WO2012165461A1 - 路面融雪用排気管構造、融雪用路面材および路面融雪システム - Google Patents

路面融雪用排気管構造、融雪用路面材および路面融雪システム Download PDF

Info

Publication number
WO2012165461A1
WO2012165461A1 PCT/JP2012/063883 JP2012063883W WO2012165461A1 WO 2012165461 A1 WO2012165461 A1 WO 2012165461A1 JP 2012063883 W JP2012063883 W JP 2012063883W WO 2012165461 A1 WO2012165461 A1 WO 2012165461A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
road surface
snow
snow melting
melting
Prior art date
Application number
PCT/JP2012/063883
Other languages
English (en)
French (fr)
Inventor
高野 義昭
克行 大内
和彦 富田
繁樹 平野
Original Assignee
株式会社ホクスイ設計コンサル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホクスイ設計コンサル filed Critical 株式会社ホクスイ設計コンサル
Priority to CN201280038188.8A priority Critical patent/CN103946451B/zh
Publication of WO2012165461A1 publication Critical patent/WO2012165461A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof

Definitions

  • the present invention relates to a road surface melting exhaust pipe structure, a snow melting road surface material, and a road surface snow melting system that melts snow by discharging air for melting snow under the road surface to be melted to warm the road surface.
  • a hot air pipe including a fan for blowing air which forms a convection space by shielding both ends of a cylindrical structure forming an opening around it with a retaining plate, and A hot and cold pipe connected via a header pipe and a cold and hot pipe provided with an exhaust fan are inserted into the convection space in the cylindrical structure, and the outer periphery of the cylindrical structure is covered with granular stone
  • Patent Document 1 waste heat can be used as snow melting air, and the snow melting device has a high economic effect without requiring a running cost.
  • Patent Document 2 A ground surface freezing and snow accumulation preventing method for preventing snow accumulation has been proposed (Patent Document 2). According to the description of Patent Document 2, not only can the ground surface be prevented from freezing uniformly and reliably, but also snow accumulation can be prevented.
  • Patent Document 3 proposes a snow melting system and an anti-freezing system for a paved road surface in which piping for injecting gas to the lower part of the drainage pavement is provided at an appropriate interval and gas is ejected to the paved road surface.
  • the medium is air and can be obtained anywhere on the ground, and the facility cost is reduced only by the cost of piping for air supply and jetting and the cost of the compressor. Combined with drainage pavement in regions where the number of freezing and snow collection is low, it is said that a high investment effect can be expected.
  • Patent Document 1 the amount of air discharged from the opening is close to the vicinity of the opening end of the heating pipe that blows air to the cylindrical structure and to the vicinity of the bottom plate of the cylindrical structure. There is a problem that a large difference occurs. For this reason, the road surface to be melted cannot be uniformly heated, resulting in uneven snow melting or low snow melting efficiency.
  • Patent Document 2 is also unilaterally supplied from the blower to the exhaust pipe, and in particular, no consideration is given to uneven snow melting, and more air is discharged from the exhaust hole on the back side of the exhaust pipe. Exhaust is easily melted and uneven snow melting occurs.
  • Patent Document 3 neither describes nor suggests an arrangement configuration in which snow melting unevenness is taken into consideration for the piping provided with the ejection holes.
  • the present invention has been made to solve such problems, and it is possible to suppress uneven melting of snow by discharging the air for melting snow under the road surface to be melted more uniformly than before, and the construction It is an object of the present invention to provide a road surface snow melting exhaust pipe structure, a snow melting road surface material, and a road surface snow melting system capable of reducing the construction time and the construction cost.
  • An exhaust pipe structure for road surface snow melting is an exhaust pipe structure for road surface snow melting which is buried under a road surface to be melted and discharges snow melting air to the road surface, and is below the road surface to be melted.
  • a plurality of perforated pipes formed with a plurality of air ejection holes laid in a predetermined range, a pair of vent connecting pipes that connect both end portions of the perforated pipes so as to allow ventilation, and a connection for these vents
  • An air supply pipe having an air supply port for supplying air and connecting one end of the pipe in a breathable manner, and the other end of the pair of ventilation connecting pipes is in a closed state or an end. The air pipe is connected so as to allow ventilation.
  • a plurality of the perforated pipes are arranged substantially in parallel at a predetermined interval, and the perforated pipes are substantially U-shaped by a pair of the connecting pipe for ventilation and the air supply pipe. It may be configured to be ventilated by surrounding it in a letter shape.
  • a plurality of the perforated pipes are arranged in parallel at a predetermined interval in parallel, and the perforated pipes are paired with the pair of ventilation connecting pipes, the air supply pipes, and the end portions.
  • each of the air ejection holes is inclined at a predetermined angle to the right at every middle between the adjacent top holes and a plurality of top holes drilled at a predetermined interval at the top.
  • Each of the perforated tubes is adjacent to each other.
  • the snow melting air sprayed from the right hole of the perforated tube and the snow melting air sprayed from the left hole may be buried at a depth at which the air can intersect near the road surface. .
  • the road material for snow melting incorporates the exhaust pipe structure for melting snow on the road surface, and an air circulation portion capable of circulating the air ejected from the air ejection holes above the exhaust pipe structure for snow melting on the road surface. Is formed.
  • the road surface snow melting system includes the road surface snow melting exhaust pipe structure, air supply means connected to an air supply port of the road surface snow melting exhaust pipe structure and supplying the snow melting air, and the road surface. It has an air circulation part which is laid above the exhaust pipe structure for melting snow and can circulate upwardly the air ejected from the air ejection hole, and a road surface laid on the air circulation part.
  • the present invention it is possible to suppress snow melting unevenness by discharging the air for melting snow below the road surface to be melted more uniformly than before, to facilitate uneven construction, and to reduce construction time and construction cost. it can.
  • FIG. 4 is a longitudinal sectional view showing a 4A-4A section in FIG. 3.
  • FIG. 5 is a longitudinal sectional view showing a 5A-5A section in FIG. 3;
  • 6 is a perspective view showing an analysis model used in a simulation of a comparative example in Example 1.
  • FIG. 9 is a contour diagram showing the pressure distribution in the pipe obtained by fluid analysis when the perforated pipe is surrounded in a substantially U shape so as to allow ventilation, using the model of the exhaust pipe structure for road surface snow melting of the present invention shown in FIG. is there.
  • FIG. 10 is a contour map showing the pressure distribution in the pipe obtained by fluid analysis when the perforated pipe is surrounded in a substantially loop shape so as to allow ventilation, using the model of the exhaust pipe structure for melting snow on the road surface of the present invention shown in FIG. 9. .
  • the air jetted from each air jet hole obtained by fluid analysis when the perforated pipe is surrounded in a substantially loop shape so as to be ventilated It is a three-dimensional graph which shows quantity.
  • FIG. It is the digital photograph image which image
  • FIG. It is a top view which shows the structure of the road surface snow melting system in Example 3.
  • FIG. It is a line graph which shows the external temperature of the experiment day in Example 3, the amount of snowfall, and precipitation. It is the digital photograph image which image
  • FIG. It is a schematic plan view which shows what has the several perforated pipe from which length differs as other embodiment of the exhaust pipe structure for road surface snow melting concerning this invention.
  • FIG. 1 is a schematic cross-sectional view showing a road surface snow melting system 1 of the present embodiment.
  • FIG. 2 is a plan view showing an exhaust pipe structure 2 for road surface snow melting according to this embodiment.
  • the road surface snow melting system 1 mainly includes a road surface snow melting exhaust pipe structure 2, air supply means 3 for supplying snow melting air to the road surface snow melting exhaust pipe structure 2,
  • the snow melting road surface material 4 has a built-in road surface snow melting exhaust pipe structure 2 and has an air circulation portion 41, and a road surface 5 laid on the snow melting road surface material 4.
  • the road surface snow melting exhaust pipe structure 2 is buried under the road surface to be melted and discharges snow melting air. As shown in FIG. 2, a plurality of air ejection holes 6 are formed. A perforated pipe 7, a pair of vent connecting pipes 8, 8 that connect both ends of the perforated pipe 7, and an air supply pipe 9 that connects one end of the vent connecting pipes 8, 8 are provided. is doing.
  • the perforated tube 7 is a tube in which a number of air ejection holes 6 for discharging snow melting air are formed over the entire upper surface in the longitudinal direction.
  • the material is not particularly limited, such as resin or metal, but in the present embodiment, it is constituted by a vinyl chloride pipe.
  • a plurality of perforated pipes 7, 7... Formed in the same length are arranged substantially in parallel at a predetermined interval. It is arranged and configured.
  • the air ejection holes 6 are arranged so that air is uniformly ejected to the road surface 5 when snow melting air is supplied into the perforated pipe 7.
  • the top hole 61, the right hole 62, and the left hole 63 are formed.
  • the top hole 61 is a hole drilled at a predetermined interval on the top of the perforated tube 7 and ejects the supplied air in a substantially vertical direction.
  • the right hole 62 is a hole drilled at a position inclined at a predetermined angle to the right at each intermediate position between the adjacent top holes 61, and the supplied air is ejected in the upper right direction.
  • the left hole 63 is a hole drilled at a position on the left side as a target with respect to the right hole 62 at each intermediate position of the adjacent top holes 61, and the supplied air is ejected in the upper left direction.
  • the top hole 61, the right hole 62, and the left hole 63 do not need to be strictly oriented, but intentionally The air can be exhausted in a wider range, and air can be effectively supplied also to the road surface 5 in the gap with the other perforated pipe 7 adjacent to You can melt snow.
  • the ventilation connecting pipe 8 is a pipe for supplying snow melting air to the perforated pipes 7, 7..., And connects the adjacent perforated pipes 7 so as to allow ventilation. As shown in FIG. 2, the ventilation connecting pipes 8 are used as a pair and are connected to both end portions of the perforated pipes 7, 7. In the present embodiment, each of the perforated pipes 7 is formed by a pair of ventilation connecting pipes 8 and 8 formed in a straight line with respect to the plurality of perforated pipes 7 arranged in parallel as described above. , 7... Are connected from both ends.
  • an air supply pipe 9 is connected to one end of each ventilation connecting pipe 8, 8, and the other end 81 is closed or connected to the end ventilation pipe 10 separately.
  • gas_flowing is demonstrated.
  • the air supply pipe 9 is a pipe provided with an air supply port 11 for supplying air while connecting one end of the connection pipe 8 for ventilation so that it can flow.
  • the ventilation connection pipe 8 and the air supply pipe 9 are connected by an L-shaped joint 12.
  • the connection between the ventilation connection pipe 8 and the air supply pipe 9 is not limited to the connection by the L-shaped joint 12, and may be connected by welding or adhesion.
  • the air supply pipe 9 may be integrally formed.
  • the air supply port 11 is an intake port for taking in the snow melting air into the road surface snow melting exhaust pipe structure 2, and is connected to the air supply means 3 as shown in FIGS.
  • the air supply pipe 10 is provided substantially at the center or in the vicinity thereof so that the snow melting air is uniformly supplied to each of the pair of ventilation connection pipes 8 and 8.
  • each of the perforated pipes 7, 7... Is surrounded by a pair of ventilating connection pipes 8, 8 and an air supply pipe 9 in a substantially U shape.
  • each ventilation connecting pipe 8, 8 is separately connected by an end ventilation pipe 10 so as to allow ventilation.
  • each of the perforated tubes 7, 7... Is surrounded by a pair of ventilating connection tubes 8, 8, an air supply tube 9 and an end vent tube 10 in a substantially loop shape.
  • the road surface snow melting exhaust pipe structure 2 is built in the snow melting road surface material 4 as shown in FIG.
  • the snowmelt road surface material 4 in this embodiment is a road surface material formed by solidifying a granular material with concrete or the like.
  • An air circulation portion 41 is formed above the built-in road surface snow melting exhaust pipe structure 2 for circulating the snow melting air ejected from the road surface snow melting exhaust pipe structure 2.
  • the air circulation part 41 of this embodiment is formed by the space
  • the air circulation part 41 is not particularly limited as long as it is configured to distribute the air discharged from the air ejection holes 6 of the perforated pipe 7 onto the road surface 5, and for example, snow melting previously configured in a block shape
  • the buried position of the road surface snow melting exhaust pipe structure 2 is desirably a position where the snow melting air that has passed through the air circulation portion 41 contacts the entire road surface 5 as much as possible.
  • the snow melting air discharged from the right hole 62 of the adjacent perforated tubes 7, 7 and the snow melting air discharged from the left hole 63 intersect in the vicinity of the road surface 5. Desirable depth is desirable.
  • the air supply means 3 is connected to the air supply port 11 for supplying air for melting snow, and has a pump for supplying air.
  • the pump used as the air supply means 3 is not particularly limited, and can be appropriately selected in consideration of the air amount, the installation location, and the like.
  • the air for melting snow needs to have a temperature of 0 ° C. or higher in order to become a heat source for melting snow, but the supply source is not particularly limited.
  • the road surface 5 is not particularly limited as long as the road surface 5 is constructed on the snow melting road surface material 4 and can melt snow by the action of air supplied below the road surface 5.
  • a structure in which the snow is melted by warming the road surface 5 by accumulation may be used, or a structure in which air is passed through the road surface 5 to warm the road surface 5 and discharged onto the road surface 5 and blown directly onto the snow to melt the snow may be used.
  • asphalt, concrete, permeable concrete, wood chip, lawn, gravel, sand and the like can be mentioned.
  • the road surface in this invention is a wide concept including not only the road for driving
  • the air supply means 3 sucks snow for melting snow having a temperature of 0 ° C. or higher from a supply source, and supplies the air from the air supply port 11 into the exhaust pipe structure 2 for road surface snow melting.
  • Supplied air flows to the left and right through the air supply pipe 9 and is supplied to the pair of ventilation connection pipes 8 and 8, respectively.
  • the air supply port 11 is provided at a substantially central position of the air supply pipe 9, the distances to the ventilation connection pipes 8, 8 are substantially equal, and the same amount of air is supplied.
  • each ventilation connecting pipe 8, 8 is closed or provided with the end vent tube 10, so that it can be ventilated by the perforated tube 7 or the end vent tube 10 closest to the other end portion 81. It becomes. Therefore, it is possible to avoid that the air sent to each of the ventilating connection pipes 8, 8 is biased toward the other end 81 side.
  • the plurality of perforated pipes 7, 7... are supplied with air from a pipe surrounded by a substantially U-shape or a substantially loop shape that can be ventilated, so that each perforated pipe 7, 7,. It is configured so that there is no significant difference in the amount of air supplied to
  • each ventilation connection pipe 8, 8 is supplied from both ends of each perforated pipe 7, 7..., And from each air ejection hole 6, 6. Erupted toward.
  • the air pressure in the perforated tube 7 is easily kept substantially constant, and the amount of air ejected from each of the air ejection holes 6, 6. Can be approached.
  • the amount of air ejected from each air ejection hole 6, 6. Is unlikely to occur.
  • each of the perforated tubes 7, 7... Is snow melting air injected from the right hole 62 of the adjacent perforated tube 7 and snow melting air injected from the left hole 63.
  • the air circulation part 41 is branched in a mesh shape above the road surface snow melting exhaust pipe structure 2, the air ejected from the air ejection holes 6 is branched, and the air flow is maintained while maintaining an appropriate amount of air. I am letting.
  • the air circulation portion 41 is formed in advance as the snow melting road surface material 4, it is easy to adjust the depth of embedding the road surface snow melting exhaust pipe structure 2 at the construction site, and the construction is easy. Can do.
  • the road surface is warmed by the heat of the air exhausted to the road surface 5 to melt the snow accumulated on the road surface 5. Further, by making it possible to exhaust the snow melting air on the road surface 5, the snow melting air can be directly contacted with the snow and melted more effectively.
  • the snow melting road surface material 4, and the road surface snow melting system 1 of the present embodiment as described above, the following effects can be obtained.
  • Air can be supplied to the plurality of perforated tubes 7, 7.
  • Unevenness in the amount of air supplied to the road surface 5 can be suppressed. 4).
  • Unevenness of snow melting on the road surface 5 can be reduced. 5.
  • the road surface material 4 for melting snow in a block shape or the like in advance, it can be constructed easily and quickly, and the construction time can be shortened and the construction cost can be reduced.
  • Example 1 when a fluid analysis program is used and a plurality of perforated pipes 7, 7... Related to the road surface snow melting exhaust pipe structure 2 are enclosed in a substantially U-shape or a substantially loop shape to allow ventilation.
  • the fluid analysis was performed.
  • the thermal fluid analysis programs used in Example 1 are commercially available SolidWorks and COSMOSFloWorks.
  • the model shown in FIG. 8 is a comparative example in which only one end portion of a plurality of perforated tubes 7, 7... Is connected by a ventilation connecting tube 8 and the other end portion is closed. Further, one end of the ventilation connecting pipe 8 was used as the air supply port 11 (left end in FIG. 8), and the other end 81 was closed (right end in FIG. 8).
  • the model shown in FIG. 9 includes a plurality of perforated pipes 7 as an example of a road surface snow melting exhaust pipe structure 2 according to the present invention, an air supply pipe 9, a pair of ventilation connecting pipes 8 and 8, and an end.
  • An air supply port 11 is provided at a substantially central portion of the air supply pipe 9.
  • a simulation of a configuration in which a plurality of perforated tubes 7, 7... Are enclosed in a substantially U shape so as to allow ventilation is performed using a model shown in FIG. This was performed by giving a boundary condition for closing the end portion of the end portion vent pipe 10 side.
  • the length of the perforated tube 7 is 2300 mm.
  • the number of perforated tubes 7 is 15, and they are arranged in parallel at intervals of 300 mm.
  • symbol of A to O was attached
  • the length of the communicating pipe 8 for ventilation is 4750 mm.
  • the diameter of the air supply port 11 is 107 mm.
  • the air ejection hole 6 of each perforated pipe 7 is composed only of the top hole 61 and has a hole diameter of 10.5 mm.
  • the pitch between the holes is 100 mm, and 21 holes are formed per one perforated tube.
  • Each air ejection hole 6 is assigned a reference number 1 to 21 in order.
  • the fluid analysis was performed by COSMOSFloWorks, using the above model, with the air supply amount at the air supply port 11 being 0.0425 m 3 / s.
  • the analysis results are shown below.
  • FIG. 10 shows, by contour lines, the pressure distribution in the pipe subjected to fluid analysis using the model of the comparative example shown in FIG.
  • FIG. 11 shows a three-dimensional graph of the flow rate of air ejected from the air ejection holes 6, 6.
  • the pressure in the ventilation connection pipe 8 is applied to the other end portion 81 side (right side of FIG. 10) of the ventilation connection pipe 8 that is closed from the air supply port (left side of FIG. 10). It tends to be higher as it goes on.
  • each perforated pipe 7,7 ... is the other end part side of a perforated pipe made into a closed state rather than the side (lower side of FIG. 10) connected to the connection pipe 8 for ventilation (figure 10).
  • connection pipe 8 for ventilation figure 10
  • the pressure is lower near the air supply port 11 and closer to the ventilation connecting pipe 8, and the pressure farther from the air supply port 11 and farther than the ventilation connecting pipe 8 is higher. I can understand that it becomes a trend.
  • FIG. 12 shows the pressure distribution in the pipe with contour lines
  • FIG. 13 shows the flow rate of air ejected from the air ejection holes 6, 6... As a three-dimensional graph.
  • the pressure in each of the ventilation connection pipes 8, 8 tends to become higher as it goes to the other end 81 side of the ventilation connection pipe 8 that is in a closed state than the air supply pipe 9.
  • the difference is small compared to the comparative example.
  • the pressure in each perforated pipe 7,7 ... has almost no difference even if it compares with both ends and a center part.
  • the pressure difference between the pair of ventilation connection pipes 8 and 8 shows almost the same value depending on the distance from the air supply pipe 9, and the upper and lower ventilation connection pipes 8 and 8 in FIG. There was no difference in trends due to differences.
  • the flow rate of the air ejected from the air ejection hole 6 is more closed than the perforated pipe 7 on the air supply pipe 9 side in the same manner as the pressure trend in the vent connection pipe 8.
  • the perforated tube 7 on the other end 81 side of the vent connecting tube 8 showed a slightly larger amount of air.
  • the average flow rate ejected from the plurality of air ejection holes 6, 6... Of the A-numberd perforated pipe 7 closest to the air supply pipe 9 side is about 10 ⁇ 10 ⁇ 5 m 3 / s.
  • the difference in the air amount was about 4 times at the maximum, whereas the difference in the air amount when the perforated tube 7 was enclosed in a substantially U shape was about 1.5 times at the maximum. It was suppressed to about twice.
  • FIG. 14 and 15 show analysis results when a plurality of perforated pipes 7, 7,... Are enclosed in a substantially loop shape so as to allow ventilation, using the model shown in FIG. 3 shows a three-dimensional graph of the flow rate of air ejected from the contour lines and the air ejection holes 6, 6.
  • the flow rate of the air ejected from each air ejection hole 6, 6... Is substantially U-shaped so that the plurality of perforated tubes 7, 7.
  • the average flow rate is about 10 m 3 / s ejected from the air ejection holes 6, 6... Of the No. A perforated pipe 7 closest to the air supply pipe 9 side.
  • the average flow rate ejected from each of the air ejection holes 6, 6... Of the P-th perforated pipe 7 closest to the end ventilation pipe 11 was about 15 m 3 / s. Further, there was almost no difference in the amount of air between the air ejection holes 6, 6.
  • Example 2 a fluid analysis program was used to simulate the number of air ejection holes 6 formed in the perforated pipe 7 and the amount of air ejection.
  • the thermal fluid analysis program used is the same SolidWorks and COSMOSFloWorks as in Example 1.
  • the air ejection holes 6 are constituted only by the top holes 61.
  • the air ejection hole 6 is constituted by a top hole 61, a right hole 62, and a left hole 63 in the road surface snow melting exhaust pipe structure 2.
  • the length of the perforated tube 7 is 2300 mm.
  • the number of perforated tubes 7 is two, and they are arranged in parallel at intervals of 300 mm.
  • the perforated pipes 7 and 7 are respectively given the symbols A and B in order from the air supply pipe 9 side.
  • the length of the ventilating communication pipe 8 is 900 mm, and the diameter of the air supply port 11 is 107 mm.
  • the air ejection hole 6 of the perforated tube 7 is different for each model.
  • the hole diameter is 10.5 mm.
  • the pitch between the holes is 100 mm, and 21 holes are perforated in each of the perforated tubes 7 and 7.
  • the total area of the perforated tubes 7 and the air ejection holes 6, 6... Is 1818 mm 2 .
  • Each air ejection hole 6 is assigned a reference number 1 to 21 in order.
  • the hole diameters are all 6 mm.
  • the pitch between the top holes is 100 mm, and 21 holes are perforated in each of the perforated tubes 7 and 7. Each top hole was sequentially numbered 1 to 21.
  • the right hole 62 is drilled at a position inclined at an angle of 45 degrees to the right in the middle of the adjacent top holes 61.
  • the pitch between the right holes 62 is 100 mm, and 22 holes are formed in each of the perforated tubes 7 and 7.
  • the left holes 63 are perforated at positions on the left side that are the targets of the right holes 62, and 22 holes are perforated in each perforated tube 7. Therefore, the total area of each air ejection hole 6, 6... Per holed tube 7 is 1838 mm 2 , and each air ejection hole 6 in the model in which the air ejection hole shown in FIG. .., 6...
  • the fluid analysis was performed by COSMOSFloWorks, using the above model, with the air supply amount at the air supply port 11 being 0.00566 m 3 / s.
  • the analysis results are shown below.
  • FIG. 18 is a three-dimensional graph showing the flow rate of air ejected from the air ejection holes 6, 6...
  • the amount of air ejected from the right hole 62 is slightly larger, but there is no significant difference.
  • the average amount of air in the top hole 61 and the left hole 63 is compared, the amount of air ejected from the left hole 63 is slightly larger, but there is no significant difference.
  • the average amount of air in the right hole 62 and the left hole 63 was compared, it was almost the same. Further, as shown in FIG. 19, the same tendency was observed in the No. B perforated pipe 7.
  • Example 3 a road surface snow melting system 1 using the road surface snow melting exhaust pipe structure 2 according to the present invention as shown in FIG. 20 is prepared, and actually buried under the road surface 5 to melt the snow on the road surface snow melting system 1. A demonstration experiment of the effect was conducted.
  • the road surface snow melting exhaust pipe structure 2 includes a plurality of perforated pipes 7, 7,... As an air supply pipe 9, a pair of ventilation connecting pipes 8, 8, and ends. It is made possible to ventilate by enclosing it in a substantially loop shape by the partial vent pipe 10. Then, the snow melting target range is divided into four blocks, and a substantially loop-shaped road surface snow melting exhaust pipe structure 2 is arranged for each block.
  • the perforated tube 7 in Example 3 is formed of a vinyl chloride tube having an inner diameter of about 50 mm and a length of 2300 mm.
  • the air ejection hole 6 includes a top hole 61, a right hole 62, and a left hole 63.
  • the diameters of the top hole 61, the right hole 62, and the left hole 63 are about 5 mm.
  • the pitch between the top holes is 100 mm, and 21 holes are perforated per per perforated tube.
  • the right hole 62 and the left hole 63 are drilled at a position inclined at an angle of about 60 degrees to the left and right in the middle of the adjacent top holes 61.
  • the air supply pipe 9, the pair of ventilation connecting pipes 8, 8 and the end ventilation pipe 10 are formed of a vinyl chloride pipe having an inner diameter of about 100 mm.
  • the air supply means 3 is connected to the air supply port 11 of the air supply pipe 9.
  • the air supply means 3 is connected to a manhole M through which sewage flows, and uses air warmed by the sewage as air for melting snow.
  • the temperature of the air in the manhole M is approximately 20 ° C.
  • the air circulation part 41 was formed by laying gravel around the exhaust pipe structure 2 for melting snow on the road surface. Further, a water-permeable concrete is laid as the road surface 5 on the air circulation portion 41 so that snow melting air is jetted onto the road surface 5.
  • the experiment was performed by always supplying the air in the manhole M to the exhaust pipe structure 2 for melting snow on the road surface.
  • FIG. 22 is a graph showing the outside temperature, snowfall, and precipitation on the experiment day. As this graph shows, on the experimental day, snow fell from 19:00 to 23:00.
  • FIG. 23 is a digital photograph image of the road surface taken on the experiment day.
  • 19:03 to 1:33 of the next day are arranged as a time series every 30 minutes.
  • FIG. 23 (a) As shown in FIG. 23 (a), at 19:03 when the snow started to fall, no snow cover could be confirmed on the road surface 5. In FIG. 23 (b) after 30 minutes, snow has begun to accumulate on the road surface 5.
  • FIG. 23 (b) to FIG. 23 (i) correspond to this time zone, and during this time, snow on the road surface 5 can be confirmed. During this time, the amount of snowfall was about 8 cm, and although snow melting was performed, it was not possible to melt all of the snow and was piled up.
  • the snowfall of about 8 cm was successfully melted in about 2 hours 30 minutes. It has the same ability to melt snow as a conventional road heating system using heating wires.
  • the energy required for the road surface snow melting system 1 according to the present invention is only the energy for driving the air supply means 3, which is extremely power saving as compared with a conventional road heating system using a heating wire. It can be said that the system is excellent in energy efficiency.
  • the road surface snow melting exhaust pipe structure 2, the snow melting road surface material 4, and the road surface snow melting system 1 according to the present invention are not limited to the embodiment described above, and can be changed as appropriate.
  • the road surface 5 to be melted may be divided into a plurality of blocks, and a road surface snow melting exhaust pipe structure 2 may be provided for each block. Further, the plurality of perforated tubes 7, 7... May have different lengths as shown in FIG. Although not shown, the road surface snow melting exhaust pipe structure 2 may be stacked in a plurality of stages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

【課題】 融雪対象となる路面下に融雪用の空気を従来よりもムラなく排出することで融雪ムラを抑制できるとともに、施工を容易にし、かつ施工時間や施工費用を低減することができる路面融雪用排気管構造、融雪用路面材および路面融雪システムを提供する。 【解決手段】 融雪対象となる路面5下の所定範囲に敷設される複数の空気噴出孔6が形成された複数本の有孔管7,7・・・と、これら有孔管7,7・・・の両端部をそれぞれ通気可能に連結する一対の通気用連結管8,8と、これら通気用連結管8,8の一端部を通気可能に連結するとともに空気を供給する空気供給口11を備えた空気供給管9と、を有しているとともに、一対の通気用連結管8,8の他端部81を閉鎖状態または端部通気管10により通気可能に連結してなる。

Description

路面融雪用排気管構造、融雪用路面材および路面融雪システム
 本発明は、融雪対象となる路面の下に融雪用の空気を排出して路面を暖めることにより融雪を行う路面融雪用排気管構造、融雪用路面材および路面融雪システムに関するものである。
 従来、融雪対象となる路面の下に廃熱等を利用した融雪用の空気を排出し、その空気の熱で路面を暖めることにより融雪を行う路面融雪システム等に関する発明が種々提案されている。
 例えば、特開2005-36622号公報では、周囲に開口部を形成する筒状構造体の両端面を土止板で遮蔽して対流空間部を形成し、送風用ファンを具備する温風パイプとヘッダー管を介して接続する給温パイプと、排気用ファンを具備する冷温パイプを前記筒状構造体内の対流空間部に挿入して設け、前記筒状構造体の外周囲を粒状石で覆ってなる温風融雪装置が提案されている(特許文献1)。この特許文献1の記載によれば、融雪用の空気として廃熱を利用することができ、極めてランニングコストの要しない経済効果が高い融雪装置であるとされている。
 また、特開平1-247602号公報では、空気を地中に埋設した多数の排気孔を有する排気管に送風し、排気孔から空気を地表面に向けて排気させることにより、地表面の凍結および積雪を防止する地表面凍結及び積雪防止方法が提案されている(特許文献2)。この特許文献2の記載によれば、極めて簡易でかつ確実に地表面の凍結を一様に防止することができるのみならず、積雪をも防止することができるとされている。
 さらに、特開2003-239214号公報では、排水性舗装の下部に気体を噴出するための配管が適当な間隔に設けて舗装路面に気体を噴出する舗装路面の融雪システムおよび凍結防止システムが提案されている(特許文献3)。この特許文献3の記載によれば、媒体が空気であり、地上であれば何処でも入手でき、施設費用は送気・噴出のための配管費用とコンプレッサーの費用のみで安価となり、年間の路面の凍結・集雪回数が少ない地方での排水性舗装との併用は高い投資効果が期待できるとされている。
特開2005-36622号公報 特開平1-247602号公報 特開2003-239214号公報
 ところで、路面の融雪にあたり、実用上の重要な要望として、単に狭い範囲を融かすのではなく、ある一定以上の広い範囲をできるだけムラなく融雪することが求められている。しかしながら、上記特許文献1から特許文献3に記載された各発明においては、いずれも路面の融雪ムラを解決することに着目しておらず、記載も示唆もない。たとえば特許文献1では、筒状構造体に空気を送風する給温パイプの開口端部の近傍と、筒状構造体の奥側の土止板近傍とでは、開口部から排出される空気量に大きな差が生じるという問題がある。そのため、融雪対象となる路面を均一に暖めることができず、融雪ムラが発生したり、融雪効率が低くなる。
 また、特許文献1に記載された発明においては、対流空間部を形成するために路面下を深く掘る必要があり、施工が難しくなるとともに、施工時間や施工費用の増加を招くという問題もある。
 また、特許文献2に記載された発明も送風機から一方的に排気管へ供給しているところ、特に融雪ムラについては考慮されておらず、排気管の奥側の排気孔からより多くの空気が排気されて融けやすくなり、融雪ムラが生じることになる。
 さらに、特許文献3には、噴出孔を備えた配管について融雪ムラが配慮された配置構成等は記載も示唆もない。
 本発明は、このような問題点を解決するためになされたものであって、融雪対象となる路面下に融雪用の空気を従来よりもムラなく排出することで融雪ムラを抑制できるとともに、施工を容易にし、かつ施工時間や施工費用を低減することができる路面融雪用排気管構造、融雪用路面材および路面融雪システムを提供することを目的としている。
 本発明に係る路面融雪用排気管構造は、融雪対象となる路面の下に埋設されてその路面へ融雪用の空気を排出する路面融雪用排気管構造であって、前記融雪対象となる路面下の所定範囲に敷設される複数の空気噴出孔が形成された複数本の有孔管と、これら有孔管の両端部をそれぞれ通気可能に連結する一対の通気用連結管と、これら通気用連結管の一端部を通気可能に連結するとともに空気を供給する空気供給口を備えた空気供給管と、を有しているとともに、前記一対の通気用連結管の他端部を閉鎖状態または端部通気管により通気可能に連結してなる。
 また、本発明の一態様として、複数本の前記有孔管を所定の間隔で略平行に並列配置するとともに、これらの有孔管を一対の前記通気用連結管および前記空気供給管によって略U字状に囲んで通気可能に構成してもよい。
 さらに、本発明の一態様として、複数本の前記有孔管を所定の間隔で略平行に並列配置し、これらの有孔管を一対の前記通気用連結管、前記空気供給管および前記端部通気管によって略ループ状に囲んで通気可能に構成してもよい。
 さらにまた、本発明の一態様として、前記各空気噴出孔は、頂部において所定の間隔毎に穿孔された複数の頂孔と、隣り合う前記頂孔の中間毎に右側へ所定の角度傾斜させた位置に穿孔される右側孔と、隣り合う前記頂孔の中間毎に前記右側孔と対称となる左側の位置に穿孔される左側孔とから構成されており、前記各有孔管は、隣り合う前記有孔管の右側孔から噴射される前記融雪用の空気と前記左側孔から噴射される前記融雪用の空気とが前記路面の近傍で交差しうる深さの位置において埋設されていてもよい。
 また、本発明に係る融雪用路面材は、前記路面融雪用排気管構造を内蔵し、この路面融雪用排気管構造の上方に前記空気噴出孔から噴出される空気を流通可能な空気流通部が形成されている。
 また、本発明に係る路面融雪システムは、前記路面融雪用排気管構造と、この路面融雪用排気管構造の空気供給口に連結されて前記融雪用の空気を供給する空気供給手段と、前記路面融雪用排気管構造の上方に敷設されて前記空気噴出孔から噴出される空気を上方に流通可能な空気流通部と、この空気流通部上に敷設される路面とを有する。
 本発明によれば、融雪対象となる路面下に融雪用の空気を従来よりもムラなく排出することで融雪ムラを抑制できるとともに、施工を容易にし、かつ施工時間や施工費用を低減することができる。
本発明に係る路面融雪システムの一実施形態を示す断面模式図である。 本実施形態の路面融雪用排気管構造を示す概略平面図である。 本実施形態における有孔管を示す拡大平面図である。 図3における4A-4A断面を示す縦断面図である。 図3における5A-5A断面を示す縦断面図である。 本発明に係る路面融雪用排気管構造の他の実施形態を示す概略平面図である。 本実施形態における有孔管を敷設する深さを示す拡大断面図である。 実施例1における比較例のシミュレーションで使用した解析モデルを示す斜視図である。 実施例1における本発明の路面融雪用排気管構造のシミュレーションで使用した解析モデルを示す斜視図である。 図8に示す比較例のモデルを用いて流体解析により得られた管内圧力分布を示す等高線図である。 図8に示す比較例のモデルを用いて流体解析により得られた各空気噴出孔から噴射される空気量を示す三次元グラフである。 図9に示す本発明の路面融雪用排気管構造のモデルを用いて、有孔管が通気可能に略U字状に囲まれた場合の流体解析により得られた管内圧力分布を示す等高線図である。 図9に示す本発明の路面融雪用排気管構造のモデルを用いて、有孔管が通気可能に略U字状に囲まれた場合の流体解析により得られた各空気噴出孔から噴射される空気量を示す三次元グラフである。 図9に示す本発明の路面融雪用排気管構造のモデルを用いて、有孔管が通気可能に略ループ状に囲まれた場合の流体解析により得られた管内圧力分布を示す等高線図である。 図9に示す本発明の路面融雪用排気管構造のモデルを用いて、有孔管が通気可能に略ループ状に囲まれた場合の流体解析により得られた各空気噴出孔から噴射される空気量を示す三次元グラフである。 実施例2における空気噴出孔が頂孔のみにより構成される場合のシミュレーションで使用した解析モデルを示す斜視図である。 実施例2における空気噴出孔が頂孔、右側孔および左側孔より構成される場合のシミュレーションで使用した解析モデルを示す斜視図である。 図16および図17に示すモデルを用いて流体解析により得られたA側の有孔管の各空気噴出孔から噴射される空気量を示す三次元グラフである。 図16および図17に示すモデルを用いて流体解析により得られたB側の有孔管の各空気噴出孔から噴射される空気量を示す三次元グラフである。 実施例3において使用した路面融雪システムの路面融雪用排気管構造を撮影したデジタル写真画像である。 実施例3における路面融雪システムの構成を示す平面図である。 実施例3における実験日の外気温、降雪量および降水量を示す折れ線グラフである。 実施例3における実験日の19:03から1:33までの路面融雪システムの路面を撮影したデジタル写真画像である。 本発明に係る路面融雪用排気管構造の他の実施形態として長さの異なる複数本の有孔管を有したものを示す概略平面図である。
 以下、本発明に係る路面融雪用排気管構造、融雪用路面材およびこれらを用いた路面融雪システムの一実施形態について図面を用いて説明する。図1は、本実施形態の路面融雪システム1を示す断面模式図である。また、図2は、本実施形態の路面融雪用排気管構造2を示す平面図である。
 図1および図2に示すように、路面融雪システム1は、主として、路面融雪用排気管構造2と、この路面融雪用排気管構造2に融雪用の空気を供給する空気供給手段3と、前記路面融雪用排気管構造2を内蔵するとともに空気流通部41を有する融雪用路面材4と、この融雪用路面材4の上に敷設される路面5とから構成されている。以下、各構成について詳細に説明する。
 路面融雪用排気管構造2は、融雪対象となる路面の下に埋設されて融雪用の空気を排出するものであり、図2に示すように、複数の空気噴出孔6が形成された複数の有孔管7と、これら有孔管7の両端部を連結する一対の通気用連結管8,8と、これらの通気用連結管8,8の一端部を連結する空気供給管9とを有している。
 有孔管7は、融雪用の空気を排出する空気噴出孔6を長手方向の上面全体にわたって多数形成した管である。材質は樹脂や金属など、特に限定されないが、本実施形態では塩化ビニール管により構成されている。また、図2に示すように、本実施形態の路面融雪用排気管構造2では、同じ長さに形成された複数本の有孔管7,7・・・を所定の間隔で略平行に並列配置して構成されている。
 空気噴出孔6は、有孔管7内に融雪用の空気を供給した場合に路面5に対して空気が均等に噴出されるように配置されている。本実施形態では、図3から図5に示すように、頂孔61と、右側孔62と、左側孔63とからなる。
 頂孔61は、有孔管7の頂部に所定の間隔毎に穿孔された孔であり、供給された空気を略垂直方向に噴出するものである。右側孔62は、隣り合う頂孔61の各中間位置において、右側へ所定の角度に傾斜させた位置に穿孔された孔であり、供給された空気を右上方向に噴出するものである。また、左側孔63は、隣り合う頂孔61の各中間位置において、右側孔62と対象となる左側の位置に穿孔された孔であり、供給された空気を左上方向に噴出するものである。
 これらの空気噴出孔6から排出される空気は漏れ出る程度の勢いで排出されることも多いため、頂孔61、右側孔62および左側孔63を厳密に方向付けする必要はないが、意図的に各方向へ向けて噴出させることで、より広範囲に排気することができて、隣設する他の有孔管7との隙間上にある路面5に対しても効果的に空気を供給して融雪できるようになっている。
 通気用連結管8は、各有孔管7,7・・・に融雪用の空気を供給するための管であり、隣り合う有孔管7を通気可能に連結している。図2に示すように、前記通気用連結管8は一対で使用され、各有孔管7,7・・・の両端部に連結されている。本実施形態では、上述のように並列配置された複数本の有孔管7,7・・・に対して、直線状に形成された一対の通気用連結管8,8により各有孔管7,7・・・を両端部から狭持するようにして連結されている。
 また、各通気用連結管8,8の一端部には空気供給管9が連結されており、他端部81は閉鎖状態または端部通気管10が別途連結されている。以下に、空気供給管9および各通気用連結管8,8の他端部81の構成について説明する。
 空気供給管9は、通気用連結管8の一端部を流通可能に連結するとともに、空気を供給する空気供給口11を備えた管である。本実施形態では、図2に示すように、通気用連結管8と空気供給管9とは、L字型の継ぎ手12により連結されている。なお、通気用連結管8および空気供給管9との連結は、L字型の継ぎ手12によるものに限定されるものではなく、溶接や接着等により連結してもよく、通気用連結管8および空気供給管9を一体的に形成してもよい。
 空気供給口11は、融雪用の空気を路面融雪用排気管構造2内に取り込む取込口であり、図1および図2に示すように空気供給手段3に連結されている。本実施形態では、一対の通気用連結管8,8のそれぞれに対して融雪用の空気が均等に供給されるように、空気供給管10の略中央部ないしその近傍に設けられている。
 また、本実施形態における各通気用連結管8,8の他端部81は、図2に示すように、閉鎖状態にされている。よって、各有孔管7,7・・・は、通気可能な一対の通気用連結管8,8および空気供給管9によって略U字状に囲まれている。
 一方、路面融雪用排気管構造2の他の実施形態として、図6に示すように、各通気用連結管8,8の他端部81を別途、端部通気管10により通気可能に連結してもよい。この場合、各有孔管7,7・・・は、通気可能な一対の通気用連結管8,8、空気供給管9および端部通気管10によって略ループ状に囲まれている。
 また、路面融雪用排気管構造2は、図1に示すように融雪用路面材4に内蔵されている。本実施形態における融雪用路面材4は、粒状物をコンクリート等で固めることにより形成された路面材である。また、内蔵した路面融雪用排気管構造2の上方には、この路面融雪用排気管構造2から噴出した融雪用の空気を流通させる空気流通部41が形成されている。図1および図7に示すように、本実施形態の空気流通部41は各粒状物の間における網目状に分岐した空隙によって形成されている。つまり、空気流通部41は、有孔管7の空気噴出孔6から排出される空気を路面5上に流通できる構成であれば特に限定されるものではなく、例えば予めブロック状に構成された融雪用路面材4として構成されていてもよいし、砂利等を敷設して空気が流通できる隙間を形成する施工工事により構成してもよい。
 また、路面融雪用排気管構造2の埋設位置は、空気流通部41を通過した融雪用の空気ができるだけ路面5全体に接するような位置であることが望ましい。例えば図7に示すように、隣り合う有孔管7,7の右側孔62から排出される融雪用の空気と、左側孔63から排出される融雪用の空気とが路面5の近傍で交差しうる深さであることが望ましい。
 空気供給手段3は、空気供給口11に連結されて融雪用の空気を供給するためのものであり、空気供給用のポンプを有している。空気供給手段3として用いられるポンプは、特に限定されるものではなく、空気量や設置場所等を考慮して、適宜選択することができる。
 なお、融雪用の空気は、融雪用の熱源となるために0℃以上の温度を有することが必要であるが、供給源は特に限定されるものではない。例えば、温泉の廃熱や下水の廃熱、一般家屋からの廃熱、ビル等の商業施設や地下鉄等の公共施設からの廃熱、工場からの廃熱および地熱等のように熱交換により暖められた空気等を利用することができる。
 路面5は、融雪用路面材4の上に敷設されるものであって路面5下に供給される空気の作用によって融雪できる構造であれば特に限定されるものではなく、空気を路面5下に溜めて路面5を暖めることにより融雪する構造でもよく、空気を路面5に通過させて路面5を暖めるとともに路面5上に排出させて雪に直接的に吹きかけて融雪する構造でもよい。例えば、アスファルト、コンクリート、透水性コンクリート、ウッドチップ、芝生、砂利、砂等が挙げられる。なお、本発明における路面とは、自動車の走行や人間等の歩行のための道路のみならず、駐車場、庭、畑や運動場等を含む広い概念である。
 次に、本実施形態の路面融雪用排気管構造2、融雪用路面材4および路面融雪システム1における各構成の作用について融雪用の空気の流れとともに説明する。
 まず、空気供給手段3は、0℃以上の温度を有する融雪用の空気を供給源から吸引し、その空気を空気供給口11から路面融雪用排気管構造2内に供給する。
 供給された空気は、空気供給管9を左右に分かれて流れ、一対の通気用連結管8,8にそれぞれ供給される。本実施形態では、空気供給口11が空気供給管9の略中央位置に設けられているため、各通気用連結管8,8までの距離がほぼ等しくなり、同量程度の空気がそれぞれ供給される。
 また、各通気用連結管8,8の他端部81は閉鎖状態または端部通気管10が設けられることにより、他端部81に最も近い有孔管7または端部通気管10により通気可能となる。そのため、各通気用連結管8,8に送られた空気が他端部81側に偏ってしまうのを回避することができる。
 すなわち、複数本の有孔管7,7・・・は、通気可能な略U字状または略ループ状に囲まれた管から空気の供給を受けることにより、各有孔管7,7・・・に供給される空気量に大きな差が生じないように構成されている。
 次に、各通気用連結管8,8に供給された空気は、各有孔管7,7・・・の両端部から供給され、各空気噴出孔6,6・・・から空気流通部41に向かって噴出される。有孔管7の両端部から空気を供給することにより、有孔管7内での気圧が略一定に保たれやすく、各空気噴出孔6,6・・・から噴出される空気量を略均一に近づけることができる。また、多数の空気噴出孔6,6・・・が有孔管7の上面全体にほぼ均等に穿孔されているため、各空気噴出孔6,6・・・から噴出される空気量にも差が生じにくい。
 また、本実施形態では、各有孔管7,7・・・が、隣り合う有孔管7の右側孔62から噴射される融雪用の空気と、左側孔63から噴射される融雪用の空気とが融雪用路面材4の上方に敷設される路面5の近傍で交差しうる深さに埋設されているため、路面5全体に分散して空気を噴出させることができる。また、空気流通部41が路面融雪用排気管構造2の上方で網目状に分岐されているため、空気噴出孔6から噴出された空気を分岐し、適当なバランスで空気量を保持しながら流通させている。
 なお、本実施形態では、融雪用路面材4として、予め空気流通部41を形成したことにより、施工現場において路面融雪用排気管構造2を埋設する深さを調整しやすく、容易に施工することができる。
 路面5まで排気された空気の熱により路面が暖められて路面5に積もる雪を融かす。また、路面5上に融雪用の空気を排気可能に構成することにより、融雪用の空気を直接雪に接触されてより効果的に融雪することができる。
 以上のような本実施形態の路面融雪用排気管構造2、融雪用路面材4および路面融雪システム1によれば、以下の効果を得ることができる。
1.複数本の有孔管7,7・・・へ空気をほぼ均等に供給することができる。
2.有孔管7ごとの各空気噴出孔6,6・・・から噴出される空気量のばらつきを抑えることができる。
3.路面5に供給される空気量のムラを抑制することができる。
4.路面5の融雪ムラを低減することができる。
5.融雪用路面材4として予めブロック状等に構成しておくことにより、容易かつ迅速に施工することができ、施工時間の短縮および施工費用の低減を図ることができる。
 次に、本発明に係る路面融雪用排気管構造2の作用効果について、実用可能性を探る実験を行った。実施例1では、流体解析プログラムを使用し、路面融雪用排気管構造2に係る複数本の有孔管7,7・・・を略U字状または略ループ状に囲んで通気可能とした場合の流体解析を行った。本実施例1において使用した熱流体解析プログラムは、市販のSolidWorksおよびCOSMOSFloWorksである。
 図8および図9に本実施例1のシミュレーションで使用した解析モデルを示す。これらのモデルは、SolidWorksを用いてモデリングしたものである。図8に示されるモデルは、比較例として、複数本の有孔管7,7・・・の一端部のみを通気用連結管8により連結し、他端部を閉鎖状態にしたものである。また、通気用連結管8の一端部を空気供給口11とし(図8の左側端部)、他端部81は閉鎖状態とした(図8の右側端部)。一方、図9に示されるモデルは、本発明に係る路面融雪用排気管構造2の一例として、複数本の有孔管7を、空気供給管9、一対の通気用連結管8,8および端部通気管10により略ループ状に囲んで通気可能に連結したモデルである。また、空気供給管9の略中央部には空気供給口11が設けられている。なお、複数本の有孔管7,7・・・を略U字状に囲んで通気可能とする構成のシミュレーションは、図9に示されるモデルを利用し、一対の通気用連結管8,8の端部通気管10側の端部を閉鎖状態にする境界条件を与えることで行った。
 ここで各モデルの共通の条件について説明する。まず、有孔管7の長さは2300mmである。有孔管7の本数は15本であり、300mm間隔で平行に並べられている。なお、各有孔管7には、識別するために空気供給口11側から順にAからOの符号を付した。
 通気用連通管8の長さは4750mmである。また、空気供給口11の口径は107mmである。
 各有孔管7の空気噴出孔6は、頂孔61のみで構成されており、孔径は10.5mmである。また、孔同士のピッチは100mmであり、有孔管1本あたり21個形成されている。なお、各空気噴出孔6には、それぞれ順に1から21の符号を付した。
 以上のモデルを用い、空気供給口11における空気の供給量を0.0425m/sとして、COSMOSFloWorksにより流体解析を行った。解析結果を以下に示す。
 図10は、図8に示される比較例のモデルを用いて流体解析を行った管内の圧力分布を等高線で示したものである。また、図11は、そのときの各空気噴出孔6,6・・・から噴出される空気の流量を三次元グラフとして示したものである。
 図10に示すように、通気用連結管8内の圧力は、空気供給口(図10の左側)よりも閉鎖状態とした通気用連結管8の他端部81側(図10の右側)に進むにつれて高くなる傾向がある。
 また、各有孔管7,7・・・内の圧力は、通気用連結管8に連結された側(図10の下側)よりも閉鎖状態とした有孔管の他端部側(図10の上側)に進むにつれて高くなる傾向がある。
 よって、図8に示されるモデルでは、空気供給口11に近く、かつ通気用連結管8に近い方が圧力が低く、空気供給口11から遠くかつ通気用連結管8より遠い方が圧力が高い傾向になることが理解できる。
 また、図11に示すように、各空気噴出孔6,6・・・において噴出される空気の流量においても、管内の圧力分布に従う傾向が示された。すなわち、空気供給口11および通気用連結管8に最も近いAの21番の空気噴出孔6から噴出される空気の流量が約5×10-5/sであるのに対し、空気供給口11および通気用連結管8から最も遠いOの1番の空気噴出孔6から噴出される空気の流量が約20×10-5/sであった。これらの流量を比較すると、約4倍の流量の差があり、図8に示されるモデルでは、各空気噴出孔6,6・・・からの流量を均等にすることができないことが理解できる。
 次に、図9に示されるモデルを用い、有孔管7を通気可能に略U字状に囲んだ場合の解析結果について説明する。図12は、管内の圧力分布を等高線で示したものであり、図13は、各空気噴出孔6,6・・・から噴出される空気の流量を三次元グラフとして示したものである。
 図12に示すように、各通気用連結管8,8内の圧力は、空気供給管9よりも閉鎖状態とした通気用連結管8の他端部81側に進むにつれて高くなる傾向があるが、その差は比較例と比べても小さい。また、各有孔管7,7・・・内の圧力は、両端部と中央部とで比較してもほとんど差がない。また、一対の通気用連結管8,8同士の圧力差については、空気供給管9からの距離に応じてほぼ同等の値を示しており、図12の上下の通気用連結管8,8の違いによる傾向の差はなかった。
 また、図13に示すように、空気噴出孔6から噴出される空気の流量については、通気用連結管8内の圧力の傾向と同様に、空気供給管9側の有孔管7より閉鎖状態とした通気用連結管8の他端部81側の有孔管7の方が若干、空気量が多い傾向を示した。具体的には、空気供給管9側に最も近いA番の有孔管7の複数の空気噴出孔6,6・・・から噴出される平均流量が約10×10-5/sであり、通気用連結管8の他端部81側に最も近いP番の有孔管7の複数の空気噴出孔6,6・・・から噴出される平均流量が約15×10-5/sであった。
 上記の通り、比較例では空気量の差が最大約4倍があったのに対し、本件の有孔管7を略U字状に囲んだ場合の空気量の差は、最大約1.5倍程度に抑えられた。
 また、有孔管7内における各空気噴出孔6,6・・・同士の空気量にはほとんど差が生じなかった。
 図14および図15は、図9に示されるモデルを用い、複数本の有孔管7,7・・・を通気可能に略ループ状に囲んだ場合の解析結果であり、管内の圧力分布を等高線および各空気噴出孔6,6・・・から噴出される空気の流量の三次元グラフを示している。
 図14に示すように、端部通気管10にも空気が通気されており、図12の有孔管を通気可能に略U字状に囲んだ場合と同様に、通気用連結管8内の圧力が空気供給管9より端部通気管10に進むにつれてわずかに高くなる傾向が示されたが、比較例と比べてもその差は小さい。
 また、図15に示すように、各空気噴出孔6,6・・・において噴出される空気の流量についても、複数本の有孔管7,7・・・を通気可能に略U字状に囲んだ場合と同様の傾向を示し、空気供給管9側に最も近いA番の有孔管7の各空気噴出孔6,6・・・から噴出される平均流量が約10m/sであり、端部通気管11に最も近いP番の有孔管7の各空気噴出孔6,6・・・から噴出される平均流量が約15m/sであった。また、有孔管7内における各空気噴出孔6,6・・・同士の空気量にはほとんど差が生じなかった。
 以上より、複数本の有孔管7,7・・・の両端部に一対の通気用連結管8,8を設けたことにより、有孔管7内の圧力差を小さくすることができ、各空気噴出孔6,6・・・からの空気の噴出量を略均等に近づけることが可能となる。また、複数本の有孔管7,7・・・を空気供給管9、一対の通気用連結管8,8および端部通気管10により略U字状または略ループ状に通気可能に囲むことにより、各有孔管7,7・・・に対して供給される空気量の差を低減できることがわかった。
 実施例2では、流体解析プログラムを使用し、有孔管7に形成される空気噴出孔6の数と空気噴出量についてのシミュレーションを行った。使用した熱流体解析プログラムは、実施例1と同じSolidWorksおよびCOSMOSFloWorksである。
 図16および図17に本実施例2のシミュレーションで使用した解析モデルを示す。図16に示されるモデルは、路面融雪用排気管構造2において、空気噴出孔6が、頂孔61のみにより構成されたものである。一方、図17に示されるモデルは、路面融雪用排気管構造2において、空気噴出孔6が、頂孔61、右側孔62および左側孔63により構成されたものである。
 各モデルの共通の条件について説明する。まず、有孔管7の長さは2300mmである。有孔管7の本数は2本であり、300mm間隔で平行に並べられている。なお、各有孔管7,7には、それぞれ空気供給管9側から順にAおよびBの符号を付した。また、通気用連通管8の長さは900mmであり、空気供給口11の口径は107mmである。
 有孔管7の空気噴出孔6は、各モデルで異なる。まず、図16に示される空気噴出孔6が頂孔61のみのモデルでは、孔径は10.5mmである。また、孔同士のピッチは100mmであり、各有孔管7,7に21個ずつ穿孔されている。このときの有孔管7、1本あたりの各空気噴出孔6,6・・・の総面積は1818mmである。なお、各空気噴出孔6には、それぞれ順に1から21の符号を付した。
 一方、図17に示される空気噴出孔6が頂孔61、右側孔62および左側孔63から構成されるモデルでは、孔径は全て6mmである。頂孔同士のピッチは100mmであり、各有孔管7,7に21個ずつ穿孔されている。それぞれの頂孔には順に1から21の符号を付した。
 また、右側孔62は、隣り合う頂孔61の中間において、右側に45度の角度に傾斜させた位置に穿孔されている。右側孔62同士のピッチは100mmであり、各有孔管7,7に22個ずつ穿孔されている。左側孔63は、右側孔62と対象となる左側の位置に穿孔されており、各有孔管7に22個ずつ穿孔されている。よって、有孔管7、1本当たりの各空気噴出孔6,6・・・の総面積は1838mmであり、図16に示される空気噴出孔が頂孔のみのモデルにおける各空気噴出孔6,6・・・の総面積とほぼ同じ面積とした。
 以上のモデルを用い、空気供給口11における空気の供給量を0.00566m/sとして、COSMOSFloWorksにより流体解析を行った。解析結果を以下に示す。
 図18は、各モデルにおける、A番の有孔管7における各空気噴出孔6,6・・・から噴出される空気の流量を三次元グラフとして示したものである。
 図18に示すように、図16に示される空気噴出孔6が頂孔6のみのモデルでは、各空気噴出孔6,6・・・から噴出される空気量にばらつきがある。
 一方、図17に示される空気噴出孔6が頂孔61、右側孔62および左側孔63から構成されるモデルでは、各頂孔61から噴出される空気量、各右側孔62から噴出される空気量および各左側孔63から噴出される空気量には、大きなばらつきは見られなかった。
 また、頂孔61と右側孔62との平均的な空気量を比較すると、若干、右側孔62から噴出される空気量が多いが、大きな差はなかった。同様に、頂孔61と左側孔63との平均的な空気量を比較すると、若干、左側孔63から噴出される空気量が多いが、大きな差はなかった。また、右側孔62と左側孔63との平均的な空気量を比較すると、ほぼ同じだった。また、図19に示すように、B番の有孔管7においても同様の傾向であった。
 以上より、空気噴出孔6については、有孔管7、1本あたりの各空気噴出孔6,6・・・の総面積が同じである場合、空気噴出孔6の数を多くすることにより、各空気噴出孔6,6・・・から噴出される空気の量を均等に近づけることができることがわかった。
 実施例3では、図20に示すような、本発明に係る路面融雪用排気管構造2を用いた路面融雪システム1を作成し、実際に路面5下に埋設して、路面融雪システム1の融雪効果の実証実験を行った。
 本実施例3における路面融雪用排気管構造2は、図21に示すように、複数本の有孔管7,7・・・を空気供給管9、一対の通気用連結管8,8および端部通気管10により略ループ状に囲んで通気可能としたものである。そして、融雪対象となる範囲を4つのブロックに別け、各ブロック毎に略ループ状の路面融雪用排気管構造2を配置した。
 本実施例3における有孔管7は、内径約50mm、長さ2300mmの塩化ビニール製の管により形成されている。また、空気噴出孔6は、頂孔61、右側孔62および左側孔63で構成されている。頂孔61、右側孔62および左側孔63の孔径は約5mmである。また、頂孔同士のピッチは100mmであり、有孔管1本あたり21個ずつ穿孔されている。右側孔62および左側孔63は、隣り合う頂孔61の中間において、左右に約60度の角度で傾斜させた位置に穿孔されている。
 また、空気供給管9、一対の通気用連結管8,8および端部通気管10は内径約100mmの塩化ビニール製の管により形成されている。
 空気供給管9の空気供給口11には空気供給手段3が連結されている。また、空気供給手段3は、下水が流れるマンホールM内に連結されており、下水により暖められた空気を融雪用の空気として利用している。マンホールM内の空気の温度はおよそ20℃である。
 空気流通部41は、路面融雪用排気管構造2の周囲には砂利を敷設することにより形成した。さらに、空気流通部41の上には、路面5として透水性コンクリートを敷設し、融雪用の空気が路面5上に噴出される構造とした。
 実験は、このマンホールM内の空気を常時、路面融雪用排気管構造2に供給することにより行った。
 図22は、実験日における外気温、降雪量および降水量を示すグラフである。このグラフが示すように、実験日においては、19:00から23:00にかけて雪が降った。
 図23は、実験日における路面を撮影したデジタル写真画像である。図23(a)から図23(n)までは、19:03から次の日の1:33までを30分毎の時系列として並べたものである。
 図23(a)に示すように、雪が降り始めた19:03では、路面5上に積雪は確認できない。その30分後の図23(b)では、路面5上に雪が積もり始めている。
 図22に示すように、その後、雪は23:00位まで降り続けている。図23においては、図23(b)から図23(i)までがこの時間帯に相当し、この間は路面5上の積雪が確認できる。この間の降雪量はおよそ8cmであり、融雪を行っているものの、全てを融雪することができずに積もった状態である。
 その後、降雪が止まってからおよそ30分後、図23(j)に示すようには路面5上の雪が融け、路面5が見え始めている。そして、図23(n)に示すように、降雪が止まってからおよそ2時間30分後の1:33には、路面5上の雪はほぼ全て融雪されている。
 以上のように、本実施例3における実証実験では、8cm程度の降雪量をほぼ2時間30分で融雪することに成功した。従来の電熱線を用いたロードヒーティングシステムと同等な融雪能力である。ただし、本発明に係る路面融雪システム1に必要とするエネルギーは、空気供給手段3を駆動させるエネルギーのみであり、従来の電熱線を用いたロードヒーティングシステムと比較して、極めて省電力であってエネルギー効率に優れているシステムであるといえる。
 また、路面融雪システム1では、図23(n)に示すように、融雪ムラも極めて少なく、融雪用の空気を効率よく融雪に利用できており、実用性が高いものである。
 なお、本発明に係る路面融雪用排気管構造2、融雪用路面材4および路面融雪システム1は、前述した実施形態に限定されるものではなく、適宜変更することができる。
 例えば、実施例3および図24に示すように、融雪対象となる路面5を複数のブロックに別け、それぞれにユニット化した路面融雪用排気管構造2を設けてもよい。また、複数本の有孔管7,7・・・は、図24に示すような長さの異なるものであってもよい。また、図示しないが、路面融雪用排気管構造2を上下に複数段重ねる構成にしてもよい。
 1 路面融雪システム
 2 路面融雪用排気管構造
 3 空気供給手段
 4 融雪用路面材
 5 路面
 6 空気噴出孔
 7 有孔管
 8 通気用連結管
 9 空気供給管
 10 端部通気管
 11 空気供給口
 12 L字型継ぎ手
 41 空気流通部
 61 頂孔
 62 右側孔
 63 左側孔
 81 通気用連結管の他端部
 M マンホール

Claims (6)

  1.  融雪対象となる路面の下に埋設されてその路面へ融雪用の空気を排出する路面融雪用排気管構造であって、
     前記融雪対象となる路面下の所定範囲に敷設される複数の空気噴出孔が形成された複数本の有孔管と、これら有孔管の両端部をそれぞれ通気可能に連結する一対の通気用連結管と、これら通気用連結管の一端部を通気可能に連結するとともに空気を供給する空気供給口を備えた空気供給管と、を有しているとともに、前記一対の通気用連結管の他端部を閉鎖状態または端部通気管により通気可能に連結してなる路面融雪用排気管構造。
  2.  複数本の前記有孔管を所定の間隔で略平行に並列配置するとともに、これらの有孔管を一対の前記通気用連結管および前記空気供給管によって略U字状に囲んで通気可能に構成してなる請求項1に記載された路面融雪用排気管構造。
  3.  複数本の前記有孔管を所定の間隔で略平行に並列配置し、これらの有孔管を一対の前記通気用連結管、前記空気供給管および前記端部通気管によって略ループ状に囲んで通気可能に構成してなる請求項1に記載された路面融雪用排気管構造。
  4.  前記各空気噴出孔は、頂部において所定の間隔毎に穿孔された複数の頂孔と、隣り合う前記頂孔の中間毎に右側へ所定の角度傾斜させた位置に穿孔される右側孔と、隣り合う前記頂孔の中間毎に前記右側孔と対称となる左側の位置に穿孔される左側孔とから構成されており、前記各有孔管は、隣り合う前記有孔管の右側孔から噴射される前記融雪用の空気と前記左側孔から噴射される前記融雪用の空気とが前記路面の近傍で交差しうる深さの位置において埋設されている請求項1から請求項3のいずれかに記載の路面融雪用排気管構造。
  5.  請求項1から請求項4のいずれかに記載の路面融雪用排気管構造を内蔵し、この路面融雪用排気管構造の上方に前記空気噴出孔から噴出される空気を流通可能な空気流通部が形成されている融雪用路面材。
  6.  請求項1から請求項4のいずれかに記載の路面融雪用排気管構造と、この路面融雪用排気管構造の空気供給口に連結されて前記融雪用の空気を供給する空気供給手段と、前記路面融雪用排気管構造の上方に敷設されて前記空気噴出孔から噴出される空気を上方に流通可能な空気流通部と、この空気流通部上に敷設される路面とを有する路面融雪システム。
PCT/JP2012/063883 2011-05-31 2012-05-30 路面融雪用排気管構造、融雪用路面材および路面融雪システム WO2012165461A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280038188.8A CN103946451B (zh) 2011-05-31 2012-05-30 路面融雪用排气管构造体、融雪用路面构件以及路面融雪系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011121749A JP2012246731A (ja) 2011-05-31 2011-05-31 路面融雪用排気管構造、融雪用路面材および路面融雪システム
JP2011-121749 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165461A1 true WO2012165461A1 (ja) 2012-12-06

Family

ID=47259314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063883 WO2012165461A1 (ja) 2011-05-31 2012-05-30 路面融雪用排気管構造、融雪用路面材および路面融雪システム

Country Status (3)

Country Link
JP (1) JP2012246731A (ja)
CN (1) CN103946451B (ja)
WO (1) WO2012165461A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137662B (zh) * 2018-08-20 2020-11-27 东阳市中晟建筑工程有限公司 一种防积雪防滑地砖

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126403A (ja) * 1983-12-09 1985-07-05 古河電気工業株式会社 ヒ−トパイプ式融雪システム
JPH11286904A (ja) * 1998-04-01 1999-10-19 Grand Work:Kk 道路等の融雪方法および同融雪装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247602A (ja) * 1988-03-29 1989-10-03 Kyowa Densetsu Kaisha Ltd 地表面の凍結及び積雪防止方法
JPH08296204A (ja) * 1995-04-26 1996-11-12 Hajime Zenitani 蓄熱型融雪装置およびその方法
JPH11193505A (ja) * 1997-12-29 1999-07-21 Fujikura Ltd 風力を利用したヒートパイプ式融雪設備
JP2003239214A (ja) * 2002-02-14 2003-08-27 Yasushi Ozaki エアロウォーマー
JP4045324B2 (ja) * 2003-07-17 2008-02-13 政六 岡部 温風融雪装置
JP4177423B2 (ja) * 2006-08-03 2008-11-05 株式会社ホクスイ設計コンサル 空気吹出融雪・乾燥システム
CN201141175Y (zh) * 2007-12-20 2008-10-29 北京京鹏环球科技股份有限公司 一种用于生态酒店或温室的热风融雪装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126403A (ja) * 1983-12-09 1985-07-05 古河電気工業株式会社 ヒ−トパイプ式融雪システム
JPH11286904A (ja) * 1998-04-01 1999-10-19 Grand Work:Kk 道路等の融雪方法および同融雪装置

Also Published As

Publication number Publication date
CN103946451A (zh) 2014-07-23
CN103946451B (zh) 2016-01-27
JP2012246731A (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
CN107829342A (zh) 一种生态园林道路及其快速施工工法
US8882387B2 (en) Air-blowing-type road surface snow-melting system
WO2012165461A1 (ja) 路面融雪用排気管構造、融雪用路面材および路面融雪システム
KR100987790B1 (ko) 지열을 이용한 도로의 노면결빙 방지장치
JP2011102676A (ja) 地下水熱を利用した空調システム
KR100641982B1 (ko) 열풍을 이용한 제설 및 해빙 시스템을 적용한 중공단면의섬유강화 복합소재 바닥판 및 이를 구비한 교량 구조물
JP2015222154A (ja) 熱輻射ブロック及び熱輻射システム
KR101815897B1 (ko) 지중열교환식 냉온풍공급장치
JP4177423B2 (ja) 空気吹出融雪・乾燥システム
JP5107169B2 (ja) 温度調節システムおよび温度調節システムの施工方法
KR101087528B1 (ko) 골프장 퍼팅그린용 냉난방 장치
JP4420733B2 (ja) 融雪処理装置
JP4045324B2 (ja) 温風融雪装置
JP3076152B2 (ja) 歩道の融雪装置
JP2003090565A (ja) 空調設備
JPH01299903A (ja) 路床面の加温・冷却装置
JP3998145B2 (ja) 無水融雪装置
JP2012211455A (ja) 凍結防止又は融雪のための加温用配管システム
JP3422793B1 (ja) 廃熱利用型融雪乾燥システム
JP2005036622A5 (ja)
JP4680746B2 (ja) 散水機能付グレーチング
KR100818955B1 (ko) 지열을 이용한 냉난방시스템
JP2009046919A (ja) 融雪用地下水槽とその埋設方法
JP3096882U (ja) 透水性舗装と線状ヒーターを組合わせた融雪舗装体
JP3567529B2 (ja) 融雪装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793573

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793573

Country of ref document: EP

Kind code of ref document: A1