WO2012165695A1 - 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법 - Google Patents

마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법 Download PDF

Info

Publication number
WO2012165695A1
WO2012165695A1 PCT/KR2011/004967 KR2011004967W WO2012165695A1 WO 2012165695 A1 WO2012165695 A1 WO 2012165695A1 KR 2011004967 W KR2011004967 W KR 2011004967W WO 2012165695 A1 WO2012165695 A1 WO 2012165695A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetite
mixture
solution
synthesis
vernesite
Prior art date
Application number
PCT/KR2011/004967
Other languages
English (en)
French (fr)
Inventor
김재곤
전철민
송호철
남인현
조동완
장세은
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to AU2011369593A priority Critical patent/AU2011369593B2/en
Priority to US13/878,299 priority patent/US9174196B2/en
Priority to JP2013531473A priority patent/JP5674952B2/ja
Publication of WO2012165695A1 publication Critical patent/WO2012165695A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment

Definitions

  • the present invention relates to the field of water treatment, and more particularly, to an adsorbent capable of simultaneously adsorbing and removing cationic contaminants and anionic contaminants, a method for preparing the adsorbent, and a water treatment method using the adsorbent.
  • Contaminated water such as industrial wastewater and mine drainage
  • Contaminated water contains cationic pollutants such as Cu 2+ , Pb 2+ , Zn 2+ , Ni 2+ , Cd 2+ , and AsO 4 3- , AsO 3 3- , Cr 2 O 7 2- , PO 4 3-, F -, NO 3 - , etc.
  • cationic pollutants such as Cu 2+ , Pb 2+ , Zn 2+ , Ni 2+ , Cd 2+ , and AsO 4 3- , AsO 3 3- , Cr 2 O 7 2- , PO 4 3-, F -, NO 3 - , etc.
  • Existing methods for purifying contaminated water containing both cation and anion contaminants utilize a combination of two or more methods to remove cation contaminants and anion contaminants. Therefore, the existing pollution purification method has applied a variety of construction methods there was a problem that the procedure is complicated and expensive.
  • adsorbents that remove cation or anion contaminants have been developed and applied to the site.
  • the removal of contaminants by adsorption is classified into a method of adsorbing adsorbents by mixing adsorbents with contaminated water, removing adsorbents, and removing contaminants by passing a column filled with adsorbents.
  • Existing adsorbents have high adsorption capacity for cations or anions, but are limited to adsorbents capable of simultaneously removing cations and anion contaminants.
  • the adsorbent when the adsorbent is mixed with contaminated water and removed, the adsorbent is formed in the form of fine particles having a large adsorption area in order to increase the adsorption power to the contaminants.
  • activated carbon which is widely used in the field, can simultaneously remove cationic and anionic contaminants from wastewater.
  • activated carbon has a large specific surface area and is known to have excellent adsorption capacity.
  • activated carbon has a problem that it is difficult to recover the separation after the water treatment.
  • the present invention is capable of simultaneously adsorbing and removing cationic contaminants and anionic contaminants, and composed of fine particles having a large surface area, which has excellent adsorption capacity and improved separation efficiency after water treatment, and a synthetic method for synthesizing the adsorbent and It is an object of the present invention to provide a water treatment method using an adsorbent.
  • Magnetite-Burnesite synthesis method for achieving the above object, in the first synthesis step of synthesizing magnetite, in the presence of the magnetite, while maintaining the pH at 8 or more by supplying manganese and sodium of the magnetite It is characterized in that it comprises a second synthesis step to form a mixture in the form of granules in which the burntite is synthesized on the surface and the magnetite and the burnite is combined, and the purification step of purifying the mixture of the magnesite and the burnesite.
  • the present invention is to remove the cationic contaminants and anionic contaminants together, to provide a magnetite- Berneseite mixture prepared by the above method.
  • the present invention provides a water treatment method for treating wastewater by using the magnetite- Berneseite mixture prepared by the above method, in this water treatment method to remove the cationic contaminants by adsorbing to the Berneseite, the anion contaminants It is characterized by removing by adsorbing on.
  • the magnetite-vernesite mixture prepared according to the present invention is capable of simultaneously adsorbing cationic contaminants and anionic contaminants, which is effective in wastewater treatment.
  • the magnetite- Berneseite mixture has a small particle size has a large surface area has the advantage of excellent adsorption capacity to contaminants.
  • the magnetite- Berneseite mixture has the advantage that the magnetite is ferromagnetic material can be recovered from the waste water can be easily purified by using a magnetic field after adsorbing contaminants in the waste water.
  • FIG. 1 is a schematic flowchart of a method for synthesizing a magnetite-vernesite mixture according to an embodiment of the present invention.
  • Figure 2 is a graph showing the large magnetic flux of the magnetite- Berneseite mixture according to the iron and manganese concentration in the synthesis.
  • Figure 3 is an XRD pattern photograph of the magnetite- Berneseite mixture according to the iron and manganese concentration in the synthesis.
  • SEM scanning electron microscope
  • TEM 5 is a transmission electron microscope (TEM) image of a magnetite-vernesse site mixture.
  • FIG. 6 is a chart in which the chemical composition (concentration of iron and manganese) of the finally synthesized magnetite-vernesite mixture according to the concentration ratio of iron and manganese in synthesis is analyzed by wet analysis.
  • FIG. 7 is a schematic flowchart of a water treatment method according to an embodiment of the present invention.
  • FIG. 9 is a chart showing the results of experiments on the removal rate of arsenic, an anion contaminant of the magnetite-vernesse site mixture.
  • Magnetite-Burnesite synthesis method for achieving the above object, in the first synthesis step of synthesizing magnetite, in the presence of the magnetite, while maintaining the pH at 8 or more by supplying manganese and sodium of the magnetite It is characterized in that it comprises a second synthesis step to form a mixture in the form of granules in which the burntite is synthesized on the surface and the magnetite and the burnite is combined, and the purification step of purifying the mixture of the magnesite and the burnesite.
  • the magnetite in the first synthesis step of synthesizing the magnetite, is synthesized by mixing the first solution containing iron ions and the second solution containing hydroxide ions in contact with air.
  • the first solution is an iron chloride solution
  • the second solution is a sodium hydroxide solution
  • the second solution is mixed with the first solution
  • the pH of the mixed solution is maintained at 8 or more, more preferably pH 11-12 To keep.
  • a third solution containing manganese ions in the magnetite synthesized in the first synthesis step a fourth solution containing sodium ions and an oxidizing agent for oxidizing manganese ions in the third solution.
  • the third solution is a manganese chloride solution
  • the oxidant is hydrogen peroxide
  • the fourth solution is a sodium hydroxide solution.
  • the molar concentration of the sodium hydroxide solution of the fourth solution is preferably 3.5 to 5 times the molar concentration of manganese ions of the third solution, and the molar ratio of iron ions of the first solution and manganese ions of the third solution is 0.25. It is preferable that it is -4 times.
  • the mixture of magnetite and vernetite is separated using magnetic force, and the magnet used here forms a magnetic field of 1,000 to 5,000 gauss.
  • magnetite- Berneseite mixture prepared by the above synthesis method is formed to a particle size of 6 ⁇ 60 ⁇ m.
  • the present invention provides a magnetite- Berneseite mixture prepared by any one of the above methods.
  • the present invention provides a water treatment method for treating wastewater by using the magnetite- Berneseite mixture prepared by the above method, in this water treatment method, the cationic contaminants are adsorbed and removed by the Berneseite, the anion contaminants are magnetite It is characterized by being adsorbed on and removed.
  • the magnetite-Bernesite mixture in which the contaminants are adsorbed is separated from the wastewater by using magnetic force.
  • the content ratio of the magnetite and the baneseite in the final manufactured magnetite- Berneseite mixture is determined,
  • the anionic contaminant is more than the cationic contaminant through the component analysis of the wastewater, the content of the magnetite in the magnetite-vernesite mixture is higher than the content of the vernesite, and vice versa. It is preferable to remove the contaminants by making the content of magnetite higher.
  • FIG. 1 is a schematic flowchart of a method for synthesizing a magnetite-vernesite mixture according to an embodiment of the present invention.
  • the method for synthesizing a magnetite-vernesseite mixture 100 includes a first synthesis step 10, a second synthesis step 20, and a purification step 30.
  • the first synthesis step 10 is a process of artificially synthesizing the magnetite.
  • Magnetite Fe 3 O 4
  • the first solution and the second solution are formed by stirring while being exposed to air during the mutual reaction.
  • a ferric chloride (FeCl 2 ⁇ 4H 2 O) solution is used as the first solution containing iron ions.
  • the use of ferrous chloride in hydrate form is intended to increase solubility in water.
  • Ferrous chloride contains bivalent iron ions in the first solution.
  • sodium hydroxide solution (NaOH) is used as the second solution containing hydroxide ions.
  • the sodium hydroxide solution is added to the first solution so that the mixed solution of the first solution and the second solution is kept in a basic state.
  • the mixed solution in this embodiment is maintained at pH 11-12.
  • the sodium hydroxide solution provides sufficient hydroxide ions for the magnetite to be synthesized, and in this example, sodium hydroxide solution at a concentration of 0.1-5 M is used. And the concentration of the ferrous chloride solution depends on the content of magnetite in the magnetite- Berneseite mixture to be finally synthesized.
  • magnetite is formed as in Scheme 1 below.
  • the mixed solution should be kept basic (approximately pH 8 or more) because the reaction scheme 1 occurs in the basic state. Furthermore, as the pH of the mixed solution is increased, the particles of the magnetite synthesized are smaller and the surface area is wider, so that magnetite having excellent adsorption efficiency is synthesized. However, the use of a solution exceeding pH12 requires a high cost, so the second solution is added to maintain the pH at 11-12.
  • the second synthesis step 20 is a process of forming a mixture of the magnetite and the vernesite by synthesizing the vernite on the surface of the magnetite synthesized in the first synthesis step 10.
  • manganese ions are supplied in the presence of the magnetite in the solid state.
  • the magnetite is synthesized in the first synthesis step, but without separating and drying the magnetite in the first synthesis step, manganese ions are added to the mixed solution of the first solution and the second solution in which the magnetite is precipitated. A third solution is added and reacted with each other.
  • a manganese chloride hydrate (MnCl 2 ⁇ 4H 2 O) solution is used as a third solution containing manganese ions.
  • the use of manganese chloride in hydrate form is intended to increase solubility in water.
  • the concentration of the manganese chloride hydrate solution is determined between the concentration of the ferrous chloride hydrate solution according to the relative ratio (content ratio) of the burnesite in the magnesite-vernesite mixture to be finally synthesized.
  • the mixed solution of the first solution and the second solution is mixed in a basic state, in particular, in a state of maintaining pH 11 to 12, and then reacting with stirring for about 10 minutes, manganese is deposited on the surface of the magnetite precipitated in the mixed solution. Ions are adsorbed.
  • the surface of the magnetite becomes negatively charged in the mixed solution having a pH of 11-12.
  • Manganese ions which are cations, are electrically adsorbed on the surface of the magnetite, and the remainder is present in the mixed solution.
  • a fourth solution containing sodium ions and an oxidant Wait for the manganese to fully adsorb to the magnetite and add a fourth solution containing sodium ions and an oxidant.
  • sodium hydroxide solution is used as a fourth solution containing sodium ions
  • hydrogen peroxide is used as an oxidant.
  • the concentration of oxidant is 3-6 mass% of hydrogen peroxide to avoid violent reaction and oxidation of manganese ions. That is, if the concentration of the oxidizing agent (hydrogen peroxide) is too high, heat and oxygen gas are generated, the reaction may proceed violently.
  • a sufficient amount of sodium ions must be supplied to produce vernesite, and a sufficient amount of hydroxide ions necessary for neutralization of hydrogen ions generated during the synthesis of vernesite must be supplied.
  • the concentration of the fourth solution may be determined in consideration of the concentration of the second solution in the mixed solution.
  • the oxidizing agent oxidizes divalent manganese ions to trivalent or tetravalent, and oxidized manganese ions, sodium ions, and hydroxide ions react with each other to form vernesite (NaMn 2 O 4 .15H 2 O). Since manganese ions are synthesized as vernite in the state of being adsorbed on the surface of the magnetite, the magnetite acts as a crystal nucleus for the synthesis of vernite. As a result, a mixture in the form of a combination of magnetite and vernesite is formed, and the magnetite and vernesite together form an aggregate.
  • a purification step 30 is performed in which the mixture is separated from the solution and purified.
  • magnetic separation using a magnet is performed to separate the magnetite-vernesite mixture in the solid state from the solution.
  • the solution contains a mixture of nonmagnetic magnetic oxides and manganese oxides in addition to the magnetic magnetite-vernesite mixture.
  • Magnetite is a ferromagnetic material that is sensitive to magnetic force and attached to a magnet, and thus can be separated using magnetism.
  • Known wet magnetic separators (not shown) or the like may be used to separate the magnetite-vernesite mixture from the solution.
  • the magnet used for magnetic separation uses an electromagnet having a magnetic field of 1,000 to 5,000 gauss. Since magnetite is ferromagnetic, it can be easily separated even if the strength of the magnetic field is not large.
  • the magnetite-bernesite mixture is finally purified through solid-liquid separation and drying.
  • the characteristics of the magnetite-vernesite mixture resulting from the present invention are outlined.
  • the adsorbent synthesized in the present invention (magnetite-vernesite mixture) has a high adsorption capacity for anionic contaminants, and a granular material in which the ferromagnetic magnetite and the high adsorption capacity for cationic contaminants are physically in one mass. to be
  • Magnetite has a point of zero charge of pH8 and a surface with a positive charge below pH8 in aqueous solution.
  • the surface of the magnetite at pH8 or less is to have a positive charge because the negative ion contaminants (AsO 4 3-, AsO 3 3- , Cr 2 O 7 2 -, PO 4 3-, F -, NO 3 - , etc.), absorption by the electric power Done.
  • AsO 4 3- , AsO 3 3- , Cr 2 O 7 2- , and PO 4 3 which have high chemical affinity for iron oxide, are adsorbed by chemisorption even at pH8 and above.
  • Vernesite has a very high cation exchange capacity of 240cmol / kg and its point of zero charge is known as pH2. Above pH2, the vernesite surface is negatively charged and has a high ability to adsorb cationic contaminants (Cu 2+ , Pb 2+ , Zn 2+ , Ni 2+ , Cd 2+, etc.) due to its high cation exchange capacity.
  • the particle size of the magnetite- Berneseite mixture according to the present invention formed very small particles of about 6 ⁇ 60 ⁇ m. This small particle has an advantage that the surface area is much larger than the coarse particles of the same weight, thereby improving the ability to adsorb contaminants.
  • magnetite was synthesized. 500 mL of 0.02 M ferrous chloride solution was placed in a 1 L plastic beaker and stirred with a small amount of 1 M sodium hydroxide solution. The mixed solution was synthesized by reacting for 30 minutes while maintaining the pH11-12. After the magnetite was synthesized, 500 ml of manganese chloride hydrate solution was added to adsorb manganese to the magnetite, followed by stirring for approximately 10 minutes. The concentration of this solution was synthesized while varying within the range of 0.005 ⁇ 0.08M (0.24 times the concentration of iron).
  • the synthetic material was precipitated in the beaker, and the magnetic and nonmagnetic materials were separated and purified using a high gradient magnetic separator at a magnetic field of 1,000-5,000 gauss in the suspension.
  • the mixture thus obtained was analyzed for mineral composition using X-ray diffraction (XRD), chemical composition through wetite analysis (dithionite-citrate-bicarbonate method), particle shape and electron composition (SEM, TEM).
  • XRD X-ray diffraction
  • chemical composition through wetite analysis dithionite-citrate-bicarbonate method
  • particle shape and electron composition SEM, TEM
  • the magnetic material containing the magnetite- Berneseite mixture has a black color, and after the magnetic material is separated from the solution consisting of only non-magnetic material can be confirmed that the transparent.
  • FIG. 2 shows a graph showing the large ratio of the magneto-manganese mixture to the ratio of iron and manganese.
  • FIG. 3 shows the XRD pattern of the magnetite-vernesite mixture according to the iron and manganese concentrations. Is shown.
  • FIGS. 4 and 5 are shown in FIGS. 4 and 5.
  • 4 is a scanning electron microscope (SEM) image of the magnetite-vernesite mixture
  • FIG. 5 is a transmission electron microscope (TEM) image of the magnetite-vernesite mixture.
  • FIG. 6 is a chart in which the chemical composition (concentration of iron and manganese) of the finally synthesized magnetite-vernesite mixture according to the concentration ratio of iron and manganese in synthesis is analyzed by wet analysis.
  • the present invention provides a water treatment method for treating wastewater by using the magnetite- Berneseite mixture synthesized by the above method.
  • FIG. 7 is a schematic flowchart of a water treatment method according to an embodiment of the present invention.
  • the water treatment method 200 is made through the process of wastewater analysis 210, magnetite- Berneseite synthesis 220, wastewater treatment 230 and separation 240 .
  • Wastewater analysis analyzes the content of cation contaminants and anion contaminants among contaminants in the wastewater to be treated. This analysis allows for the determination of the relative amounts of magnetite and burnesite in the synthesis of magnetite-vernesite mixtures.
  • the concentration of iron ions in the synthesis is higher than the concentration of manganese ions in the case of a lot of anionic contaminants to increase the magnetite content in the mixture, and the concentration of manganese in the synthesis of the cation contaminants by increasing the concentration of manganese ions in the synthesis. Can increase.
  • the magnetite-vernesite mixture is synthesized according to the present invention based on the above analysis results. And it controls the relative content of magnetite and vernesite at the time of synthesis.
  • the magnetite-vernesite mixture when synthesized, when the mixture is introduced into the wastewater, the cationic and anionic contaminants in the wastewater are adsorbed to the mixture and the wastewater is purified.
  • magnetite-vernesite mixture After the contaminants have been adsorbed to the magnetite-vernesite mixture, a magnetic separator is used to separate the magnetite-vernesite mixture from the purified wastewater. Since magnetite is a magnetic material, it can be easily separated even in a weak magnetic field (1,000 to 5,000 gauss).
  • the concentration of Cu remaining in the solution was measured after reacting the magnetite-vernesite mixture with 0.02 g of 10 ml of aqueous solution containing 100 mg / L of Cu for 1 hour.
  • the adsorption of Cu by the synthetic material increased as the total amount of the vernesite, a manganese oxide mineral in the synthetic material, increased.
  • the magnetite-vernesite mixture synthesized by the method according to the present invention can adsorb both cationic contaminants and anionic contaminants, and has an excellent surface adsorption capacity.
  • the magnetite is synthesized using ferrous chloride and sodium hydroxide, but it may be synthesized using a substance that provides divalent iron ions and a hydroxyl group.
  • the use of finely ground the magnetite ore in the solid state is included in the concept of synthesis by the first synthesis step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명은 마그네타이트-버네사이트 혼합물, 그 합성방법 및 이를 이용한 수처리방법에 관한 것이다. 본 발명에 따른 마그네타이트-버네사이트 혼합물 합성방은, 마그네타이트를 합성하는 제1합성단계, 마그네타이트의 존재하에서, 염기성 상태를 유지하는 가운데 망간을 공급하여 마그네타이트의 표면에 망간을 흡착시킨 후, 산화제와 나트륨을 공급하여 마그네타이트의 표면에 버네사이트를 합성함으로써 마그네타이트와 버네사이트가 결합된 혼합물을 형성하도록 하는 제2합성단계 및 마그네사이트와 버네사이트 혼합물을 정제하는 정제단계를 포함하여 이루어진다.

Description

마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
본 발명은 수처리 기술분야에 관한 것으로서, 특히 양이온 오염물과 음이온 오염물을 동시에 흡착하여 제거할 수 있는 흡착제와, 이 흡착제를 제조하가 위한 방법 및 흡착제를 사용하는 수처리 방법에 관한 것이다.
오염된 물의 정화에는 흡착, 막분리, 침전, 생물학적 분해, 화학적 분해 등 다양한 방법이 적용되고 있다. 산업폐수, 광산배수 등 오염된 물은 Cu2+, Pb2+, Zn2+, Ni2+, Cd2+ 등 양이온 오염물질과 AsO4 3-, AsO3 3-, Cr2O7 2-, PO4 3-, F-, NO3 - 등 음이온 오염물질이 혼재하는 경우가 매우 흔하다. 이러한 양이온과 음이온의 오염물질을 모두 함유한 오염된 물을 정화시키는 기존 공법은 양이온 오염물질을 제거하는 과정과 음이온 오염물질을 제거하는 2개 이상의 공법을 조합하여 활용하고 있다. 따라서 기존 오염정화방법은 여러 가지 공법을 적용하고 있어 절차가 복잡하고 많은 비용이 소요된다는 문제점이 있었다.
양이온 혹은 음이온 오염물질을 제거하는 다양한 흡착제가 개발되어 현장에 적용하고 있다. 흡착을 통한 오염물질의 제거는 흡착제를 오염된 물에 혼합하여 오염물질을 흡착시킨 후 흡착제를 제거하는 방법과 흡착제로 충진된 칼럼을 통과시켜 오염물질을 제거하는 방법으로 대별된다. 기존의 흡착제는 양이온 또는 음이온에 대한 흡착능력은 높으나 양이온과 음이온 오염물질을 동시에 제거할 수 있는 능력을 가진 흡착제는 제한적이다.
또한 흡착제를 오염된 물에 혼합하여 제거하는 경우 흡착제는 오염물질에 대한 흡착력을 높게 하기 위해 흡착면적이 넓은 미세한 입자의 형태로 이루어져 있다.
예컨대, 현장에 널리 사용되고 있는 활성탄은 폐수로부터 양이온 및 음이온 오염물질을 동시에 제거할 수 있는 것으로 알려져 있다. 그리고 활성탄은 비표면적이 커서 흡착능도 우수한 것으로 알려져 있다. 그러나 활성탄의 경우 수처리가 끝난 후 분리회수가 어렵다는 문제점이 있다.
본 발명은 양이온 오염물질과 음이온 오염물질을 동시에 흡착하여 제거할 수 있으며, 표면적이 넓은 미세입자로 구성되어 흡착능이 우수하고, 수처리 후에 분리효율이 향상된 흡착제, 이 흡착제를 합성하기 위한 합성방법 및 이 흡착제를 이용한 수처리 방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 마그네타이트-버네사이트 합성방법은, 마그네타이트를 합성하는 제1합성단계, 상기 마그네타이트의 존재하에서, pH를 8이상으로 유지하는 가운데 망간과 나트륨을 공급하여 상기 마그네타이트의 표면에 버네사이트가 합성되어 상기 마그네타이트와 버네사이트가 결합된 입단 형태의 혼합물을 형성하도록 하는 제2합성단계 및 상기 마그네사이트와 버네사이트 혼합물을 정제하는 정제단계를 포함하여 이루어진 것에 특징이 있다.
또한 본 발명은 양이온 오염물질과 음이온 오염물질을 함께 제거하기 위한 것으로서, 상기한 방법으로 제조된 마그네타이트-버네사이트 혼합물을 제공한다.
또한, 본 발명에서는 상기한 방법으로 제조된 마그네타이트-버네사이트 혼합물을 이용하여 폐수를 처리하는 수처리 방법을 제공하며, 본 수처리 방법에서는 양이온 오염물질을 버네사이트에 흡착시켜 제거하며, 음이온 오염물질을 마그네타이트에 흡착시켜 제거하는 데에 특징이 있다.
본 발명에 따른 합성방법에 의하여 마그네타이트-버네사이트 혼합물을 용이하게 합성할 수 있다.
본 발명에 따라 제조된 마그네타이트-버네사이트 혼합물은 양이온 오염물질과 음이온 오염물질을 동시에 흡착할 수 있어 폐수처리에 있어 효과적이다.
또한, 마그네타이트-버네사이트 혼합물은 입자 크기가 작아 표면적이 넓으므로 오염물질에 대한 흡착능이 우수하다는 이점이 있다.
또한 마그네타이트-버네사이트 혼합물은 마그네타이트가 강자성체이므로 폐수에서 오염물질을 흡착한 후 자기장을 이용하여 쉽게 정화처리된 폐수로부터 회수할 수 있다는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 마그네타이트-버네사이트 혼합물 합성방법의 개략적 흐름도이다.
도 2는 합성시의 철과 망간의 농도에 따른 마그네타이트-버네사이트 혼합물의 대자율을 나타낸 그래프이다.
도 3은 합성시의 철과 망간의 농도에 따른 마그네타이트-버네사이트 혼합물의 XRD 패턴 사진이다.
도 4는 마그네타이트-버네사이트 혼합물의 주사전자현미경(SEM) 사진이다.
도 5는 마그네타이트-버네사이트 혼합물의 투과전자현미경(TEM) 사진이다.
도 6은 합성시의 철과 망간의 농도 비율에 따라 최종적으로 합성된 마그네타이트-버네사이트 혼합물의 화학조성(철과 망간의 농도)을 습식분석법으로 분석한 도표이다.
도 7은 본 발명의 일 실시예에 따른 수처리방법의 개략적 흐름도이다.
도 8은 마그네타이트-버네사이트 혼합물의 양이온 오염물질인 구리에 대한 제거율을 실험한 결과를 표시한 도표이다.
도 9는 마그네타이트-버네사이트 혼합물의 음이온 오염물질인 비소에 대한 제거율을 실험한 결과를 표시한 도표이다.
상기 목적을 달성하기 위한 본 발명에 따른 마그네타이트-버네사이트 합성방법은, 마그네타이트를 합성하는 제1합성단계, 상기 마그네타이트의 존재하에서, pH를 8이상으로 유지하는 가운데 망간과 나트륨을 공급하여 상기 마그네타이트의 표면에 버네사이트가 합성되어 상기 마그네타이트와 버네사이트가 결합된 입단 형태의 혼합물을 형성하도록 하는 제2합성단계 및 상기 마그네사이트와 버네사이트 혼합물을 정제하는 정제단계를 포함하여 이루어진 것에 특징이 있다.
본 발명에 따르면, 상기 마그네타이트를 합성하는 제1합성단계에서는, 공기와 접촉된 상태에서, 철 이온을 포함하는 제1용액과 수산화 이온을 포함하는 제2용액을 상호 혼합하여 마그네타이트를 합성한다.
그리고 상기 제1용액은 염화철 용액이며, 상기 제2용액은 수산화나트륨 용액이며, 상기 제2용액을 상기 제1용액에 혼합하여 상기 혼합액의 pH는 8이상으로 유지하며, 더욱 바람직하게는 pH11~12로 유지한다.
또한 상기 제2합성단계에서는, 상기 제1합성단계에서 합성된 마그네타이트에 망간 이온을 포함하는 제3용액과, 나트륨 이온을 포함하는 제4용액 및 상기 제3용액 내의 망간 이온을 산화시키기 위한 산화제를 첨가하고, 상기 마그네타이트와 제3용액 및 제4용액을 포함하는 전체 용액의 pH를 8이상, 바람직하게는 11~12로 유지하여, 상기 마그네타이트의 표면에서 버네사이트가 합성되도록 하는 것이 바람직하다.
또한, 상기 제3용액은 염화망간 용액이며, 산화제는 과산화수소이며, 상기 제4용액은 수산화나트륨 용액이 사용된다.
상기 제4용액의 수산화나트륨 용액의 몰 농도는 상기 제3용액의 망간 이온의 몰 농도의 3.5~5배인 것이 바람직하며, 상기 제1용액의 철 이온과 상기 제3용액의 망간 이온의 몰 농도비 0.25~4배인 것이 바람직하다.
그리고 상기 정제단계에서는 자력을 이용하여 마그네타이트와 버네사이트의 혼합물을 분리하며, 여기에 사용되는 자석은 1,000~5,000 가우스의 자기장을 형성하는 것이 바람직하다.
그리고 상기한 합성방법에 의하여 제조된 마그네타이트-버네사이트 혼합물은 6~60μm의 입도로 형성된다.
한편, 본 발명은 상기한 방법들 중 어느 하나의 방법으로 제조된 마그네타이트-버네사이트 혼합물을 제공한다.
또한, 본 발명에서는 상기한 방법으로 제조된 마그네타이트-버네사이트 혼합물을 이용하여 폐수를 처리하는 수처리 방법을 제공하며, 본 수처리 방법에서는 양이온 오염물질은 버네사이트에 흡착되어 제거하며, 음이온 오염물질은 마그네타이트에 흡착되어 제거되는 데에 특징이 있다.
또한 본 발명에 따른 수처리 방법에서는 상기 마그네타이트-버네사이트 혼합물을 이용하여 상기 오염물질을 제거한 후, 자력을 이용하여 상기 오염물질이 흡착되어 있는 마그네타이트-버네사이트 혼합물을 폐수로부터 분리한다.
그리고, 상기 마그네타이트를 합성하기 위한 철 이온의 몰 농도 대비 상기 버네사이트를 합성하기 위한 망간 이온의 몰 농도를 조절함으로써 최종 제조되는 마그네타이트-버네사이트 혼합물에서 마그네타이트와 버네사이트의 함량비를 결정하며, 상기 폐수의 성분분석을 통해 상기 음이온 오염물질이 양이온 오염물질에 비하여 많은 경우 상기 마그네타이트-버네사이트 혼합물에서 상기 마그네타이트의 함량이 상기 버네사이트의 함량보다 높게 되도록 하며, 반대의 경우 상기 버네사이트의 함량이 상기 마그네타이트의 함량보도 높게 되도록 제조하여 상기 오염물질을 제거하는 것이 바람직하다.
이하, 첨부된 도면을 참조하여, 본 발명의 일 실시예에 따른 마그네타이트-버네사이트 혼합물과 그 합성방법에 대하여 더욱 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 마그네타이트-버네사이트 혼합물 합성방법의 개략적 흐름도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 마그네타이트-버네사이트 혼합물 합성방법(100)은 제1합성단계(10), 제2합성단계(20) 및 정제단계(30)를 구비한다.
제1합성단계(10)는 마그네타이트를 인공적으로 합성하는 과정이다. 마그네타이트(Fe3O4)는 철 이온을 포함하는 제1용액에 수산화 이온을 포함하는 제2용액을 첨가하여 합성한다. 그리고 제1용액과 제2용액이 상호 반응시에 공기에 노출된 상태에서 교반하여 형성한다.
본 실시예에서 철 이온을 포함하는 제1용액으로는 염화제1철수화물(FeCl2·4H2O) 용액이 사용된다. 염화제1철을 수화물 형태로 사용하는 것은 물에 대한 용해도를 높이기 위함이다. 염화제1철은 제1용액 내에는 2가의 철 이온이 포함되어 있다.
또한 본 실시예에서 수산화 이온을 포함하는 제2용액으로는 수산화나트륨용액(NaOH)이 사용된다. 수산화나트륨 용액은 제1용액에 첨가되어 제1용액과 제2용액이 혼합된 혼합액이 염기성 상태를 유지하게 한다. 특히 본 실시예에서 혼합액은 pH 11~12를 유지시킨다.
수산화나트륨 용액은 마그네타이트가 합성되기에 충분한 수산화 이온을 제공하며, 본 실시예에서는 0.1~5M 농도의 수산화 나트륨 용액을 사용한다. 그리고 염화제1철 용액의 농도는 최종적으로 합성될 마그네타이트-버네사이트 혼합물에서 마그네타이트의 함량에 따라 달라진다.
제1용액과 제2용액을 공기에 노출시킨 상태에서 상호 혼합한 후 30~60분 정도 반응시키면 아래의 반응식1과 같이 마그네타이트가 형성된다.
Fe2+ + 2Fe3+ + 8OH- → Fe3O4 + 4H2O ... (반응식1)
즉, 제1용액으로부터 용출된 2가 철 이온 중 일부는 용존 산소에 의하여 산화되서 3가의 철 이온으로 되고, 2가와 3가의 철 이온이 수산화 이온을 소모하면서 마그네타이트를 형성한다. 마그네타이트는 고체 형태로 침전된다.
본 실시예에서 혼합액은 염기성(대략 pH 8 이상)을 유지해야 하는데 위 반응식1은 염기성 상태에서 일어나기 때문이다. 더 나아가, 혼합액의 pH가 높아질수록 합성되는 마그네타이트의 입자가 작아져 표면적이 넓어지므로 흡착효율이 우수한 마그네타이트가 합성된다. 다만, pH12를 초과하는 용액을 사용하는 것은 고비용이 요구되므로, 제2용액을 첨가하여 pH를 11~12로 유지한다.
제2합성단계(20)는 제1합성단계(10)에서 합성된 마그네타이트의 표면에 버네사이트를 합성하여 마그네타이트와 버네사이트가 결합된 혼합물을 형성하는 과정이다.
마그네타이트의 표면에 버네사이트를 합성하기 위해서는 우선 고체 상태의 마그네타이트의 존재하에서 망간 이온을 공급한다.
본 실시예에서 마그네타이트는 제1합성단계에서 합성된 것을 사용하는데, 제1합성단계에서 마그네타이트를 분리하여 건조시키지 않고, 고체상의 마그네타이트가 침전되어 있는 제1용액과 제2용액의 혼합액에 망간 이온을 포함하는 제3용액을 첨가하여 상호 반응시킨다.
본 실시예에서 망간 이온을 포함하는 제3용액으로는 염화망간수화물(MnCl2·4H2O) 용액을 사용한다. 수화물 형태의 염화망간을 사용하는 것은 물에 대한 용해도를 증가시키기 위함이다. 염화망간수화물 용액의 농도는 최종적으로 합성될 마그네사이트-버네사이트 혼합물에서 버네사이트가 차지하는 상대적 비율(함량비)에 따라서 상기 염화제1철 수화물 용액의 농도와의 사이에서 결정된다.
상기 제1용액과 제2용액이 혼합된 혼합액은 염기성 상태, 특히 pH11~12를 유지하고 있는 상태에서 제3용액을 첨가한 후 10분 정도 교반하면서 반응시키면 혼합액 내에 침전되어 있는 마그네타이트의 표면에 망간 이온이 흡착된다.
마그네타이트의 PZC(point of zero charge)는 대략 pH8이므로, pH가 11~12인 혼합액 내에서 마그네타이트의 표면은 음전하를 띠게 된다. 이에 양이온인 망간 이온은 마그네타이트의 표면에 전기적으로 흡착되며, 나머지는 혼합액 내에 존재한다.
망간이 마그네타이트에 충분히 흡착되기를 기다려 나트륨 이온을 포함하는 제4용액과 산화제를 첨가한다. 본 실시예에서 나트륨 이온을 포함하는 제4용액으로는 수산화나트륨 용액을 사용하며, 산화제로는 과산화수소를 사용한다.
산화제의 농도는 격렬한 반응을 피하고 망간 이온의 산화를 위하여 3~6 질량%농도의 과산화수소를 사용한다. 즉, 산화제(과산화수소)의 농도가 너무 높으면 열과 산소 가스가 발생되어 반응이 격렬하게 진행될 수 있다. 그리고 버네사이트가 생성되기에 충분한 양의 나트륨 이온이 공급되어야 하며, 버네사이트 합성과정에서 생성되는 수소 이온의 중화에 필요한 충분한 양의 수산화 이온이 공급되어야 하므로, 제4용액은 제3용액에서 망간의 몰농도의 3.5 ~ 5.5배 몰농도의 수산화나트륨 용액을 사용한다. 본 실시예에서는 4배 몰농도의 수산화나트륨 용액을 사용하였다.
다만, 마그네타이트가 침전되어 있는 혼합액에는 제2용액인 수산화나트륨 용액이 포함되어 있으므로, 혼합액 내의 제2용액의 농도를 고려하여 제4용액의 농도를 결정하면 된다.
제4용액과 산화제를 첨가하면 아래의 반응식2와 같은 반응이 일어난다.
Na+ + Mn3+ + Mn4+ + 4OH- + 15H2O → NaMn2O4·15H2O +4H+ ...(반응식2)
즉, 산화제는 2가의 망간 이온을 3가 또는 4가로 산화시키며, 산화된 망간 이온과 나트륨 이온 및 수산화 이온이 상호 반응하여 버네사이트(NaMn2O4·15H2O)를 형성한다. 망간 이온이 마그네타이트의 표면에 흡착된 상태에서 버네사이트로 합성되므로, 마그네타이트는 버네사이트가 합성되는 결정핵으로 작용한다. 이에 따라, 마그네타이트와 버네사이트가 결합된 형태의 혼합물이 형성되며, 마그네타이트와 버네사이트는 함께 입단(aggregate)을 형성한다.
상기한 바와 같이, 제2합성단계에서 마그네타이트-버네사이트 혼합물이 고체 상태로 합성되면, 이 혼합물을 용액으로부터 분리하여 정제하는 정제단계(30)를 수행한다.
정제단계(30)에서 고체 상태의 마그네타이트-버네사이트 혼합물을 용액으로부터 분리하기 위하여 자석을 이용한 자력분리를 수행한다. 용액 내에는 자성체인 마그네타이트-버네사이트 혼합물 이외에 비자성체인 산화철, 산화망간이 혼재한다. 마그네타이트는 강자성체로서 자력에 민감하게 반응하여 자석에 부착되므로, 자성을 이용하여 분리가 가능하다. 공지의 습식 자력분리기(미도시) 등을 이용하여 용액으로부터 마그네타이트-버네사이트 혼합물을 분리할 수 있다.
본 실시예에서 자력분리에 사용한 자석은 1,000~5,000 가우스의 자기장을 가지는 전자석을 사용한다. 마그네타이트가 강자성체이므로 자기장의 세기가 크지 않더라도 용이하게 분리가 가능하다.
자력분리 후에는 고액분리 및 건조과정을 통해 최종적으로 마그네타이트-버네사이트 혼합물을 정제하게 된다.
본 발명의 결과물인 마그네타이트-버네사이트 혼합물의 특성에 대하여 개략적으로 설명한다.
본 발명에서 합성한 흡착제(마그네타이트-버네사이트 혼합물)는 음이온 오염물질에 대한 흡착능력이 높으며 강자성인 마그네타이트와 양이온 오염물질에 대한 흡착능력이 높은 버네사이트가 물리적으로 한 덩어리가 되어 있는 입단형태의 물질이다
마그네타이트는 영전하점(point of zero charge)이 pH8이며 수용액에서 pH8 이하에서는 표면이 양전하를 가지게 된다. pH8 이하에서 마그네타이트의 표면은 양전하를 가지게 되므로 음이온 오염물질(AsO4 3-, AsO3 3-, Cr2O7 2-, PO4 3-, F-, NO3 - 등)전기적 힘에 의하여 흡착하게 된다. 또한 산화철에 대한 화학적 친화력이 높은 AsO4 3-, AsO3 3-, Cr2O7 2-, PO4 3은 pH8 이상에서도 chemisorption에 의하여 흡착되는 것으로 알려져 있다.
버네사이트는 양이온교환능력이 240cmol/kg으로 매우 높으며 영전하점이 pH2로 알려져 있다. pH2 이상에서 버네사이트 표면은 음전하를 가지며 높은 양이온교환능력으로 인해 양이온 오염물질(Cu2+, Pb2+, Zn2+, Ni2+, Cd2+ 등)을 흡착하는 능력이 매우 높다.
또한 본 발명에 따른 마그네타이트-버네사이트 혼합물의 입도는 대략 6~60μm로 매우 작은 입자를 형성하였다. 이렇게 입자가 작으면 동일한 무게의 조립입자에 비하여 표면적이 훨씬 넓어지므로 오염물질을 흡착할 수 있는 능력이 향상된다는 이점이 있다.
이하, 상기한 방법에 따른 마그네타이트-버네사이트 합성방법의 실험예에 대하여 설명한다.
우선 마그네타이트를 합성하였다. 0.02M 염화제1철수화물 용액 500mL을 1L 플라틱 비이커에 넣고 1M의 수산화나트륨 용액을 조금씩 가하면서 교반하였다. 혼합된 용액은 pH11 - 12로 유지시키면서 30분 동안 반응시켜 합성하였다. 마그네타이트를 합성한 후 망간을 마그네타이트에 흡착시키기 위하여 염화망간 수화물 용액500ml를 첨가한 후 대략 10분 동안 교반하였다. 이 용액의 농도는 0.005~0.08M의 범위(철 대비 0.25~4배의 농도) 내에서 변화시켜 가면서 합성을 시행하였다.
이후 6% 농도의 과산화수소가 함유된 수산화나트륨 용액 500mL를 첨가한 후 10분 동안 교반하여 버네사이트와 마그네타이트 혼합물을 합성하였다. 수산화나트륨의 농도는 염화망간 수화물 용액의 망간 농도의 4배가 되도록 하였다.
최종적으로 합성물질이 비이커 내에 침전되었고, 현탁액에서 자기장 1,000 - 5,000 가우스에서 고구배자력분리기(high gradient magnetic separator)를 이용하여 자성물질과 비자성물질을 분리하여 정제하였다.
이렇게 얻어진 혼합물은 X선회절(XRD)을 이용한 광물조성, 습식분석(dithionite-citrate-bicarbonate법)을 통한 화학조성, 전자현미경(SEM, TEM)을 이용한 입자모양 및 광물조성을 분석하였다.
본 실험에서 마그네타이트-버네사이트를 용액으로부터 분리하면, 마그네타이트-버네사이트 혼합물이 포함된 자성물질은 검은 색을 띠며, 자성물질이 분리된 후의 비자성물질로만 이루어진 용액은 투명한 것을 확인할 수 있다.
그리고 도 2에는 마그네타이트-버네사이트 혼합물에서 철과 망간의 비율에 따른 대자율을 나타낸 그래프가 도시되어 있으며, 도 3에는 합성시의 철과 망간의 농도에 따른 마그네타이트-버네사이트 혼합물의 XRD 패턴 사진이 도시되어 있다.
도 2에서 알 수 있는 바와 같이, 망간 대비 철의 농도가 증가할 수록 대자율이 증가하는 것을 확인할 수 있다. 그리고, 도 3에 나타난 바와 같이, X선 회절분석 결과 합성 혼합물은 마그네타이트와 버네사이트로 구성되어 있으며 합성시에 Mn농도가 증가할수록 버네사이트의 함량이 증가하고 Fe농도가 증가할수록 마그네타이트의 함량이 증가한다.
또한 위 실험예에 의해 합성된 마그네타이트-버네사이트 혼합물 사진이 도 4 및 도 5에 나타나 있다. 도 4는 마그네타이트-버네사이트 혼합물의 주사전자현미경(SEM) 사진이며, 도 5는 마그네타이트-버네사이트 혼합물의 투과전자현미경(TEM) 사진이다.
도 4 및 도 5를 참조하면, 본 발명에 따른 방법으로 합성된 물질의 모양을 주사전자현미경 및 투과전자현미경 사진으로 관찰한 결과 미세한 판상의 버네사이트와 마그네타이트 입단이 관찰되었다.
도 6은 합성시의 철과 망간의 농도 비율에 따라 최종적으로 합성된 마그네타이트-버네사이트 혼합물의 화학조성(철과 망간의 농도)을 습식분석법으로 분석한 도표이다.
도 6의 도표를 참조하면, 용액1(염화제1철수화물 용액) 대비 용액3(염화망간수화물 용액)의 농도가 증가할수록 최종 합성물에서의 망간의 상대적 함량이 철에 비하여 증가함을 확인하였다.
한편, 본 발명에서는 상기한 방법으로 합성된 마그네타이트-버네사이트 혼합물을 이용하여 폐수를 처리하는 수처리방법을 제공한다.
본 발명에 따른 수처리방법이 도 7에 도시되어 있다. 도 7은 본 발명의 실시예에 따른 수처리방법의 개략적 흐름도이다.
도 7을 참조하면, 본 발명의 일 실시예에 따른 수처리방법(200)은 폐수분석(210), 마그네타이트-버네사이트 합성(220), 폐수처리(230) 및 분리(240)의 공정을 통해 이루어진다.
폐수분석에서는 처리하고자 하는 폐수 내의 오염물질 중 양이온 오염물질과 음이온 오염물질의 함량을 분석한다. 이러한 분석을 통해 마그네타이트-버네사이트 혼합물을 합성시 마그네타이트와 버네사이트의 상대적 함량을 정할 수 있다. 즉, 음이온 오염물질이 많은 경우 합성시 철 이온의 농도를 망간 이온의 농도보다 상대적으로 높게 하여 혼합물에서 마그네타이트의 함량을 높이고, 양이온 오염물질이 많은 경우 합성시 망간 이온의 농도를 높여 버네사이트의 함량을 높일 수 있다.
이렇게 폐수 분석이 끝난 후에는 위 분석결과를 토대로 본 발명에 따라 마그네타이트-버네사이트 혼합물을 합성한다. 그리고 합성시에 마그네타이트와 버네사이트의 상대적 함량을 조절한다.
마그네타이트-버네사이트 혼합물이 합성되면, 이 혼합물을 폐수에 투입하면 폐수 내의 양이온 오염물질과 음이온 오염물질이 각각 혼합물에 흡착되고 폐수는 정화처리된다.
오염물질들이 마그네타이트-버네사이트 혼합물에 흡착된 후에는 자력분리기를 이용하여 정화처리가 완료된 폐수로부터 마그네타이트-버네사이트 혼합물을 분리한다. 마그네타이트가 자성물질이므로 약한 자기장(1,000~5,000가우스)에서도 용이한 분리가 가능하다.
본 발명에 따라 제조된 마그네타이트-버네사이트 혼합물에 대한 오염물질 흡착능력을 실험하였으며, 결과가 도 8 및 도 9에 나타나 있다.
도 8은 마그네타이트-버네사이트 혼합물의 양이온 오염물질인 구리에 대한 제거율을 실험한 결과를 표시한 도표이며, 도 9는 마그네타이트-버네사이트 혼합물의 음이온 오염물질인 비소에 대한 제거율을 실험한 결과를 표시한 도표이다.
양이온 오염물질의 제거능력을 시험하기 위하여 마그네타이트-버네사이트 혼합물 0.02g과 Cu 100mg/L를 함유한 수용액 10ml를 1시간 동안 반응 시킨 후 용액에 잔류하는 Cu의 농도를 측정하였다. 도 8을 참조하면, 합성물질 내 산화망간광물인 버네사이트의 합량이 증가할수록 합성물질에 의한 Cu의 흡착이 증가하였다.
또한 음이온 오염물질에 대한 제거능력을 시험하기 위하여 합성물질 0.05g과As(III) 1mg/L를 함유한 수용액 50ml를 1시간 동안 반응 시킨 후 용액에 잔류하는 As농도를 측정하였다. 도 9를 참조하면, 음이온 오염물질인 As(III)에 대한 합성물질의 흡착은 산화철광물인 마그네타이트의 함량이 증가할수록 증가하였다.
즉, 마그네타이트-버네사이트 혼합물에서 폐수 내 오염물질의 종류에 따라 마그네타이트와 버네사이트의 함량을 조절함으로써, 양이온 및 음이온 오염물질의 제거율을 높일 수 있다. 물론, 어떠한 경우든지 본 혼합물에 의해서 양이온 오염물질과 음이온 오염물질이 함께 제거된다.
이상에서 설명한 바와 같이, 본 발명에 따른 방법에 의해서 합성된 마그네타이트-버네사이트 혼합물은 양이온 오염물질과 음이온 오염물질을 모두 흡착할 수 있으며, 표면적이 넓어 흡착능력이 우수하다는 장점이 있다.
그리고, 지금까지 제1합성단계에서는 염화제1철과 수산화나트륨을 이용하여 마그네타이트를 합성하는 것으로 설명 및 도시하였으나 2가 철이온과 수산화기를 제공하는 물질을 이용하여 합성할 수도 있다. 또한, 고체상태의 마그네타이트 광석을 미분쇄하여 사용하는 것도 제1합성단계에 의한 합성의 개념에 포함된다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (17)

  1. 마그네타이트를 합성하는 제1합성단계;
    상기 마그네타이트의 존재하에서, 염기성 상태를 유지하는 가운데 망간을 공급하여 상기 마그네타이트의 표면에 상기 망간을 흡착시킨 후, 산화제와 나트륨을 공급하여 상기 마그네타이트의 표면에 버네사이트를 합성함으로써 상기 마그네타이트와 버네사이트가 결합된 혼합물을 형성하도록 하는 제2합성단계; 및
    상기 마그네사이트와 버네사이트 혼합물을 정제하는 정제단계;를 포함하여 이루어진 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  2. 제1항에 있어서,
    상기 마그네타이트를 합성하는 제1합성단계에서는,
    공기와 접촉된 상태에서, 철 이온을 포함하는 제1용액과 수산화 이온을 포함하는 제2용액을 상호 혼합하여 혼합액이 염기성 상태를 유지되는 상태에서 마그네타이트를 합성하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  3. 제2항에 있어서,
    상기 제1용액은 염화철 용액이며, 상기 제2용액은 수산화나트륨 용액인 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  4. 제2항에 있어서,
    상기 제2용액을 상기 제1용액에 혼합하여 상기 혼합액의 pH는 11~12로 유지하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  5. 제1항에 있어서,
    상기 제2합성단계에서는,
    상기 제1합성단계에서 합성된 마그네타이트에 망간 이온을 포함하는 제3용액과, 나트륨 이온을 포함하는 제4용액 및 상기 제3용액 내의 망간 이온을 산화시키기 위한 산화제를 첨가하고,
    상기 마그네타이트와 제3용액 및 제4용액을 포함하는 전체 용액의 pH를 8이상으로 유지하여, 상기 마그네타이트의 표면에서 버네사이트가 합성되도록 하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  6. 제5항에 있어서,
    상기 제3용액은 염화망간 용액이며, 산화제는 과산화수소인 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  7. 제5항에 있어서,
    상기 제4용액은 수산화나트륨 용액인 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  8. 제7항에 있어서,
    상기 수산화나트륨 용액의 몰 농도는 상기 제3용액의 망간 이온의 몰 농도의 3.5~5배인 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  9. 제1항에 있어서,
    상기 제1합성단계에서는 철 이온을 포함하는 제1용액을 이용하며,
    상기 제2합성단계에서는 망간 이온을 포함하는 제3용액을 이용하고,
    상기 제1용액의 철 이온과 상기 제3용액의 망간 이온의 몰 농도비 2.5~4배인 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  10. 제1항에 있어서,
    상기 정제단계에서는 자력을 이용하여 마그네타이트와 버네사이트의 혼합물을 분리하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  11. 제10항에 있어서,
    상기 정제단계에서 사용되는 자석은 1,000 ~ 5,000 가우스의 자기장을 형성하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  12. 제1항에 있어서,
    상기 마그네타이트와 버네사이트의 혼합물은 입단(aggregate) 형태를 형성하는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  13. 제1항에 있어서,
    상기 마그네타이트와 버네사이트의 혼합물은 6~60μm의 입도로 형성되는 것을 특징으로 하는 마그네타이트-버네사이트 혼합물 합성방법.
  14. 양이온 오염물질과 음이온 오염물질을 함께 제거하기 위한 것으로서,
    상기 제1항 내지 제13항 중 어느 한 항에 기재된 합성방법에 의하여 합성된 것을 특징으로 하는 마그네타이트-버네사이트 혼합물.
  15. 양이온 오염물질과 음이온 오염물질이 모두 포함되어 있는 폐수를 처리하기 위한 것으로서,
    상기 제1항 내지 제13항 중 어느 한 항에 기재된 합성방법에 의하여 합성된 마그네타이트-버네사이트 혼합물을 상기 폐수에 투입하여 상기 양이온 및 음이온 오염물질을 흡착시켜 제거하는 것을 특징으로 하는 수처리 방법.
  16. 제15항에 있어서,
    상기 마그네타이트-버네사이트 혼합물을 이용하여 상기 오염물질을 제거한 후, 자력을 이용하여 상기 오염물질이 흡착되어 있는 마그네타이트-버네사이트 혼합물을 폐수로부터 분리하는 것을 특징으로 하는 수처리 방법.
  17. 제15항에 있어서,
    상기 마그네타이트를 합성하기 위한 철 이온의 몰 농도 대비 상기 버네사이트를 합성하기 위한 망간 이온의 몰 농도를 조절함으로써 최종 제조되는 마그네타이트-버네사이트 혼합물에서 마그네타이트와 버네사이트의 함량비를 결정하며,
    상기 폐수의 성분 분석을 통해 상기 음이온 오염물질이 양이온 오염물질에 비하여 많은 경우 상기 마그네타이트-버네사이트 혼합물에서 상기 마그네타이트의 함량이 상기 버네사이트의 함량보다 높게 되도록 하며, 반대의 경우 상기 버네사이트의 함량이 상기 마그네타이트의 함량보도 높게 되도록 제조하여 상기 오염물질을 제거하는 것을 특징으로 하는 수처리 방법.
PCT/KR2011/004967 2011-05-27 2011-07-07 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법 WO2012165695A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2011369593A AU2011369593B2 (en) 2011-05-27 2011-07-07 Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
US13/878,299 US9174196B2 (en) 2011-05-27 2011-07-07 Synthesis method for magnetite and birnessite aggregate-form mixture
JP2013531473A JP5674952B2 (ja) 2011-05-27 2011-07-07 マグネタイト−バーネサイト混合物及びその合成方法並びに水処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110050419A KR101330997B1 (ko) 2011-05-27 2011-05-27 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
KR10-2011-0050419 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165695A1 true WO2012165695A1 (ko) 2012-12-06

Family

ID=47259526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004967 WO2012165695A1 (ko) 2011-05-27 2011-07-07 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법

Country Status (5)

Country Link
US (1) US9174196B2 (ko)
JP (1) JP5674952B2 (ko)
KR (1) KR101330997B1 (ko)
AU (1) AU2011369593B2 (ko)
WO (1) WO2012165695A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791260C1 (ru) * 2022-05-04 2023-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Способ очистки промывных сточных вод от шестивалентного хрома

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150436B2 (en) * 2013-06-24 2015-10-06 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
IL230024A0 (en) 2013-12-19 2014-03-31 Mekorot Israel Nat Water Company Ltd Process, device and system for water treatment
WO2017086056A1 (ja) * 2015-11-18 2017-05-26 国立大学法人香川大学 ストロンチウムイオン吸着剤およびその製造方法
WO2018109823A1 (ja) * 2016-12-13 2018-06-21 国立大学法人香川大学 ストロンチウムイオン吸着剤およびその製造方法
JP6610978B2 (ja) * 2016-12-13 2019-11-27 国立大学法人 香川大学 ストロンチウムイオン吸着剤およびその製造方法
CN109417716A (zh) * 2017-06-16 2019-03-01 联发科技(新加坡)私人有限公司 移动通信中处理数据重复的方法和装置
CN112221512B (zh) * 2020-08-28 2023-11-03 北京碧水源膜科技有限公司 催化氧化nh4+的活性炭基锰铁氧化膜的制备方法、活性炭基锰铁氧化膜及脱氨应用
CN113181928B (zh) * 2020-12-18 2023-12-26 北京碧水源科技股份有限公司 铁掺杂水钠锰矿改性方法、改性铁掺杂水钠锰矿及其应用
CN116099544B (zh) * 2023-02-15 2024-10-29 广西大学 一种矿渣基Fe2O3/MnO2复合光-Fenton催化剂及其制备方法和应用
CN118079953A (zh) * 2024-04-23 2024-05-28 江西农业大学 一种水钠锰矿-亚硫酸盐光催化剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702674A (en) * 1994-03-21 1997-12-30 Texaco Inc. Framework metal-substituted manganese oxide octahedral molecular sieve and process for its preparation
KR20030023153A (ko) * 2001-09-12 2003-03-19 주식회사 페로엔텍 수용액중 상온에서의 마그네타이트 제조 방법 및 상기마그네타이트를 이용한 산업폐수 처리 방법
KR20040110352A (ko) * 2003-06-18 2004-12-31 이동희 마그네타이트 분말과 부영양화 물질 및 유기물 흡착제가함유된 미세구형 과립상태인 수처리 미세과립 제조방법 및초고속 수처리공정
KR20050112692A (ko) * 2004-05-27 2005-12-01 한국과학기술원 압전소자 노즐에 의한 염화철 (ⅱ) 과 염화철(ⅲ)의미세액적 반응기에서의 단분산 산화철 나노입자의 제조방법
KR20090046869A (ko) * 2006-08-25 2009-05-11 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 자성 화학 흡수제, 그 제조방법, 그 재생방법, 및 폐액 처리방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552003B2 (ja) * 1996-08-19 2004-08-11 戸田工業株式会社 磁気記録媒体
JP3594160B2 (ja) * 1996-08-30 2004-11-24 三井金属鉱業株式会社 マグネタイト粒子およびその製造方法
US7341661B2 (en) * 2000-11-16 2008-03-11 Unit Process Technologies, L.L.C. Clarification and sorptive-filtration system for the capture of constituents and particulate matter in liquids and gases
US6790363B2 (en) * 2001-07-24 2004-09-14 Chk Group, Inc. Method of treating arsenic-contaminated waters
JP4076510B2 (ja) * 2003-02-05 2008-04-16 石原産業株式会社 環境浄化方法
JP4469948B2 (ja) * 2004-07-08 2010-06-02 独立行政法人産業技術総合研究所 アンモニウムイオン吸着剤及びアンモニウムイオンの除去方法
JP5070675B2 (ja) * 2005-02-17 2012-11-14 東ソー株式会社 マンガン化合物担持物及びその合成方法
JP2008284520A (ja) * 2007-05-21 2008-11-27 Futaba Shoji Kk 担持触媒型磁性吸着剤および過酸化物含有廃水の処理方法
US8207087B2 (en) * 2007-07-13 2012-06-26 Research Center For Eco-Environmental Sciences, Chinese Academy Of Sciences Method for making ferric and manganese binary oxide based adsorbent
JP4936559B2 (ja) * 2008-01-30 2012-05-23 国立大学法人 香川大学 ヒ素除去剤
KR100968283B1 (ko) 2008-12-03 2010-07-06 한국원자력연구원 요오드 흡착능이 향상된 철-버네사이트의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702674A (en) * 1994-03-21 1997-12-30 Texaco Inc. Framework metal-substituted manganese oxide octahedral molecular sieve and process for its preparation
KR20030023153A (ko) * 2001-09-12 2003-03-19 주식회사 페로엔텍 수용액중 상온에서의 마그네타이트 제조 방법 및 상기마그네타이트를 이용한 산업폐수 처리 방법
KR20040110352A (ko) * 2003-06-18 2004-12-31 이동희 마그네타이트 분말과 부영양화 물질 및 유기물 흡착제가함유된 미세구형 과립상태인 수처리 미세과립 제조방법 및초고속 수처리공정
KR20050112692A (ko) * 2004-05-27 2005-12-01 한국과학기술원 압전소자 노즐에 의한 염화철 (ⅱ) 과 염화철(ⅲ)의미세액적 반응기에서의 단분산 산화철 나노입자의 제조방법
KR20090046869A (ko) * 2006-08-25 2009-05-11 고쿠리츠 다이가쿠 호우징 나고야 다이가쿠 자성 화학 흡수제, 그 제조방법, 그 재생방법, 및 폐액 처리방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791260C1 (ru) * 2022-05-04 2023-03-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Способ очистки промывных сточных вод от шестивалентного хрома

Also Published As

Publication number Publication date
AU2011369593A1 (en) 2013-05-02
KR101330997B1 (ko) 2013-11-20
KR20120131921A (ko) 2012-12-05
US9174196B2 (en) 2015-11-03
JP2013540093A (ja) 2013-10-31
AU2011369593B2 (en) 2014-09-25
JP5674952B2 (ja) 2015-02-25
US20130200001A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2012165695A1 (ko) 마그네타이트와 버네사이트의 입단 형태의 혼합물, 그 합성방법 및 그 혼합물을 이용한 수처리방법
Hu et al. Comparative study of various magnetic nanoparticles for Cr (VI) removal
Karanac et al. Efficient multistep arsenate removal onto magnetite modified fly ash
Zeng et al. High adsorption capacity and super selectivity for Pb (Ⅱ) by a novel adsorbent: Nano humboldtine/almandine composite prepared from natural almandine
Guan et al. A magnetically-separable Fe 3 O 4 nanoparticle surface grafted with polyacrylic acid for chromium (III) removal from tannery effluents
JP2005137973A (ja) 磁性吸着剤およびその製造方法並びに水処理方法
JP2008284520A (ja) 担持触媒型磁性吸着剤および過酸化物含有廃水の処理方法
Li et al. FeOOH and nZVI combined with superconducting high gradient magnetic separation for the remediation of high-arsenic metallurgical wastewater
Guan et al. Remediation of chromium (III)-contaminated tannery effluents by using gallic acid-conjugated magnetite nanoparticles
Zhu et al. Green synthesis of magnetic sodalite sphere by using groundwater treatment sludge for tetracycline adsorption
Wang et al. Highly efficient As (V)/Sb (V) removal by magnetic sludge composite: synthesis, characterization, equilibrium, and mechanism studies
Zhu et al. Preparation and application synthesis of magnetic nanocomposite using waste toner for the removal of Cr (VI)
KR20130095394A (ko) 폐수의 6가 크롬을 제거하기 위한 수처리제 및 수처리 방법
JP2005028281A (ja) 複合吸着剤及びそれを用いた排水の処理方法
中平敦 et al. Synthesis of magnetic activated carbons for removal of environmental endocrine disrupter using magnetic vector
US20240038424A1 (en) Preparation and application for a thiol-functionalized magnetic oxygenous carbon nitride nanosheet
CN109046292A (zh) 具有层级结构的有机无机杂化吸附剂及其制备方法和应用
JP4015520B2 (ja) 磁性吸着剤およびその製造方法並びに水処理方法
Uygun et al. Magnetic sepiolite/iron (III) oxide composite for the adsorption of lead (II) ions from aqueous solutions
Hu et al. Mechanochemical preparation of mineral based adsorbent and its effective purification ability for wastewater
Zhang et al. Highly effective lead ion adsorption by manganese-dioxide-supported core-shell structured magnetite
Du et al. Efficient removal of arsenic from wastewater using aminated Fe-BTC-based Metal-Organic frameworks
CN111547777B (zh) 一种四氧化三铁/高岭土纳米复合材料去除污酸中砷的方法
Chang et al. Outperformance of nano-MgO2-coated sediment in Mn (Ⅱ) capture through adsorption and oxidation relative to VMT/MMT-based nanocomposites
Qiu et al. Ternary metal composite membrane FCMNCM enhances the separation of As (Ⅲ) in water through the multifunctional cooperation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13878299

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011369593

Country of ref document: AU

Date of ref document: 20110707

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866599

Country of ref document: EP

Kind code of ref document: A1