal g (t) used in the coefficient calculator 305.
  • FIG. 8 is a block diagram showing a specific configuration example of the error adjuster 306 that performs such an operation.
  • the error adjuster 306 shown in FIG. 8 includes a signal converter 801, a first signal processing calculator 811, a signal strength determiner 821, a noise strength determiner 831, and an error corrector 841.
  • the first signal processing calculator 811 includes an averaging calculator 812 and a normalization calculator 813.
  • the error corrector 841 includes a first corrector 842, a second corrector 843, and a third corrector. And a corrector 844.
  • the first filtered signal s (t) input to the error adjuster 306 is input to the averaging calculator 812 and the normalization calculator 813, and the second filtered signal c (t) input to the error adjuster 306 is The error signal e (t) input to the signal converter 801 and the signal strength determiner 821 and input to the error adjuster 306 is input to the first corrector 842. Next, each component of the error adjuster 306 will be described.
  • the signal converter 801 generates the first correction signal x 1 (t) based on the magnitude of the second filtered signal c (t), and sends the first correction signal x 1 (t) to the first corrector 842. Output.
  • the signal converter 801 performs signal conversion as in the following equations (6) to (8) to generate the first correction signal x 1 (t). Where ⁇ is a constant. Note that the signal conversion of the signal converter 801 is not limited to this.
  • the first corrector 842 generates the first correction signal x 1 first intermediate error signal by correcting the error signal e (t) on the basis of (t) e 1 (t) , which second corrector 843 Output to. For example, the first corrector 842 sets a signal obtained by integrating the first correction signal x 1 (t) and the error signal e (t) as the first intermediate error signal e 1 (t).
  • the first signal processing arithmetic unit 811 performs statistical processing on the first filtered signal s (t), the average first filtered signal s ave (t) that is the first statistical signal, and the normal signal that is the second statistical signal.
  • the first filtered signal s nrm (t) is generated.
  • the first signal processing calculator 811 (the averaging calculator 812) averages the signal to be statistically processed, that is, the first filtered signal s (t) by a predetermined time unit. An average first filtered signal s ave (t) is generated.
  • the first signal processing calculator 811 (averaging calculator 812) may be configured to perform block averaging processing that performs averaging processing when the number of signal inputs reaches a predetermined number. You may comprise so that the moving average process which performs an averaging process for every input may be performed.
  • the first signal processing calculator 811 uses the signal to be statistically processed by itself, that is, the first filtered signal s (t), as the average first filtered signal s.
  • a normalized first filtered signal s nrm (t) is generated by dividing (normalizing) by ave (t).
  • the average first filtered signal s ave (t) generated as described above is input to the signal strength determiner 821, and the normalized first filtered signal s nrm (t) is input to the noise strength determiner 831.
  • the signal strength determiner 821 determines the signal strength of the received signal r (t) based on the average first filtered signal s ave (t) and the second filtered signal c (t). As will be described later, since the signal strength of the received signal r (t) corresponds to the accuracy of the error signal e (t), performing the determination of the signal strength results in the determination of the accuracy. It corresponds to the implementation.
  • the signal strength determiner 821 generates a second correction signal x 2 (t) based on the signal strength, and outputs the second correction signal x 2 (t) to the second corrector 843.
  • the second correction signal x 2 (t) is a signal for correcting the first intermediate error signal e 1 (t) output from the first corrector 842.
  • the generation of the second correction signal x 2 (t) in the signal strength determiner 821 will be specifically described.
  • the signal strength determiner 821 is based on the signal excluding the second filtered signal c (t) from the signals used for determining the signal strength, that is, based on the magnitude of the average first filtered signal s ave (t).
  • the received electric field strength that is, the received electric field environment
  • the signal strength determiner 821 has two threshold values for classifying the magnitude of the average first filtered signal s ave (t), and any of the three division ranges divided by the threshold values is used. It is determined whether the average first filtered signal s ave (t) is applicable.
  • the signal strength determiner 821 determines the average first filtered signal s ave (t) from among the three received field strengths of “strong electric field”, “medium electric field”, and “weak electric field”. One corresponding step is selected as a determination result of the received electric field strength.
  • the signal strength determiner 821 determines the received electric field strength (received electric field environment) based on the magnitude of the average first filtered signal s ave (t). Instead, the received power intensity (received power state) may be determined.
  • the signal strength determiner 821 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t). For example, the signal strength determiner 821 has two threshold values for classifying the magnitude of the second filtered signal c (t), and the second filtered signal is included in any of the three divided ranges separated by the threshold values. It is determined whether the signal c (t) is applicable. Then, the signal strength determiner 821 selects one of the three electric field levels “high level”, “medium level”, and “low level” corresponding to the divided range corresponding to the second filtered signal c (t). One stage is selected as the determination result of the electric field level.
  • the signal strength determiner 821 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t).
  • the power level of the second filtered signal c (t) may be determined without being limited thereto.
  • the signal strength determiner 821 has three levels of received electric field strength with respect to the average first filtered signal s ave (t) and three levels of electric field level with respect to the second filtered signal c (t). Are associated with the coefficients of the second correction signal x 2 (t).
  • the signal strength determiner 821 refers to this table and selects one coefficient of the second correction signal x 2 (t) based on one received electric field strength and one electric field level determined by itself.
  • the coefficient of the second correction signal x 2 (t), the accuracy of the error signal e (t), and the signal strength of the received signal r (t) are associated with each other. 2
  • the signal strength determiner 821 determines the signal strength of the received signal r (t) corresponding to the accuracy of the error signal e (t) based on the received field strength and the electric field level determined by itself.
  • the second correction signal x 2 (t) is generated based on the determination and the signal intensity.
  • the received electric field strength is an intermediate electric field
  • the coefficient is “
  • the second correction signal x 2 (t) of “1” is output from the signal strength determiner 821.
  • the intensity is a strong electric field
  • the signal strength determiner 821 determines that the accuracy of the error signal e (t) is higher (the signal strength of the received signal r (t) is stronger) as the received electric field strength becomes weaker. 2
  • the coefficient (signal level) of the correction signal x 2 (t) is increased.
  • an electric field level (high level) coefficient ( ⁇ H1 ) having a large difference from the received electric field strength (weak electric field) has a small difference from the received electric field strength (weak electric field). It is smaller than the coefficient ( ⁇ H3 ) of the level (low level).
  • the coefficient ( ⁇ L3 ) of the electric field level (low level) having a large difference from the received electric field strength (strong electric field) is small from the received electric field strength (strong electric field). It is smaller than the coefficient ( ⁇ L1 ) of the electric field level (high level).
  • the signal strength determiner 821 has a lower accuracy of the error signal e (t) as the absolute value of the difference between the received electric field strength and the electric field level is larger (the signal of the received signal r (t)).
  • the coefficient (signal level) of the second correction signal x 2 (t) is reduced.
  • the signal strength determination unit 821 has described the case where the accuracy is determined based on the received electric field strength and the electric field level determined by itself.
  • the present invention is not limited to this.
  • Accuracy may be determined based on intensity and power level.
  • each step of the received electric field strength and the electric field level is not limited to three, and may be two steps or four or more steps.
  • the combination of the coefficients ( ⁇ HM , 1, ⁇ LM ) of the second correction signal x 2 (t) is not limited to the magnitude relationship shown in FIG.
  • the second corrector 843 receives the second correction signal x 2 (t) from the signal strength determiner 821.
  • the second corrector 843 generates the second correction signal x 2 first intermediate error signal on the basis of (t) e 1 second intermediate error signal by correcting (t) e 2 (t) , first it 3 is output to the corrector 844.
  • the second corrector 843 adds a signal obtained by integrating the second correction signal x 2 (t) and the first intermediate error signal e 1 (t) to the second intermediate error signal e 2 (t).
  • the noise intensity determiner 831 receives the normalized first filtered signal s nrm (t) from the first signal processing calculator 811.
  • the noise strength determiner 831 determines the noise strength of the first filtered signal s (t) based on the normalized first filtered signal s nrm (t).
  • the noise intensity determiner 831 generates a third correction signal x 3 (t) based on the noise intensity, and outputs the third correction signal x 3 (t) to the third corrector 844.
  • the third correction signal x 3 (t) is a signal for correcting the second intermediate error signal e 2 (t) output from the second corrector 843.
  • generation of the third correction signal x 3 (t) in the noise intensity determiner 831 will be specifically described.
  • the noise intensity determiner 831 calculates the variance value s var (t) based on the signal used for determining the noise intensity, that is, the normalized first filtered signal s nrm (t).
  • the normalized first filtered signal s nrm (t) is input to the noise intensity determiner 831 in units of a predetermined time, and the noise intensity determiner 831 receives the normalized first filtered signal s nrm.
  • the variance value of (t) is calculated with respect to the subcarrier frequency.
  • the noise intensity determiner 831 has two threshold values for classifying the magnitude of the calculated variance value s var (t), and the variance value s var is included in any of the three division ranges divided by the threshold values. It is determined whether (t) is applicable. The noise intensity determiner 831 then selects one of the three levels of noise intensity, “strong noise”, “medium noise”, and “weak noise”, corresponding to the division range corresponding to the variance value s var (t). The stage is selected as the noise intensity determination result.
  • the noise intensity determiner 831 is a table in which the coefficient of the third correction signal x 3 (t) is associated with each of the three levels of noise intensity for the variance value s var (t). have.
  • the noise intensity determiner 831 refers to this table and selects one coefficient of the third correction signal x 3 (t) based on one noise intensity determined by itself.
  • the coefficient of the third correction signal x 3 (t) is associated with not only the noise intensity of the first filtered signal s (t) but also the accuracy of the error signal e (t).
  • the noise intensity determiner 831 determines the noise intensity of the first filtered signal s (t) corresponding to the accuracy of the error signal e (t) based on the variance value s var (t). Then, the third correction signal x 3 (t) is generated based on the noise intensity.
  • the noise intensity determiner 831 increases the coefficient (signal level) of the third correction signal x 3 (t) as the noise intensity decreases. If it is not necessary to correct the second intermediate error signal e 2 (t) and the third correction signal x 3 (t) having a coefficient “1” is output, ⁇ L1 ⁇ 1. It is desirable. Further, the noise intensity level is not limited to three, and may be two levels or four or more levels.
  • the third corrector 844 receives the third correction signal x 3 (t) from the noise intensity determiner 831.
  • the third corrector 844 corrects the second intermediate error signal e 2 (t) based on the third correction signal x 3 (t) to generate the above-described correction error signal g (t), and calculates the coefficient thereof. Output to the device 305.
  • the third corrector 844 sets a signal obtained by integrating the third correction signal x 3 (t) and the second intermediate error signal e 2 (t) as the correction error signal g (t).
  • the error corrector 841 corrects the error signal e (t) based on the first to third correction signals x 1 (t) to x 3 (t).
  • the transmission path state is comprehensively considered from the power and CNR of received signal r (t), compared to the states shown in FIGS. It is possible to control the coefficient calculation algorithm.
  • the equalization apparatus according to the present embodiment having the above configuration, the transmission path state is comprehensively considered from the power and CNR of received signal r (t), compared to the states shown in FIGS. It is possible to control the coefficient calculation algorithm.
  • 11 and 12 are diagrams illustrating examples of the average first filtered signal s ave (t) and the second filtered signal s (t) at a certain time.
  • the signal strength determiner 821 determines that the received electric field strength is “strong electric field”. That is, it is determined to be a strong electric field environment.
  • the signal strength determiner 821 sets the received electric field strength to “weak electric field”. Judgment, that is, judgment as a weak electric field environment is performed.
  • the electric field level of the second filtered signal c (t) at the subcarrier frequency f m is approximately the same as the average signal level in the weak electric field environment. and it has a H e.
  • the signal strength determiner 821 determines the electric field level of the second filtered signal c (t) and "low" Shall.
  • the received electric field strength and the electric field level are determined as “strong electric field” and “low level”, and the absolute value of the difference between the received electric field strength and the electric field level becomes large.
  • the signal strength determiner 821 determines that the signal strength of the received signal r (t) is low (the accuracy of the error signal e (t) is low), and has a coefficient ⁇ L3 having a small value. 2
  • the correction signal x 2 (t) is output.
  • the received electric field strength and the electric field level are determined as “weak electric field” and “low level”, and the absolute value of the difference between the received electric field strength and the electric field level becomes small.
  • the signal strength determiner 821 determines that the signal strength of the received signal r (t) is high (the accuracy of the error signal e (t) is high) and has a coefficient ⁇ H3 having a large value. 2
  • the correction signal x 2 (t) is output.
  • FIGS. 13 and 14 are diagrams illustrating an example of the first filtered signal s (t) at a certain time.
  • the noise intensity determination unit 831 determines the noise intensity is strong (accuracy of the error signal e (t) is low), the third correction signal x 3 having coefficients gamma L3 value is smaller (t ) Is output.
  • the desired signal power is sufficiently larger than the noise power.
  • the noise intensity determination unit 831 determines the noise strength is weak (the accuracy of the error signal e (t) is high), the third correction signal x 3 having coefficients gamma L1 is a large value (t ) Is output.
  • the accuracy of the error signal e (t) for calculating the second filtering coefficient is determined, and the error signal e is based on the accuracy. (T) is corrected. Therefore, since the operation of the coefficient calculation algorithm can be adaptively controlled, the received signal r (t) can be correctly compensated under various environments.
  • the signal strength and the noise strength corresponding to the accuracy of the error signal e (t) are determined based on the first filtered signal s (t) and the second filtered signal c (t), Based on these signal intensity and noise intensity, the error signal e (t) is corrected. Therefore, the transmission path state can be comprehensively considered from the signal strength (for example, received electric field strength, received power strength) of the received signal r (t) and the CNR, and the coefficient calculation algorithm can be correctly controlled. Therefore, even in an environment where the noise power included in the received signal r (t) antagonizes the desired signal power, or in a weak electric field environment where the received electric field strength is constantly weak, the received signal r (t) is stable. Can be compensated.
  • the error signal is based on the received electric field strength / received power strength based on the average first filtered signal s ave (t) and the electric field level / power level of the second filtered signal c (t).
  • a second correction signal x 2 (t) for correcting e (t) is generated. Therefore, the transmission path environment can be appropriately determined based on both the instantaneous value and the average value of the received signal strength, and the error signal e (t) can be corrected with high accuracy.
  • the third correction signal x 3 (t) for correcting the error signal e (t) based on the variance value s var (t) of the normalized first filtered signal s nrm (t) is used. Generate. Therefore, it is possible to appropriately determine the noise environment based on the statistic of the received signal strength (here, the variance value), so that the error signal e (t) can be corrected with high accuracy.
  • FIG. 15 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 2 of the present invention.
  • components similar to those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the present embodiment and the above-described first embodiment is that the signal input to the error adjuster 306 constituting the equalization apparatus according to the first embodiment shown in FIG. (T), the second filtered signal c (t) and the error signal e (t), but the signal input to the error adjuster 316 constituting the equalizer according to the present embodiment is distorted.
  • the error adjuster 316 determines the accuracy of the error signal e (t) based on the distortion signal p (t) and the second filtered signal c (t), and the accuracy The error signal e (t) is corrected based on the above.
  • FIG. 16 is a block diagram showing a configuration example of the error adjuster 316 according to the present embodiment that performs such an operation.
  • the error adjuster 316 includes a first signal processing calculator 851, instead of the first signal processing calculator 811, the signal strength determiner 821, and the noise strength determiner 831 according to the first embodiment.
  • a signal strength determiner 861 and a noise strength determiner 871 are provided.
  • the first signal processing arithmetic unit 851 includes an averaging arithmetic unit 852 and a normalization arithmetic unit 853.
  • the first signal processing arithmetic unit 851 performs the same processing as the statistical processing performed by the first signal processing arithmetic unit 811 according to the first embodiment on the first filtered signal s (t). , For the distortion signal p (t). That is, the first signal processing calculator 811 performs statistical processing on the distortion signal p (t), and the average distortion signal p ave (t) that is the first statistical signal and the normalized distortion that is the second statistical signal. The signal p nrm (t) is generated.
  • the first signal processing calculator 851 (the averaging calculator 852) averages the signal to be statistically processed, that is, the distortion signal p (t) by a predetermined time unit. A signal p ave (t) is generated.
  • the first signal processing calculator 851 (averaging calculator 852) may be configured to perform block averaging processing that performs averaging processing when the number of signal inputs reaches a predetermined number. You may comprise so that the moving average process which performs an averaging process for every input may be performed.
  • the first signal processing calculator 851 (normalization calculator 853) divides the signal to be statistically processed by itself, that is, the distortion signal p (t) by the average distortion signal p ave (t) (normalization). To generate a normalized distortion signal p nrm (t).
  • the average distortion signal p ave (t) generated as described above is input to the signal strength determiner 861, and the normalized distortion signal p nrm (t) is input to the noise strength determiner 871.
  • the signal strength determiner 861 and the noise strength determiner 871 according to the present embodiment perform substantially the same operations as the signal strength determiner 821 and the noise strength determiner 831 according to the first embodiment. That is, the signal strength determiner 861 receives the signal of the received signal r (t) corresponding to the accuracy of the error signal e (t) based on the average distortion signal p ave (t) and the second filtered signal c (t). The strength is determined, and a second correction signal x 2 (t) is generated based on the signal strength.
  • the noise intensity determiner 871 determines the noise intensity of the distortion signal p (t) corresponding to the accuracy of the error signal e (t) based on the normalized distortion signal p nrm (t), and obtains the noise intensity. Based on this, a third correction signal x 3 (t) is generated.
  • the accuracy of the error signal e (t) is determined based on the distortion signal p (t) and the second filtered signal c (t).
  • the corresponding signal strength and noise strength are determined, and the error signal e (t) is corrected based on these signal strength and noise strength. Therefore, even when the outputs of the first and second filters 302 and 303 are in an unstable state, from the signal strength (for example, received electric field strength, received power strength) and CNR of the received signal r (t).
  • the transmission path state can be comprehensively considered, and the coefficient calculation algorithm can be correctly controlled. Hereinafter, this effect will be described in detail.
  • the statistical property of the first filtered signal s (t) is May differ from the original statistical properties. More specifically, for example, when the coefficient control system of the first filter 302 tends to diverge, the first filtered signal s (t) has a level of noise higher than the noise that should be detected originally. Since they are superimposed, there is a high possibility that erroneous determination will occur in the determination of the noise intensity of the noise intensity determiner 831. As a result, there is a possibility that the accuracy of the error signal e (t) cannot be correctly determined.
  • the noise intensity is determined using the distortion signal p (t), it is related to the operation state of the miscellaneous first filter 302 and the second filter 303.
  • the noise intensity determiner 831 can correctly determine the noise intensity.
  • the equalization apparatus and equalization method according to the present embodiment even when the outputs of the first and second filters 302 and 303 are in an unstable state, the received signal r (t ) Signal strength (for example, received electric field strength, received power strength) and CNR can be comprehensively considered, and the coefficient calculation algorithm can be correctly controlled.
  • FIG. 17 is a block diagram showing a configuration of an equalization apparatus according to Embodiment 3 of the present invention.
  • components similar to those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference between the present embodiment and the above-described first embodiment is that the signal input to the error adjuster 306 constituting the equalization apparatus according to the first embodiment shown in FIG. (T), the second filtered signal c (t) and the error signal e (t), but the signal input to the error adjuster 326 constituting the equalizer according to this embodiment is distorted.
  • the error adjuster 326 according to the present embodiment is based on at least one of the distortion signal p (t) and the first filtered signal s (t) and the second filtered signal c (t).
  • the accuracy of the error signal e (t) is determined, and the error signal e (t) is corrected based on the accuracy.
  • FIG. 18 is a block diagram showing a configuration example of the error adjuster 326 according to the present embodiment that performs such an operation.
  • the error adjuster 326 includes a first signal processing calculator 811, an error corrector 841, a second signal processing calculator 881, a signal strength determiner 891, and a noise strength determiner 901. It has.
  • the first signal processing calculator 811 performs statistical processing on the first filtered signal s (t), and calculates the average first filtered signal s ave (t) that is the first statistical signal.
  • a normalized first filtered signal s nrm (t) which is a second statistical signal, is generated.
  • the average first filtered signal s ave (t) generated here is input to the signal strength determiner 891, and the normalized first filtered signal s nrm (t) is input to the noise strength determiner 901.
  • the second signal processing arithmetic unit 881 includes an averaging arithmetic unit 882 and a normalization arithmetic unit 883 that perform the same operations as the averaging arithmetic unit 852 and the normalization arithmetic unit 853 according to the second embodiment.
  • the same processing as that of the first signal processing arithmetic unit 851 according to mode 2 is performed. That is, the second signal processing arithmetic unit 881 performs statistical processing on the distortion signal p (t), and the average distortion signal p ave (t) that is the third statistical signal and the normalized distortion that is the fourth statistical signal.
  • the signal p nrm (t) is generated.
  • the second signal processing arithmetic unit 881 (averaging arithmetic unit 882) averages the signal to be statistically processed, that is, the distortion signal p (t) by a predetermined time unit. A signal p ave (t) is generated. Further, the second signal processing arithmetic unit 881 (normalization arithmetic unit 883) divides the signal to be statistically processed, that is, the distortion signal p (t) by the average distortion signal p ave (t) (normalization). To generate a normalized distortion signal p nrm (t). The average distortion signal p ave (t) generated here is input to the signal intensity determiner 891, and the normalized distortion signal p nrm (t) is input to the noise intensity determiner 901.
  • the signal strength determiner 891 is based on at least one of the average first filtered signal s ave (t) and the average distortion signal p ave (t) and the second filtered signal c (t). Thus, the signal strength of the received signal r (t) corresponding to the accuracy of the error signal e (t) is determined, and the second correction signal x 2 (t) is generated based on the signal strength.
  • FIG. 19 is a block diagram showing a specific configuration example of the signal strength determiner 891 performing such an operation.
  • 19 includes a first comparator 892 to which the average first filtered signal s ave (t) and the average distortion signal p ave (t) are input, and the output of the first comparator 892.
  • a first determiner 893 to which the second filtered signal c (t) is input.
  • the first comparator 892 acquires a signal based on at least one of the average first filtered signal s ave (t) and the average distortion signal p ave (t), and uses the acquired signal as the first comparison signal ps. Output as ave (t). For example, the first comparator 892 compares the average first filtered signal s ave (t) with the average distortion signal p ave (t), and selects one of the signals based on the comparison result. 1 comparison signal ps ave (t) is output.
  • the first comparator 892 uses a signal obtained by taking an arithmetic mean of the average first filtered signal s ave (t) and the average distortion signal p ave (t) as the first comparison signal ps ave (t). It may be output.
  • the first determiner 893 performs substantially the same operation as the signal strength determiner 821 according to Embodiment 1. That is, the first determiner 893 determines the received signal r (t) corresponding to the accuracy of the error signal e (t) based on the first comparison signal ps ave (t) and the second filtered signal c (t). The signal strength is determined, and the second correction signal x 2 (t) is generated based on the signal strength.
  • the generation of the second correction signal x 2 (t) in the first determiner 893 will be specifically described.
  • the first determiner 893 is based on the signal used to determine the signal strength of the received signal r (t) except for the second filtered signal c (t), that is, based on the magnitude of the first comparison signal ps ave (t).
  • the received electric field strength that is, the received electric field environment
  • the first determiner 893 has two threshold values for classifying the magnitude of the first comparison signal ps ave (t), and the first determiner 893 has the first threshold value in any of the three division ranges divided by the threshold values. It is determined whether one comparison signal ps ave (t) is applicable.
  • the first determiner 893 corresponds to the divided range corresponding to the first comparison signal ps ave (t) from the three received electric field strengths of “strong electric field”, “medium electric field”, and “weak electric field”. One stage is selected as a determination result of the received electric field strength.
  • the first determiner 893 determines the received electric field strength (received electric field environment) based on the magnitude of the first comparison signal ps ave (t). Instead, the received power intensity (received power state) may be determined.
  • the first determiner 893 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t). For example, the first determiner 893 has two threshold values for classifying the magnitude of the second filtered signal c (t), and the second filtered signal is included in any of the three divided ranges separated by the threshold values. It is determined whether the signal c (t) is applicable. Then, the first determiner 893 selects one of the three electric field levels “high level”, “medium level”, and “low level” corresponding to the divided range corresponding to the second filtered signal c (t). One stage is selected as the determination result of the electric field level.
  • the first determiner 893 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t).
  • the power level of the second filtered signal c (t) may be determined without being limited thereto.
  • the first determiner 893 has nine sets of combinations of three-step received electric field strengths for the first comparison signal ps ave (t) and three-step electric field levels for the second filtered signal c (t). And a table in which the coefficient of the second correction signal x 2 (t) is associated, that is, the same table as the table shown in FIG. The first determiner 893 refers to this table, and selects one coefficient of the second correction signal x 2 (t) based on one received electric field strength and one electric field level determined by itself.
  • the first determiner 893 has described the case where the accuracy is determined based on the received electric field strength and the electric field level determined by itself.
  • the present invention is not limited to this, and the received power intensity determined by itself is determined.
  • the accuracy may be determined based on the power level.
  • each step of the received electric field strength and the electric field level is not limited to three, and may be two steps or four or more steps.
  • the noise intensity determiner 901 is based on at least one of the normalized first filtered signal s nrm (t) and the normalized distortion signal p nrm (t).
  • the noise intensity of any one of the signals corresponding to the accuracy of the error signal e (t) is determined, and the third correction signal x 3 (t) is generated based on the noise intensity.
  • FIG. 20 is a block diagram showing a specific configuration example of the noise intensity determiner 901 that performs such an operation.
  • 20 includes a second comparator 902 to which the normalized first filtered signal s nrm (t) and the normalized distortion signal p nrm (t) are input, and a second comparator 902.
  • the second determination device 903 is input.
  • the second comparator 902 acquires a signal based on at least one of the normalized first filtered signal s nrm (t) and the normalized distortion signal p nrm (t), and performs a second comparison on the acquired signal. Output as a signal ps nrm (t). For example, the second comparator 902 compares the normalized first filtered signal s nrm (t) with the normalized distortion signal p nrm (t), and based on the comparison result, any one of these signals. Is output as the second comparison signal ps nrm (t).
  • the second comparator 902 the magnitude of the variance value of the normalized first filtered signal s nrm (t) is less than the magnitude of the variance value of the normalized distortion signal p nrm (t). Only in some cases, the normalized first filtered signal s nrm (t) is output as the second comparison signal ps nrm (t). In other cases, the second comparator 902 is the second comparison signal ps nrm (t) (hereinafter referred to as “the second comparison signal when the operation state of the first filter 302 and the like is stable at a certain point in the past”). The past second comparison signal ps nrm (t) ”is output as the current second comparison signal ps nrm (t). The past second comparison signal ps nrm (t) is stored in, for example, a storage unit (not shown) of the second comparator 902.
  • the second comparator 902 outputs a signal obtained by taking an arithmetic average of the normalized first filtered signal s nrm (t) and the normalized distortion signal p nrm (t) as the second comparison signal ps nrm (t ) May be output.
  • the second comparator 902 has a predetermined threshold value, for example, and both the normalized first filtered signal s nrm (t) and the variance value of the normalized distortion signal p nrm (t) are below the predetermined threshold value. In this case, either one of the two signals or a signal obtained by arithmetic averaging of both signals may be output as the second comparison signal ps nrm (t).
  • Second determiner 903 performs substantially the same operation as noise intensity determiner 831 according to Embodiment 1. That is, the second determiner 903 determines the noise intensity corresponding to the accuracy of the error signal e (t) based on the second comparison signal ps nrm (t), and performs the third correction based on the noise intensity. A signal x 3 (t) is generated. Hereinafter, the generation of the third correction signal x 3 (t) in the second determiner 903 will be specifically described.
  • the second determiner 903 calculates the variance value ps var (t) based on the second comparison signal ps nrm (t).
  • the second determiner 903 has two threshold values for classifying the magnitude of the calculated variance value ps var (t), and the variance is distributed to any one of the three division ranges divided by the threshold values. It is determined whether the value ps var (t) is applicable. Then, the second determiner 903 puts the variance value ps var (t) in the corresponding range of the three levels of noise intensity (noise environment) of “strong noise”, “medium noise”, and “weak noise”. One corresponding step is selected as the determination result of the noise intensity (noise environment).
  • the second determiner 903 associates the coefficient of the third correction signal x 3 (t) with each of the three levels of noise intensity for the variance value ps var (t), that is, the table shown in FIG. Have the same table.
  • the second determiner 903 refers to this table, and selects one coefficient of the third correction signal x 3 (t) based on one noise intensity determined by itself.
  • the noise intensity level is not limited to three, and may be two or four or more.
  • an error is generated based on the first filtered signal s (t), the distortion signal p (t), and the second filtered signal c (t).
  • the signal strength and noise strength corresponding to the accuracy of the signal e (t) are determined, and the error signal e (t) is corrected based on the signal strength and noise strength. Therefore, even when the output of the first filter 302 falls into an unstable state, the signal obtained as a result of the comparison between the output of the distortion detector 301 and the output of the first filter 302 is the accuracy described above. It is possible to continue reference as a signal for obtaining
  • the second comparator 902 uses, for example, the dispersion value of the normalized first filtered signal s nrm (t) as the normalized distortion signal p nrm (t). Only when the variance value is below, the normalized first filtered signal s nrm (t) is output as the second comparison signal ps nrm (t). In other cases, the second comparator 902 outputs the above-described past second comparison signal ps nrm (t) as the second comparison signal ps nrm (t).
  • the dispersion value of the normalized first filtered signal s nrm (t) is changed to a normalized distortion signal p nrm (corresponding to the input of the first filter 302. It increases from the variance value of t).
  • the normalized first filtered signal s nrm (t) is not output as the second comparison signal ps nrm (t), and the past second comparison signal ps nrm (t) is converted into the current second comparison signal ps. It will be output as nrm (t).
  • the received signal r (t) can be correctly controlled by comprehensively considering the transmission path state from the signal strength (for example, received electric field strength, received power strength) and CNR. Therefore, when the noise power included in the received signal r (t) is antagonized with the desired signal power, or when the transmission path is subject to high-speed fluctuation in a weak electric field environment where the received electric field strength is constantly weak. Even if it exists, the received signal r (t) can be compensated stably.
  • Embodiment 4 The block diagram showing the configuration of the equalization apparatus according to Embodiment 4 of the present invention is the same as the block diagram (FIG. 19) showing the configuration of the equalization apparatus according to Embodiment 3.
  • FIG. 19 the block diagram showing the configuration of the equalization apparatus according to Embodiment 3.
  • the error adjuster 336 constituting the equalization apparatus is at least one of the distortion signal p (t) and the first filtered signal s (t).
  • the accuracy of the error signal e (t) is determined based on the second filtered signal c (t), and the error signal e (t) is corrected based on the accuracy.
  • FIG. 21 is a block diagram illustrating a configuration example of the error adjuster 336 according to the present embodiment that performs such an operation.
  • the error adjuster 336 includes a first signal processing calculator 811, an error corrector 841, a second signal processing calculator 881, a third signal processing calculator 911, and a signal strength determiner. 921 and a noise intensity determiner 931 are provided.
  • the third signal processing calculator 911 includes an averaging calculator 912 and a normalization calculator 913.
  • the configurations and operations of the first and second signal processing arithmetic units 811 and 881 are as described in the third embodiment.
  • the average first filtered signal s ave (t) and the average distortion signal p ave (t) are input to the signal strength determiner 921, the normalized first filtered signal s nrm (t), and the normalized distortion signal.
  • the difference from Embodiment 3 is that p nrm (t) is input to the noise intensity determiner 931.
  • the third signal processing calculator 911 performs the same processing as the statistical processing performed on the first filtered signal s (t) by the first signal processing calculator 811 according to the first embodiment. To (t). That is, the third signal processing calculator 911 performs statistical processing on the second filtered signal c (t), and uses the average second filtered signal c ave (t) that is the fifth statistical signal and the sixth statistical signal. A normalized second filtered signal c nrm (t) is generated.
  • the third signal processing calculator 911 (the averaging calculator 912) averages the signal to be statistically processed by itself, that is, the second filtered signal c (t) by a predetermined time unit. An average second filtered signal c ave (t) is generated.
  • the third signal processing calculator 911 (normalization calculator 913) divides the signal to be statistically processed by itself, that is, the second filtered signal c (t) by the average second filtered signal c ave (t). By normalizing, the normalized second filtered signal c nrm (t) is generated.
  • the average second filtered signal c ave (t) generated here is input to the signal strength determiner 921, and the normalized second filtered signal c nrm (t) is input to the noise strength determiner 931.
  • the signal strength determiner 921 includes at least one of an average first filtered signal s ave (t), an average distortion signal p ave (t), and an average second filtered signal c ave (t), Based on the second filtered signal c (t), the signal strength of the received signal r (t) corresponding to the accuracy of the error signal e (t) is determined, and the second correction signal x 3 ( t).
  • FIG. 22 is a block diagram showing a specific configuration example of the signal strength determiner 921 performing such an operation.
  • the signal strength determiner 921 shown in FIG. 22 has a third comparison in which an average first filtered signal s ave (t), an average distortion signal p ave (t), and an average second filtered signal c ave (t) are input. And a third version periodical 923 to which the output of the third comparator 922 and the second filtered signal c (t) are input.
  • the third comparator 922 acquires a signal based on at least one of the average first filtered signal s ave (t), the average distortion signal p ave (t), and the average second filtered signal c ave (t).
  • the acquired signal is output as the third comparison signal psc ave (t).
  • the third comparator 922 compares the average first filtered signal s ave (t), the average distortion signal p ave (t), and the average second filtered signal c ave (t), and determines the comparison result. Based on this, one of these signals is output as the third comparison signal psc ave (t).
  • the third comparator 922 obtains an arithmetic average of the average first filtered signal s ave (t), the average distortion signal p ave (t), and the average second filtered signal c ave (t). May be output as the third comparison signal psc ave (t).
  • the third determiner 923 relates to the third embodiment except that the first comparison signal ps ave (t) described in the third embodiment is changed to the third comparison signal psc ave (t). The same operation as the first determiner 893 is performed. That is, the third determiner 923 determines the received signal r (t) corresponding to the accuracy of the error signal e (t) based on the third comparison signal psc ave (t) and the second filtered signal c (t). The signal strength is determined, and the second correction signal x 2 (t) is generated based on the signal strength.
  • the generation of the second correction signal x 2 (t) in the third determiner 923 will be specifically described.
  • the third determiner 923 is based on the signal used for determining the signal strength of the received signal r (t) except for the second filtered signal c (t), that is, based on the magnitude of the third comparison signal psc ave (t).
  • the received electric field strength that is, the received electric field environment
  • the third determiner 923 has two threshold values for classifying the magnitude of the third comparison signal psc ave (t), and the third determiner 923 has any one of the three division ranges divided by the threshold values. It is determined whether the 3 comparison signal psc ave (t) corresponds.
  • the third determiner 923 corresponds to the divided range corresponding to the third comparison signal psc ave (t) from the three received electric field strengths of “strong electric field”, “medium electric field”, and “weak electric field”. One stage is selected as a determination result of the received electric field strength.
  • the third determiner 923 determines the received electric field strength (received electric field environment) based on the magnitude of the third comparison signal psc ave (t). Instead, the received power intensity (received power state) may be determined.
  • the third determiner 923 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t). For example, the third determiner 923 has two threshold values for classifying the magnitude of the second filtered signal c (t), and the second filtered signal is included in any of the three division ranges divided by the threshold values. It is determined whether the signal c (t) is applicable. Then, the first determiner 893 selects one of the three electric field levels “high level”, “medium level”, and “low level” corresponding to the divided range corresponding to the second filtered signal c (t). One stage is selected as the determination result of the electric field level.
  • the third determiner 923 determines the electric field level of the second filtered signal c (t) based on the magnitude of the second filtered signal c (t).
  • the power level of the second filtered signal c (t) may be determined without being limited thereto.
  • the third determiner 923 includes each of nine sets obtained by combining the three-step received electric field strengths for the third comparison signal psc ave (t) and the three-step electric field levels for the second filtered signal c (t). And a table in which the coefficient of the second correction signal x 2 (t) is associated, that is, the same table as the table shown in FIG.
  • the third determiner 923 refers to this table, and selects one coefficient of the second correction signal x 2 (t) based on one received electric field strength and one electric field level determined by itself.
  • the 3rd determination device 923 demonstrated the case where accuracy was determined based on the received electric field strength and electric field level which were determined here, it is not restricted to this, The received power strength determined by itself The accuracy may be determined based on the power level. Further, each step of the received electric field strength and the electric field level is not limited to three, and may be two steps or four or more steps.
  • the noise intensity determiner 931 includes the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm ( Based on at least one of t), the noise intensity of the one signal corresponding to the accuracy of the error signal e (t) is determined, and the third correction signal x 3 (t ) Is generated.
  • FIG. 23 is a block diagram illustrating a specific configuration example of the noise intensity determiner 931 that performs such an operation.
  • the noise intensity determiner 931 shown in FIG. 23 receives the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm (t).
  • a fourth comparator 932 and a fourth determiner 933 to which the output of the fourth comparator 932 is input are provided.
  • the fourth comparator 932 is a signal based on at least one of the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm (t). And the acquired signal is output as the fourth comparison signal psc nrm (t). For example, the fourth comparator 932 compares the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm (t), One of these signals is output as the fourth comparison signal psc nrm (t) based on the comparison result.
  • the fourth comparator 932 is configured such that the magnitude of the variance value of the normalized first filtered signal s nrm (t) is less than the magnitude of the variance value of the normalized distortion signal p nrm (t), Only when the magnitude of the variance of the normalized second filtered signal c nrm (t) is less than the magnitude of the variance of the normalized first filtered signal s nrm (t), the normalized first filtered The signal s nrm (t) is output as the fourth comparison signal psc nrm (t).
  • the fourth comparator 932 outputs the fourth comparison signal psc nrm (t) (hereinafter referred to as “the first filter 302” when the operation state of the first filter 302 and the like is stable at a certain point in the past.
  • the past fourth comparison signal psc nrm (t) ” is output as the current fourth comparison signal psc nrm (t).
  • the past fourth comparison signal psc nrm (t) is stored in, for example, a storage (not shown) of the fourth comparator 932.
  • the fourth comparator 932 calculates an arithmetic average of the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm (t). The obtained signal may be output as the fourth comparison signal psc nrm (t). Further, the fourth comparator 932 has, for example, a predetermined threshold, and the normalized first filtered signal s nrm (t), the normalized distortion signal p nrm (t), and the normalized second filtered signal c nrm (t). When all of the signals fall below the predetermined threshold value, any one of the three types of signals or a signal obtained by arithmetic averaging of these signals is output as the fourth comparison signal psc nrm (t). Also good.
  • the fourth determiner 933 performs substantially the same operation as the second determiner 903 according to the third embodiment. That is, the fourth determiner 933 determines the above-described noise intensity corresponding to the accuracy of the error signal e (t) based on the fourth comparison signal psc nrm (t), and performs the third correction based on the noise intensity. A signal x 3 (t) is generated. Hereinafter, the generation of the third correction signal x 3 (t) in the fourth determiner 933 will be specifically described.
  • the fourth determiner 933 calculates a variance value psc var (t) based on the fourth comparison signal psc nrm (t).
  • the fourth determiner 933 has two threshold values for classifying the magnitude of the calculated variance value psc var (t), and the variance is distributed to any one of the three division ranges divided by the threshold values. It is determined whether the value psc var (t) is applicable. Then, the fourth determiner 933 sets the variance value psc var (t) to the corresponding range within the three levels of noise intensity (noise environment) of “strong noise”, “medium noise”, and “weak noise”. One corresponding step is selected as the determination result of the noise intensity (noise environment).
  • the fourth determiner 933 associates the coefficient of the third correction signal x 3 (t) with each of the three levels of noise intensity with respect to the variance value psc var (t), that is, the table illustrated in FIG. Have the same table.
  • the fourth determiner 933 refers to this table and selects one coefficient of the third correction signal x 3 (t) based on one noise intensity determined by itself.
  • the noise intensity level is not limited to three, and may be two or four or more.
  • an error is generated based on the first filtered signal s (t), the distortion signal p (t), and the second filtered signal c (t).
  • the signal strength and noise strength corresponding to the accuracy of the signal e (t) are determined, and the error signal e (t) is corrected based on the signal strength and noise strength. Therefore, even when the output of the second filter 303 falls into an unstable state, the output of the distortion detector 301, the output of the first filter 302, and the output of the second filter 303 are compared.
  • the signal obtained as a result can be continuously referred to as a signal for obtaining the accuracy described above.
  • the fourth comparator 932 determines that the magnitude of the dispersion value of the normalized first filtered signal s nrm (t) is the normalized distortion signal p nrm ( t) is smaller than the variance value of the normalized second filtered signal c nrm (t), and the magnitude of the variance value of the normalized first filtered signal s nrm (t) is Only when it falls below, the normalized first filtered signal s nrm (t) is output as the fourth comparison signal psc nrm (t). In other cases, the fourth comparator 932 outputs the above-described past fourth comparison signal psc nrm (t) as the fourth comparison signal psc nrm (t).
  • the dispersion value of the normalized first filtered signal s nrm (t) is changed to a normalized distortion signal p nrm (corresponding to the input of the first filter 302. It increases from the variance value of t).
  • the normalized first filtered signal s nrm (t) is not output as the fourth comparison signal psc nrm (t), and the past fourth comparison signal psc nrm (t) is changed to the current fourth comparison signal psc. It will be output as nrm (t).
  • the received signal r (t) can be correctly controlled by comprehensively considering the transmission path state from the signal strength (for example, received electric field strength, received power strength) and CNR. Therefore, when the noise power included in the received signal r (t) is antagonized with the desired signal power, or when the transmission path is subject to high-speed fluctuation in a weak electric field environment where the received electric field strength is constantly weak. Even if it exists, the received signal r (t) can be compensated stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 様々な環境下において、受信信号を正しく補償することが可能な技術を提供することを目的とする。第2濾波器303は、第1濾波信号s(t)と第2濾波係数w(t)とに基づいて第2濾波信号c(t)を生成し、補償器304は、第2濾波信号c(t)に基づいて受信信号r(t)の歪み成分を補償する。エラー調整器306は、歪み信号p(t)及び第1濾波信号s(t)の少なくともいずれか一つと第2濾波信号c(t)とに基づいて、第2濾波係数を算出するためのエラー信号e(t)の確度を判定し、当該確度に基づいてエラー信号e(t)を補正する。係数算出器305は、第1濾波信号s(t)と、エラー調整器306により補正されたエラー信号e(t)とに基づいて、第2濾波器303で用いられる第2濾波係数w(t)を算出する。

Description

等化装置及び等化方法
 本発明は、直交周波数分割多重変調方式を用いて変調された受信信号の伝送路歪みを補償する等化装置及び等化方法に関するものである。
 一般に、移動しながら無線信号を受信する環境下では、電波の干渉によるマルチパスフェージングや移動に伴う伝送路環境の激しい変動が生じ、受信機に到来する信号の品質が劣化しやすいという問題がある。そこで、劣悪な伝送路環境でも正確に信号を受信するための新しい移動受信技術が要求されている。
 このような正確な信号受信を行うための技術の一つとして伝送路等化技術がある。この伝送路等化技術では、受信機に到来する信号に適切な濾波係数を乗算することにより、雑音等に起因して生じた伝送路環境の変動(伝送路歪み)を補償(等化)することができる。つまり、この技術によれば、マルチパスフェージング及び高速移動に伴う信号ひずみや受信機で重畳される雑音の影響を低減することができる。
 図1に、本発明に係る等化装置に関連する、伝送路推定技術が適用された等化装置の例を示す。なお、以下の説明においては、図1に示される等化装置を「関連等化装置」と呼ぶ。この関連等化装置の前段には、直交周波数分割多重変調方式の放送信号を受信信号として受信する受信機が設けられており、当該受信信号が関連等化装置に入力されている。
 図1に示される関連等化装置では、まず、受信信号が第1基準信号検出部1に入力される。第1基準信号検出部1では、当該受信信号に含まれる基準信号を抽出する。ここで、基準信号は、特定の周波数及び振幅を用いて送信される信号であり、例えば、図2に示されるような信号配置を有する受信信号においては、周波数方向及び時間方向に一定間隔ごとにデータ信号12に挿入される散在基準信号11(砂地ハッチング)に相当する。第1基準信号検出部1は、抽出した基準信号を歪検出部2に出力する。
 歪検出部2は、当該基準信号の入力があった場合に、当該基準信号の歪み成分を算出する。例えば、歪検出部2は、第1基準信号検出部1で抽出された基準信号の振幅成分を検出し、当該振幅成分を既知の理想振幅値、すなわち送信時の基準信号の振幅値で除算する。そして、歪検出部2は、その除算により得られた値を基準信号の歪み成分として、当該歪み成分を示す歪み信号を時間内挿濾波部3に出力する。このような手法によれば、基準信号11の歪みの程度を数値化することができる。
 時間内挿濾波部3は、歪検出部2からの歪み信号に信号処理を行うことにより、歪み信号が示す基準信号の歪み成分に加えて、データ信号の一部(以下「一部データ信号」と呼ぶこともある)の歪み成分も示す第1濾波信号を生成する。なお、一部データ信号とは、例えば、時間方向において隣り合う基準信号同士の間に位置するデータ信号であり、その歪み成分が、基準信号と、濾波係数とに基づいて推定される。
 周波数内挿濾波部4は、時間内挿濾波部3からの第1濾波信号に信号処理を行うことにより、第1濾波信号が示す基準信号及び一部データ信号の歪み成分に加えて、データ信号の残余部(以下「残余データ信号」と呼ぶこともある)の歪み成分も示す第2濾波信号を生成する。なお、残余データ信号とは、例えば、周波数方向において隣り合う基準信号及び一部データ信号同士の間に位置するデータ信号であり、その歪み成分が、第1濾波信号と、濾波係数とに基づいて推定される。
 以上のように、周波数内挿濾波部4は、基準信号の歪み成分と、データ信号の全て(一部データ信号及び残余データ信号)の歪み成分とを示す第2濾波信号を生成し、当該第2濾波信号を等化部5に出力する。等化部5は、受信信号を第2濾波信号で除算する。これにより、受信信号に含まれる伝送路歪みが補償される。
 さて、以上のような伝送路等化技術(伝送路歪推定方法)においては、伝送路環境を推定する際に係数算出アルゴリズムが用いる動作パラメータを適切に決定して、歪み補償能力を向上させる学習アルゴリズムが知られている。例えば、学習アルゴリズムを用いて、時間内挿濾波部3及び周波数内挿濾波部4の濾波係数を適切に決定すれば、時間内挿濾波部3や周波数内挿濾波部4の推定精度を向上させることができ、歪み補償能力を向上させることができる。特に、系の後側に存在し、多くのデータ信号の歪みを推定する周波数内挿濾波部4では、より高い推定精度が要求されることから、一般的に、周波数内挿濾波部4の濾波係数が学習アルゴリズムにより適切に決定されている。
 次に、このような学習アルゴリズムについて同図1を用いて説明する。周波数内挿濾波部4において生成された第2濾波信号は、等化部5に入力されるとともに第2基準信号検出部6にも入力される。第2基準信号検出部6は、第2濾波信号が示す歪み成分のうち、基準信号の歪み成分を抽出し、当該歪み成分をエラー算出部7に出力する。
 エラー算出部7は、歪み検出部2からの基準信号の歪み成分と、第2基準信号検出部6からの基準信号の歪み成分との比較結果に基づくエラー信号(例えば両歪み成分の差分を示すエラー信号)を係数算出部8に出力する。
 係数算出部8は、時間内挿濾波部3からの第1濾波信号と、エラー算出部7からのエラー信号とを参照した学習アルゴリズムを用いることにより、周波数内挿濾波部4の濾波係数を算出する。
 以上のような手法をとる関連等化装置によれば、伝送路歪みを適切に推定することが可能となる。しかし、受信時の信号電力対雑音電力比(CNR:Carrier-to-Noise power Ratio)が低い環境では、正確な係数算出が行えなくなる場合が多くなるという問題がある。また、恒常的に受信電界強度が弱い弱電界環境において同手法を用いると、係数算出速度が低下し、伝送路追従性能が劣化してしまうという問題がある。さらに、関連等化装置における、周波数内挿濾波器4の係数を算出する学習アルゴリズムは、基準信号が入力されるタイミングでのみ動作するため、同アルゴリズムの算出速度や収束精度に限界があるという問題がある。
 そこで、このような問題を解決するために、伝送路歪補償後の判定器により得られる判定信号(例えば硬判定結果を示す信号)を利用して、係数算出アルゴリズムの追従速度や精度を向上させる手法が提案されている。
 例えば、特許文献1では、受信信号を硬判定結果で除算して得られる値と伝送路推定値とを比較し、当該比較結果を示すエラー信号に基づいて周波数内挿濾波部4の係数算出を行う手法が開示されている。同手法によれば、基準信号だけでなくデータ信号の全てに対して係数算出アルゴリズムを適用することが可能となることから、伝送路推定精度の向上が期待できる。
 また、特許文献2では、硬判定前後の信号の差分を示すエラー信号を定義し、当該エラー信号を用いて伝送路歪み補償後の信号のCNRを推定することで、係数算出アルゴリズムの動作を制御する手法が開示されている。同手法によれば、伝送路歪み補償後に残留する伝送路歪み成分及び雑音成分が大きい場合に、係数算出アルゴリズムの動作を安定化させることができる。
特表2008-543186号公報 特許第4459507号公報
 しかしながら、特許文献1で開示されている手法では、伝送路推定値の確度が考慮されていないため、伝送路推定値の確度が低くなりがちな環境下、すなわち受信信号電力と雑音電力とが拮抗する環境下や、恒常的に受信電界強度が弱い弱電界環境下では、濾波係数が最適化されない可能性がある。
 また、特許文献2のような手法では、伝送路歪み補償後の信号のCNRが低い環境下において、所望の動作を行えない可能性がある。具体的には、伝送路歪み補償後の信号に含まれる雑音電力と希望信号電力とが拮抗している環境下では、誤った硬判定が行われる可能性が高くなることから、誤った硬判定結果に基づいてCNRが推定されることがある。このような場合には、受信信号を正しく補償できない可能性がある。
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、様々な環境下において、受信信号を正しく補償することが可能な技術を提供することを目的とする。
 本発明に係る等化装置は、基準信号及びデータ信号を含む直交周波数分割多重変調方式の受信信号における伝送路歪みを補償する等化装置であって、前記受信信号に含まれる前記基準信号の歪み成分を示す歪み信号を生成する歪検出器を備える。前記等化装置は、前記歪み信号に基づいて、前記データ信号の一部の歪み成分、及び、前記基準信号の歪み成分を示す第1濾波信号を生成する第1濾波器と、前記第1濾波信号と濾波係数とに基づいて、前記データ信号の全ての歪み成分、及び、前記基準信号の歪み成分を示す第2濾波信号を生成する第2濾波器と、前記第2濾波信号に基づいて前記受信信号の歪み成分を補償する補償器とを備える。前記等化装置は、前記歪み信号及び前記第1濾波信号の少なくともいずれか一つと前記第2濾波信号とに基づいて、前記濾波係数を算出するためのエラー信号の確度を判定し、当該確度に基づいて前記エラー信号を補正するエラー調整器と、前記第1濾波信号と、前記エラー調整器により補正された前記エラー信号とに基づいて、前記第2濾波器で用いられる前記濾波係数を算出する係数算出器とを備える。
 本発明によれば、歪み信号及び第1濾波信号の少なくともいずれか一つと第2濾波信号とに基づいて、濾波係数を算出するためのエラー信号の確度を判定し、当該確度に基づいてエラー信号を補正する。したがって、係数算出アルゴリズムの動作を適応的に制御できることから、様々な環境下において受信信号を正しく補償することができる。
関連等化装置の構成例を示すブロック図である。 受信信号における信号配置の一例を示す図である。 実施の形態1に係る等化装置の構成を示すブロック図である。 実施の形態1に係る歪検出器の構成を示すブロック図である。 実施の形態1に係る第1濾波器の構成例を示すブロック図である。 実施の形態1に係る第2濾波器の構成例を示すブロック図である。 実施の形態1に係る補償器の構成を示すブロック図である。 実施の形態1に係るエラー調整器の構成を示すブロック図である。 受信電界強度、電界レベル及び第2補正信号の係数の関係を示す図である。 分散値及び第3補正信号の係数の関係を示す図である。 実施の形態1に係る等化装置の動作を説明するための図である。 実施の形態1に係る等化装置の動作を説明するための図である。 実施の形態1に係る等化装置の動作を説明するための図である。 実施の形態1に係る等化装置の動作を説明するための図である。 実施の形態2に係る等化装置の構成を示すブロック図である。 実施の形態2に係るエラー調整器の構成を示すブロック図である。 実施の形態3に係る等化装置の構成を示すブロック図である。 実施の形態3に係るエラー調整器の構成を示すブロック図である。 実施の形態3に係る信号強度判定器の構成を示すブロック図である。 実施の形態3に係る雑音強度判定器の構成を示すブロック図である。 実施の形態4に係るエラー調整器の構成を示すブロック図である。 実施の形態4に係る信号強度判定器の構成を示すブロック図である。 実施の形態4に係る雑音強度判定器の構成を示すブロック図である。
 <実施の形態1>
 図3は、本発明の実施の形態1に係る等化装置の構成を示すブロック図である。この図3に示されるように、等化装置300は、歪検出器301と、第1濾波係数を用いて入力信号を濾波する第1濾波器302と、可変の濾波係数である第2濾波係数を用いて入力信号を濾波する第2濾波器303と、補償器304と、係数算出器305と、エラー調整器306とを備えており、この等化装置300には、受信信号r(t)と、エラー信号e(t)とが入力されている。なお、文章中の各信号に付された(t)は信号処理を行う時刻を表しているが、図中の各信号に対しては、簡単のため(t)を省略している。
 この等化装置300は、歪検出器301と、第1濾波器302と、第2濾波器303とを経て得られる信号を用いて、受信信号r(t)の伝送路歪みを補償(等化)し、それによって得られた等化信号q(t)を判定器307に出力する。
 また、本実施の形態に係る等化装置300は、第1濾波器302の出力と、第2濾波器303の出力とに基づいて、第2濾波係数を算出するためのエラー信号e(t)の確度を判定する。そして、等化装置300は、当該確度に基づいてエラー信号e(t)を補正し、それによって得られた補正エラー信号g(t)に基づいて第2濾波器303の第2濾波係数を算出する。このような本実施の形態に係る等化装置300によれば、上述の補償(等化)を行う係数算出アルゴリズムの動作を適応的に制御できることから、受信信号r(t)に含まれる雑音電力と希望信号電力とが拮抗する環境下や、恒常的に受信電界強度が弱い弱電界環境下などにおいても安定して受信信号を正しく補償することが可能となっている。以下、このような本実施の形態に係る等化装置300の構成について説明する。
 まず、等化装置300に入力される受信信号r(t)は、歪検出器301に入力される。ここで、等化装置300に入力される受信信号r(t)は、基準信号及びデータ信号を含む、直交周波数分割多重変調方式の信号である。なお、受信信号r(t)としては、離散フーリエ変換(DCT:Discrete Fourier Transform)や高速フーリエ変換(FFT:Fast Fourier Transform)に代表されるような時間領域-周波数領域変換器からの出力信号であることが望ましい。
 また、受信信号r(t)に含まれる基準信号は、特定の周波数及び振幅を用いて送信される信号であることが望ましく、具体的には、図2に示されるように、周波数方向及び時間方向に一定間隔ごとにデータ信号12に挿入される散在基準信号11であることが望ましい。なお、本実施の形態では、受信信号r(t)に含まれる基準信号は、散在基準信号11であるものとして説明するが、当該基準信号は散在基準信号11に限ったものではない。なお、以下の説明においては、散在基準信号11を「基準信号11」と呼ぶこともある。
 歪検出器301は、受信信号r(t)から基準信号11の歪み成分を検出し、当該歪み成分を示す歪み信号p(t)を生成する。そして、歪検出器301は、当該歪み信号p(t)を第1濾波器302に出力する。
 図4は、歪検出器301の構成例を示すブロック図である。この図4に示されるように、歪検出器301は、基準信号抽出器401と、歪検出用除算器402と、理想信号発生器403とを備えている。
 基準信号抽出器401は、受信信号r(t)から基準信号11を抽出する。なお、基準信号11は、時間的・周波数的に所定の間隔でデータ信号12に挿入されていることから、例えば、所定時間毎に導通状態となる時間スイッチと、所定の搬送波に変調された信号を選択して取り出す選択器とから基準信号抽出器401を構成することができる。基準信号抽出器401は、抽出した散在基準信号11を歪検出用除算器402に出力する。
 歪検出用除算器402は、基準信号抽出器401からの基準信号を、理想信号発生器403において生成される既知の理想信号で除算し、その結果を歪み信号p(t)として出力する。ここで、当該理想信号は、伝送路歪みや雑音の影響を全く受けなかった場合に基準信号抽出器401から出力されると期待される理想的な基準信号と同一であることが望ましい。このような手法をとる歪検出器301によれば、基準信号11の歪みの程度を数値化した歪み信号p(t)を生成することができる。
 図3に戻って、第1濾波器302は、歪検出器301からの歪み信号p(t)に基づいて、データ信号12の一部(一部データ信号12)の歪み成分を推定し、当該一部データ信号12の歪み成分、及び、基準信号11の歪み成分を示す第1濾波信号s(t)を生成する。そして、第1濾波器302は、当該第1濾波信号s(t)を、第2濾波器303、係数算出器305及びエラー調整器306に出力する。
 なお、上述したように本実施の形態に係る受信信号r(t)は、図2に示されるような基準信号11を含んでいる。このような場合には、歪み信号p(t)に、その時間方向に関して濾波を行う濾波器を、第1濾波器302に適用することが望ましい。つまり、時間方向で隣り合う基準信号11の歪み成分に基づいて、伝送路歪み成分の時間方向の内挿(補間)が行われることが望ましい。このような濾波器によれば、歪み信号p(t)が示す基準信号11の歪み成分だけでなく、時間方向で隣り合う基準信号11同士の間に位置する一部データ信号12の歪み成分をも示す第1濾波信号s(t)を生成することができる。
 図5は、ディジタル信号処理による有限インパルス応答型濾波器を、第1濾波器302に適用した場合の具体的な構成例を示すブロック図である。この図5に示される第1濾波器302は、m個の第1濾波用第1遅延器~第1濾波用第m遅延器からなる第1遅延器群501と、m個の第1乗算器502と、第1加算器503と、第1濾波係数に相当するm個の第1濾波用第1係数~第1濾波用第m係数を格納した第1濾波係数記憶器504とを備える。
 まず、第1濾波器302に入力される歪み信号p(t)が、その時間順で第1遅延器群501に入力される。第1遅延器群501の各々の遅延器は、このような入力信号を所定時間T1だけ遅延させた信号を出力する。そして、第1濾波用第1遅延器の入力信号が、歪み信号p(t)となるように、また、第1濾波用第k遅延器(2≦k≦m-1)の入力及び出力が、それぞれ第1濾波用第(k-1)遅延器の出力及び第1濾波用第(k+1)遅延器の入力となるように、これら遅延器は接続されている。
 第1濾波係数記憶器504の第1濾波用第j係数(1≦j≦m)は、対応する第1乗算器502において第1濾波用第j遅延器の出力と乗算され、その乗算結果が第1加算器503に出力される。
 最後に、第1加算器503は、入力されたm個の乗算結果を加算し、その結果を第1濾波信号s(t)として出力する。このような手法をとる第1濾波器302によれば、基準信号11の歪み成分に基づいて、上述の第1濾波信号s(t)を生成することができる。
 なお、ここでは、第1濾波器302が、ディジタル信号処理による有限インパルス応答型濾波器である場合について説明したが、これに限ったものではなく、ディジタル信号処理による無限インパルス型濾波器であってもよいし、アナログ信号処理による濾波器であってもよい。
 図3に戻って、第2濾波器303には、第1濾波器302で生成された第1濾波信号s(t)と、係数算出器305で算出された第2濾波係数w(t)であるn個の第2濾波用第j係数wj(t)(1≦j≦n)とが入力される。なお、係数算出器305については後で詳細に説明する。
 第2濾波器303は、第1濾波器302からの第1濾波信号s(t)と、係数算出器305からの第2濾波係数w(t)とに基づいて、データ信号12の残余部(残余データ信号12)の歪み成分を推定する。そして、第2濾波器303は、一部データ信号12及び残余データ信号12の歪み成分、つまりデータ信号12の全ての歪み成分と、基準信号11の歪み成分とを示す第2濾波信号c(t)を生成する。第2濾波器303は、当該第2濾波信号c(t)を補償器304及びエラー調整器306に出力する。
 なお、上述したように本実施の形態に係る受信信号r(t)は、図2に示されるような基準信号11を含んでいる。このような場合には、第1濾波信号s(t)に、その周波数方向に関して濾波を行う濾波器を、第2濾波器303に適用することが望ましい。つまり、周波数方向で隣り合う基準信号11及び一部データ信号12の歪み成分に基づいて、伝送路歪み成分の周波数方向の内挿(補間)が行われることが望ましい。このような濾波器によれば、第1濾波信号s(t)が示す基準信号11及び一部データ信号12の歪み成分だけでなく、周波数方向で隣り合う基準信号11及び一部データ信号12同士の間に位置する残余データ信号12の歪み成分をも示す第2濾波信号c(t)を生成することができる。
 図6は、ディジタル信号処理による有限インパルス応答型濾波器を、第2濾波器303に適用した場合の具体的な構成例を示すブロック図である。この図6に示される第2濾波器303は、n個の第2濾波用第1遅延器~第2濾波用第n遅延器からなる第2遅延器群601と、複数の第2乗算器602と、第2加算器603とを備える。
 まず、第2濾波器303に入力される第1濾波信号s(t)が、一定シンボル単位ごとに、副搬送波(サブキャリア)の周波数の高い順または低い順で第2遅延器群601に入力される。第2遅延器群601の各々の遅延器は、このような入力信号を所定時間T2だけ遅延させた信号を出力する。そして、第2濾波用第1遅延器の入力信号が、第1濾波信号s(t)となるように、また、第2濾波用第k遅延器(2≦k≦n-1)の入力及び出力が、それぞれ第2濾波用第(k-1)遅延器の出力及び第2濾波用第(k+1)遅延器の入力となるように、これら遅延器は接続されている。
 係数算出器305からの第2濾波係数w(t)である第2濾波用第j係数wj(t)(1≦j≦n)は、対応する第2乗算器602において第2濾波用第j遅延器の出力と乗算され、その乗算結果が第2加算器603に出力される。
 最後に、第2加算器603は、入力されたn個の乗算結果を加算し、その結果を第2濾波信号c(t)として出力する。このような手法をとる第2濾波器303によれば、基準信号11及び一部データ信号12の歪み成分に基づいて、上述の第2濾波信号c(t)を生成することができる。
 なお、ここでは、第2濾波器303が、ディジタル信号処理による有限インパルス応答型濾波器である場合について説明したが、これに限ったものではなく、ディジタル信号処理による無限インパルス型濾波器であってもよいし、アナログ信号処理による濾波器であってもよい。また、第1濾波器302の遅延時間T1、及び、第2濾波器303の遅延時間T2は同一の値としてもよいし、第1遅延器群501の遅延器の個数m、及び、第2遅延器群601の個数nは同一の値としてもよい。さらに、第1乗算器502及び第2乗算器602は同一の構成としてもよく、第1加算器503及び第2加算器603は同一の構成としてもよい。
 図3に戻って、補償器304は、第2濾波器303からの第2濾波信号c(t)に基づいて受信信号r(t)の歪み成分を補償(等化)し、それによって得られた等化信号q(t)を判定器307に出力する。
 図7は、このような動作を行う補償器304の具体的な構成例を示すブロック図である。この図7に示される補償器304は、受信信号r(t)及び第2濾波信号c(t)が入力される等化用除算器701を備えている。この等化用除算器701は、伝送路歪みを含んだ受信信号r(t)を、上述によって推定された歪み成分である伝送路歪み推定成分を示す第2濾波信号c(t)で除算する。したがって、補償器304によれば、伝送路歪み成分が補償された等化信号q(t)を得ることができる。
 図3に戻って、判定器307は、補償器304からの等化信号q(t)を、等化装置300の出力として受け取る。そして、判定器307は、当該等化信号q(t)を復号し、それによって得られた復号信号d(t)を出力する。なお、この判定器307は、例えば硬判定を行う演算器により構成されてもよいし、軟判定を行う演算器により構成されてもよい。
 エラー調整器306は、第1濾波器302からの第1濾波信号s(t)と、第2濾波器303からの第2濾波信号c(t)とに基づいて、エラー信号e(t)を補正し、補正エラー信号g(t)を生成する。なお、このエラー調整器306については後で詳細に説明する。
 係数算出器305は、第1濾波信号s(t)と、エラー調整器306で補正されたエラー信号e(t)とに基づいて、第2濾波器303で用いられる第2濾波係数w(t)を算出する。本実施の形態では、係数算出器305は、第1濾波信号s(t)と、補正エラー信号g(t)とに基づいて、n個の第2濾波用第j係数wj(t)(1≦j≦n)を算出する。より具体的には、係数算出器305は、エラー調整器306において現時点よりも過去に得られた第2濾波係数w(t-τ)と、n個の補正エラー信号g(t-τ),…,g(t-nτ)と、n個の第1濾波信号s(t-τ),…,s(t-nτ)とを次式(1)に代入することにより、現在の第2濾波係数w(t)(第2濾波用第j係数wj(t)(1≦j≦n))を算出する。ただし、τは所定時間量である。
Figure JPOXMLDOC01-appb-M000001
 次に、エラー調整器306について詳細に説明する。本実施の形態では、エラー調整器306には、第1濾波信号s(t)、第2濾波信号c(t)、及び、エラー信号e(t)が入力される。ここで、エラー信号e(t)とは、第2濾波係数w(t)を算出するための信号であり、例えば、第1濾波信号s(t)及び第2濾波信号c(t)を用いて次式(2)のように定義することができる。
Figure JPOXMLDOC01-appb-M000002
 また、エラー信号e(t)は、例えば、補償器304からの等化信号q(t)、及び、判定器307からの復号信号d(t)を用いて次式(3)のように定義することもできる。次式(3)のように定義すれば、伝送路歪み成分と雑音成分との両方を考慮することができる。
Figure JPOXMLDOC01-appb-M000003
 また、エラー信号e(t)は、例えば、伝送路歪みの程度に対応した確度を考慮して次式(4)のように定義することもできる。
Figure JPOXMLDOC01-appb-M000004
 また、エラー信号e(t)は、例えば、伝送路歪みの程度と受信信号振幅に対応した確度を考慮して次式(5)のように定義することもできる。
Figure JPOXMLDOC01-appb-M000005
 以上、エラー信号e(t)の例について説明したが、以上に限ったものではない。
 さて、エラー調整器306は、第1濾波信号s(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度を判定する。そして、エラー調整器306は、当該確度に基づいてエラー信号e(t)を補正し、係数算出器305で用いられる補正エラー信号g(t)を生成する。
 図8は、このような動作を行うエラー調整器306の具体的な構成例を示すブロック図である。この図8に示されるエラー調整器306は、信号変換器801と、第1信号処理演算器811と、信号強度判定器821と、雑音強度判定器831と、エラー補正器841とを備える。そして、第1信号処理演算器811は、平均化演算器812と、正規化演算器813とから構成され、エラー補正器841は、第1補正器842と、第2補正器843と、第3補正器844とから構成されている。
 エラー調整器306に入力された第1濾波信号s(t)は、平均化演算器812及び正規化演算器813に入力され、エラー調整器306に入力された第2濾波信号c(t)は、信号変換器801及び信号強度判定器821に入力され、エラー調整器306に入力されたエラー信号e(t)は、第1補正器842に入力される。次に、エラー調整器306の各構成要素について説明する。
 信号変換器801は、第2濾波信号c(t)の大きさに基づいて第1補正信号x1(t)を生成し、当該第1補正信号x1(t)を第1補正器842に出力する。例えば、信号変換器801は、次式(6)~(8)のような信号変換を行って第1補正信号x1(t)を生成する。ただし、αは定数である。なお、信号変換器801の信号変換はこれに限られるものではない。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 第1補正器842は、第1補正信号x1(t)に基づいてエラー信号e(t)を補正して第1中間エラー信号e1(t)を生成し、それを第2補正器843に出力する。例えば、第1補正器842は、第1補正信号x1(t)と、エラー信号e(t)とを積算して得られる信号を、第1中間エラー信号e1(t)とする。
 第1信号処理演算器811は、第1濾波信号s(t)に統計的処理を行って、第1統計信号である平均第1濾波信号save(t)と、第2統計信号である正規化第1濾波信号snrm(t)とを生成する。
 本実施の形態では、第1信号処理演算器811(平均化演算器812)は、自身が統計的処理すべき信号、すなわち第1濾波信号s(t)を所定時間単位で平均化することによって平均第1濾波信号save(t)を生成する。なお、第1信号処理演算器811(平均化演算器812)は、信号入力回数が所定回数に達したときに平均化処理を行うブロック平均処理を行うように構成されてもよいし、信号が入力される毎に平均化処理を行う移動平均処理を行うように構成されてもよい。
 また、本実施の形態では、第1信号処理演算器811(正規化演算器813)は、自身が統計的処理すべき信号、すなわち第1濾波信号s(t)を、平均第1濾波信号save(t)で除算する(正規化する)ことによって正規化第1濾波信号snrm(t)を生成する。以上により生成された平均第1濾波信号save(t)は、信号強度判定器821に入力され、正規化第1濾波信号snrm(t)は、雑音強度判定器831に入力される。
 信号強度判定器821は、平均第1濾波信号save(t)と第2濾波信号c(t)とに基づいて、受信信号r(t)の信号強度を判定する。なお、後述するように、受信信号r(t)の信号強度は、エラー信号e(t)の確度に対応していることから、当該信号強度の判定を実施することは、当該確度の判定を実施することに対応している。信号強度判定器821は、当該信号強度に基づいて第2補正信号x2(t)を生成し、当該第2補正信号x2(t)を第2補正器843に出力する。なお、第2補正信号x2(t)は、第1補正器842から出力される第1中間エラー信号e1(t)を補正するための信号である。以下、信号強度判定器821における第2補正信号x2(t)の生成について具体的に説明する。
 本実施の形態に係る信号強度判定器821は、信号強度の判定に用いる信号のうち第2濾波信号c(t)を除く信号、すなわち平均第1濾波信号save(t)の大きさに基づいて、受信電界強度(つまり受信電界環境)を判定する。ここでは、信号強度判定器821は、平均第1濾波信号save(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに平均第1濾波信号save(t)が該当するかを判定する。そして、信号強度判定器821は、「強電界」、「中電界」及び「弱電界」という3段階の受信電界強度の中から、平均第1濾波信号save(t)が該当した区分範囲に対応する一つの段階を、受信電界強度の判定結果として選択する。なお、以上の説明では、信号強度判定器821は、平均第1濾波信号save(t)の大きさに基づいて、受信電界強度(受信電界環境)を判定するものとしたが、これに限ったものではなく、受信電力強度(受信電力状態)を判定するものであってもよい。
 また、信号強度判定器821は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定する。例えば、信号強度判定器821は、第2濾波信号c(t)の大きさを類別するための2つの閾値を有しており、それら閾値によって区切られた3つの区分範囲のいずれに第2濾波信号c(t)が該当するかを判定する。そして、信号強度判定器821は、「高レベル」、「中レベル」及び「低レベル」という3段階の電界レベルの中から、第2濾波信号c(t)が該当した区分範囲に対応する一つの段階を、電界レベルの判定結果として選択する。なお、以上の説明では、信号強度判定器821は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定するものとしたが、これに限ったものではなく、第2濾波信号c(t)の電力レベルを判定するものであってもよい。
 また、信号強度判定器821は、図9に示されるように、平均第1濾波信号save(t)に対する3段階の受信電界強度と、第2濾波信号c(t)に対する3段階の電界レベルとを組み合わせた9つの組のそれぞれに、第2補正信号x2(t)の係数を対応付けたテーブルを有している。信号強度判定器821は、このテーブルを参照し、自身が判定した一つの受信電界強度及び一つの電界レベルに基づいて、第2補正信号x2(t)の係数を一つ選択する。
 ここで、本実施の形態では、第2補正信号x2(t)の係数、エラー信号e(t)の確度、及び、受信信号r(t)の信号強度は互いに対応付けられており、第2補正信号x2(t)の係数が大きいほど、エラー信号e(t)の確度が高く、かつ、受信信号r(t)の信号強度が強くなっている。したがって、本実施の形態に係る信号強度判定器821は、自身が判定した受信電界強度及び電界レベルに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて、第2補正信号x2(t)を生成することとなる。
 また、本実施の形態では、図9に示されるように、受信電界強度が中電界である場合には、第1中間エラー信号e1(t)を補正する必要がないものとして、係数が「1」の第2補正信号x2(t)が信号強度判定器821から出力されるものとなっている。また、受信電界強度が弱電界である場合には、値が「1」以上の係数βHM(M=1,2,3)を有する第2補正信号x2(t)が出力され、受信電界強度が強電界である場合には、値が「1」以下の係数βLM(M=1,2,3)を有する第2補正信号x2(t)が出力されるものとなっている。つまり、本実施の形態に係る信号強度判定器821は、受信電界強度が弱くなるほど、エラー信号e(t)の確度が高い(受信信号r(t)の信号強度が強い)と判定し、第2補正信号x2(t)の係数(信号レベル)を大きくするようになっている。
 また、受信電界強度が同じ弱電界において、受信電界強度(弱電界)との差が大きい電界レベル(高レベル)の係数(βH1)が、受信電界強度(弱電界)との差が小さい電界レベル(低レベル)の係数(βH3)よりも小さくなっている。同様に、受信電界強度が同じ強電界において、受信電界強度(強電界)との差が大きい電界レベル(低レベル)の係数(βL3)が、受信電界強度(強電界)との差が小さい電界レベル(高レベル)の係数(βL1)よりも小さくなっている。つまり、本実施の形態に係る信号強度判定器821は、受信電界強度と電界レベルとの差分の絶対値が大きいほど、エラー信号e(t)の確度が低い(受信信号r(t)の信号強度が弱い)と判定し、第2補正信号x2(t)の係数(信号レベル)を小さくするようになっている。
 なお、以上においては、信号強度判定器821は、自身が判定した受信電界強度及び電界レベルに基づいて確度を判定する場合について説明したが、これに限ったものではなく、自身が判定した受信電力強度及び電力レベルに基づいて確度を判定してもよい。また、受信電界強度及び電界レベルのそれぞれの段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。また、第2補正信号x2(t)の係数(βHM、1、βLM)の組み合わせは、図9に示した大小関係に限られるものではない。
 第2補正器843には、信号強度判定器821からの第2補正信号x2(t)が入力される。第2補正器843は、第2補正信号x2(t)に基づいて第1中間エラー信号e1(t)を補正して第2中間エラー信号e2(t)を生成し、それを第3補正器844に出力する。例えば、第2補正器843は、第2補正信号x2(t)と、第1中間エラー信号e1(t)とを積算して得られる信号を、第2中間エラー信号e2(t)とする。
 雑音強度判定器831には、第1信号処理演算器811からの正規化第1濾波信号snrm(t)が入力される。雑音強度判定器831は、正規化第1濾波信号snrm(t)に基づいて、第1濾波信号s(t)の雑音強度を判定する。なお、後述するように、第1濾波信号s(t)の雑音強度は、エラー信号e(t)の確度に対応していることから、当該雑音強度の判定を実施することは、当該確度の判定を実施することに対応している。雑音強度判定器831は、当該雑音強度に基づいて第3補正信号x3(t)を生成し、当該第3補正信号x3(t)を第3補正器844に出力する。なお、第3補正信号x3(t)は、第2補正器843から出力される第2中間エラー信号e2(t)を補正するための信号である。以下、雑音強度判定器831における第3補正信号x3(t)の生成について具体的に説明する。
 本実施の形態に係る雑音強度判定器831は、雑音強度の判定に用いる信号、すなわち正規化第1濾波信号snrm(t)に基づいて分散値svar(t)を算出する。なお、ここでは、雑音強度判定器831には、正規化第1濾波信号snrm(t)が所定時間単位で入力されており、雑音強度判定器831は、当該正規化第1濾波信号snrm(t)の分散値を、副搬送波の周波数に関して算出する。
 雑音強度判定器831は、算出した分散値svar(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに分散値svar(t)が該当するかを判定する。そして、雑音強度判定器831は、「強雑音」、「中雑音」及び「弱雑音」という3段階の雑音強度の中から、分散値svar(t)が該当した区分範囲に対応する一つの段階を、雑音強度の判定結果として選択する。
 また、雑音強度判定器831は、図10に示されるように、分散値svar(t)に対する3段階の雑音強度のそれぞれに、第3補正信号x3(t)の係数を対応付けたテーブルを有している。雑音強度判定器831は、このテーブルを参照し、自身が判定した一つの雑音強度に基づいて、第3補正信号x3(t)の係数を一つ選択する。
 ここで、本実施の形態では、第3補正信号x3(t)の係数は、第1濾波信号s(t)の雑音強度だけでなく、エラー信号e(t)の確度とも対応付けられており、第3補正信号x3(t)の係数が大きいほど、エラー信号e(t)の確度が高くなっている。したがって、本実施の形態に係る雑音強度判定器831は、分散値svar(t)に基づいて、エラー信号e(t)の確度に対応する第1濾波信号s(t)の雑音強度を判定し、当該雑音強度に基づいて、第3補正信号x3(t)を生成することとなる。
 また、本実施の形態では、雑音強度が弱雑音である場合には、値が大きい係数γL1を有する第3補正信号x3(t)が出力され、雑音強度が強雑音である場合には、値が小さい係数γL3を有する第3補正信号x3(t)が出力されるものとなっている。つまり、本実施の形態に係る雑音強度判定器831は、雑音強度が弱くなるほど、第3補正信号x3(t)の係数(信号レベル)を大きくするようになっている。なお、第2中間エラー信号e2(t)を補正する必要がない場合に、係数が「1」の第3補正信号x3(t)を出力するとした場合には、γL1≦1であることが望ましい。また、雑音強度の段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。
 第3補正器844には、雑音強度判定器831からの第3補正信号x3(t)が入力される。第3補正器844は、第3補正信号x3(t)に基づいて第2中間エラー信号e2(t)を補正して上述の補正エラー信号g(t)を生成し、それを係数算出器305に出力する。例えば、第3補正器844は、第3補正信号x3(t)と、第2中間エラー信号e2(t)とを積算して得られる信号を、補正エラー信号g(t)とする。
 エラー補正器841では、第1補正器842~第3補正器844が上述の動作を行う。したがって、エラー補正器841は、第1~第3補正信号x1(t)~x3(t)に基づいてエラー信号e(t)を補正する。
 以上の構成からなる本実施の形態に係る等化装置によれば、図11~図14に示される状態に対して、受信信号r(t)の電力及びCNRから伝送路状態を総合的に考慮した係数算出アルゴリズムの制御が可能となる。以下、図11~図14を用いて、本実施の形態に係る等化装置の具体的な動作例と、その効果について説明する。
 図11及び図12は、ある時刻における平均第1濾波信号save(t)と、第2濾波信号s(t)との一例を示す図である。図11に示されるように、平均信号レベルが高い、つまり平均第1濾波信号save(t)が大きい場合には、信号強度判定器821は、受信電界強度を「強電界」とする判定、つまり強電界環境とする判定を行う。一方、図12に示されるように、平均信号レベルが低い、つまり平均第1濾波信号save(t)が小さい場合には、信号強度判定器821は、受信電界強度を「弱電界」とする判定、つまり弱電界環境とする判定を行う。
 次に、図11及び図12に示される環境のいずれにおいても、副搬送波の周波数fmにおける第2濾波信号c(t)の電界レベルが、弱電界環境下における平均信号レベルと同程度であるHeとなっている。ここでは、第2濾波信号c(t)の電界レベルがHe程度である場合には、信号強度判定器821は、第2濾波信号c(t)の電界レベルを「低レベル」と判定するものとする。
 そうすると、図11に示される環境では、受信電界強度及び電界レベルは「強電界」及び「低レベル」と判定され、受信電界強度と電界レベルとの差分の絶対値が大きくなる。このような場合には、信号強度判定器821は、受信信号r(t)の信号強度が低い(エラー信号e(t)の確度が低い)と判定し、値が小さい係数βL3を有する第2補正信号x2(t)を出力する。
 一方、図12に示される環境では、受信電界強度及び電界レベルは「弱電界」及び「低レベル」と判定され、受信電界強度と電界レベルとの差分の絶対値が小さくなる。このような場合には、信号強度判定器821は、受信信号r(t)の信号強度が高い(エラー信号e(t)の確度が高い)と判定し、値が大きい係数βH3を有する第2補正信号x2(t)を出力する。
 次に、図13及び図14は、ある時刻における第1濾波信号s(t)の一例を示す図である。図13に示されるように、上述の分散値svar(t)が大きい場合には、希望信号電力と雑音電力が拮抗している。このような場合には、雑音強度判定器831は、雑音強度が強い(エラー信号e(t)の確度が低い)と判定し、値が小さい係数γL3を有する第3補正信号x3(t)を出力する。一方、図14に示されるように、上述の分散値svar(t)が小さい場合には、希望信号電力が雑音電力に対して十分に大きくなる。このような場合には、雑音強度判定器831は、雑音強度が弱い(エラー信号e(t)の確度が高い)と判定し、値が大きい係数γL1を有する第3補正信号x3(t)を出力する。
 以上のような本実施の形態に係る等化装置及び等化方法によれば、第2濾波係数を算出するためのエラー信号e(t)の確度を判定し、当該確度に基づいてエラー信号e(t)を補正する。したがって、係数算出アルゴリズムの動作を適応的に制御できることから、様々な環境下において受信信号r(t)を正しく補償することができる。
 また、本実施の形態では、第1濾波信号s(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する信号強度及び雑音強度を判定し、これら信号強度及び雑音強度に基づいて、エラー信号e(t)を補正する。したがって、受信信号r(t)の信号強度(例えば受信電界強度、受信電力強度)及びCNRから伝送路状態を総合的に考慮することができ、係数算出アルゴリズムを正しく制御することができる。よって、受信信号r(t)に含まれる雑音電力が希望信号電力と拮抗する環境下や、恒常的に受信電界強度が弱い弱電界環境下であっても、安定して受信信号r(t)を補償することができる。
 また、本実施の形態では、平均第1濾波信号save(t)に基づく受信電界強度/受信電力強度と、第2濾波信号c(t)の電界レベル/電力レベルとに基づいて、エラー信号e(t)を補正する第2補正信号x2(t)を生成する。したがって、受信信号強度の瞬時値と平均値との双方に基づいて、伝送路環境を適切に判断することが可能となることから、エラー信号e(t)を高精度に補正することができる。
 また、本実施の形態では、正規化第1濾波信号snrm(t)の分散値svar(t)に基づいて、エラー信号e(t)を補正する第3補正信号x3(t)を生成する。したがって、受信信号強度の統計量(ここでは分散値)に基づいて、雑音環境を適切に判断することが可能となることから、エラー信号e(t)を高精度に補正することができる。
 <実施の形態2>
 図15は、本発明の実施の形態2に係る等化装置の構成を示すブロック図である。なお、以下、本実施の形態に係る等化装置についての説明において、実施の形態1で説明した構成要素と類似するものについては同じ符号を付し、その説明を省略するものとする。
 本実施の形態と上述の実施の形態1との相違点は、図3に示した実施の形態1に係る等化装置を構成するエラー調整器306に入力される信号が、第1濾波信号s(t)、第2濾波信号c(t)及びエラー信号e(t)であったのに対し、本実施の形態に係る等化装置を構成するエラー調整器316に入力される信号が、歪み信号p(t)、第2濾波信号c(t)及びエラー信号e(t)となっている点である。これに伴い、本実施の形態に係るエラー調整器316は、歪み信号p(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度を判定し、当該確度に基づいてエラー信号e(t)を補正するものとなっている。
 図16は、このような動作を行う本実施の形態に係るエラー調整器316の構成例を示すブロック図である。この図16によれば、エラー調整器316は、実施の形態1に係る第1信号処理演算器811、信号強度判定器821及び雑音強度判定器831の代わりに、第1信号処理演算器851、信号強度判定器861及び雑音強度判定器871を備えている。そして、第1信号処理演算器851は、平均化演算器852と、正規化演算器853とから構成されている。
 本実施の形態に係る第1信号処理演算器851は、実施の形態1に係る第1信号処理演算器811が第1濾波信号s(t)に対して行った統計的処理と同様の処理を、歪み信号p(t)に対して行う。つまり、第1信号処理演算器811は、歪み信号p(t)に統計的処理を行って、第1統計信号である平均歪み信号pave(t)と、第2統計信号である正規化歪み信号pnrm(t)とを生成する。
 より具体的には、第1信号処理演算器851(平均化演算器852)は、自身が統計的処理すべき信号、すなわち歪み信号p(t)を所定時間単位で平均化することによって平均歪み信号pave(t)を生成する。なお、第1信号処理演算器851(平均化演算器852)は、信号入力回数が所定回数に達したときに平均化処理を行うブロック平均処理を行うように構成されてもよいし、信号が入力される毎に平均化処理を行う移動平均処理を行うように構成されてもよい。
 また、第1信号処理演算器851(正規化演算器853)は、自身が統計的処理すべき信号、すなわち歪み信号p(t)を、平均歪み信号pave(t)で除算する(正規化する)ことによって正規化歪み信号pnrm(t)を生成する。以上により生成された平均歪み信号pave(t)は、信号強度判定器861に入力され、正規化歪み信号pnrm(t)は、雑音強度判定器871に入力される。
 本実施の形態に係る信号強度判定器861及び雑音強度判定器871は、実施の形態1に係る信号強度判定器821及び雑音強度判定器831とほぼ同様の動作を行う。つまり、信号強度判定器861は、平均歪み信号pave(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて第2補正信号x2(t)を生成する。また、雑音強度判定器871は、正規化歪み信号pnrm(t)に基づいて、エラー信号e(t)の確度に対応する歪み信号p(t)の雑音強度を判定し、当該雑音強度に基づいて第3補正信号x3(t)を生成する。
 以上のような本実施の形態に係る等化装置及び等化方法によれば、歪み信号p(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する信号強度及び雑音強度を判定し、これら信号強度及び雑音強度に基づいて、エラー信号e(t)を補正する。したがって、第1及び第2濾波器302,303の出力が不安定な状態に陥った場合であっても、受信信号r(t)の信号強度(例えば受信電界強度、受信電力強度)及びCNRから伝送路状態を総合的に考慮することができ、係数算出アルゴリズムを正しく制御することが可能となっている。以下、この効果について詳細に説明する。
 まず、実施の形態1のような等化装置において、例えば、何らかの要因で第1濾波器302の動作状態が不安定となった場合には、第1濾波信号s(t)の統計的性質が、本来の統計的性質と異なる可能性がある。より具体的には、例えば、第1濾波器302の係数制御系が発散傾向に陥った場合には、第1濾波信号s(t)には本来検出されるべき雑音よりも強いレベルの雑音が重畳されることから、雑音強度判定器831の雑音強度の判定において誤判定が生じる可能性が高くなる。その結果、エラー信号e(t)の確度を正しく判定できなくなる可能性がある。
 しかし、第1濾波器302の動作状態が不安定となったとしても、それに起因する雑音が、歪み信号p(t)に重畳される可能性は低い。ここで、本実施の形態に係る等化装置によれば、歪み信号p(t)を用いて雑音強度を判定することから、雑第1濾波器302や第2濾波器303の動作状態に関係なく、雑音強度判定器831において雑音強度を正しく判定することができる。
 したがって、本実施の形態に係る等化装置及び等化方法によれば、第1及び第2濾波器302,303の出力が不安定な状態に陥った場合であっても、受信信号r(t)の信号強度(例えば受信電界強度、受信電力強度)及びCNRから伝送路状態を総合的に考慮することができ、係数算出アルゴリズムを正しく制御することができる。
 <実施の形態3>
 図17は、本発明の実施の形態3に係る等化装置の構成を示すブロック図である。なお、以下、本実施の形態に係る等化装置についての説明において、実施の形態1で説明した構成要素と類似するものについては同じ符号を付し、その説明を省略するものとする。
 本実施の形態と上述の実施の形態1との相違点は、図3に示した実施の形態1に係る等化装置を構成するエラー調整器306に入力される信号が、第1濾波信号s(t)、第2濾波信号c(t)及びエラー信号e(t)であったのに対し、本実施の形態に係る等化装置を構成するエラー調整器326に入力される信号が、歪み信号p(t)、第1濾波信号s(t)、第2濾波信号c(t)及びエラー信号e(t)となっている点である。これに伴い、本実施の形態に係るエラー調整器326は、歪み信号p(t)及び第1濾波信号s(t)の少なくともいずれか一方と、第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度を判定し、当該確度に基づいてエラー信号e(t)を補正するものとなっている。
 図18は、このような動作を行う本実施の形態に係るエラー調整器326の構成例を示すブロック図である。この図18によれば、エラー調整器326は、第1信号処理演算器811と、エラー補正器841と、第2信号処理演算器881と、信号強度判定器891と、雑音強度判定器901とを備えている。
 第1信号処理演算器811は、実施の形態1と同様に、第1濾波信号s(t)に統計的処理を行って、第1統計信号である平均第1濾波信号save(t)と、第2統計信号である正規化第1濾波信号snrm(t)とを生成する。ここで生成された平均第1濾波信号save(t)は信号強度判定器891に入力され、正規化第1濾波信号snrm(t)は雑音強度判定器901に入力される。
 第2信号処理演算器881は、実施の形態2に係る平均化演算器852及び正規化演算器853と同様の動作を行う平均化演算器882及び正規化演算器883を備えており、実施の形態2に係る第1信号処理演算器851と同様の処理を行う。つまり、第2信号処理演算器881は、歪み信号p(t)に統計的処理を行って、第3統計信号である平均歪み信号pave(t)と、第4統計信号である正規化歪み信号pnrm(t)とを生成する。より具体的には、第2信号処理演算器881(平均化演算器882)は、自身が統計的処理すべき信号、すなわち歪み信号p(t)を所定時間単位で平均化することによって平均歪み信号pave(t)を生成する。また、第2信号処理演算器881(正規化演算器883)は、自身が統計的処理すべき信号、すなわち歪み信号p(t)を、平均歪み信号pave(t)で除算する(正規化する)ことによって正規化歪み信号pnrm(t)を生成する。ここで生成された平均歪み信号pave(t)は信号強度判定器891に入力され、正規化歪み信号pnrm(t)は雑音強度判定器901に入力される。
 本実施の形態に係る信号強度判定器891は、平均第1濾波信号save(t)及び平均歪み信号pave(t)の少なくともいずれか一つと、第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて第2補正信号x2(t)を生成する。
 図19は、このような動作を行う信号強度判定器891の具体的な構成例を示すブロック図である。この図19に示される信号強度判定器891は、平均第1濾波信号save(t)及び平均歪み信号pave(t)が入力される第1比較器892と、第1比較器892の出力及び第2濾波信号c(t)が入力される第1判定器893とを備えている。
 第1比較器892は、平均第1濾波信号save(t)及び平均歪み信号pave(t)の少なくともいずれか一つに基づいて信号を取得し、当該取得した信号を第1比較信号psave(t)として出力する。例えば、第1比較器892は、平均第1濾波信号save(t)と、平均歪み信号pave(t)とを比較し、その比較結果に基づいてそれら信号のうちいずれか一つを第1比較信号psave(t)として出力する。あるいは、第1比較器892は、平均第1濾波信号save(t)と平均歪み信号pave(t)との相加平均を取って得られる信号を第1比較信号psave(t)として出力してもよい。
 第1判定器893は、実施の形態1に係る信号強度判定器821とほぼ同様の動作を行う。つまり、第1判定器893は、第1比較信号psave(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて第2補正信号x2(t)を生成する。以下、第1判定器893における第2補正信号x2(t)の生成について具体的に説明する。
 第1判定器893は、受信信号r(t)の信号強度の判定に用いる信号のうち第2濾波信号c(t)を除く信号、すなわち第1比較信号psave(t)の大きさに基づいて、受信電界強度(つまり受信電界環境)を判定する。ここでは、第1判定器893は、第1比較信号psave(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに第1比較信号psave(t)が該当するかを判定する。そして、第1判定器893は、「強電界」、「中電界」及び「弱電界」という3段階の受信電界強度の中から、第1比較信号psave(t)が該当した区分範囲に対応する一つの段階を、受信電界強度の判定結果として選択する。なお、以上の説明では、第1判定器893は、第1比較信号psave(t)の大きさに基づいて、受信電界強度(受信電界環境)を判定するものとしたが、これに限ったものではなく、受信電力強度(受信電力状態)を判定するものであってもよい。
 また、第1判定器893は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定する。例えば、第1判定器893は、第2濾波信号c(t)の大きさを類別するための2つの閾値を有しており、それら閾値によって区切られた3つの区分範囲のいずれに第2濾波信号c(t)が該当するかを判定する。そして、第1判定器893は、「高レベル」、「中レベル」及び「低レベル」という3段階の電界レベルの中から、第2濾波信号c(t)が該当した区分範囲に対応する一つの段階を、電界レベルの判定結果として選択する。なお、以上の説明では、第1判定器893は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定するものとしたが、これに限ったものではなく、第2濾波信号c(t)の電力レベルを判定するものであってもよい。
 また、第1判定器893は、第1比較信号psave(t)に対する3段階の受信電界強度と、第2濾波信号c(t)に対する3段階の電界レベルとを組み合わせた9つの組のそれぞれに、第2補正信号x2(t)の係数を対応付けたテーブル、つまり図9に示したテーブルと同様のテーブルを有している。第1判定器893は、このテーブルを参照し、自身が判定した一つの受信電界強度及び一つの電界レベルに基づいて、第2補正信号x2(t)の係数を一つ選択する。
 なお、ここでは、第1判定器893は、自身が判定した受信電界強度及び電界レベルに基づいて確度を判定する場合について説明したが、これに限ったものではなく、自身が判定した受信電力強度及び電力レベルに基づいて確度を判定してもよい。また、受信電界強度及び電界レベルのそれぞれの段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。
 図18に戻って、本実施の形態に係る雑音強度判定器901は、正規化第1濾波信号snrm(t)及び正規化歪み信号pnrm(t)の少なくともいずれか一つに基づいて、エラー信号e(t)の確度に対応する当該いずれか一つの信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号x3(t)を生成する。
 図20は、このような動作を行う雑音強度判定器901の具体的な構成例を示すブロック図である。この図20に示される雑音強度判定器901は、正規化第1濾波信号snrm(t)及び正規化歪み信号pnrm(t)が入力される第2比較器902と、第2比較器902の出力が入力される第2判定器903とを備えている。
 第2比較器902は、正規化第1濾波信号snrm(t)及び正規化歪み信号pnrm(t)の少なくともいずれか一つに基づいて信号を取得し、当該取得した信号を第2比較信号psnrm(t)として出力する。例えば、第2比較器902は、正規化第1濾波信号snrm(t)と、正規化歪み信号pnrm(t)とを比較し、その比較結果に基づいてそれら信号のうちいずれか一つを第2比較信号psnrm(t)として出力する。より具体的には、第2比較器902は、正規化第1濾波信号snrm(t)の分散値の大きさが、正規化歪み信号pnrm(t)の分散値の大きさを下回った場合に限り、正規化第1濾波信号snrm(t)を第2比較信号psnrm(t)として出力する。そして、第2比較器902は、それ以外の場合には、過去のある時点において第1濾波器302等の動作状態が安定であったときの第2比較信号psnrm(t)(以下、「過去の第2比較信号psnrm(t)」と呼ぶ)を、現在の第2比較信号psnrm(t)として出力する。なお、この過去の第2比較信号psnrm(t)は、例えば第2比較器902の記憶器(図示しない)に記憶されている。
 あるいは、第2比較器902は、正規化第1濾波信号snrm(t)と正規化歪み信号pnrm(t)との相加平均を取って得られる信号を第2比較信号psnrm(t)として出力してもよい。さらに、第2比較器902は、例えば所定閾値を有するようにし、正規化第1濾波信号snrm(t)及び正規化歪み信号pnrm(t)の分散値の両方が当該所定閾値を下回った場合に、双方の信号のうちいずれか一つ、または、双方の信号を相加平均して得られる信号を第2比較信号psnrm(t)として出力してもよい。
 第2判定器903は、実施の形態1に係る雑音強度判定器831とほぼ同様の動作を行う。つまり、第2判定器903は、第2比較信号psnrm(t)に基づいて、エラー信号e(t)の確度に対応する上述の雑音強度を判定し、当該雑音強度に基づいて第3補正信号x3(t)を生成する。以下、第2判定器903における第3補正信号x3(t)の生成について具体的に説明する。
 第2判定器903は、第2比較信号psnrm(t)に基づいて分散値psvar(t)を算出する。ここで、第2判定器903は、算出した分散値psvar(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに分散値psvar(t)が該当するかを判定する。そして、第2判定器903は、「強雑音」、「中雑音」及び「弱雑音」という3段階の雑音強度(雑音環境)の中から、分散値psvar(t)が該当した区分範囲に対応する一つの段階を、雑音強度(雑音環境)の判定結果として選択する。
 また、第2判定器903は、分散値psvar(t)に対する3段階の雑音強度のそれぞれに、第3補正信号x3(t)の係数を対応付けたテーブル、つまり図10に示したテーブルと同様のテーブルを有している。第2判定器903は、このテーブルを参照し、自身が判定した一つの雑音強度に基づいて、第3補正信号x3(t)の係数を一つ選択する。なお、雑音強度の段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。
 以上のような本実施の形態に係る等化装置及び等化方法によれば、第1濾波信号s(t)、歪み信号p(t)及び第2濾波信号c(t)に基づいて、エラー信号e(t)の確度に対応する信号強度及び雑音強度を判定し、これら信号強度及び雑音強度に基づいて、エラー信号e(t)を補正する。したがって、第1濾波器302の出力が不安定な状態に陥った場合であっても、歪検出器301の出力と第1濾波器302の出力との比較結果により得られる信号を、上述の確度を得るための信号として継続参照することが可能となっている。
 以下、より具体的にこの効果について詳細に説明するため、第2比較器902は、例えば、正規化第1濾波信号snrm(t)の分散値が、正規化歪み信号pnrm(t)の分散値を下回った場合に限り、正規化第1濾波信号snrm(t)を第2比較信号psnrm(t)として出力するものとする。そして、第2比較器902は、それ以外の場合には上述の過去の第2比較信号psnrm(t)を第2比較信号psnrm(t)として出力するものとする。
 このとき、第1濾波器302の動作状態が不安定になると、正規化第1濾波信号snrm(t)の分散値が、第1濾波器302の入力に対応する正規化歪み信号pnrm(t)の分散値よりも増加する。この場合、正規化第1濾波信号snrm(t)が第2比較信号psnrm(t)として出力されずに、過去の第2比較信号psnrm(t)が、現在の第2比較信号psnrm(t)として出力されることになる。
 したがって、以上のような本実施の形態に係る等化装置及び等化方法によれば、第1濾波器302の出力が不安定な状態に陥った場合であっても、受信信号r(t)の信号強度(例えば受信電界強度、受信電力強度)及びCNRから伝送路状態を総合的に考慮して、係数算出アルゴリズムを正しく制御することができる。よって、受信信号r(t)に含まれる雑音電力が希望信号電力と拮抗する環境下や、恒常的に受信電界強度が弱い弱電界環境下において移動に伴う伝送路の高速変動が発生する場合であっても、安定して受信信号r(t)を補償することができる。
 <実施の形態4>
 本発明の実施の形態4に係る等化装置の構成を示すブロック図は、実施の形態3に係る等化装置の構成を示すブロック図(図19)と同じである。なお、以下、本実施の形態に係る等化装置についての説明において、実施の形態3で説明した構成要素と類似するものについては同じ符号を付し、その説明を省略するものとする。
 本実施の形態に係る等化装置を構成するエラー調整器336は、実施の形態3に係るエラー調整器326と同様に、歪み信号p(t)及び第1濾波信号s(t)の少なくともいずれか一方と、第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度を判定し、当該確度に基づいてエラー信号e(t)を補正するものとなっている。
 図21は、このような動作を行う本実施の形態に係るエラー調整器336の構成例を示すブロック図である。この図21によれば、エラー調整器336は、第1信号処理演算器811と、エラー補正器841と、第2信号処理演算器881と、第3信号処理演算器911と、信号強度判定器921と、雑音強度判定器931とを備えている。第3信号処理演算器911は、平均化演算器912と、正規化演算器913とを備えている。
 第1及び第2信号処理演算器811,881の構成及び動作は、実施の形態3で説明したとおりである。ただし、平均第1濾波信号save(t)及び平均歪み信号pave(t)が信号強度判定器921に入力される点と、正規化第1濾波信号snrm(t)及び正規化歪み信号pnrm(t)が雑音強度判定器931に入力される点とが、実施の形態3と異なっている。
 第3信号処理演算器911は、実施の形態1に係る第1信号処理演算器811が第1濾波信号s(t)に対して行った統計的処理と同様の処理を、第2濾波信号c(t)に対して行う。つまり、第3信号処理演算器911は、第2濾波信号c(t)に統計的処理を行って、第5統計信号である平均第2濾波信号cave(t)と、第6統計信号である正規化第2濾波信号cnrm(t)とを生成する。
 より具体的には、第3信号処理演算器911(平均化演算器912)は、自身が統計的処理すべき信号、すなわち第2濾波信号c(t)を所定時間単位で平均化することによって平均第2濾波信号cave(t)を生成する。また、第3信号処理演算器911(正規化演算器913)は、自身が統計的処理すべき信号、すなわち第2濾波信号c(t)を、平均第2濾波信号cave(t)で除算する(正規化する)ことによって正規化第2濾波信号cnrm(t)を生成する。ここで生成された平均第2濾波信号cave(t)は信号強度判定器921に入力され、正規化第2濾波信号cnrm(t)は雑音強度判定器931に入力される。
 本実施の形態に係る信号強度判定器921は、平均第1濾波信号save(t),平均歪み信号pave(t)及び平均第2濾波信号cave(t)の少なくともいずれか一つと、第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて第2補正信号x3(t)を生成する。
 図22は、このような動作を行う信号強度判定器921の具体的な構成例を示すブロック図である。この図22に示される信号強度判定器921は、平均第1濾波信号save(t)、平均歪み信号pave(t)及び平均第2濾波信号cave(t)が入力される第3比較器922と、第3比較器922の出力及び第2濾波信号c(t)が入力される第3版定期923とを備えている。
 第3比較器922は、平均第1濾波信号save(t)、平均歪み信号pave(t)及び平均第2濾波信号cave(t)の少なくともいずれか一つに基づいて信号を取得し、当該取得した信号を第3比較信号pscave(t)として出力する。例えば、第3比較器922は、平均第1濾波信号save(t)と、平均歪み信号pave(t)と、平均第2濾波信号cave(t)とを比較し、その比較結果に基づいてそれら信号のうちいずれか一つを第3比較信号pscave(t)として出力する。あるいは、第3比較器922は、平均第1濾波信号save(t)と、平均歪み信号pave(t)と、平均第2濾波信号cave(t)との相加平均を取って得られる信号を第3比較信号pscave(t)として出力してもよい。
 第3判定器923は、実施の形態3で説明した第1比較信号psave(t)が、第3比較信号pscave(t)に変更されている点を除けば、実施の形態3に係る第1判定器893と同様の動作を行う。つまり、第3判定器923は、第3比較信号pscave(t)と第2濾波信号c(t)とに基づいて、エラー信号e(t)の確度に対応する受信信号r(t)の信号強度を判定し、当該信号強度に基づいて第2補正信号x2(t)を生成する。以下、第3判定器923における第2補正信号x2(t)の生成について具体的に説明する。
 第3判定器923は、受信信号r(t)の信号強度の判定に用いる信号のうち第2濾波信号c(t)を除く信号、すなわち第3比較信号pscave(t)の大きさに基づいて、受信電界強度(つまり受信電界環境)を判定する。ここでは、第3判定器923は、第3比較信号pscave(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに第3比較信号pscave(t)が該当するかを判定する。そして、第3判定器923は、「強電界」、「中電界」及び「弱電界」という3段階の受信電界強度の中から、第3比較信号pscave(t)が該当した区分範囲に対応する一つの段階を、受信電界強度の判定結果として選択する。なお、以上の説明では、第3判定器923は、第3比較信号pscave(t)の大きさに基づいて、受信電界強度(受信電界環境)を判定するものとしたが、これに限ったものではなく、受信電力強度(受信電力状態)を判定するものであってもよい。
 また、第3判定器923は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定する。例えば、第3判定器923は、第2濾波信号c(t)の大きさを類別するための2つの閾値を有しており、それら閾値によって区切られた3つの区分範囲のいずれに第2濾波信号c(t)が該当するかを判定する。そして、第1判定器893は、「高レベル」、「中レベル」及び「低レベル」という3段階の電界レベルの中から、第2濾波信号c(t)が該当した区分範囲に対応する一つの段階を、電界レベルの判定結果として選択する。なお、以上の説明では、第3判定器923は、第2濾波信号c(t)の大きさに基づいて、第2濾波信号c(t)の電界レベルを判定するものとしたが、これに限ったものではなく、第2濾波信号c(t)の電力レベルを判定するものであってもよい。
 また、第3判定器923は、第3比較信号pscave(t)に対する3段階の受信電界強度と、第2濾波信号c(t)に対する3段階の電界レベルとを組み合わせた9つの組のそれぞれに、第2補正信号x2(t)の係数を対応付けたテーブル、つまり図9に示したテーブルと同様のテーブルを有している。第3判定器923は、このテーブルを参照し、自身が判定した一つの受信電界強度及び一つの電界レベルに基づいて、第2補正信号x2(t)の係数を一つ選択する。
 なお、ここでは、第3判定器923は、自身が判定した受信電界強度及び電界レベルに基づいて確度を判定する場合について説明したが、これに限ったものではなく、自身が判定した受信電力強度及び電力レベルに基づいて確度を判定してもよい。また、受信電界強度及び電界レベルのそれぞれの段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。
 図21に戻って、本実施の形態に係る雑音強度判定器931は、正規化第1濾波信号snrm(t)、正規化歪み信号pnrm(t)及び正規化第2濾波信号cnrm(t)の少なくともいずれか一つに基づいて、エラー信号e(t)の確度に対応する当該いずれか一つの信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号x3(t)を生成する。
 図23は、このような動作を行う雑音強度判定器931の具体的な構成例を示すブロック図である。この図23に示される雑音強度判定器931は、正規化第1濾波信号snrm(t)、正規化歪み信号pnrm(t)及び正規化第2濾波信号cnrm(t)が入力される第4比較器932と、第4比較器932の出力が入力される第4判定器933とを備えている。
 第4比較器932は、正規化第1濾波信号snrm(t)、正規化歪み信号pnrm(t)及び正規化第2濾波信号cnrm(t)の少なくともいずれか一つに基づいて信号を取得し、当該取得した信号を第4比較信号pscnrm(t)として出力する。例えば、第4比較器932は、正規化第1濾波信号snrm(t)と、正規化歪み信号pnrm(t)と、正規化第2濾波信号cnrm(t)とを比較し、その比較結果に基づいてそれら信号のうちいずれか一つを第4比較信号pscnrm(t)として出力する。より具体的には、第4比較器932は、正規化第1濾波信号snrm(t)の分散値の大きさが、正規化歪み信号pnrm(t)の分散値の大きさを下回り、かつ、正規化第2濾波信号cnrm(t)の分散値の大きさが、正規化第1濾波信号snrm(t)の分散値の大きさを下回った場合に限り、正規化第1濾波信号snrm(t)を第4比較信号pscnrm(t)として出力する。そして、第4比較器932は、それ以外の場合には、過去のある時点において第1濾波器302等の動作状態が安定であったときの第4比較信号pscnrm(t)(以下、「過去の第4比較信号pscnrm(t)」と呼ぶ)を、現在の第4比較信号pscnrm(t)として出力する。なお、この過去の第4比較信号pscnrm(t)は、例えば第4比較器932の記憶器(図示しない)に記憶されている。
 あるいは、第4比較器932は、正規化第1濾波信号snrm(t)と正規化歪み信号pnrm(t)と正規化第2濾波信号cnrm(t)との相加平均を取って得られる信号を第4比較信号pscnrm(t)として出力してもよい。さらに、第4比較器932は、例えば所定閾値を有するようにし、正規化第1濾波信号snrm(t)、正規化歪み信号pnrm(t)及び正規化第2濾波信号cnrm(t)の全てが当該所定閾値を下回った場合にその3種類の信号のうちいずれか一つ、または、それら信号を相加平均して得られる信号を第4比較信号pscnrm(t)として出力してもよい。
 第4判定器933は、実施の形態3に係る第2判定器903とほぼ同様の動作を行う。つまり、第4判定器933は、第4比較信号pscnrm(t)に基づいて、エラー信号e(t)の確度に対応する上述の雑音強度を判定し、当該雑音強度に基づいて第3補正信号x3(t)を生成する。以下、第4判定器933における第3補正信号x3(t)の生成について具体的に説明する。
 第4判定器933は、第4比較信号pscnrm(t)に基づいて分散値pscvar(t)を算出する。ここで、第4判定器933は、算出した分散値pscvar(t)の大きさを類別するための2つの閾値を有しており、それら閾値により区切られた3つの区分範囲のいずれに分散値pscvar(t)が該当するかを判定する。そして、第4判定器933は、「強雑音」、「中雑音」及び「弱雑音」という3段階の雑音強度(雑音環境)の中から、分散値pscvar(t)が該当した区分範囲に対応する一つの段階を、雑音強度(雑音環境)の判定結果として選択する。
 また、第4判定器933は、分散値pscvar(t)に対する3段階の雑音強度のそれぞれに、第3補正信号x3(t)の係数を対応付けたテーブル、つまり図10に示したテーブルと同様のテーブルを有している。第4判定器933は、このテーブルを参照し、自身が判定した一つの雑音強度に基づいて、第3補正信号x3(t)の係数を一つ選択する。なお、雑音強度の段階は3つに限ったものではなく、2段階や、4段階以上であってもよい。
 以上のような本実施の形態に係る等化装置及び等化方法によれば、第1濾波信号s(t)、歪み信号p(t)及び第2濾波信号c(t)に基づいて、エラー信号e(t)の確度に対応する信号強度及び雑音強度を判定し、これら信号強度及び雑音強度に基づいて、エラー信号e(t)を補正する。したがって、第2濾波器303の出力が不安定な状態に陥った場合であっても、歪検出器301の出力と、第1濾波器302の出力と、第2濾波器303の出力との比較結果により得られる信号を、上述の確度を得るための信号として継続参照することが可能となっている。
 以下、より具体的にこの効果について詳細に説明するため、第4比較器932は、例えば、正規化第1濾波信号snrm(t)の分散値の大きさが、正規化歪み信号pnrm(t)の分散値の大きさを下回り、かつ、正規化第2濾波信号cnrm(t)の分散値の大きさが、正規化第1濾波信号snrm(t)の分散値の大きさを下回った場合に限り、正規化第1濾波信号snrm(t)を第4比較信号pscnrm(t)として出力するものとする。そして、第4比較器932は、それ以外の場合には、上述の過去の第4比較信号pscnrm(t)を第4比較信号pscnrm(t)として出力するものとする。
 このとき、第1濾波器302の動作状態が不安定になると、正規化第1濾波信号snrm(t)の分散値が、第1濾波器302の入力に対応する正規化歪み信号pnrm(t)の分散値よりも増加する。この場合、正規化第1濾波信号snrm(t)が第4比較信号pscnrm(t)として出力されずに、過去の第4比較信号pscnrm(t)が、現在の第4比較信号pscnrm(t)として出力されることになる。
 したがって、以上のような本実施の形態に係る等化装置及び等化方法によれば、第2濾波器303の出力が不安定な状態に陥った場合であっても、受信信号r(t)の信号強度(例えば受信電界強度、受信電力強度)及びCNRから伝送路状態を総合的に考慮して、係数算出アルゴリズムを正しく制御することができる。よって、受信信号r(t)に含まれる雑音電力が希望信号電力と拮抗する環境下や、恒常的に受信電界強度が弱い弱電界環境下において移動に伴う伝送路の高速変動が発生する場合であっても、安定して受信信号r(t)を補償することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 11 基準信号、12 データ信号、300 等化装置、301 歪検出器、302 第1濾波器、303 第2濾波器、304 補償器、305 係数算出器、306,316,326 エラー調整器、801 信号変換器、811,851 第1信号処理演算器、821,861,891,921 信号強度判定器、831,871,901,931 雑音強度判定器、841 エラー補正器、881 第2信号処理演算器、911 第3信号処理演算器。

Claims (15)

  1.  基準信号及びデータ信号を含む直交周波数分割多重変調方式の受信信号における伝送路歪みを補償する等化装置であって、
     前記受信信号に含まれる前記基準信号の歪み成分を示す歪み信号を生成する歪検出器と、
     前記歪み信号に基づいて、前記データ信号の一部の歪み成分、及び、前記基準信号の歪み成分を示す第1濾波信号を生成する第1濾波器と、
     前記第1濾波信号と濾波係数とに基づいて、前記データ信号の全ての歪み成分、及び、前記基準信号の歪み成分を示す第2濾波信号を生成する第2濾波器と、
     前記第2濾波信号に基づいて前記受信信号の歪み成分を補償する補償器と、
     前記歪み信号及び前記第1濾波信号の少なくともいずれか一つと前記第2濾波信号とに基づいて、前記濾波係数を算出するためのエラー信号の確度を判定し、当該確度に基づいて前記エラー信号を補正するエラー調整器と、
     前記第1濾波信号と、前記エラー調整器により補正された前記エラー信号とに基づいて、前記第2濾波器で用いられる前記濾波係数を算出する係数算出器と
    を備える、等化装置。
  2.  請求項1に記載の等化装置であって、
     前記エラー調整器は、
     前記第2濾波信号に基づいて第1補正信号を生成する信号変換器と、
     前記第1濾波信号に統計的処理を行って第1及び第2統計信号を生成する第1信号処理演算器と、
     前記第1統計信号と前記第2濾波信号とに基づいて、前記確度に対応する前記受信信号の信号強度を判定し、当該信号強度に基づいて第2補正信号を生成する信号強度判定器と、
     前記第2統計信号に基づいて、前記確度に対応する前記第1濾波信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号を生成する雑音強度判定器と、
     前記第1~第3補正信号に基づいて前記エラー信号を補正するエラー補正器と
    を備える、等化装置。
  3.  請求項1に記載の等化装置であって、
     前記エラー調整器は、
     前記第2濾波信号に基づいて第1補正信号を生成する信号変換器と、
     前記歪み信号に統計的処理を行って第1及び第2統計信号を生成する第1信号処理演算器と、
     前記第1統計信号と前記第2濾波信号とに基づいて、前記確度に対応する前記受信信号の信号強度を判定し、当該信号強度に基づいて第2補正信号を生成する信号強度判定器と、
     前記第2統計信号に基づいて、前記確度に対応する前記歪み信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号を生成する雑音強度判定器と、
     前記第1~第3補正信号に基づいて、前記エラー信号を補正するエラー補正器と
    を備える、等化装置。
  4.  請求項1に記載の等化装置であって、
     前記エラー調整器は、
     前記第2濾波信号に基づいて第1補正信号を生成する信号変換器と、
     前記第1濾波信号に統計的処理を行って第1及び第2統計信号を生成する第1信号処理演算器と、
     前記歪み信号に統計的処理を行って第3及び第4統計信号を生成する第2信号処理演算器と、
     前記第1統計信号及び前記第3統計信号の少なくともいずれか一つと前記第2濾波信号とに基づいて、前記確度に対応する前記受信信号の信号強度を判定し、当該信号強度に基づいて第2補正信号を生成する信号強度判定器と、
     前記第2統計信号及び前記第4統計信号の少なくともいずれか一つに基づいて、前記確度に対応する当該いずれか一つの信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号を生成する雑音強度判定器と、
     前記第1~第3補正信号に基づいて、前記エラー信号を補正するエラー補正器と
    を備える、等化装置。
  5.  請求項1に記載の等化装置であって、
     前記エラー調整器は、
     前記第2濾波信号に基づいて第1補正信号を生成する信号変換器と、
     前記第1濾波信号に統計的処理を行って第1及び第2統計信号を生成する第1信号処理演算器と、
     前記歪み信号に統計的処理を行って第3及び第4統計信号を生成する第2信号処理演算器と、
     前記第2濾波信号に統計的処理を行って第5及び第6統計信号を生成する第3信号処理演算器と、
     前記第1統計信号、前記第3統計信号及び前記第5統計信号の少なくともいずれか一つと前記第2濾波信号とに基づいて、前記確度に対応する前記受信信号の信号強度を判定し、当該信号強度に基づいて第2補正信号を生成する信号強度判定器と、
     前記第2統計信号、前記第4統計信号及び前記第6統計信号の少なくともいずれか一つに基づいて、前記確度に対応する当該いずれか一つの信号の雑音強度を判定し、当該雑音強度に基づいて第3補正信号を生成する雑音強度判定器と、
     前記第1~第3補正信号に基づいて、前記エラー信号を補正するエラー補正器と
    を備える、等化装置。
  6.  請求項2乃至請求項5のいずれかに記載の等化装置であって、
     前記信号強度判定器は、
     前記信号強度の判定に用いる信号のうち前記第2濾波信号を除く信号に基づいて、受信電界強度/受信電力強度を判定し、当該受信電界強度/受信電力強度と前記第2濾波信号の電界レベル/電力レベルと基づいて前記信号強度を判定する、等化装置。
  7.  請求項6に記載の等化装置であって、
     前記信号強度判定器は、
     前記受信電界強度/受信電力強度と、前記第2濾波信号の前記電界レベル/電力レベルとの差分の絶対値が大きいほど前記確度が低いと判定し、前記第2補正信号の信号レベルを小さくする、等化装置。
  8.  請求項2乃至請求項7のいずれかに記載の等化装置であって、
     前記雑音強度判定器は、
     前記雑音強度の判定に用いる信号の分散値に基づいて前記雑音強度を判定する、等化装置。
  9.  請求項2乃至請求項5のいずれかに記載の等化装置であって、
     前記第1信号処理演算器は、
     自身が前記統計的処理すべき信号を所定時間単位で平均化することによって、前記第1統計信号を生成する、等化装置。
  10.  請求項2乃至請求項5のいずれかに記載の等化装置であって、
     前記第1信号処理演算器は、
     自身が前記統計的処理すべき信号を、それを所定時間単位で平均化した信号で除算することによって、前記第2統計信号を生成する、等化装置。
  11.  請求項4または請求項5に記載の等化装置であって、
     前記第2信号処理演算器は、
     自身が前記統計的処理すべき信号を所定時間単位で平均化することによって、前記第3統計信号を生成する、等化装置。
  12.  請求項4または請求項5に記載の等化装置であって、
     前記第2信号処理演算器は、
     自身が前記統計的処理すべき信号を、それを所定時間単位で平均化した信号で除算することによって、前記第4統計信号を生成する、等化装置。
  13.  請求項5に記載の等化装置であって、
     前記第3信号処理演算器は、
     自身が前記統計的処理すべき信号を所定時間単位で平均化することによって、前記第5統計信号を生成する、等化装置。
  14.  請求項5に記載の等化装置であって、
     前記第3信号処理演算器は、
     自身が前記統計的処理すべき信号を、それを所定時間単位で平均化した信号で除算することによって、前記第6統計信号を生成する、等化装置。
  15.  基準信号及びデータ信号を含む直交周波数分割多重変調方式の受信信号における伝送路歪みを補償する等化方法であって、
     (a)前記受信信号に含まれる前記基準信号の歪み成分を示す歪み信号を生成する工程と、
     (b)前記歪み信号に基づいて、前記データ信号の一部の歪み成分、及び、前記基準信号の歪み成分を示す第1濾波信号を生成する工程と、
     (c)前記第1濾波信号と濾波係数とに基づいて、前記データ信号の全ての歪み成分、及び、前記基準信号の歪み成分を示す第2濾波信号を生成する工程と、
     (d)前記第2濾波信号に基づいて前記受信信号の歪み成分を補償する工程と、
     (e)前記歪み信号及び前記第1濾波信号の少なくともいずれか一つと、前記第2濾波信号とに基づいて、前記濾波係数を算出するためのエラー信号の確度を判定し、当該確度に基づいて前記エラー信号を補正する工程と、
     (f)前記第1濾波信号と、前記工程(e)により補正された前記エラー信号とに基づいて、前記工程(c)で用いられる前記濾波係数を算出する工程と
    を備える、等化方法。
PCT/JP2011/063885 2011-06-17 2011-06-17 等化装置及び等化方法 WO2012172676A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/063885 WO2012172676A1 (ja) 2011-06-17 2011-06-17 等化装置及び等化方法
DE112011105345.2T DE112011105345T5 (de) 2011-06-17 2011-06-17 Ausgleichsvorrichtung und Ausgleichsverfahren
JP2013520381A JP5518261B2 (ja) 2011-06-17 2011-06-17 等化装置及び等化方法
CN201180071489.6A CN103620992B (zh) 2011-06-17 2011-06-17 均衡装置以及均衡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063885 WO2012172676A1 (ja) 2011-06-17 2011-06-17 等化装置及び等化方法

Publications (1)

Publication Number Publication Date
WO2012172676A1 true WO2012172676A1 (ja) 2012-12-20

Family

ID=47356702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063885 WO2012172676A1 (ja) 2011-06-17 2011-06-17 等化装置及び等化方法

Country Status (4)

Country Link
JP (1) JP5518261B2 (ja)
CN (1) CN103620992B (ja)
DE (1) DE112011105345T5 (ja)
WO (1) WO2012172676A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502759B2 (en) * 2020-12-18 2022-11-15 Rohde & Schwarz Gmbh & Co. Kg Circuitry distortion corrector, measurement device, correction data generator, and correction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096703A (ja) * 2001-11-15 2004-03-25 Matsushita Electric Ind Co Ltd Ofdm復調方法及びofdm復調装置
WO2005109712A1 (ja) * 2004-05-07 2005-11-17 Matsushita Electric Industrial Co., Ltd. Ofdm受信装置及びofdm受信方法
JP2007318315A (ja) * 2006-05-24 2007-12-06 Fujitsu Ltd Ofdm受信機
JP2008543186A (ja) * 2005-05-27 2008-11-27 メディアフィー・コーポレーション チャネル推定のための適応補間器
JP2011101297A (ja) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Ofdm復調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096703A (ja) * 2001-11-15 2004-03-25 Matsushita Electric Ind Co Ltd Ofdm復調方法及びofdm復調装置
WO2005109712A1 (ja) * 2004-05-07 2005-11-17 Matsushita Electric Industrial Co., Ltd. Ofdm受信装置及びofdm受信方法
JP2008543186A (ja) * 2005-05-27 2008-11-27 メディアフィー・コーポレーション チャネル推定のための適応補間器
JP2007318315A (ja) * 2006-05-24 2007-12-06 Fujitsu Ltd Ofdm受信機
JP2011101297A (ja) * 2009-11-09 2011-05-19 Mitsubishi Electric Corp Ofdm復調装置

Also Published As

Publication number Publication date
CN103620992A (zh) 2014-03-05
JPWO2012172676A1 (ja) 2015-02-23
JP5518261B2 (ja) 2014-06-11
DE112011105345T5 (de) 2014-04-10
CN103620992B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
EP1418720B1 (en) Receiving apparatus in OFDM transmission system
US8224273B2 (en) Demodulator, diversity receiver, and demodulation method
US7714937B2 (en) Channel equalizer and digital television receiver using the same
KR100447201B1 (ko) 채널 등화 장치 및 이를 이용한 디지털 tv 수신기
US20110268169A1 (en) Equalization apparatus and broadcasting receiving apparatus
US20060200511A1 (en) Channel equalizer and method of equalizing a channel
US9118514B2 (en) Receiver and signal processing method
JP2004080731A (ja) Ofdm受信装置及びofdm信号の補正方法
JP2013192107A (ja) 等化装置、受信装置及び等化方法
US20100074346A1 (en) Channel estimation in ofdm receivers
WO2014111997A1 (ja) ピーク抑圧装置及びピーク抑圧方法
JP5518261B2 (ja) 等化装置及び等化方法
US9036724B2 (en) Data signal correction circuit, receiver, and data signal correction method
JP4486008B2 (ja) 受信装置
KR101551587B1 (ko) 등화 장치, 수신 장치 및 등화 방법
KR20030091591A (ko) 채널 상태에 따라 적응적으로 등화를 수행할 수 있는오에프디엠 등화기
JP5566223B2 (ja) ダイバーシティ受信装置及びダイバーシティ受信方法
JP6209990B2 (ja) 受信装置
US9059765B2 (en) Reception device and reception method
JP5812827B2 (ja) 受信装置
JP2013175829A (ja) 等化装置及び放送受信装置
KR20020069823A (ko) 디지털 tv 수신기의 에러 추적 장치
JP3698185B2 (ja) フェージング歪み補償方法及びフェージング歪み補償装置
JP2012147247A (ja) Ofdm受信装置
JP2012244254A (ja) 受信装置及び受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105345

Country of ref document: DE

Ref document number: 1120111053452

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867803

Country of ref document: EP

Kind code of ref document: A1