WO2012169005A1 - 膨張材クリンカの製造方法 - Google Patents
膨張材クリンカの製造方法 Download PDFInfo
- Publication number
- WO2012169005A1 WO2012169005A1 PCT/JP2011/063013 JP2011063013W WO2012169005A1 WO 2012169005 A1 WO2012169005 A1 WO 2012169005A1 JP 2011063013 W JP2011063013 W JP 2011063013W WO 2012169005 A1 WO2012169005 A1 WO 2012169005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- raw material
- clinker
- mass
- expansion
- producing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/32—Aluminous cements
- C04B7/323—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/008—Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
Definitions
- This invention relates to the manufacturing method of the expansion material clinker used in the field of civil engineering and construction.
- expansion materials Calcium sulfoaluminate-based expansion materials and lime-based expansion materials are known as expansion materials. Moreover, the manufacturing method of the expansion material for concrete and the expansion material clinker which have the outstanding expansion
- Patent Document 1 is an invention related to an expanded material obtained by heat-treating a CaO raw material, an Al 2 O 3 raw material, an SiO 2 raw material, and a CaSO 4 raw material.
- the granulated CaO raw material, Al By using 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, it is possible to give a predetermined expansion coefficient even when fired at a low temperature, and also has the effect of compensating for drying shrinkage strain after 7 days of age. There is no description about obtaining an expandable material that is high, excellent in storage stability, and has a low environmental impact.
- Patent Document 2 and Patent Document 3 are inventions related to inflatable compositions obtained by granulating and firing limestone powder-containing raw materials such as limestone and limestone and Portland cement, but specific free lime content and SO 3 content.
- limestone powder-containing raw materials such as limestone and limestone and Portland cement, but specific free lime content and SO 3 content.
- the conventional expansion material clinker in order to ensure a predetermined expansion rate, it is usually fired at a high temperature of 1,300 to 1,500 ° C.
- firing at high temperatures requires a lot of fuel, high CO 2 emissions and a large environmental impact, and the raw material melts and reacts with bricks on the inner wall of the rotary kiln to grow into a lump called a coating, which closes the kiln. There was a problem.
- the baking of the conventional expansion material clinker at a high temperature requires a large amount of fuel, the amount of CO 2 emission is large, the environmental load is large, the raw material melts and reacts with the bricks on the inner wall of the rotary kiln and is coated.
- Shrinkage compensation effect that eliminates the problem of growing into a lump and blocking the kiln, as well as expanding by 7 days of age and reducing the drying shrinkage strain after 7 days of age compared to conventional expandable materials It aims at providing a high expansion material.
- the present invention employs the following means in order to solve the above problems.
- the present invention produces an expanded clinker containing free lime, a hydraulic compound, and anhydrous gypsum by mixing and grinding CaO raw material, Al 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material.
- the expanded granulated material is fired at 1,100 to 1,450 ° C. to produce an expander clinker.
- the present invention can provide a predetermined expansion rate even when fired at a low temperature, has a high effect of compensating for drying shrinkage strain after the age of 7 days, is excellent in storage stability, and has a low environmental load. It is.
- the cement concrete as used in the present invention is a general term for cement paste, mortar, or concrete.
- the expansion material clinker produced in the present invention includes free lime, a hydraulic compound, and anhydrous gypsum as a mineral composition.
- Free lime is usually called quick lime and is written as f-CaO.
- the hydraulic compound, calcium silicate represented by Auin represented by 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4, 3CaO ⁇ SiO 2 (C 3 S for short) and 2CaO ⁇ SiO 2 (C 2 S for short) include one or two or more of these, but more preferably include two or more.
- Fe 2 O 3 present as an impurity is added, and 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 (abbreviated as C 4 AF) or 6CaO ⁇ 2Al 2 O 3 ⁇ Fe 2 O 3 (C 6 A 2 F Abbreviated), 6CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 (abbreviated as C 6 AF) and calcium ferrite such as 2CaO ⁇ Fe 2 O 3 (abbreviated as C 2 F) are produced.
- C 4 AF 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3
- 6A 2 O 3 ⁇ Fe 2 O 3 C 6 A 2 F
- 6CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 and calcium ferrite such as 2CaO ⁇ Fe 2 O 3 (abbreviated as C 2 F) are produced.
- Anhydrous gypsum is written as CaSO 4 .
- the proportion of each mineral composition in the expansion material clinker is preferably 15 to 60 parts of free lime, preferably 10 to 40 parts of hydraulic compound, and 15 to 50 of anhydrous gypsum in 100 parts of expansion material clinker. Part is preferred.
- the free lime is more preferably 20 to 50 parts
- the hydraulic compound is more preferably 15 to 35 parts
- the anhydrous gypsum is more preferably 25 to 40 parts. Outside these ranges, a predetermined expansion rate may not be obtained, storage stability may be reduced, and coating on the inner wall of the kiln may increase.
- the content of each mineral composition can be confirmed by a general analysis method.
- the mineral composition can be quantified by confirming the generated mineral composition of the pulverized sample by the powder X-ray diffraction method and analyzing the data by the Rietveld method.
- a mineral composition amount can also be calculated
- the amount of auin is determined from the rate, the amount of anhydrous gypsum is determined from the remaining SO 3 content, the amount of C 2 S is determined from the SiO 2 content, and the remaining CaO is used as free lime.
- the amount of SO 3 is 10 to 35 parts, preferably 15 to 30 parts, in 100 parts of the expansion material clinker based on the chemical components of the expansion material clinker. Outside this range, even if granulation is performed, a predetermined expansion rate may not be obtained, storage stability may be reduced, and coating in the kiln may increase. Moreover, when it bakes at low temperature, the expansion rate and the shrinkage compensation rate after 7 days of age may become small, or the storage stability may deteriorate.
- ⁇ CaO raw materials include limestone, slaked lime, and quicklime.
- slaked lime and quick lime are preferred even when fired at a low temperature to suppress the coating on the inner wall of the kiln, and slaked lime and quick lime are preferred. Is more preferable.
- Al 2 O 3 raw material examples include bauxite, aluminum hydroxide, and aluminum residual ash mainly composed of aluminum hydroxide. Particularly, aluminum hydroxide or aluminum residual ash is used in terms of expansion rate and shrinkage compensation rate. To preferred.
- SiO 2 raw material examples include silica.
- Examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, and the like.
- dihydrate gypsum is preferably used from the viewpoint of expansion rate and shrinkage compensation rate.
- These raw materials may contain impurities, but this is not a problem as long as the effects of the present invention are not impaired.
- impurities include Fe 2 O 3 , MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, LiO 2 , sulfur, fluorine, and chlorine.
- These raw materials are blended so as to have a predetermined mineral composition ratio after firing, mixed and pulverized to obtain blended raw materials.
- the mixing and pulverizing method is not particularly limited, and a dry pulverization method or a wet pulverization method can be applied. In the case of the wet pulverization method, it is necessary to perform a dehydration process for granulation after that. Moreover, when using quicklime as a raw material, it is desirable to carry out by a dry type.
- the raw material particle size after pulverization is preferably about 0 to 30%, more preferably about 0 to 20%, with the remaining 90 ⁇ m. Outside this range, a predetermined expansion rate may not be obtained even if granulation is performed, or the storage stability may be reduced.
- the loss on ignition of the blended raw material is the weight loss when the blended raw material is heated at 1,000 ° C., preferably 40% or less, and more preferably 30% or less. Outside this range, when fired at a low temperature, the amount of expansion and the shrinkage compensation effect after 7 days of age may be reduced.
- Ignition loss includes evaporation of moisture, dehydration of crystal water contained in slaked lime, aluminum hydroxide, dihydrate gypsum, and the like, decarboxylation of calcium carbonate, and the like.
- those obtained by mixing and pulverizing these raw materials are granulated.
- the granulation method carried out in the present invention is not particularly limited as long as the desired granule particle size and particle size distribution can be obtained.
- Mixing such as rolling granulation, fluidized bed granulation, and stirring granulation Forced granulation such as granulation, compression granulation, extrusion granulation, and pulverization granulation can be performed, and commercially available general kneading granulators, extrusion granulators, cylindrical granulators, tilt granulators, etc.
- a cylindrical rolling agitation granulator, a twin-screw granulator, a disk pelleter (pan pelletizer), a fluidized bed granulator, a swirling fluidized bed granulator, or the like can be used.
- the shape of the granulated product is not particularly limited, and a spherical shape or a flat plate shape can be selected.
- the size of the granulated product (briquette) is preferably 3 to 30 mm in diameter or thickness. Outside this range, a predetermined expansion rate may not be obtained, storage stability may be reduced, and coating on the inner wall of the kiln may increase.
- the pressure applied to the blended raw material during briquetting varies depending on the size of the granulated product (briquette), but is preferably about 0.1 to 50 t. If it is less than 0.1 t, the expansion rate and the shrinkage compensation rate after 7 days of age may be small.
- the expansion clinker is heat-treated at 1,100 to 1,450 ° C. using an electric furnace or kiln. Baking at 1,150 to 1,350 ° C. is preferred. If the temperature is lower than 1,100 ° C, the expansion coefficient and shrinkage compensation rate are not sufficient, and if it exceeds 1,450 ° C, dihydrate gypsum and anhydrous gypsum may decompose.
- the expansion material clinker produced in the present invention is pulverized and used as an expansion material for concrete.
- Fineness of expanding material is preferably 1,500 ⁇ 9,000cm 2 / g in Blaine specific surface area, more preferably 2,000 ⁇ 4,000 cm 2 / g. If it is less than 1,500 cm 2 / g, it may expand over a long period of time and the concrete structure may be broken, and if it exceeds 9,000 cm 2 / g, the expansion performance may be lowered.
- the amount of the expandable material produced in the present invention is not particularly limited because it is appropriately determined according to the mineral composition of the expandable material and the composition of the concrete, but is usually a cement composition composed of cement and an expandable material. Of 100 parts, 3 to 15 parts are preferable, and 5 to 13 parts are more preferable. If it is less than 3 parts, sufficient expansion performance may not be obtained, and if it exceeds 15 parts, it may overexpand and may cause expansion cracks in the concrete.
- Experimental example 1 The CaO raw material, Al 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material are mixed and pulverized so as to be a clinker having the chemical composition and mineral composition shown in Table 1, and adjusted to 90% of the remaining 90 ⁇ m, Formulated raw materials were prepared. 50 g of this blended raw material was filled into a columnar frame having a diameter of 40 mm and a height of 60 mm, and granulated (briquette) by applying a load of 5 t from the top to prepare a briquette having a diameter of 40 mm and a height of 20 mm. Twenty (1 kg) of the granulated material (briquette) was heat-treated in an electric furnace at 1,250 ° C.
- expansion material clinker was pulverized to 3,000 cm 2 / g in terms of Blaine specific surface area using a ball mill to obtain an expansion material.
- the obtained expansion material clinker was placed on a tray, exposed to the atmosphere, and the period until it reacted with moisture in the air and was pulverized was measured. Those that were powdered within one week were poor, those that were powdered in one to two weeks were acceptable, those that were stable for 2 weeks to 1 month were good, and those that were stable for 1 month or more were good. The results are shown in Table 2.
- CaO raw material (A): Limestone, 100 mesh CaO raw material (B): Slaked lime, Blaine specific surface area 3,400cm 2 / g Al 2 O 3 raw material (A): Aluminum hydroxide, 90 ⁇ m sieve passage rate 100% SiO 2 raw material (A): Silica, Blaine specific surface area 3,000cm 2 / g CaSO 4 raw material (A): dihydrate gypsum, brain specific surface area 5,000cm 2 / g CaSO 4 raw material (B): anhydrous gypsum, Blaine specific surface area 5,000 cm 2 / g Cement: Ordinary Portland cement, Blaine specific surface area 3,000cm 2 / g Sand: JIS standard sand water: Tap water
- Experimental example 2 The same procedure as in Experimental Example 1 was performed except that the raw material used was fixed to the mosquito and the granulation pressure and firing temperature of the raw material were changed. The results are shown in Table 3.
- Experimental example 3 It was carried out in the same manner as in Experimental Example 1 except that the raw materials used were changed, the raw materials were blended so that the clinker had the chemical composition and mineral composition shown in Table 4, and the granulation pressure and firing temperature of the raw materials were changed. The results are shown in Table 5.
- Experimental Example 5 Except that the raw material used was fixed to the mosquito, and the granulation thickness of the raw material was adjusted as shown in Table 8 by changing the filling amount of the material into a cylindrical mold with a diameter of 40 mm and a height of 60 mm, and fired at 1,250 ° C It carried out similarly to Experimental example 1. The results are shown in Table 8.
- the method for producing an expandable clinker of the present invention can provide a predetermined expansion coefficient even when fired at a low temperature, has a high effect of compensating for drying shrinkage strain after the age of 7 days, is excellent in storability of the clinker, and has an environmental load. Has the advantage of being small, and can be widely used in civil engineering and construction fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
低温で焼成しても所定の膨張率を付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く、クリンカの貯蔵性に優れ、環境負荷が小さい膨張材クリンカの製造方法を提供することを課題とする。 (1)CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、及び無水石膏を含有する膨張材クリンカを製造する工程において、前記膨張材クリンカ100質量部中の遊離石灰が15~60質量部、SO3含有量が10~35質量部となるように調合した前記原料を、混合粉砕後、造粒して作製した造粒物を、1,100~1,450℃で焼成する膨張材クリンカの製造方法、(2)調合原料の強熱減量が40質量%以下である(1)の膨張材クリンカの製造方法、(3)混合粉砕前にあらかじめCaO原料を800~1,600℃で焼成しておく(1)又は(2)の膨張材クリンカの製造方法を構成とする。
Description
本発明は、土木・建築分野で使用する膨張材クリンカの製造方法に関する。
セメントコンクリートのひび割れ低減や曲げ耐力の向上は、コンクリート構造物の信頼性、耐久性、及び美観等の観点から重要であり、これらを改善する効果のあるセメント混和材である膨張材のさらなる技術の進展が望まれている。
膨張材として、カルシウムサルホアルミネート系膨張材や石灰系膨張材等が知られている。また、少ない添加量で優れた膨張特性を有するコンクリート用膨張材や膨張材クリンカの製造方法が提案されている(特許文献1、特許文献2、特許文献3)。
特許文献1は、CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を熱処理して得られる膨張材に関する発明であるが、特許文献1には、造粒した、CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料の調合原料を使用することによって、低温で焼成しても所定の膨張率が付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く、貯蔵安定性に優れ、環境負荷の小さい膨張材が得られることについてなんら記載がない。
また、特許文献2や特許文献3は、石灰石や石灰石とポルトランドセメントなどの石灰石粉末含有原料を造粒して焼成した膨張性組成物に関する発明であるが、特定の遊離石灰量やSO3含有量の調合原料を使用することによって、低温で焼成しても所定の膨張率が付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く、貯蔵安定性に優れ、環境負荷の小さい膨張材が得られることについてなんら記載がない。
一方、従来の膨張材クリンカの製造では、所定の膨張率を確保するために、通常、1,300~1,500℃の高温で焼成していた。しかしながら、高温での焼成は多くの燃料を必要とし、CO2排出量も多く環境負荷が大きく、原料が溶融してロータリーキルン内壁のレンガと反応してコーティングと呼ばれる塊状に生長し、キルンが閉塞するという課題があった。
また、従来の膨張材と比べ、材齢7日までに大きく膨張すると共に、材齢7日以降の乾燥収縮ひずみも小さくする収縮補償効果の高い膨張材が求められていた。
本発明は、従来の膨張材クリンカの製造の高温での焼成は、多くの燃料を必要とし、CO2排出量も多く環境負荷が大きく、原料が溶融してロータリーキルン内壁のレンガと反応してコーティングと呼ばれる塊状に生長しキルンが閉塞するという課題を解消するとともに、従来の膨張材と比べ、材齢7日までに大きく膨張すると共に、材齢7日以降の乾燥収縮ひずみも小さくする収縮補償効果の高い膨張材を提供することを目的とする。
本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)本発明は、CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、及び無水石膏を含有する膨張材クリンカを製造する方法において、前記膨張材クリンカ100質量部中、遊離石灰が15~60質量部、SO3含有量が10~35質量部となるように調合した調合原料を混合粉砕後、造粒して作製した造粒物を、1,100~1,450℃で焼成することを特徴とする膨張材クリンカの製造方法である。
(2)前記調合原料の強熱減量が40質量%以下であることを特徴とする前記(1)の膨張材クリンカの製造方法である。
(3)前記CaO原料が、混合粉砕前にあらかじめ800~1,600℃で焼成した生石灰である前記(1)又は(2)の膨張材クリンカの製造方法である。
(4)前記造粒物が、ブリケットであることを特徴とする前記(1)~(3)のうちのいずれかの膨張材クリンカの製造方法である。
(5)前記造粒物の直径又は厚さが3~30mmであることを特徴とする前記(1)~(4)のうちのいずれかの膨張材クリンカの製造方法である。
(1)本発明は、CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、及び無水石膏を含有する膨張材クリンカを製造する方法において、前記膨張材クリンカ100質量部中、遊離石灰が15~60質量部、SO3含有量が10~35質量部となるように調合した調合原料を混合粉砕後、造粒して作製した造粒物を、1,100~1,450℃で焼成することを特徴とする膨張材クリンカの製造方法である。
(2)前記調合原料の強熱減量が40質量%以下であることを特徴とする前記(1)の膨張材クリンカの製造方法である。
(3)前記CaO原料が、混合粉砕前にあらかじめ800~1,600℃で焼成した生石灰である前記(1)又は(2)の膨張材クリンカの製造方法である。
(4)前記造粒物が、ブリケットであることを特徴とする前記(1)~(3)のうちのいずれかの膨張材クリンカの製造方法である。
(5)前記造粒物の直径又は厚さが3~30mmであることを特徴とする前記(1)~(4)のうちのいずれかの膨張材クリンカの製造方法である。
本発明は、低温で焼成しても所定の膨張率を付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く、貯蔵安定性に優れ、環境負荷の小さい膨張材クリンカの製造方法である。
なお、本発明で使用する部や%は、特に規定しない限り質量基準である。また、本発明でいうセメントコンクリートとは、セメントペースト、モルタル、又はコンクリートを総称するものである。
本発明で製造される膨張材クリンカには、鉱物組成として、遊離石灰、水硬性化合物、及び無水石膏が含まれる。
遊離石灰とは、通常、生石灰と呼ばれ、f-CaOと表記される。
水硬性化合物とは、3CaO・3Al2O3・CaSO4で表されるアウイン、3CaO・SiO2(C3Sと略記)や2CaO・SiO2(C2Sと略記)で表されるカルシウムシリケートなどであり、これらのうちの一種又は二種以上を含むものであるが、二種以上を含むことがより好ましい。
なお、不純物として存在するFe2O3を加えて、4CaO・Al2O3・Fe2O3(C4AFと略記)や6CaO・2Al2O3・Fe2O3(C6A2Fと略記)、6CaO・Al2O3・Fe2O3(C6AFと略記)で表されるカルシウムアルミノフェライトや2CaO・Fe2O3(C2Fと略記)等のカルシウムフェライトが生成することもある。
なお、不純物として存在するFe2O3を加えて、4CaO・Al2O3・Fe2O3(C4AFと略記)や6CaO・2Al2O3・Fe2O3(C6A2Fと略記)、6CaO・Al2O3・Fe2O3(C6AFと略記)で表されるカルシウムアルミノフェライトや2CaO・Fe2O3(C2Fと略記)等のカルシウムフェライトが生成することもある。
無水石膏は、CaSO4として表記される。
本発明では、膨張材クリンカ中の各鉱物組成の割合は、膨張材クリンカ100部中、遊離石灰は15~60部が好ましく、水硬性化合物は10~40部が好ましく、無水石膏は15~50部が好ましい。また、遊離石灰は20~50部がより好ましく、水硬性化合物は15~35部がより好ましく、無水石膏は25~40部がより好ましい。これらの範囲外では所定の膨張率が得られなかったり、貯蔵安定性が低下したり、キルン内壁へのコーティングが増加する場合がある。
各鉱物組成の含有量は、従来、一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折法で生成鉱物組成を確認するとともにデータをリートベルト法にて解析し、鉱物組成を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、鉱物組成量を計算によって求めることもできる。例えば、遊離石灰、アウイン、C2S、C4AF、及び無水石膏が粉末X線回折で検出された場合、Fe2O3含有率からC4AF量を求め、残りのAl2O3含有率からアウイン量を求め、残りのSO3含有率から無水石膏量を求め、SiO2含有率からC2S量を求め、残りのCaOを遊離石灰とすることなどである。
さらに、本発明では、膨張材クリンカの化学成分に基づく膨張材クリンカ100部中、SO3量は10~35部であり、15~30部が好ましい。この範囲外では、仮に造粒処理を施しても所定の膨張率が得られなかったり、貯蔵安定性が低下したり、キルン内へのコーティングが増加する場合がある。また、低温で焼成した場合、膨張率や材齢7日以降の収縮補償率が小さくなる場合や貯蔵安定性が悪くなる場合がある。
本発明に使用する原料について説明する。
CaO原料としては、石灰石、消石灰、及び生石灰等が挙げられる。特に、キルン内壁へのコーティングを抑制するために低温焼成した場合でも、膨張率や収縮補償率が大きくなることから、消石灰や生石灰が好ましく、800~1,600℃で焼成された生石灰を原料に用いることがさらに好ましい。
Al2O3原料としては、ボーキサイト、水酸化アルミニウム、及び水酸化アルミニウムを主体とするアルミ残灰等が挙げられ、特に水酸化アルミニウムやアルミ残灰を用いることが膨張率や収縮補償率の観点から好ましい。
SiO2原料としては、珪石等が挙げられる。
CaSO4原料としては、二水石膏、半水石膏、及び無水石膏等が挙げられ、特に、二水石膏を用いることが膨張率や収縮補償率の観点から好ましい。
これら原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、Fe2O3、MgO、TiO2、ZrO2、MnO、P2O5、Na2O、K2O、LiO2、硫黄、フッ素、及び塩素等が挙げられる。
また、原料としてポルトランドセメントや高温焼成した生石灰を用いることは、キルン内壁へのコーティングを抑制しながら、膨張材の膨張率と収縮補償率を高める観点から望ましい。
これら原料を、焼成後に所定の鉱物組成割合となるように調合し混合粉砕し調合原料とする。混合粉砕の方法は、特に限定されるものではなく、乾式粉砕法又は湿式粉砕法を適用することができ、湿式粉砕法の場合は、その後造粒するために脱水処理を施す必要がある。また、原料に生石灰を用いる場合は、乾式で行うことが望ましい。
粉砕後の原料粒度は、90μm残分で、0~30%程度が好ましく、0~20%程度がより好ましい。この範囲外では、仮に造粒処理を施しても所定の膨張率が得られなかったり、貯蔵安定性が低下したりする場合がある。
調合原料の強熱減量は、調合原料を1,000℃で加熱した時の減量で、40%以下が好ましく、30%以下がより好ましい。この範囲外では、低温で焼成した場合、膨張量や材齢7日以降の収縮補償効果が小さくなる場合がある。
強熱減量には、水分の蒸発、消石灰、水酸化アルミニウム、及び二水石膏等に含まれる結晶水の脱水、炭酸カルシウムの脱炭酸等が含まれる。
強熱減量には、水分の蒸発、消石灰、水酸化アルミニウム、及び二水石膏等に含まれる結晶水の脱水、炭酸カルシウムの脱炭酸等が含まれる。
本発明では、これら原料を混合粉砕したものを造粒する。
本発明で実施する造粒方法は、所望の造粒物の粒径や粒度分布が得られれば特に限定されるものではなく、転動造粒、流動層造粒、及び撹拌造粒等の混合造粒や、圧縮造粒、押出造粒、及び解砕造粒等の強制造粒等が実施でき、市販で一般的な混練式造粒機、押出造粒機、円筒式造粒機、傾胴式転動撹拌造粒機、双軸式造粒機、ディスクペレッター(パンペレタイザー)、流動層造粒機、旋回流動層造粒機等を使用することができる。
本発明では、調合原料として、水硬性物質を使用するため、通常、バインダーとして使用される水を使用しない圧縮造粒(ブリケット化)が好ましい。ただし、本発明の効果に支障の無い範囲で水を添加することは可能である。
本発明では、調合原料として、水硬性物質を使用するため、通常、バインダーとして使用される水を使用しない圧縮造粒(ブリケット化)が好ましい。ただし、本発明の効果に支障の無い範囲で水を添加することは可能である。
造粒物(ブリケット)の形状は特に限定されるものではなく、球状や平板状等が選択できる。
造粒物(ブリケット)の大きさは、直径又は厚さが3~30mmであることが好ましい。この範囲外では、所定の膨張率が得られなかったり、貯蔵安定性が低下したり、キルン内壁へのコーティングが増加する場合がある。
ブリケット化の際、調合原料にかける圧力は造粒物(ブリケット)の大きさによって異なるが、0.1~50t程度であることが好ましい。0.1t未満では膨張率や材齢7日以降の収縮補償率が小さくなる場合があり、50t以上では設備にかかる費用が大きくなる。
本発明では、膨張材クリンカの熱処理方法は、電気炉やキルンなどを用いて、1,100~1,450℃で焼成する。1,150~1,350℃で焼成することが好ましい。1,100℃未満では膨張率や収縮補償率が充分でなく、1,450℃を超えると二水石膏や無水石膏が分解する場合がある。
本発明で製造された膨張材クリンカは、粉砕してコンクリート用の膨張材として使用する。
膨張材の粉末度は、ブレーン比表面積で1,500~9,000cm2/gが好ましく、2,000~4,000 cm2/gがより好ましい。1,500cm2/g未満では長期にわたって膨張しコンクリート組織が壊れる場合があり、9,000cm2/gを超えると膨張性能が低下する場合がある。
本発明で製造された膨張材の使用量は、膨張材の鉱物組成やコンクリートの配合に応じて適宜決定されるため、特に限定されるものではないが、通常、セメントと膨張材からなるセメント組成物100部中、3~15部が好ましく、5~13部がより好ましい。3部未満では充分な膨張性能が得られない場合があり、15部を超えて使用すると過膨張となりコンクリートに膨張クラックを生じる場合がある。
以下、実施例で詳細に説明する。
実験例1
CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を、表1に示す化学組成や鉱物組成のクリンカとなるように配合して混合粉砕し、90μm残分10%に調整し、調合原料を調製した。この調合原料50gを、直径40mm、高さ60mmの円柱型枠に充填し、上部から5tの荷重を与えて造粒(ブリケット化)して、直径40mm、高さ20mmのブリケットを調製した。この造粒物(ブリケット)20個(1kg)を電気炉中1,250℃で熱処理して、レンガとの反応によるコーティング性を評価するとともに、膨張材クリンカを合成した。得られた膨張材クリンカを、ボールミルを用いてブレーン比表面積で3,000cm2/gに粉砕して膨張材とした。
この膨張材の膨張性能と収縮補償効果を評価するため、セメントと膨張材からなるセメント組成物100部中、膨張材を7部使用し、水/セメント組成物比=50%、セメント組成物/砂比=1/3の膨張モルタルを20℃の室内で調製して、長さ変化率の測定を行った。材齢7日までは20℃水中で養生し、材齢7日~56日までは20℃、60%RHの乾燥室内で養生した。
なお、膨張材を配合しないプレーンモルタルを調製して同様に試験を行い、膨張モルタルとの収縮ひずみの差を収縮補償率とした(例:材齢7日を基長とした乾燥収縮ひずみが、プレーンモルタルが600×10-6、膨張モルタルが500×10-6の場合、収縮補償率=600×10-6-500×10-6=100×10-6とした)。膨張率と収縮補償率の合計が高いとセメントコンクリートのひび割れ抵抗性が高まり、350×10-6以上が好ましい。
結果を表2に示す。
さらに熱処理して得られた膨張材クリンカの貯蔵安定性を評価した。得られた膨張材クリンカをトレーに載せて大気にさらし、空気中の水分と反応して粉化するまでの期間を測定した。1週間以内に粉化したものを不良、1週間から2週間で粉化したものを可、2週間~1ヶ月安定であったものを良、1ヶ月以上安定であったものを優とした。結果を表2に示す。
CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を、表1に示す化学組成や鉱物組成のクリンカとなるように配合して混合粉砕し、90μm残分10%に調整し、調合原料を調製した。この調合原料50gを、直径40mm、高さ60mmの円柱型枠に充填し、上部から5tの荷重を与えて造粒(ブリケット化)して、直径40mm、高さ20mmのブリケットを調製した。この造粒物(ブリケット)20個(1kg)を電気炉中1,250℃で熱処理して、レンガとの反応によるコーティング性を評価するとともに、膨張材クリンカを合成した。得られた膨張材クリンカを、ボールミルを用いてブレーン比表面積で3,000cm2/gに粉砕して膨張材とした。
この膨張材の膨張性能と収縮補償効果を評価するため、セメントと膨張材からなるセメント組成物100部中、膨張材を7部使用し、水/セメント組成物比=50%、セメント組成物/砂比=1/3の膨張モルタルを20℃の室内で調製して、長さ変化率の測定を行った。材齢7日までは20℃水中で養生し、材齢7日~56日までは20℃、60%RHの乾燥室内で養生した。
なお、膨張材を配合しないプレーンモルタルを調製して同様に試験を行い、膨張モルタルとの収縮ひずみの差を収縮補償率とした(例:材齢7日を基長とした乾燥収縮ひずみが、プレーンモルタルが600×10-6、膨張モルタルが500×10-6の場合、収縮補償率=600×10-6-500×10-6=100×10-6とした)。膨張率と収縮補償率の合計が高いとセメントコンクリートのひび割れ抵抗性が高まり、350×10-6以上が好ましい。
結果を表2に示す。
さらに熱処理して得られた膨張材クリンカの貯蔵安定性を評価した。得られた膨張材クリンカをトレーに載せて大気にさらし、空気中の水分と反応して粉化するまでの期間を測定した。1週間以内に粉化したものを不良、1週間から2週間で粉化したものを可、2週間~1ヶ月安定であったものを良、1ヶ月以上安定であったものを優とした。結果を表2に示す。
<使用材料>
CaO原料(A):石灰石、100メッシュ
CaO原料(B):消石灰、ブレーン比表面積3,400cm2/g
Al2O3原料(A):水酸化アルミニウム、90μm篩通過率100%
SiO2原料(A):珪石、ブレーン比表面積3,000cm2/g
CaSO4原料(A):二水石膏、ブレーン比表面積5,000cm2/g
CaSO4原料(B):無水石膏、ブレーン比表面積5,000cm2/g
セメント:普通ポルトランドセメント、ブレーン比表面積3,000cm2/g
砂 :JIS標準砂
水 :水道水
CaO原料(A):石灰石、100メッシュ
CaO原料(B):消石灰、ブレーン比表面積3,400cm2/g
Al2O3原料(A):水酸化アルミニウム、90μm篩通過率100%
SiO2原料(A):珪石、ブレーン比表面積3,000cm2/g
CaSO4原料(A):二水石膏、ブレーン比表面積5,000cm2/g
CaSO4原料(B):無水石膏、ブレーン比表面積5,000cm2/g
セメント:普通ポルトランドセメント、ブレーン比表面積3,000cm2/g
砂 :JIS標準砂
水 :水道水
<試験方法>
強熱減量 :調合原料を1,000℃で熱処理し、質量減少率を算出した。
化学組成 :蛍光X線にて定量した。
鉱物組成 :化学組成と粉末X線回折の同定結果に基づいて計算により求めた。
長さ変化率:JIS A 6202に準拠して測定した。
耐コーティング性:Al2O3含有率95%、SiO2含有率5%の高純度アルミナ質レンガに原料を載せて、1,250℃で、膨張材クリンカを合成し、レンガと反応してない膨張材クリンカの質量を計測した。コーティングの発生が無い白金るつぼで焼成した時の質量を100としてレンガと反応してないクリンカの質量割合を算定し、80%未満を不良、80~90%を良、90~100%を優とした。
強熱減量 :調合原料を1,000℃で熱処理し、質量減少率を算出した。
化学組成 :蛍光X線にて定量した。
鉱物組成 :化学組成と粉末X線回折の同定結果に基づいて計算により求めた。
長さ変化率:JIS A 6202に準拠して測定した。
耐コーティング性:Al2O3含有率95%、SiO2含有率5%の高純度アルミナ質レンガに原料を載せて、1,250℃で、膨張材クリンカを合成し、レンガと反応してない膨張材クリンカの質量を計測した。コーティングの発生が無い白金るつぼで焼成した時の質量を100としてレンガと反応してないクリンカの質量割合を算定し、80%未満を不良、80~90%を良、90~100%を優とした。
実験例2
使用原料をカに固定し、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表3に示す。
使用原料をカに固定し、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表3に示す。
実験例3
使用原料を変更し、表4に示す化学組成および鉱物組成のクリンカとなるように原料を配合して、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表5に示す。
使用原料を変更し、表4に示す化学組成および鉱物組成のクリンカとなるように原料を配合して、原料の造粒圧力と焼成温度を変えたこと以外は実験例1と同様に行った。結果を表5に示す。
<使用材料>
CaO原料(B):消石灰、ブレーン比表面積3,400cm2/g
CaO原料(C):生石灰、炭酸カルシウム800℃焼成品、ブレーン比表面積3,000cm2/g
Al2O3原料(B):ボーキサイト、90μm篩通過率100%
CaO原料(B):消石灰、ブレーン比表面積3,400cm2/g
CaO原料(C):生石灰、炭酸カルシウム800℃焼成品、ブレーン比表面積3,000cm2/g
Al2O3原料(B):ボーキサイト、90μm篩通過率100%
実験例4
焼成温度の異なる生石灰を表6に示すように使用し、調合原料の造粒圧力を変えたこと以外は実験例3と同様に行った。結果を表7に示す。
焼成温度の異なる生石灰を表6に示すように使用し、調合原料の造粒圧力を変えたこと以外は実験例3と同様に行った。結果を表7に示す。
<使用材料>
CaO原料(D):生石灰、炭酸カルシウム1,200℃焼成品、ブレーン比表面積3,000cm2/g
CaO原料(E):生石灰、炭酸カルシウム1,600℃焼成品、ブレーン比表面積3,000cm2/g
CaO原料(D):生石灰、炭酸カルシウム1,200℃焼成品、ブレーン比表面積3,000cm2/g
CaO原料(E):生石灰、炭酸カルシウム1,600℃焼成品、ブレーン比表面積3,000cm2/g
実験例5
使用原料をカに固定し、直径40mm、高さ60mmの円柱型枠への材料の充填量を変えることによって原料の造粒厚みを表8に示すよう調整し、1,250℃で焼成したこと以外は実験例1と同様に行った。結果を表8に示す。
使用原料をカに固定し、直径40mm、高さ60mmの円柱型枠への材料の充填量を変えることによって原料の造粒厚みを表8に示すよう調整し、1,250℃で焼成したこと以外は実験例1と同様に行った。結果を表8に示す。
本発明の膨張材クリンカの製造方法は、低温で焼成しても所定の膨張率を付与でき、材齢7日以降の乾燥収縮ひずみを補償する効果も高く、クリンカの貯蔵性に優れ、環境負荷が小さいという利点を有し、土木、建築分野等で幅広く活用できる。
Claims (5)
- CaO原料、Al2O3原料、SiO2原料、及びCaSO4原料を混合粉砕して焼成し、遊離石灰、水硬性化合物、及び無水石膏を含有する膨張材クリンカを製造する方法において、前記膨張材クリンカ100質量部中、遊離石灰が15~60質量部、SO3含有量が10~35質量部となるように調合した調合原料を混合粉砕後、造粒して作製した造粒物を、1,100~1,450℃で焼成することを特徴とする膨張材クリンカの製造方法。
- 前記調合原料の強熱減量が40質量%以下であることを特徴とする請求項1に記載の膨張材クリンカの製造方法。
- 前記CaO原料が、混合粉砕前にあらかじめ800~1,600℃で焼成したものであることを特徴とする請求項1に記載の膨張材クリンカの製造方法。
- 前記造粒物が、ブリケットであることを特徴とする請求項1に記載の膨張材クリンカの製造方法。
- 前記造粒物の直径又は厚さが3~30mmであることを特徴とする請求項1~4のうちのいずれか1項に記載の膨張材クリンカの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/063013 WO2012169005A1 (ja) | 2011-06-07 | 2011-06-07 | 膨張材クリンカの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/063013 WO2012169005A1 (ja) | 2011-06-07 | 2011-06-07 | 膨張材クリンカの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012169005A1 true WO2012169005A1 (ja) | 2012-12-13 |
Family
ID=47295612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/063013 WO2012169005A1 (ja) | 2011-06-07 | 2011-06-07 | 膨張材クリンカの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012169005A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021017376A (ja) * | 2019-07-18 | 2021-02-15 | デンカ株式会社 | セメント用膨張組成物、及びセメント組成物 |
WO2021113737A1 (en) * | 2019-12-06 | 2021-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Phlego cement from a new earth-inspired clinker |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002029797A (ja) * | 2000-07-19 | 2002-01-29 | Denki Kagaku Kogyo Kk | セメント混和材及びセメント組成物 |
JP2008156187A (ja) * | 2006-12-26 | 2008-07-10 | Taiheiyo Material Kk | 膨張性組成物 |
JP2008201603A (ja) * | 2007-02-17 | 2008-09-04 | Taiheiyo Material Kk | 膨張性組成物およびその製造方法 |
-
2011
- 2011-06-07 WO PCT/JP2011/063013 patent/WO2012169005A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002029797A (ja) * | 2000-07-19 | 2002-01-29 | Denki Kagaku Kogyo Kk | セメント混和材及びセメント組成物 |
JP2008156187A (ja) * | 2006-12-26 | 2008-07-10 | Taiheiyo Material Kk | 膨張性組成物 |
JP2008201603A (ja) * | 2007-02-17 | 2008-09-04 | Taiheiyo Material Kk | 膨張性組成物およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021017376A (ja) * | 2019-07-18 | 2021-02-15 | デンカ株式会社 | セメント用膨張組成物、及びセメント組成物 |
JP7257278B2 (ja) | 2019-07-18 | 2023-04-13 | デンカ株式会社 | セメント用膨張組成物、及びセメント組成物 |
WO2021113737A1 (en) * | 2019-12-06 | 2021-06-10 | The Board Of Trustees Of The Leland Stanford Junior University | Phlego cement from a new earth-inspired clinker |
CN114761369A (zh) * | 2019-12-06 | 2022-07-15 | 小利兰·斯坦福大学托管委员会 | 来自新型地球生发熟料的弗雷戈水泥 |
CN114761369B (zh) * | 2019-12-06 | 2023-08-18 | 小利兰·斯坦福大学托管委员会 | 来自地球生发熟料的弗雷戈水泥 |
JP7565357B2 (ja) | 2019-12-06 | 2024-10-10 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 地球にインスパイアされた新規のクリンカから製造されるフレゴセメント |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI478891B (zh) | Expandable material and its manufacturing method | |
US8409344B2 (en) | Cement and methods of preparing cement | |
JP2017527516A (ja) | 炭酸塩化可能なケイ酸カルシウム組成物及びその製造方法 | |
WO2014077251A1 (ja) | セメント組成物及びその製造方法 | |
JP2013103865A (ja) | セメントペーストの製造方法 | |
JP2007126294A (ja) | 高硫酸塩スラグセメント・早強スラグセメントおよびこれらの製造方法 | |
WO2012105102A1 (ja) | β-2CaO・SiO2の製造方法 | |
CN111943549A (zh) | 一种氧化镁复合膨胀剂及其制备方法 | |
JP2011111376A (ja) | 膨張材クリンカの製造方法 | |
WO2012169005A1 (ja) | 膨張材クリンカの製造方法 | |
JP2001146420A (ja) | 石膏廃材から製造された無水石膏類およびその製造方法 | |
JP5855902B2 (ja) | アルミナセメント | |
JP7257278B2 (ja) | セメント用膨張組成物、及びセメント組成物 | |
JP7026741B1 (ja) | セメント混和材、及びセメント組成物 | |
JP4744678B2 (ja) | セメント混和材及びセメント組成物 | |
JP2010006680A (ja) | 膨張性組成物および膨張材 | |
JP2008156187A (ja) | 膨張性組成物 | |
JP4459379B2 (ja) | セメント混和材及びセメント組成物 | |
JP3390076B2 (ja) | セメント混和材及びセメント組成物 | |
JP7293019B2 (ja) | セメント用膨張組成物、セメント組成物、及びセメント用膨張組成物の製造方法 | |
JP3390075B2 (ja) | セメント混和材及びセメント組成物 | |
JP4338884B2 (ja) | セメント混和材及びセメント組成物 | |
JP2014185042A (ja) | セメント組成物 | |
KR101285699B1 (ko) | 과소생석회의 제조방법 및 그를 이용한 균열방지제 | |
JP4459380B2 (ja) | セメント混和材及びセメント組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867135 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11867135 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |