WO2012165275A1 - Electrical-circuit manufacturing assistance device and electrical-circuit manufacturing assistance method - Google Patents

Electrical-circuit manufacturing assistance device and electrical-circuit manufacturing assistance method Download PDF

Info

Publication number
WO2012165275A1
WO2012165275A1 PCT/JP2012/063277 JP2012063277W WO2012165275A1 WO 2012165275 A1 WO2012165275 A1 WO 2012165275A1 JP 2012063277 W JP2012063277 W JP 2012063277W WO 2012165275 A1 WO2012165275 A1 WO 2012165275A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
substrate
board
machine
quality
Prior art date
Application number
PCT/JP2012/063277
Other languages
French (fr)
Japanese (ja)
Inventor
博之 羽根田
中山 大輔
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Publication of WO2012165275A1 publication Critical patent/WO2012165275A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops

Definitions

  • the present invention relates to an apparatus and a method for supporting the production of an electric circuit by an electric circuit production line.
  • This system is a machine for board work, which is a device for performing work on circuit boards (hereinafter sometimes referred to as “to board work”) such as cream solder printing work, electrical component mounting work, and the like. It is manufactured by inspecting the work results by the machine, based on the inspection data of the inspection machine, grasping the quality degradation until it does not reach the standard certified as defective and dealing with it Maintains high reliability for the quality of electrical circuits.
  • an electrical circuit manufacturing support apparatus and support method of the present invention include: An electric circuit manufacturing support apparatus and a support method for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with a counter board working machine for executing a counter board operation, which is an operation for a circuit board constituting an electric circuit, Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work Recognize working condition fluctuations, Identifying a work site where the recognized variation in work conditions may affect work quality, certifying at least one of the identified work sites as a monitoring target site, The control data including at least one of the operation-based acquisition data acquired based on the operation of the substrate work machine and the inspection data by the inspection machine that inspects the work result of the substrate work by the substrate work machine, Monitored against circuit boards that have undergone on-board work prior to the occurrence of a recognized change in work conditions versus those on circuit boards that have under
  • the change in quality is monitored with the change of the working condition as a trigger.
  • item (1) corresponds to claim 1
  • items (4) to (7) correspond to claims 2 to 5, respectively.
  • item (11) corresponds to the sixth aspect.
  • An electric circuit manufacturing support apparatus for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with an anti-substrate work machine for executing an anti-substrate work that is an operation for a circuit board constituting an electric circuit, Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work
  • a monitoring part identifying unit that identifies a working part where the recognized work condition variation may affect work quality, and authorizes at least one of the identified working parts as a monitoring target part;
  • Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine
  • the circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred
  • This section is an aspect of the claimable invention that belongs to the category of apparatus, that is, an aspect of an electric circuit manufacturing support apparatus (hereinafter, simply referred to as “support apparatus”) according to the claimable invention.
  • “Working against the substrate” in this section means a work performed on a circuit board (hereinafter sometimes simply referred to as “substrate”) in general electric circuit manufacturing.
  • Various operations such as a component fixing operation for fixing the component to the substrate by melting and solidifying the substrate are included.
  • the “to-board working machine” includes devices such as a solder printing machine, a component mounting machine, and a reflow furnace that perform these board-to-board work.
  • the “work site” differs depending on the board work, and generally, for example, in solder printing work, printed solder lands (also referred to as “solder pads”) are mounted in component mounting work.
  • solder printing work printed solder lands (also referred to as “solder pads”) are mounted in component mounting work.
  • solder pads also referred to as “solder pads”
  • each of the electrical components thus obtained corresponds to a component fixed to the substrate and a solder solidified to fix the component.
  • the work site can also be set arbitrarily.
  • the “work condition” refers to the configuration of the board working machine such as various devices equipped, the status (state) of the board working machine, What are various things such as the substrate, parts, materials such as solder used in the board work, the work procedure in the board work, the mode of work operation, the environment in which the work machine operates or is operated, etc.
  • the “working condition fluctuation” is a concept that means that various things are changed or changed. A specific example of working condition fluctuation will be given in the following description.
  • the “work machine-related information” that is relied upon in recognition by the condition fluctuation recognition unit is the type of device or material that was used when the anti-substrate work machine performed anti-substrate work on one board. This broadly means information indicating whether such an operation has been performed or what state the work implement is in.
  • the work machine related information includes the above-mentioned “information related to work performed by the work machine against the substrate (hereinafter sometimes referred to as“ work result information ”)” and “information related to the action performed on the work machine against the board (hereinafter referred to as“ work information ”) , “Sometimes referred to as“ treatment information ”)”. Specific examples of such information will be given in the following description.
  • the work implement related information is mainly information sent from the substrate work implement, but may be information sent from other equipment, and is information acquired by the support apparatus itself. Also good.
  • the “recognition of work condition fluctuation” performed in the condition fluctuation recognition unit does not only mean confirming that the work condition fluctuation has occurred, but also includes specifying the content of the work condition fluctuation that has occurred. .
  • the recognition of a change in work condition also means that an event that causes the change in the work condition, that is, a change in work condition is recognized.
  • the “work site where fluctuations in work conditions may affect the work quality (hereinafter sometimes referred to as“ influenced site ”)” identified by the monitoring target site identification unit is all work on one board. It may be a part of the part, or it may be the whole. The affected area varies depending on the type of work for the substrate and the contents of the work condition variation.
  • the “monitoring target site” may be all of the affected site or a part of the affected site. Increasing the number of monitoring target parts increases the reliability of the quality of the electric circuit to be manufactured, but conversely increases the burden of processing performed by the target part quality determination unit described later.
  • the number of affected parts to be certified as monitored parts and which affected parts are certified as monitored parts are determined based on the reliability of the above quality, taking into account the type of work on the board, the contents of work condition fluctuations, etc. What is necessary is just to set in view of the burden of processing.
  • the “determination regarding the change in the work quality of the monitoring target part” performed by the target part quality determination unit means, for example, a determination regarding a change in the quality level of the work against the board performed for the monitoring target part. Simply put, it means grasping how much the quality of work at that part has improved or decreased. In other words, this level of work quality means a low possibility of occurrence of defects, and a decrease in work quality can be considered as a sign of occurrence of defects. Therefore, grasping the deterioration in work quality is effective in preventing the occurrence of defects.
  • the level of work quality can be indicated, for example, by various statistical indicators used in the field of quality control including stability described later. What is necessary is just to compare those indexes before and after.
  • the “control data” used for the determination by the target part quality determination unit includes at least one of the operation-based acquisition data and the inspection data. More specifically, the “operation-based acquisition data” is data relating to the operation of the substrate work machine when performing the work on the substrate, and data relating to the state (status) of the substrate work machine during or after the operation. Various data that can be detected / measured / recognized by the work machine with respect to the substrate, such as data on the movement and state of the object to be operated are included. In general, an inspection machine is often arranged on the downstream side of the substrate working machine (which means not the immediate downstream side but also the downstream side sandwiching other equipment). The data acquired by the inspection machine, specifically, the inspection data of each work part when the work result of each work part is inspected can be adopted. Specific examples of the control data, specifically, the operation-based acquisition data and the inspection data will be given in the following description.
  • the support device may be provided outside the electric circuit manufacturing line (hereinafter may be simply referred to as “manufacturing line”) or may constitute a part of the manufacturing line.
  • the support device is composed of several functional units including the condition variation recognition unit, the monitoring target part recognition unit, and the target part quality judgment unit, all of which are integrated into a single unit. It may be realized as a single device, and some of these functional units are arranged in devices such as an anti-substrate work machine and an inspection machine that inspects the work results of the work, and realized by two or more devices. It may be done.
  • the on-board working machine is a component mounting machine that executes a component mounting operation for mounting an electrical component on a circuit board as the on-board work, and each of the mounted electric parts is set as the work site ( The electrical circuit manufacturing support apparatus according to item 1).
  • the said board work machine is a solder printing machine which performs the solder printing work which prints cream solder on a circuit board as said board work, and each printed solder land was made into the said work part ( The electrical circuit manufacturing support apparatus according to item 1).
  • the modes according to the above two terms are modes in which limitations are added to the type of the work machine for the board and the work for the board, and the work site in the work for the board.
  • the target part quality determination unit is configured so that the stability before the occurrence of the recognized change in the work condition and the post-occurrence of at least one of the work on the substrate for the monitoring target part and the work result of the monitoring target part.
  • the stability of the work against the substrate in the aspect of this section includes the stability of the operation of the work machine with respect to the substrate, the movement of the object of the operation, the stability of the state, and the like. More specifically, for example, the accuracy of movement (in other words, the degree to which no movement error occurs), the movement speed, the movement force, and the position and state of the object of movement from the normal speed, force, position and state It also means the degree of smallness of deviation or the like. “Stability of work results” means the degree of variation in work results.
  • each printed solder land Stability with respect to misregistration from the regular printing position (concept including misalignment of rotational position or orientation), normal area such as rubbing, protrusion, protrusion, etc., deviation from volume (increase, decrease), etc.
  • the fixed fixing of the fixed component It means the stability with respect to misalignment (increase) from the normal area such as misalignment from the position, protrusion of the solidified solder, and the like.
  • the stability of the work against the substrate and the stability of the work result are suitable parameters for predicting the quality level of the work part, that is, the high possibility that the work part will be a defective part.
  • the above-mentioned stability the number or probability of operation mistakes, the average of the deviation amount from the reference value for the above-mentioned various deviations, the relationship with the control limit value of the deviation amount, the deviation variation range, the process capability index, etc.
  • Various statistical indicators used in the field of quality control can be used.
  • the monitoring target part certifying unit monitors some of the specified work parts based on a rule set in consideration of easy appearance of the influence of work condition fluctuation on work quality.
  • the electric circuit manufacturing support device according to any one of items (1) to (4) configured to be recognized as a target part.
  • the above-mentioned influence part may be a considerable number depending on the type of work on the board, the contents of work condition variation, and the like. According to the aspect of this section, it is possible to efficiently monitor the deterioration of the quality of the electric circuit even when there are many affected parts.
  • the above-mentioned “rules set in consideration of the ease of appearance of the influence of work condition fluctuations on work quality” are, in other words, rules for selecting a part whose quality is more likely to deteriorate due to work condition fluctuations, for example. It may be set based on the size of the work site, the position of the work site on the substrate, etc., depending on the type of work on the substrate, the contents of work condition fluctuations, and the like.
  • the electrical circuit manufacturing support device further includes: When the target part quality determination unit determines that the degree of deterioration of the work quality of the monitoring target part exceeds the set level, an improvement for determining an improvement measure for improving the work quality of the monitoring target part A treatment determining unit; Item (1) to Item (5), further comprising a treatment notification unit that notifies the improvement treatment determined by the improvement treatment determination unit to at least one of the on-board work machine and the operator of the electric circuit manufacturing line.
  • the electrical circuit manufacturing support apparatus according to any one of the above.
  • the substrate working machine is configured to be able to automatically execute the improvement procedure by notifying the improvement procedure to itself.
  • the improvement treatment determination unit is applied when improvement of the work quality of the monitoring target portion is not seen even though the determined improvement treatment is applied to the substrate work machine. Configured to determine a remedial action separate from the remedial action, The electrical circuit manufacturing support apparatus according to (6), wherein the treatment notifying unit is configured to notify at least one of the anti-substrate work machine and an operator of the electrical circuit production line of the other improvement measures.
  • the aspect of this section it is possible to further support for the quality of the electric circuit.
  • the priority of improvement actions should be set in consideration of the contents of changes in work conditions, ease of implementation of improvement actions, the degree of effect, etc. The actual decision may be made according to the setting.
  • An electric circuit manufacturing support method for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with an on-board work machine that performs an on-board work that is a work on a circuit board constituting an electric circuit, Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work
  • a condition change recognition step for recognizing a change in work condition,
  • a monitoring target part qualifying step for identifying a work part in which the recognized work condition variation may affect work quality, and certifying at least one of the specified work parts as a monitoring target part;
  • Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine
  • the circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred.
  • This section is an aspect of the claimable invention that belongs to the method category, that is, an aspect of the electric circuit manufacturing support method (hereinafter sometimes simply referred to as “support method”) according to the claimable invention. Since the technical contents of the aspect of this section are the same as the technical contents of the aspect of the electric circuit manufacturing support apparatus according to the claimable invention described above, the description thereof is omitted here.
  • some items related to the aspect of the electrical circuit manufacturing support apparatus listed above are “parts” of the functional units (specifically, improvement measure determination unit, measure notification unit, etc.) described in the item. Can be converted to “steps” and subordinated to this section to be a section showing some aspects of the electric circuit manufacturing support method according to the claimable invention.
  • the electric circuit manufacturing support device 10 (hereinafter, may be simply referred to as “support device 10”) of the embodiment supports the manufacturing of the electric circuit performed by the electric circuit manufacturing line 20.
  • support device 10 supports the manufacturing of the electric circuit performed by the electric circuit manufacturing line 20.
  • an electric circuit manufacturing line 20 (hereinafter sometimes simply referred to as “manufacturing line 20”) includes, in order from the upstream side, a substrate feeder 22 and solder.
  • the printing machine 24, the printing work result inspection machine 26, the first transport path switching device 28, the component mounting machine 30, the second transport path switching device 32, the mounting work result inspection machine 34, the reflow furnace 36, and the final inspection machine 38 are arranged.
  • the plurality of substrates sequentially pass through these devices, and an electric circuit is manufactured.
  • the printing work result inspection machine 26, the mounting work result inspection machine 34, and the reflow furnace 36 are for the board work machine, and the solder printing work, the part mounting work, and the part fixing work performed by each of them are the board work.
  • the substrate feeder 22 stores a plurality of substrates in a stacked manner, and sequentially puts the substrates one by one into the production line 20, more specifically, solder printing.
  • the machine 24 is charged.
  • the solder printer 24 performs an operation (solder printing operation) of screen-printing cream solder on the surface of the substrate that has been input.
  • the printing work result inspection machine 26 inspects the result of the solder printing work by the solder printing machine 24.
  • the component mounting machine 30 can perform work in two lanes, and the first transport path switching unit 28 mounts the board unloaded from the printing work result inspection machine 26 on the component mounting. It has a function to distribute to the two lanes of the machine 30.
  • the component mounting machine 30 is a base 40, six mounting modules 42 that are arranged side by side on the base 40 and each function as a component mounting device, and an overall control device that controls these mounting modules 42 in an integrated manner.
  • the module integrated controller 44 is configured to mount a component by each mounting module 42 while the board on which the solder is printed passes through the six mounting modules 42 in sequence (component mounting operation). And the component mounting work on the board is completed.
  • the second transport path switching unit 32 has a function of collecting the transport paths of the boards transported in two lanes in the component mounting machine 30 into one path.
  • the mounting operation result inspection machine 34 inspects the result of the component mounting operation by the component mounting machine 30.
  • the reflow furnace 36 melts the cream solder by heating the substrate on which the component is mounted, and then solidifies the solder by cooling to perform a fixing operation of the component to the substrate (component fixing operation).
  • the final inspection machine 38 is disposed at the end of the production line 20 and performs final inspection of an electric circuit manufactured by performing a counter-to-board operation by each device.
  • the production line 20 includes a line controller 46 that controls the devices 24, 26, 30, 34, 36, and 38 in an integrated manner.
  • the line controller 46 is connected to these devices via a LAN 48.
  • the support apparatus 10 is also connected to the LAN 48, and is connected to the devices 24, 26, 30, 34, 36, 38 and the line controller 46 via the LAN 48.
  • the main equipment will be described in detail below individually.
  • the solder printer 24 has a base frame 50 mainly composed of square pipes, and is a substrate conveyor device that is supported and arranged on the base frame 50. 52, a substrate holding / lifting device 54 (only a part of the device is hidden behind the screen 56 in the figure), a screen holding device 58, a squeegee device 60, a cleaning device 62, and the like.
  • the substrate conveyor device 52 has a function of transporting the substrate from the upstream side to the downstream side and stopping the substrate at a predetermined work position below the screen 56.
  • the substrate holding / lifting device 54 holds and lifts / lowers the substrate stopped at the work position.
  • the screen holding device 58 includes a holding frame 64 that holds the screen 56 and four holding frame position adjustment mechanisms 66 that adjust the position of the holding frame 64 in order to adjust the position of the screen 56.
  • the squeegee device 60 includes a squeegee unit 72 having a pair of squeegees 68 and a squeegee raising / lowering mechanism 70 for moving the pair of squeegees 68 up and down, and moving the pair of squeegee units forward and backward. And a unit moving mechanism 74 to be moved.
  • the substrate carried in from the upstream side by the substrate conveyor device 52 is stopped at the above-mentioned working position, and the stopped substrate is held by the substrate holding / lifting device 54 and then raised, and the lower surface of the screen 56 Pressed against.
  • the screen 56 is provided with openings (through holes) for forming solder lands (also referred to as “solder pads”), and cream solder is supplied to the upper surface of the screen 56.
  • solder pads also referred to as “solder pads”
  • the cream solder is applied to the upper surface of the pressed substrate through the opening of the screen 56. Thereby, solder lands are formed on the upper surface of the substrate with a specific land pattern defined by the openings. In this way, solder printing on the substrate surface is completed. After the printing is completed, the substrate is lowered by the substrate holding / elevating device 54, then the holding is released, and the substrate is conveyed to the downstream side by the substrate conveyor device 52. In the solder printer, the solder printing operation for one substrate is performed in this way.
  • the solder printer 24 moves between the screen 56 and the substrate in a state before being raised, and can image both the lower surface of the screen 56 and the upper surface of the substrate.
  • the substrate reference mark attached to the surface of the substrate and the screen reference mark attached to the lower surface of the screen 56 are imaged.
  • the substrate and the screen The amount of relative positional deviation is grasped. Based on the grasped relative positional deviation amount, the position of the screen 56 is adjusted by the holding frame position adjusting mechanism 66, and then the board is raised by the board holding / lifting device 54, and solder printing is performed.
  • the cleaning device 62 is a device that cleans the lower surface of the screen 56 when the area / volume is excessive or excessive, such as solder land rubbing or protrusion.
  • the cleaning device 62 has a cleaning unit 80 having a non-woven fabric 76 wound around a pair of rollers and passed between them, and a nozzle 78 for impregnating the non-woven fabric 76 with alcohol as a cleaning liquid.
  • the cleaning unit 80 is configured to be moved back and forth by a unit moving mechanism that is hidden in the drawing. The cleaning unit 80 is moved by the unit moving mechanism while the nonwoven fabric 76 is in contact with the lower surface of the screen 56, so that the lower surface of the screen 56 is cleaned by being wiped by the nonwoven fabric 76.
  • a backup member 82 for backing up the nonwoven fabric 76 is provided below the nonwoven fabric 76, and the nonwoven fabric 76 is brought into contact with the lower surface of the screen 56 while being backed up by the backup member 82.
  • the cleaning unit 80 is provided with a vacuum suction device (not shown), and the suction material sucks the deposits adhering to the screen 56 through the slot and the nonwoven fabric 76 provided in the backup member 82. Is possible.
  • the cleaning by the cleaning device 62 is dry cleaning performed without impregnation of alcohol into the nonwoven fabric 76 and suction with a suction device, wet cleaning performed with alcohol impregnation, and vacuum performed with alcohol impregnation and suction.
  • the three modes of cleaning can be performed, and any one of these modes is selected, and the lower surface of the screen 56 is cleaned in the selected mode.
  • the cleaning device 62 is configured to perform cleaning automatically periodically, automatically based on an external signal, or manually by an operator's operation.
  • the solder printer 24 includes a controller 84 that is a control device mainly composed of a computer, and the operation of each of the above-described devices and mechanisms constituting the solder printer 24 is performed by the controller 84.
  • the controller 84 grasps and manages the currently supplied cream solder based on the solder ID input by the operation of the operator's operation panel.
  • the solder printer 24 also includes an air conditioner 86 that adjusts the temperature inside the solder printer 24 for adjusting the viscosity of the cream solder supplied to the upper surface of the screen 56.
  • the printing work result inspection machine 26 is configured to include a substrate conveyor device, an inspection head, and a head moving device that moves the inspection head, although illustration of the internal structure is omitted.
  • the board conveyor device has a function of carrying the solder printed board from the upstream side and carrying it out to the downstream side, and placing it at a predetermined inspection position.
  • the inspection head is a work head for obtaining information on the surface of the substrate placed at the inspection position.
  • the head moving device is a so-called XY type moving device, and an X direction moving mechanism for moving the inspection head in a direction parallel to the substrate transport direction (X direction) and a direction perpendicular to the X direction (Y direction).
  • the Y-direction moving mechanism is moved to move the inspection head along a plane parallel to the surface of the substrate above the substrate.
  • the inspection head is a printing result inspection head 90 for inspecting the result of the solder printing operation, and this printing result inspection head 90 is the surface of the substrate.
  • a light source that irradiates slit light obliquely from four directions so that a grating is formed on the substrate, and a camera as an imaging device that images the grating of light formed on the surface of the substrate obliquely from two directions. Yes.
  • a light line 92 constituting a lattice formed by the irradiated slit light is a solder land 94 on the substrate, that is, a portion formed at a place where the solder is printed is on the substrate itself on which the solder land 94 is not formed. It will shift from the part formed in the surface. The amount of this shift varies depending on the thickness (height) of the solder land.
  • the printing work result inspection machine 26 can detect the positional deviation amount of the solder land 94 in the X and Y directions and the positional deviation amount in the rotational direction. (Amount of deviation in rotation angle or direction), area, and volume are acquired.
  • the camera can image a plurality of solder lands 94 in one field of view, and the printing work result inspection machine 26 can inspect a plurality of solder lands 94 at a time.
  • the printing work result inspection machine 26 has the above-mentioned deviation amount, soldering area 94, the amount of change in area from the normal area, and the amount of volume change, which is the amount of change in volume from the normal volume.
  • the limit value (defect determination limit value) defined for the land 94 is exceeded, the solder land 94 is recognized as a defective portion, and the defect is notified to the operator via the display on the operation panel.
  • the printing failure information such as the work site and the content of the failure is notified. Based on the notified information, the operator includes changes in the conditions of solder printing work by the solder printer 24 (program change, temperature change, additional supply of solder, cleaning of the screen 56 by the cleaning device 62, etc. )I do.
  • the component mounting machine 30 is a working machine for mounting components on a board, and includes a base 40, six mounting modules 42, and a module overall controller 44 as described above. It is configured.
  • FIG. 4 shows the mounting module 42 with the exterior panel removed. With reference to this figure, the mounting module 42 includes a module base 100, a beam 102 overlaid on the module base 100, and a module.
  • a substrate conveyor device 104 disposed on the base 100, a plurality of component feeders 106 that are replaceably attached to the module base 100 on the front side of the module 42, and each function as a component supply device; a substrate conveyor device 104; A base-fixed component camera 108 fixed to the module base 100 between the plurality of component feeders 106 and a component supplied from any of the plurality of component feeders 106 are held and the component is mounted on the substrate S.
  • Mounting head 110 to be removed for the purpose of And a is) is configured to include a head moving device 112 for moving the mounting head 110 is disposed in the beam 102.
  • the substrate conveyor device 104 has two tracks (lanes) for transporting the substrate, and the substrate is loaded into each track from the upstream side and unloaded from each track to the downstream side.
  • the substrate conveyor device 104 has a support table that can be moved up and down at the lower part of each track, and the substrate S carried to a predetermined position is supported by the raised support table and fixed at that position. That is, the board conveyor device 104 functions as a board fixing device that fixes the board S to a predetermined work position in the component mounting work. Since the board conveyor device 104 is disposed in each mounting module 42, the component mounting machine 30 can perform component mounting work in two lanes.
  • the substrate transport direction which is the substrate transport direction by the substrate conveyor device 104, is the X direction shown in the figure (shown with arrows together with the Y direction and Z direction).
  • the head moving device 112 is a so-called XY type moving device, and is supported by the beam 102, a head mounting body 114 to which the mounting head 110 is detachably mounted, an X direction moving mechanism for moving the head mounting body 114 in the X direction, and the beam 102.
  • the X-direction moving mechanism includes a Y-direction moving mechanism that moves the mounting head 110 to move over the component feeder 106 and the substrate S.
  • a substrate camera 116 for capturing an image of the surface of the substrate S is fixed to the lower portion of the head attachment body 114.
  • the mounting head 110 is a so-called index type mounting head. As shown in FIG. 5 (a), each functions as a component holding device and sucks and holds the component at the lower end by supplying a negative pressure (meaning that “the pressure is reduced below atmospheric pressure”). Eight suction nozzles 118 are provided and are held by the revolver 120. The revolver 120 rotates intermittently, and one suction nozzle 118 located at a specific position can be moved up and down by the nozzle lifting mechanism, that is, can be moved in the vertical direction (Z direction). When the suction nozzle 118 located at a specific position is lowered, negative pressure is supplied to hold the component, and when the negative pressure is cut off, the suction holding component is removed.
  • a negative pressure meaning that “the pressure is reduced below atmospheric pressure”.
  • Eight suction nozzles 118 are provided and are held by the revolver 120.
  • the revolver 120 rotates intermittently, and one suction nozzle 118 located at a specific position can be moved up and down by the nozzle lifting mechanism, that
  • each of the eight suction nozzles 118 can be rotated around its own axis (hereinafter sometimes referred to as “nozzle axis”) by the nozzle rotation mechanism, that is, around the nozzle axis.
  • the mounting head 110 can change / adjust the rotational positions (also referred to as “rotational posture” and “azimuth”) of the components held by the respective suction nozzles 118.
  • Each of the plurality of component feeders 106 is set with a reel on which a component holding tape (a plurality of components are held on the tape, also called “component taping”) is wound.
  • Each of the feeders 106 supplies parts one by one sequentially at a predetermined part supply site by intermittently sending out the part holding tape.
  • the replenishment of the parts may be performed by splicing the part taping while exchanging the reels (splicing), or may be performed by exchanging the reels together with the part feeder 106.
  • the mounting module 42 can also be attached with a so-called tray-type component supply device in place of the plurality of component feeders 106.
  • the components are managed by the component ID, and each mounting module 42 grasps what components are supplied by itself by its own controller.
  • the board S to be used for the work is carried in from the upstream side by the board conveyor device 104 and fixed at a predetermined work position.
  • the substrate camera 116 is moved by the head moving device 112, and the reference mark attached to the upper surface of the substrate S is imaged. Based on the imaging data obtained by the imaging, a coordinate system serving as a reference for the mounting position is determined.
  • the mounting head 110 is positioned above the plurality of component feeders 106 by the head moving device 112, and the components are sequentially held in each of the eight suction nozzles 118.
  • the mounting head 110 While the mounting head 110 is moved above the substrate S, the components passing through the component camera 108 and held by each of the suction nozzles 118 are imaged by the component camera 108. Based on the imaging data, a positional deviation amount (a concept including a rotational positional deviation) of each component with respect to the nozzle axis is grasped. Subsequently, the mounting head 42 is moved above the substrate S, and each component is sequentially mounted at a set position determined by the mounting program while performing correction based on the positional deviation amount. The mounting head 42 is reciprocated between the component feeder 106 and the substrate S a number of times determined by the mounting program, and the holding and mounting of the components by the mounting head 42 are repeated as described above, and one mounting module 42 Parts installation work is completed.
  • a positional deviation amount a concept including a rotational positional deviation
  • the mounting module 42 can be mounted with another working head instead of the mounting head 110.
  • the mounting head 122 shown in FIG. 5B can be attached.
  • the mounting head 122 is a so-called single nozzle type mounting head.
  • This mounting head 122 is provided with only one suction nozzle 124 as a component holding device. Although only one part can be sucked and held at a time, relatively large parts can be sucked and held.
  • the mounting head 122 also includes a nozzle lifting / lowering mechanism and a nozzle rotating mechanism, and the suction nozzle 124 is lifted / lowered when holding / removing the component, and the nozzle axis line is used for changing / adjusting the rotational position of the component. Rotated around.
  • the eight suction nozzles 118 included in the mounting head 110 and the suction nozzles 124 included in the mounting head 122 are automatically replaceable, and the replacement suction nozzles 118 and 124 are connected to the substrate conveyor device 104 and a plurality of suction nozzles. It is accommodated in a nozzle stocker 126 arranged between the component feeder 106.
  • a nozzle cleaner 128 is disposed at a position where the component camera 108 is sandwiched between the nozzle stocker 126 in the X direction.
  • the nozzle cleaner 128 has a brush as a main component, and the mounting heads 110 and 122 are moved by the head moving device 112 so that the lower ends of the suction nozzles 118 and 124 are in contact with the brush.
  • the suction nozzles 118 and 124 and the mounting heads 110 and 122 are assigned a nozzle ID and a head ID, and each mounting module 42 has a function of recognizing the nozzle ID and the head ID.
  • the suction nozzle and work head used in the current component mounting work are grasped.
  • the mounting module 42 can be further mounted with, for example, an inspection head 130 shown in FIG. 5C instead of the mounting head 110.
  • the inspection head 128 includes a substrate camera 132 as an imaging device capable of imaging the surface of the substrate S.
  • the board camera 132 has a relatively large field of view, can capture a plurality of components mounted on the board S in one field of view, and has a relatively high resolution. Accordingly, the board camera 132 is a camera suitable for inspection relating to a shift of the mounting position of the mounted component (in this sense, it may be hereinafter referred to as “inspection camera 130”).
  • the mounting module 42 to which the inspection head 130 is attached has a function equivalent to that of the mounting work result inspection machine 34 disposed on the downstream side of the component mounting machine 30.
  • the inspection head 130 functions as an inspection module. For example, when there are a large number of parts to be inspected, that is, work parts, it takes too much time to inspect the mounting result with only this inspection machine 34.
  • the inspection head 130 is attached to the one located on the most downstream side of the six mounting modules 42, and the module 42 functions as a mounting work result inspection machine in addition to the mounting work result inspection machine 34.
  • the working heads 110, 122, and 130 can be exchanged with one touch by lever operation.
  • Each of the mounting modules 42 is identified by the module ID, and the module controller 44 recognizes which mounting module 42 is located at which position on the base 40 by grasping the module ID. Yes.
  • the substrate conveyor device, the inspection head, and the head movement for moving the inspection head are the same as the printing work result inspection machine 26.
  • the board conveyor device has a function of carrying in a board on which components are mounted from the upstream side and carrying it out to the downstream side and placing the board at a predetermined inspection position.
  • the substrate conveyor device and the head moving device have the same configuration as that of the printing work result inspection machine 26, but the inspection head has a configuration different from that of the printing work result inspection machine 26.
  • the inspection head provided in the mounting inspection result inspection machine 34 that is, the mounting inspection head is configured with a substrate camera as an imaging device that images the substrate surface and the upper surface of a component mounted on the substrate from above as a main component.
  • the two-dimensional imaging data is acquired by the substrate camera.
  • the mounting work result inspection machine 34 based on the imaging data acquired by the substrate camera of the mounting inspection head, the amount of positional displacement of the component in the X and Y directions and the amount of positional displacement (rotation angle or direction). The amount of misalignment) is obtained and the occurrence of missing parts or standing parts (so-called “chip standing”) is confirmed. When it is confirmed that a part is missing or standing, it is recognized that the work site is defective due to the fact of the occurrence, that is, the work site is recognized as a defective part.
  • the displacement of the mounting position if the amount of deviation of a part exceeds the limit value (defect determination limit value) specified for that part, that part, that is, its work site is defective. It is recognized as a part.
  • the operator is notified of the installation failure information such as the defective part and the content of the operation defect via the display of the operation panel. Based on the notified information, the operator changes the condition of the component mounting operation by the component mounting machine 30 (changes in the program related to the misalignment correction amount, etc.), replaces the suction nozzle, and the supplied component.
  • the substrate camera included in the mounting inspection head of the mounting operation result inspection machine 34 includes the camera included in the printing inspection head 90 of the printing operation result inspection machine 26, and the inspection substrate camera 132 of the inspection head 122 attached to the component mounting machine 30.
  • a plurality of work parts (mounted parts) can be stored in one field of view, and the mounting work result inspection machine 34 can inspect the results of work on a plurality of parts at a time. .
  • Reflow furnace The reflow furnace 36 heats the substrate carried from the mounting work result inspection machine 34, that is, the conveyor device that conveys the substrate on which the component is mounted to the carry-out port, and the substrate conveyed by the conveyor device. And a hot air type, infrared type heater and the like. While the board on which the components are mounted is transported by the conveyor device, it is heated by a heater so that the cream solder melts and is cooled (naturally cooled) near the carry-out port, so that the solder is solidified. Then, the parts are fixed.
  • the substrate transport speed by the conveyor device, the temperature profile in the furnace changes in the substrate heating temperature relative to the transport position change when the substrate is transported in the furnace), etc.
  • the final inspection machine 38 has substantially the same configuration as the mounting work result inspection machine 34. Based on the imaging data acquired by the board camera that the inspection head has, the positional displacement amount of the component in the X direction and the Y direction and the displacement amount in the rotational direction (deviation amount in the rotation angle or direction) with respect to the component fixing position are acquired. Check the occurrence of missing parts and standing parts (so-called “chip standing”). When it is confirmed that a part is missing or standing, it is recognized that the work site is defective due to the fact of the occurrence, that is, the work site is recognized as a defective part.
  • the final inspection machine 38 also performs inspection on the solidified solder. More specifically, based on the imaging data, the difference between the outer dimensions of each solder land on which each component is placed with respect to the normal outer dimension (outer dimension fluctuation amount). Check for shape defects. For example, if the solder sag and the area of the solder land becomes excessive, it will be connected to the adjacent solder land and the electrical circuit will be short-circuited, etc. The external shape of the solder land is inspected from such a viewpoint.
  • the solder lands When the solder lands are in contact with each other, the solder lands are recognized as defective parts.
  • the operator is notified of defect information such as the contents of the defective part and work defect via the display on the operation panel.
  • the operator adjusts the conveyance speed and temperature profile of the reflow furnace 36 based on the notified information.
  • the defect in the component fixing position is caused not only by the defect in the component fixing operation by the reflow furnace 36 but also by the deterioration of the work quality of the component mounting operation by the component mounting machine 30. Therefore, in that sense, the final inspection machine 38 functions as an inspection machine that inspects not only the result of the component fixing work by the reflow furnace 36 but also the result of the mounting work by the component mounting apparatus 30.
  • the line controller 46 is a control device whose main function is to control and control the production line 20, grasps the board currently being worked on by each device, and the board is an electric circuit by the production line 20.
  • the number of scheduled productions and the actual number of productions, the production tact of the production line 20, etc. are managed, and the setting process by the operator's input operation for the setting items common to each device is performed.
  • Each device has a function of recognizing the substrate ID of the substrate on which the device is currently working.
  • Each device grasps the substrate ID of the substrate on which it performs the substrate work, and the line controller 46 manages the substrate to which the production line 20 is added based on the substrate ID information from each device.
  • the line controller 46 also has a function of managing an operator, and grasps who is currently an operator of the production line 20 based on an operator ID input by the operator himself. ing.
  • the electric circuit manufacturing support apparatus 10 is realized by a general-purpose computer executing a predetermined program, and supports the quality of the electric circuit manufactured by the manufacturing line 20. More specifically, as described above, each of the solder printing machine 24, the component mounting machine 30, and the reflow furnace 36, each of which is a board working machine, has a printing work result inspection machine 26 and a mounting. Since it is detected by the work result inspection machine 34 and the final inspection machine 38, the support apparatus 10 has a quality that does not reach a standard that is recognized as defective in order to maintain high reliability with respect to the quality of the manufactured electric circuit. Support processing to grasp the decline.
  • the support process of the support apparatus 10 mainly recognizes a change in work condition and recognizes a work part to be monitored and recognizes a work part to be monitored and a part to be monitored and a recognized work part.
  • Information / Data used in support processing can be roughly classified into two types.
  • One is “work machine-related information” which is information for recognizing fluctuations in work conditions, and the other is “data for determining deterioration of quality (hereinafter referred to as“ reference data for determining deterioration ”).
  • control data data for determining deterioration of quality
  • information / data is stored in the information / data storage unit of the support apparatus 10 in the support process.
  • work machine-related information indicates what devices and materials were used when the anti-substrate work machine performed anti-substrate work on one board, and what kind of device and materials were used. This is information indicating whether the operation has been performed, the state of the work machine, and the like, and can be further classified into two.
  • One is information related to the work actually performed by the substrate working machine (work result information), and the other is information related to the treatment actually performed on the substrate working machine (treatment information). is there.
  • the work machine related information is transmitted from the counter work machine to the support device mainly when each of the work machines has completed the work on the board.
  • the information related to the operator described above is also a kind of work implement related information, and such information is transmitted from the line controller 46.
  • work performance information examples include the type of solder cream that is currently supplied that can be recognized from the solder ID, the lot number, the supplier (vendor), and the solder printer 24, the ID of each device such as the screen ID and squeegee ID, the squeegee pressure (printing pressure) on the screen, the speed of the squeegee, etc., information about the operation of the squeegee during solder printing, the substrate of the screen 56
  • the work performance information includes the speed of separation from the machine, the temperature inside the machine, the humidity, and the like.
  • information obtained from the imaging data of the substrate reference mark by the imaging device is also included in the work performance information in a broad sense.
  • the work performance information includes IDs of various devices such as IDs and module IDs, operation speeds of various devices such as a nozzle lowering speed in the mounting operation, and mounting positions of the respective parts set in the mounting program.
  • information obtained from imaging data of the substrate reference mark by the substrate camera 116, information obtained from imaging data of the component sucked and held by the suction nozzles 118 and 124 by the component camera 108 (component displacement, component or The number of suction mistakes for each suction nozzle is also included in the work result information in a broad sense.
  • the work performance information is information that can be grasped that the working condition has fluctuated by comparing the information on the work on the substrate with respect to one board and the work on the work on the board with another board. It can be said that.
  • the treatment information is information directly representing that a treatment that causes a change in the working condition is actually performed.
  • the control data includes at least one of operation-based acquisition data and inspection data.
  • the operation-based acquisition data is data related to the operation of the substrate work machine for performing the work on the substrate, and the state (status) of the substrate work machine during or after the operation.
  • various data such as pressure applied to the screen of the squeegee (printing pressure), data on the deviation of the mark obtained from the imaging data of the board reference mark by the imaging device, and the like.
  • It can be action-based acquisition data.
  • data obtained from imaging data by the component camera 108 of the components sucked and held by the suction nozzles 118 and 124 data on position displacement of the component with respect to the nozzle axis line, etc.
  • the number of suction mistakes for each nozzle, the probability, the data regarding the deviation of the mark obtained from the imaging data of the substrate reference mark by the substrate camera 116, and the like can be the operation-based acquisition data.
  • the substrate transfer speed and the temperature profile in the furnace can be the operation-based acquisition data.
  • the operation-based acquisition data is sent to the support device 10 from the substrate working machine every time the substrate working machine performs the substrate working, for example.
  • the inspection data is an inspection machine that inspects the work result of the work on the substrate for the work site where the work on the board is performed, specifically, the print work result inspection machine 26, the mounting work result inspection machine 34, and the final inspection machine.
  • the inspection data by 38 includes the inspection data by the mounting module 42 which is an inspection module in some cases.
  • the inspection data is transmitted from the inspection machine to the support device 10 every time the inspection machine inspects one substrate. Since the comparison data is data to be compared in order to determine the deterioration of the work quality of the work site, it is desirable that the data for each of a considerable number of boards is stored.
  • the section stores reference data for a considerable number of substrates manufactured or manufactured in succession. Specific examples of the inspection data will be listed below.
  • the above-described print position shift amount, area variation amount, volume variation amount, etc. of each solder land are included in the inspection data.
  • the mounting work result inspection machine 34 for example, the above-described mounting position shift amount of each component
  • the final inspection machine 38 for example, the above-described fixed position shift amount of each component, the outer shape of the solder land.
  • Each of the dimension variation amounts is included in the inspection data.
  • condition fluctuation recognition / monitoring target part recognition processing is performed by executing a condition fluctuation recognition / monitoring target recognition program whose flowchart is shown in FIG. This program is started when one of the substrate work machines has completed the work on the substrate for one substrate. Regardless of the solder printing machine 24, the component mounting machine 30, or the reflow furnace 36, processing corresponding to the board working machine is performed by executing the program.
  • step 1 the condition variation recognition flag Fv is reset to “0”.
  • This flag Fv is a flag that is set to “1” when the support apparatus 10 recognizes a change in work condition.
  • step 2 the work machine related information of the board (current work board) on which the current board work has been performed is referred to.
  • the work machine related information is sent from the substrate work machine or the like and stored in the work machine related information buffer of the information / data storage unit.
  • the work machine related information of the current work board is compared with the work machine related information of the board (previous work board) on which the previous work on the board has already been stored, which is already stored in the work machine related information buffer. More specifically, the work result information of the current work board and the previous work board are compared.
  • S6 it is determined whether or not there is a difference between these pieces of information. If it is determined that there is a difference, it is determined in S7 whether or not the difference corresponds to a change in work condition requiring recognition. If it is determined that it corresponds, the condition fluctuation recognition flag Fv is set to “1” as the second condition fluctuation recognition processing in S8.
  • the second condition change recognition process is skipped when it is determined that the difference does not correspond to the recognition condition change requiring recognition even if the difference is recognized.
  • the determination as to whether or not the work condition needs to be recognized can be made based on the type of work performance information to be compared, the degree of difference, etc., and the operator included in the work implement related information at that time It is also possible to make a judgment based on the information, in detail, the qualities, abilities, skill, etc. of the operator. In this way, the support apparatus 10 determines whether or not there is a change in work conditions that should be recognized, that is, dealt with in the work against the board for the current work board, based on the two types of work machine related information.
  • This rule is stored in the information / data storage unit.
  • the above-mentioned setting rule is a rule that is set in consideration of the ease with which the influence of work condition changes on work quality appears. It is sufficient that the monitoring target part is authorized according to the rules.
  • the work condition fluctuation is data related to the work condition fluctuation, such as data on the board ID of the current work board and the certified monitoring target part (condition fluctuation related data). Are registered in the work condition fluctuation monitoring list set in a specific area of the information / data storage unit.
  • the work condition variation monitoring list includes the work condition subject to the processing. It is provided to identify a variation, and one target work condition variation and accompanying condition variation related data are stored as one set of processing target data for each target work condition variation.
  • registered work condition fluctuations are deleted from the list until it is judged that quality deterioration due to certain work condition fluctuations has not occurred, or even if they occur, the quality is improved by improvement measures. Not.
  • S12 a series of processes by the program for one substrate on which the substrate work has been performed is completed. In S9, if it is determined that no change in the work condition to be recognized has occurred in the current work board-to-board work, S10 and the subsequent steps are skipped, and a series of processing by the program ends.
  • Quality Change Judgment / Countermeasure Processing is performed by executing a quality change judgment / handling program shown in the flowchart of FIG.
  • This program is used to inspect a board that may be affected by fluctuations in the work conditions registered in the work condition fluctuation monitoring list by an inspection machine that inspects the results of work against the board where the fluctuations in the work conditions occurred. More specifically, it is performed every time the inspection of each substrate to be processed is completed.
  • the substrate to be processed is determined based on the substrate ID stored as the condition fluctuation related data, and several substrates that have been subjected to the substrate work successively after the substrate of the substrate ID are the targets. It is said.
  • the value of the quality deterioration certification flag Fq is determined.
  • This flag Fq is set as one of the above condition fluctuation related data, the initial value is set to “0”, registered in the list, and the work quality of the monitoring target part is caused by the work condition fluctuation to be processed. It is set to “1” when it is recognized that it has dropped.
  • the quality degradation recognition flag Fq is “1”, quality degradation has already occurred, so the quality improvement process of S22 described later is executed.
  • Judgment as to whether or not quality degradation has occurred is based on the condition that the substrate work has been performed on a predetermined number of substrates from the time when the work condition change occurs.
  • the post-fluctuation work substrate counter Cn for counting the number of substrates performed is stored as one of the work variation-related data, and this counter Cn is not judged to have been deteriorated in quality in the determination of S21. If it is determined, it is counted up in S23. In S24, if the number of substrates has not reached the set number Cn 0 (set to a number effective for the stability evaluation described later), a series of processing by the program ends. When the set number Cn 0 is reached, the processing from S25 is executed.
  • the control data of the monitoring target part stored in the information / data storage unit before the change of the working condition is extracted. Specifically, the control data for the set number Cn 0 of the substrates traced back from the substrate in front of the substrate on which the working condition change occurred is extracted.
  • the index value Ps B of the stability index of the work result of each monitoring target part before the occurrence of the work condition change (hereinafter, the index value of the stability index is referred to as “stability index”). May be abbreviated as “value”). More specifically, the stability index value Ps A for one or more control items in the board work and the result of the work is calculated, and the calculated stability index value Ps B is 1 in the condition variation related data in S27.
  • the stability index it is possible to adopt a stability index that indicates the stability with respect to the deviation from the normal value of the control item.
  • the process capability index C pK can be adopted.
  • This process capability index C pK is a stability index that is commonly used in the field of quality control, and is defined by the formula shown in FIG. 8 (the standard upper limit L U and the standard lower limit L L are inspections). It is set to be considerably smaller than the above-mentioned limit value for defect determination prescribed for determining defects in the machine).
  • the process capability index C pK is a stability index indicating that the larger the value is, the more stable the process capability index C pK is.
  • the stability index is the average of the amount of deviation from the reference value for various deviations, which are the control items, the relationship with the control limit value of the deviation, the range of deviation variation, the work Various things such as the number of mistakes and the probability (in other words, the number and probability of work success) can be adopted.
  • the control data of the monitoring target part after the change of the working condition stored in the information / data storage unit is extracted. Specifically, reference data is extracted for a set number of substrates Cn 0 after the substrate on which the working condition change occurred.
  • an index value Ps A of the stability index of the work result of each monitoring target part after the work condition variation occurs is calculated.
  • the stability index value Ps B before the occurrence of work condition fluctuation and the stability index value Ps A after the occurrence of work condition fluctuation are compared with each other to be monitored, and the stability index value Ps sets the set threshold value ⁇ Ps.
  • step S30 when it is determined that the work quality of the monitoring target part has not decreased beyond the set level, it is assumed that there is no decrease in work quality due to the change in the work condition.
  • step S35 the registered work condition change and the related condition change related data are deleted from the work condition change monitoring list and removed from the processing target. . With the end of the process of S33 or S35, a series of processes by the program ends.
  • the quality improvement process is a process executed in S22 on the condition that the quality deterioration is recognized and the improvement process is once notified in the previous quality change determination / handling process. This is processing performed by executing a quality improvement subroutine showing a flowchart. Incidentally, the quality change determination / coping is also finished by the end of the processing by this subroutine.
  • the contents of the quality improvement process are explained below according to the flowchart. Since the quality improvement process is performed on the assumption that the improvement process is being performed, first, in S41, a determination based on the improvement process execution flag Fi is performed. This flag Fi is stored in the information / data storage unit as one of the condition fluctuation related data, and is set to “0” when the improvement measure is not implemented, and set to “1” when the improvement procedure is implemented. Is done. Whether or not improvement measures have been implemented is determined based on information from the substrate working machine and the substrate ID of the substrate currently being processed.
  • a post-improvement work substrate counter Cn ′ for counting the number of substrates that have been subjected to the substrate work after the improvement treatment has been adopted is adopted, and information / data storage is performed as one of the condition variation related data.
  • a determination is made based on the improvement measure execution flag Fi, and if the improvement process has not been executed yet, in S42, whether or not the current board is a board that has been newly improved. Is determined, and the improvement process is not performed, the series of processing by the subroutine ends.
  • the improvement process execution flag Fi is set to “1” in S43, and the post-improvement work substrate counter Cn ′ is reset in S44. Counter Cn ′ is counted up.
  • S42 to S44 are skipped, and the counter Cn 'is incremented in S45.
  • the index value Ps A 'of the stability index of the work result of each monitoring target site after the implementation of the improvement treatment is calculated.
  • the stability index value Ps B before the occurrence of work condition fluctuation is compared with the stability index value Ps A ′ after the improvement treatment for each monitoring target part, and the stability index value Ps is set to the set threshold value ⁇ Ps. In the case where the work quality has been lowered beyond the range, it is determined that the degree of work quality degradation of the monitoring target part has exceeded the set level, that is, the work quality has not been improved by the remedial action.
  • next improvement action is determined by referring to the table in S53. That is, when a plurality of improvement actions are set in the action table, another improvement action is determined repeatedly within a range where the improvement actions are set until quality improvement is observed. Then, in S54, the fact that the quality degradation is continuing and the improvement action of the next order are notified to the substrate work machine and the line controller 46 in which the working condition fluctuation has occurred. If it is determined in S52 that the next improvement measure is not set, it is determined in S55 that the quality degradation is still continuing and that the improvement measure could not be notified. 46 is notified. In S56, the registered work condition fluctuation and the related condition fluctuation-related data are deleted from the work condition fluctuation monitoring list and removed from the processing target. Thereafter, a series of processing by the subroutine is performed. finish.
  • the electric circuit manufacturing support device 10 performs the condition variation recognition / monitoring target part recognition processing, quality change determination / handling processing, and quality improvement processing as described above. It can be considered that it has a functional configuration as shown in FIG. Specifically, the support apparatus 10 includes an information / data acquisition unit 152, a condition variation recognition unit 154, a monitoring target part recognition unit 156, and a target part, each of which is a plurality of functional units connected to each other by a virtual internal bus 150. It has a quality judgment unit 158, an improvement treatment determination unit 160, an information / treatment notification unit 162, and an information / data storage unit 164.
  • the support apparatus 10 is connected to the solder printing machine 24, the component mounting machine 30, the reflow furnace 36, the printing work result inspection machine 26, and the mounting work result inspection machine 34, each of which is a substrate work machine, via the LAN 48. , It is connected to the final inspection machine 38.
  • the information / data obtaining unit 152 is used for comparing the above-mentioned work machine related information such as work performance information and treatment information, operation-based acquisition data, inspection data, etc. from the substrate work machine and the inspection machine. It has a function to obtain data.
  • the condition fluctuation recognition unit 154 has a function of recognizing work condition fluctuations based on the work implement related information
  • the monitoring target part recognition unit 156 specifies the influence part and monitors the part to be monitored from the influence parts.
  • the target part quality judging unit 158 has a function for judging the change of the work quality of the monitoring target part from the control data before and after the change of the work condition, and the improvement treatment determining part 160 is used for the change of the work condition.
  • the information / treatment notifying unit 162 has a function of notifying the on-board work machine and the operator of the determined improvement treatment, and a function for determining the improvement treatment for improving the work quality of the monitoring target site. is doing.
  • the information / data storage unit 164 has a function of storing the work implement related information and the comparison data, and various information, data, tables, lists, rules, and the like described above.
  • the condition variation recognition unit 154 has the functions realized by the processing of S1 to S9.
  • the monitoring target part recognition unit 156 has a function realized by the processes of S10 to S12
  • the target part quality judgment unit 158 has a function realized by the processes of S23 to S30
  • the improvement measure determination unit 160 has S32 and S52.
  • S53 the information / data storage unit 164 has functions realized by S33, S34, S50, S54, S55 and the like.
  • the support processing executed by the support device 10 corresponds to an electrical circuit manufacturing support method, and includes a condition variation recognition unit 154, a monitoring target part recognition unit 156, a target part quality determination unit 158, an improvement measure determination unit 160, information and measures.
  • the processing for realizing each function of the notification unit 162 corresponds to a condition variation recognition step, a monitoring target part recognition step, a target part quality determination step, an improvement action determination step, and a action notification step in the electric circuit manufacturing support method, respectively. To do.
  • the largest part, the smallest part, and the part with the largest number of terminals for one part are certified as the monitoring target part.
  • the amount of displacement of the mounting position for the monitoring target portion on the board on which the component mounting operation has been performed before replacement of the suction nozzles 118, 124 and the component mounting operation are performed after replacement.
  • the displacement amount of the mounting position for the monitored portion on the broken substrate is used as control data, and the process capability index C pK with respect to those displacement amounts before and after replacement of the suction nozzles 118 and 124 for each of the monitored portions.
  • the process capability indexes C pK are compared to determine whether or not there is a quality deterioration for each of the monitored parts. Further, out of the operation-based acquisition data from the component mounting machine 30, the displacement of the component with respect to the axis of the suction nozzles 118 and 124 acquired based on the imaging data of the component camera 108 of the component to be monitored, that is, the suction shift amount of the suction holding position of the component by the nozzle 118, 124 is also used as a control data, the process capability index C pK for position shift amount thereof in the before and after replacement of the suction nozzle 118, 124 for each of the monitor target Are respectively calculated as stability index values, and the process capability indexes C pK are compared to determine whether or not there is a quality deterioration for each of the monitored parts.
  • the number of suction holding mistakes when the part to be monitored is taken out from the component feeder 106 by the suction nozzles 118 and 124 is also used as the reference data, and for each monitored part.
  • the suction holding error rate (strictly speaking, the suction holding success rate) before and after the replacement of the suction nozzles 118 and 124 is calculated as a stability index value, and these suction holding error rates are compared, and each of the monitoring target parts is compared. It is determined whether or not there is a deterioration in quality.
  • the automatic cleaning of the suction nozzles 118 and 124 using the nozzle cleaner 128 as the first order improvement measure improves the second order.
  • the correction of the bending of the nozzle by the operator is decided, and the replacement of the suction nozzles 118 and 124 is decided as the third order improvement treatment.
  • ii) Change of parts lot in the component mounting machine When the parts are replenished in the component mounting machine 30 by splicing or replacement of the parts feeder 106, a lot change occurs.
  • the change of the part lot is a change in work condition that affects the work quality of the part mounting work, specifically, the mounting accuracy of the part.
  • a part ID is adopted as the work performance information that is work implement related information, and the part ID is recognized by being different between the previous work board and the current work board.
  • the change of the part lot is recognized, the part of the changed lot is identified as the affected part. And all the parts specified as an influence part are authorized as a monitoring object part.
  • the amount of displacement of the mounting position for the monitoring target part in the substrate on which the component mounting operation has been performed before the change of the component lot and the substrate on which the component mounting operation has been performed after the change Is used as control data, and the process capability index C pK with respect to those positional deviation amounts before and after changing the part lot for each of the monitoring target parts is used as the stability index value.
  • the calculated process capability indexes C pK are compared, and it is determined whether or not there is a quality deterioration for each of the monitoring target parts.
  • the displacement of the component with respect to the axis of the suction nozzles 118 and 124 acquired based on the imaging data of the component camera 108 of the component to be monitored that is, the suction
  • the deviation amount of the suction holding position of the part by the nozzles 118 and 124 is also used as control data, and the process capability index C pK with respect to the positional deviation amount before and after the part lot change for each monitored part is a stability index. each is computed as the value is compared their process capability index C pK, whether degradation for each of the monitor target is determined.
  • the number of suction holding mistakes when the part to be monitored is taken out from the component feeder 106 by the suction nozzles 118 and 124 is also used as the reference data, and for each monitored part.
  • the suction retention error rate (strictly speaking, the suction retention success rate) before and after the parts lot change is calculated as a stability index value, and these suction retention error rates are compared to reduce the quality degradation for each of the monitored parts. Presence or absence is determined. Further, when it is determined that quality degradation has occurred in any of the monitoring target parts, when the part lot is changed by exchanging parts together with the part feeder 106, first, only the part feeder 106 is changed.
  • the procedure for replacing another component feeder 106 does not show improvement, the procedure for replacing the component with a component in another lot is sequentially determined and notified as an improvement procedure. .
  • the lot of a part is changed by exchanging only the part by splicing or the like, a process for replacing the part with a part in another lot is determined and notified as the only improvement process.
  • the screen 56 in the solder printer 24 is an effective means for preventing the solder land from rubbing, protruding, and protruding. Cleaning is performed. This regular dry cleaning causes a change in working conditions in the solder printing operation. When periodic dry cleaning is performed, the fact that the cleaning has been performed is sent from the solder printer 24 to the support device 10 as the processing information that is information related to the work machine. Implementation is recognized as a change in working conditions. In the case of dry cleaning, all the solder lands to be printed are identified as affected parts, and the smallest solder lands, the largest solder lands, the two closest solder lands, and the X direction and Y direction are monitored parts.
  • the solder land closest to each of the both ends of the board in each of the above, the solder land located at the center of the board is certified.
  • Area variation amount before dry cleaning in each of the monitored site, the process capability index C pK and dry cleaning before the area change amount for each of the volume variation, the process capability index C pK is stability index values for the volume change amount Are calculated for each of the monitoring target parts, and the deterioration of the work quality is determined.
  • wet cleaning is determined as the first order improvement process
  • vacuum cleaning is determined as the second order improvement process.
  • the control data can be selected appropriately according to changes in work conditions, and the identification of affected parts, the rules for qualifying monitored parts, stability index values, countermeasures, etc. can be set arbitrarily. Has been. That is, the mounting apparatus 10 can easily cope with a wide variety of work condition fluctuations.

Abstract

The present invention efficiently provides quality-related assistance for the manufacture of electrical circuits by means of an electrical-circuit manufacturing line. On the basis of processing-device-related information that includes information on operations performed on substrates by a substrate-processing device and/or information on actions performed on said substrate-processing device, a change in substrate processing conditions is recognized (154); work locations in which said change could affect work quality are identified and at least one of said work locations is selected to monitor (156); and a determination is made regarding change in work quality at said location(s) (158). Said determination is made by comparing the following: comparison data regarding circuit boards processed before the abovementioned change in substrate processing conditions; and comparison data regarding circuit boards processed after said change. Said comparison data includes at least one of the following: operation-dependent data acquired so as to depend on the operations performed by the abovementioned substrate-processing device; and inspection data from an inspection device that inspects work results.

Description

電気回路製造支援装置および電気回路製造支援方法Electric circuit manufacturing support apparatus and electric circuit manufacturing support method
 本発明は、電気回路製造ラインによる電気回路の製造を支援するための装置および方法に関する。 The present invention relates to an apparatus and a method for supporting the production of an electric circuit by an electric circuit production line.
 電気回路製造ラインによる電気回路の製造の支援に対しては、従来から、種々の検討がなされており、例えば、製造された電気回路の品質に関する支援を行うシステムとして、下記特許文献に記載されたシステムが存在する。このシステムは、クリームはんだの印刷作業,電気部品の装着作業等の回路基板に対する作業(以下、「対基板作業」と言う場合がある)を行う機器である対基板作業機と、その対基板作業機による作業結果を検査する検査機を備えており、その検査機の検査データに基づいて、不良と認定される基準に達しないまでの品質低下を把握し、それに対処することで、製造される電気回路の品質に対する高い信頼性を維持している。 Conventionally, various studies have been made on the support for manufacturing an electric circuit by an electric circuit manufacturing line. For example, a system for supporting the quality of the manufactured electric circuit is described in the following patent document. System exists. This system is a machine for board work, which is a device for performing work on circuit boards (hereinafter sometimes referred to as “to board work”) such as cream solder printing work, electrical component mounting work, and the like. It is manufactured by inspecting the work results by the machine, based on the inspection data of the inspection machine, grasping the quality degradation until it does not reach the standard certified as defective and dealing with it Maintains high reliability for the quality of electrical circuits.
特開平6-112295号公報JP-A-6-112295
 対基板作業が行われる部位は、1つの回路基板に数多くあり、それらすべての部位についての品質低下を監視することが望ましい。しかしながら、すべての作業部位を監視する場合、それらすべての作業部位に対して品質低下を判断するためのデータ処理を行わなければならず、相当の処理時間を必要とする。その一方で、品質不良の発生のほとんどは、対基板作業を行う機器が有する各種のデバイスの交換、回路基板,電気部品,クリームはんだ等の資材についてのロットの変更、作業手順,作業動作についての変更,対基板作業機のオペレータの交替をも含む作業環境の変化等、諸々の作業条件の変動に起因しているという事実が存在している。本発明は、そのような実情に鑑みてなされたものであり、電気回路製造ラインによる電気回路の製造の品質面における支援を効率的に行うことのできる装置および方法を提供することを課題とする。 There are a lot of parts on the circuit board where the substrate work is performed, and it is desirable to monitor the quality deterioration of all the parts. However, when all work parts are monitored, it is necessary to perform data processing for determining the quality deterioration for all the work parts, which requires considerable processing time. On the other hand, most of the occurrences of quality defects are about the exchange of various devices in equipment that performs board work, change of lots about circuit boards, electrical components, cream solder, etc., work procedures, work operations There is a fact that it is caused by changes in various work conditions such as changes and changes in the work environment including the change of the operator of the substrate work machine. This invention is made | formed in view of such a situation, and makes it a subject to provide the apparatus and method which can perform efficiently the assistance in the quality side of manufacture of the electric circuit by an electric circuit manufacturing line. .
 上記課題を解決するために、本発明の電気回路製造支援装置および支援方法は、
 電気回路を構成する回路基板に対する作業である対基板作業を実行する対基板作業機を備えた電気回路製造ラインによる電気回路の製造を支援するための電気回路製造支援装置および支援方法であって、
 対基板作業において前記対基板作業機が行った動作と前記対基板作業機に対して行われた処置との少なくとも一方に関する情報を含む作業機関連情報に基づいて、対基板作業における作業条件の変動である作業条件変動を認識し、
 その認識された作業条件変動が作業品質に影響を及ぼす可能性のある作業部位を特定し、その特定された作業部位の少なくとも1つを、監視対象部位として認定し、
 対基板作業機の動作に依拠して取得された動作依拠取得データと、対基板作業機による対基板作業の作業結果を検査する検査機による検査データとの少なくとも一方を含む対照用データの、上記認識された作業条件変動の発生前に対基板作業が実行された回路基板についてのものと、その作業条件変動の発生後に対基板作業が実行された回路基板についてのものとを対照して、監視対象部位の作業品質の変化に関する判断を行うことを特徴とする。
In order to solve the above problems, an electrical circuit manufacturing support apparatus and support method of the present invention include:
An electric circuit manufacturing support apparatus and a support method for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with a counter board working machine for executing a counter board operation, which is an operation for a circuit board constituting an electric circuit,
Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work Recognize working condition fluctuations,
Identifying a work site where the recognized variation in work conditions may affect work quality, certifying at least one of the identified work sites as a monitoring target site,
The control data including at least one of the operation-based acquisition data acquired based on the operation of the substrate work machine and the inspection data by the inspection machine that inspects the work result of the substrate work by the substrate work machine, Monitored against circuit boards that have undergone on-board work prior to the occurrence of a recognized change in work conditions versus those on circuit boards that have undergone on-board work after the occurrence of the change in work conditions It is characterized by making a judgment regarding a change in work quality of the target part.
 本発明の電気回路製造支援装置および支援方法によれば、作業条件の変動をトリガとして、品質の変化が監視される。また、発生した作業条件変動による影響を考慮して、品質を監視すべき部位を絞ることが可能である。したがって、電気回路製造ラインによって製造される電気回路の品質低下を効率的に監視することが可能となる。つまり、効率的な品質面での支援が可能となるのである。 According to the electrical circuit manufacturing support apparatus and the support method of the present invention, the change in quality is monitored with the change of the working condition as a trigger. In addition, it is possible to narrow down the parts whose quality should be monitored in consideration of the influence caused by the generated working condition fluctuation. Therefore, it is possible to efficiently monitor the deterioration of the quality of the electric circuit manufactured by the electric circuit manufacturing line. In other words, efficient quality support is possible.
発明の態様Aspects of the Invention
 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。そして、請求可能発明の対象のうちのいくつかのものが請求項に記載の発明となる。 Hereinafter, some aspects of the invention that is recognized as being capable of being claimed in the present application (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. As with the claims, each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is merely for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combination of the constituent elements constituting the invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiments, etc., and as long as the interpretation is followed, a mode in which other components are added to the mode of each section. In addition, an aspect in which some constituent elements are deleted from the aspect of each item can be an aspect of the claimable invention. Some of the objects of the claimable invention become the invention described in the claims.
 なお、以下の各項において、(1)項が請求項1に相当し、(4)項~(7)項が請求項2~請求項5にそれぞれ相当する。また、(11)項が請求項6に相当する。 In each of the following items, item (1) corresponds to claim 1, and items (4) to (7) correspond to claims 2 to 5, respectively. Further, the item (11) corresponds to the sixth aspect.
 (1)電気回路を構成する回路基板に対する作業である対基板作業を実行する対基板作業機を備えた電気回路製造ラインによる電気回路の製造を支援するための電気回路製造支援装置であって、
 対基板作業において前記対基板作業機が行った動作と前記対基板作業機に対して行われた処置との少なくとも一方に関する情報を含む作業機関連情報に基づいて、対基板作業における作業条件の変動である作業条件変動を認識する条件変動認識部と、
 その認識された作業条件変動が作業品質に影響を及ぼす可能性のある作業部位を特定し、その特定された作業部位の少なくとも1つを、監視対象部位として認定する監視対象部位認定部と、
 前記対基板作業機の動作に依拠して取得された動作依拠取得データと、前記対基板作業機による対基板作業の作業結果を検査する検査機による検査データとの少なくとも一方を含む対照用データの、前記認識された作業条件変動の発生前に対基板作業が実行された回路基板についてのものと、その作業条件変動の発生後に対基板作業が実行された回路基板についてのものとを対照して、前記監視対象部位の作業品質の変化に関する判断を行う対象部位品質判断部と
 を備えた電気回路製造支援装置。
(1) An electric circuit manufacturing support apparatus for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with an anti-substrate work machine for executing an anti-substrate work that is an operation for a circuit board constituting an electric circuit,
Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work A condition fluctuation recognizing unit for recognizing work condition fluctuations,
A monitoring part identifying unit that identifies a working part where the recognized work condition variation may affect work quality, and authorizes at least one of the identified working parts as a monitoring target part;
Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine The circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred. An electrical circuit manufacturing support apparatus comprising: a target part quality determination unit that performs a determination on a change in work quality of the monitoring target part.
 本項は、装置のカテゴリに属する請求可能発明の態様、つまり、請求可能発明に係る電気回路製造支援装置(以下、単に、「支援装置」と言う場合がある)の態様である。本項における「対基板作業」は、一般的な電気回路製造において回路基板(以下、単に「基板」と言う場合がある)に対して行われる作業を意味し、例えば、基板の表面にクリーム状はんだを印刷するはんだ印刷作業,はんだが印刷された基板に電気部品(以下、単に「部品」と言う場合がある)を装着する部品装着作業,部品が装着された基板を加熱・冷却してはんだを溶融・凝固することで部品を基板に固定する部品固定作業等、種々の作業が含まれる。また、「対基板作業機」は、それらの対基板作業を行うはんだ印刷機,部品装着機,リフロー炉等の機器が含まれる。「作業部位」は、対基板作業に応じて異なり、一般的には、例えば、はんだ印刷作業では、印刷されるはんだランド(「はんだパッド」と呼ぶこともできる)が、部品装着作業では、装着された電気部品の各々が、部品固定作業では、基板に固定された部品とその部品を固定するために凝固させられたはんだの各々が、それぞれ相当する。なお、作業部位は、任意に設定することもできる。 This section is an aspect of the claimable invention that belongs to the category of apparatus, that is, an aspect of an electric circuit manufacturing support apparatus (hereinafter, simply referred to as “support apparatus”) according to the claimable invention. “Working against the substrate” in this section means a work performed on a circuit board (hereinafter sometimes simply referred to as “substrate”) in general electric circuit manufacturing. Solder printing work for printing solder, component mounting work for mounting electrical components (hereinafter sometimes referred to simply as “components”) on a board on which solder is printed, and soldering by heating and cooling the board on which the component is mounted Various operations such as a component fixing operation for fixing the component to the substrate by melting and solidifying the substrate are included. In addition, the “to-board working machine” includes devices such as a solder printing machine, a component mounting machine, and a reflow furnace that perform these board-to-board work. The “work site” differs depending on the board work, and generally, for example, in solder printing work, printed solder lands (also referred to as “solder pads”) are mounted in component mounting work. In the component fixing operation, each of the electrical components thus obtained corresponds to a component fixed to the substrate and a solder solidified to fix the component. The work site can also be set arbitrarily.
 上記条件変動認識部によって認識される「作業条件変動」について説明すれば、「作業条件」とは、装備される各種デバイス等の対基板作業機の構成や対基板作業機のステータス(状態)、対基板作業において使用される基板,部品,はんだ等の資材、対基板作業における作業手順,作業動作の態様、対基板作業機が動作する若しくは操作される環境等、様々なものが、どのようなものであるかを意味する概念であり、「作業条件変動」とは、それら様々なものが変化する若しくは変更されることを意味する概念である。作業条件変動の具体例は、以下の説明の中で、挙げることとする。 Explaining about the “work condition fluctuation” recognized by the condition fluctuation recognition unit, the “work condition” refers to the configuration of the board working machine such as various devices equipped, the status (state) of the board working machine, What are various things such as the substrate, parts, materials such as solder used in the board work, the work procedure in the board work, the mode of work operation, the environment in which the work machine operates or is operated, etc. The “working condition fluctuation” is a concept that means that various things are changed or changed. A specific example of working condition fluctuation will be given in the following description.
 条件変動認識部による認識において依拠される「作業機関連情報」は、対基板作業機が、1つの基板に対して対基板作業を行った際、どのようなデバイスや資材が使用されたか,どのような動作が行われたか,当該作業機の状態がどのような状態にあったか等を表わす情報を広く意味する。作業機関連情報は、上記「対基板作業機が行った作業に関する情報(以下、「作業実績情報」と言う場合がある)」と「対基板作業機に対して行われた処置に関する情報(以下、「処置情報」と言う場合がある)」との少なくとも一方が含まれる。それらの情報の具体例は、以下の説明の中で、挙げることとする。なお、作業機関連情報は、主に、対基板作業機から送られてくる情報であるが、他の機器から送られてくる情報であってもよく、支援装置自らが取得する情報であってもよい。 The “work machine-related information” that is relied upon in recognition by the condition fluctuation recognition unit is the type of device or material that was used when the anti-substrate work machine performed anti-substrate work on one board. This broadly means information indicating whether such an operation has been performed or what state the work implement is in. The work machine related information includes the above-mentioned “information related to work performed by the work machine against the substrate (hereinafter sometimes referred to as“ work result information ”)” and “information related to the action performed on the work machine against the board (hereinafter referred to as“ work information ”) , “Sometimes referred to as“ treatment information ”)”. Specific examples of such information will be given in the following description. The work implement related information is mainly information sent from the substrate work implement, but may be information sent from other equipment, and is information acquired by the support apparatus itself. Also good.
 条件変動認識部において行われる「作業条件変動の認識」とは、作業条件変動が発生したことを確認することだけを意味するのではなく、発生した作業条件変動の内容を特定することも含まれる。なお、作業条件変動の認識は、その作業条件変動を誘因する事象、つまり、作業条件変動事象を認識することをも意味する。 The “recognition of work condition fluctuation” performed in the condition fluctuation recognition unit does not only mean confirming that the work condition fluctuation has occurred, but also includes specifying the content of the work condition fluctuation that has occurred. . Note that the recognition of a change in work condition also means that an event that causes the change in the work condition, that is, a change in work condition is recognized.
 上記監視対象部位認定部によって特定される「作業条件変動が作業品質に影響を及ぼす可能性のある作業部位(以下、「影響部位」と言う場合がある)」は、1つの基板のすべての作業部位のうちの一部である場合もあり、全部である場合もある。影響部位は、対基板作業の種類,作業条件変動の内容によって異なる。「監視対象部位」は、影響部位のすべてであってもよく、影響部位の一部であってもよい。監視対象部位を多くすることにより、製造される電気回路の品質の信頼性が高くなるが、逆に、後に説明する対象部位品質判断部によって行われる処理の負担が大きくなる。いくつの影響部位を監視対象部位として認定するか、どの影響部位を監視対象部位として認定するか等は、対基板作業の種類,作業条件変動の内容等を考慮しつつ、上記品質の信頼性と処理の負担とに鑑みて設定すればよい。 The “work site where fluctuations in work conditions may affect the work quality (hereinafter sometimes referred to as“ influenced site ”)” identified by the monitoring target site identification unit is all work on one board. It may be a part of the part, or it may be the whole. The affected area varies depending on the type of work for the substrate and the contents of the work condition variation. The “monitoring target site” may be all of the affected site or a part of the affected site. Increasing the number of monitoring target parts increases the reliability of the quality of the electric circuit to be manufactured, but conversely increases the burden of processing performed by the target part quality determination unit described later. The number of affected parts to be certified as monitored parts and which affected parts are certified as monitored parts are determined based on the reliability of the above quality, taking into account the type of work on the board, the contents of work condition fluctuations, etc. What is necessary is just to set in view of the burden of processing.
 上記対象部位品質判断部によって行われる「監視対象部位の作業品質の変化に関する判断」は、例えば、監視対象部位対して行われた対基板作業の品質の水準の変化についての判断を意味する。簡単に言えば、その部位の作業の品質がどの程度向上若しくは低下したかを把握すること意味する。つまり、この作業品質の水準は、不良が発生する可能性の低さを意味し、作業品質の低下は、不良発生の予兆と考えることができる。したがって、作業品質の低下を把握することは、不良発生の未然防止に有効である。なお、作業品質の水準については、例えば、後に説明する安定度を始めとする品質管理の分野で用いられる種々の統計的指標によって示すことができ、作業品質の変化に関する判断は、作業条件変動発生の前後におけるそれらの指標を比較することによって行えばよい。 The “determination regarding the change in the work quality of the monitoring target part” performed by the target part quality determination unit means, for example, a determination regarding a change in the quality level of the work against the board performed for the monitoring target part. Simply put, it means grasping how much the quality of work at that part has improved or decreased. In other words, this level of work quality means a low possibility of occurrence of defects, and a decrease in work quality can be considered as a sign of occurrence of defects. Therefore, grasping the deterioration in work quality is effective in preventing the occurrence of defects. The level of work quality can be indicated, for example, by various statistical indicators used in the field of quality control including stability described later. What is necessary is just to compare those indexes before and after.
 上記対象部位品質判断部の判断に用いられる「対照用データ」には、上記動作依拠取得データ,上記検査データの少なくとも一方が含まれる。詳しく言えば、「動作依拠取得データ」は、対基板作業機が対基板作業を行う上での動作に関するデータ、動作を行っている際若しくは動作後の対基板作業機の状態(ステータス)に関するデータ、動作の対象物の動き,状態に関するデータ等、対基板作業機において検出・測定・認識可能の種々のデータが含まれる。また、対基板作業機の下流側(直ぐの下流側ではなく、他の機器を挟んだ下流側をも意味する)には、一般的に、検査機が配置されることが多く、「検査データ」は、その検査機によって取得されたデータ、詳しくは、各作業部位の作業結果について検査を行った際のその各作業部位の検査データを採用することができる。対照用データ、詳しくは、動作依拠取得データ,検査データの具体例は、以下の説明の中で、挙げることとする。 The “control data” used for the determination by the target part quality determination unit includes at least one of the operation-based acquisition data and the inspection data. More specifically, the “operation-based acquisition data” is data relating to the operation of the substrate work machine when performing the work on the substrate, and data relating to the state (status) of the substrate work machine during or after the operation. Various data that can be detected / measured / recognized by the work machine with respect to the substrate, such as data on the movement and state of the object to be operated are included. In general, an inspection machine is often arranged on the downstream side of the substrate working machine (which means not the immediate downstream side but also the downstream side sandwiching other equipment). The data acquired by the inspection machine, specifically, the inspection data of each work part when the work result of each work part is inspected can be adopted. Specific examples of the control data, specifically, the operation-based acquisition data and the inspection data will be given in the following description.
 なお、支援装置は、電気回路製造ライン(以下、単に「製造ライン」という場合がある)の外部に設けられるものであってもよく、製造ラインの一部を構成するものであってもよい。また、支援装置は、上記の条件変動認識部,監視対象部位認定部,対象部位品質判断部を始めとしていくつかの機能部によって構成されるが、それらの機能部のすべてが一体となって単一の機器として実現されるものであってもよく、それら機能部の一部が、対基板作業機,それの作業結果を検査する検査機等の機器に配設され、2以上の機器によって実現されるものであってもよい。 Note that the support device may be provided outside the electric circuit manufacturing line (hereinafter may be simply referred to as “manufacturing line”) or may constitute a part of the manufacturing line. The support device is composed of several functional units including the condition variation recognition unit, the monitoring target part recognition unit, and the target part quality judgment unit, all of which are integrated into a single unit. It may be realized as a single device, and some of these functional units are arranged in devices such as an anti-substrate work machine and an inspection machine that inspects the work results of the work, and realized by two or more devices. It may be done.
 (2)前記対基板作業機が、前記対基板作業として回路基板に電気部品を装着する部品装着作業を実行する部品装着機であり、装着された電気部品の各々が前記作業部位とされた(1)項に記載の電気回路製造支援装置。 (2) The on-board working machine is a component mounting machine that executes a component mounting operation for mounting an electrical component on a circuit board as the on-board work, and each of the mounted electric parts is set as the work site ( The electrical circuit manufacturing support apparatus according to item 1).
 (3)前記対基板作業機が、前記対基板作業として回路基板にクリームはんだを印刷するはんだ印刷作業を実行するはんだ印刷機であり、印刷されたはんだランドの各々が前記作業部位とされた(1)項に記載の電気回路製造支援装置。 (3) The said board work machine is a solder printing machine which performs the solder printing work which prints cream solder on a circuit board as said board work, and each printed solder land was made into the said work part ( The electrical circuit manufacturing support apparatus according to item 1).
 上記2つの項に係る態様は、それぞれ、対基板作業機および対基板作業の種類と、その対基板作業における作業部位とに限定を付加した態様である。 The modes according to the above two terms are modes in which limitations are added to the type of the work machine for the board and the work for the board, and the work site in the work for the board.
 (4)前記対象部位品質判断部が、前記監視対象部位に対する対基板作業とその監視対象部位の作業結果との少なくとも一方についての前記認識された作業条件変動の発生前における安定度と発生後における安定度とを比較して、その監視対象部位の作業品質の変化に関する判断を行うように構成された(1)項ないし(3)項のいずれか1つに記載の電気回路製造支援装置。 (4) The target part quality determination unit is configured so that the stability before the occurrence of the recognized change in the work condition and the post-occurrence of at least one of the work on the substrate for the monitoring target part and the work result of the monitoring target part The electric circuit manufacturing support apparatus according to any one of (1) to (3), wherein the apparatus is configured to make a determination regarding a change in work quality of the monitoring target part by comparing the stability.
 本項の態様における「対基板作業の安定度」とは、対基板作業機の動作の安定度、その動作の対象物の動き,状態についての安定度等が含まれる。詳しく言えば、例えば、動作の正確性(逆に言えば、動作ミスを起こさない度合)、動作速度,動作力,動作の対象物の位置や状態の正規の速度,力,位置や状態からのズレ等についてのバラつきの小ささの程度等をも意味する。「作業結果の安定度」とは、作業結果のバラつきの小ささの程度を意味し、具体的には、例えば、対基板作業がはんだ印刷作業である場合には、印刷された各はんだランドの正規の印刷位置からの位置ズレ(回転位置つまり方位についてのズレをも含む概念である)、擦れ,はみ出し,突起等の正規の面積,体積からのズレ(増加,減少)等についての安定度を、部品装着作業である場合には、装着された各部品の正規の装着位置からの位置ズレ等についての安定度を意味し、部品固定作業である場合には、固定された部品の正規の固定位置からの位置ズレ、凝固したはんだのはみ出し等の正規の面積からのズレ(増加)等についての安定度を、それぞれ意味する。それら対基板作業の安定度,作業結果の安定度の具体例については、以下の説明の中で列挙する。対基板作業の安定度,作業結果の安定度は、作業部位の品質水準、つまり、作業部位が不良部位となる可能性の高さを予測するのに好適なパラメータであり、その安定度を基に、品質の変化についての判断、具体的には、品質低下の有無についての判断を行うことで、作業条件変動に起因する不良部位の発生を未然に防止あるいは抑制可能である。なお、上記安定度として、動作ミスの回数若しくは確率,上記各種のズレについての基準値からのズレ量の平均,そのズレ量の管理限界値との関係,ズレのバラつき範囲,工程能力指数等、品質管理の分野で使用されている各種の統計的指標を用いることができる。 “The stability of the work against the substrate” in the aspect of this section includes the stability of the operation of the work machine with respect to the substrate, the movement of the object of the operation, the stability of the state, and the like. More specifically, for example, the accuracy of movement (in other words, the degree to which no movement error occurs), the movement speed, the movement force, and the position and state of the object of movement from the normal speed, force, position and state It also means the degree of smallness of deviation or the like. “Stability of work results” means the degree of variation in work results. Specifically, for example, when the work against the board is a solder printing work, each printed solder land Stability with respect to misregistration from the regular printing position (concept including misalignment of rotational position or orientation), normal area such as rubbing, protrusion, protrusion, etc., deviation from volume (increase, decrease), etc. In the case of component mounting work, it means the stability with respect to the positional deviation of each mounted component from the normal mounting position, and in the case of component fixing work, the fixed fixing of the fixed component It means the stability with respect to misalignment (increase) from the normal area such as misalignment from the position, protrusion of the solidified solder, and the like. Specific examples of the stability of the substrate work and the stability of the work results will be listed in the following description. The stability of the work against the substrate and the stability of the work result are suitable parameters for predicting the quality level of the work part, that is, the high possibility that the work part will be a defective part. In addition, it is possible to prevent or suppress the occurrence of a defective part due to a change in work conditions by making a determination about a change in quality, specifically, whether or not there is a deterioration in quality. In addition, as the above-mentioned stability, the number or probability of operation mistakes, the average of the deviation amount from the reference value for the above-mentioned various deviations, the relationship with the control limit value of the deviation amount, the deviation variation range, the process capability index, etc. Various statistical indicators used in the field of quality control can be used.
 (5)前記監視対象部位認定部が、作業条件変動の作業品質への影響の現れ易さを考慮して設定された規則に基づき、前記特定された作業部位のいくつかのものを、前記監視対象部位として認定するように構成された(1)項ないし(4)項のいずれか1つに記載の電気回路製造支援装置。 (5) The monitoring target part certifying unit monitors some of the specified work parts based on a rule set in consideration of easy appearance of the influence of work condition fluctuation on work quality. The electric circuit manufacturing support device according to any one of items (1) to (4) configured to be recognized as a target part.
 上述の影響部位は、対基板作業の種類,作業条件変動の内容等によっては、かなりの数になる場合もある。本項の態様によれば、影響部位が多い場合であっても、電気回路の品質低下を効率的に監視することが可能である。なお、上記「作業条件変動の作業品質への影響の現れ易さを考慮して設定された規則」は、言い換えれば、例えば、作業条件変動によって品質がより低下し易い部位を選出するための規則であり、対基板作業の種類,作業条件変動の内容等に応じて、作業部位の大きさ、作業部位の基板上の位置等に基づいて設定すればよい。 The above-mentioned influence part may be a considerable number depending on the type of work on the board, the contents of work condition variation, and the like. According to the aspect of this section, it is possible to efficiently monitor the deterioration of the quality of the electric circuit even when there are many affected parts. In addition, the above-mentioned “rules set in consideration of the ease of appearance of the influence of work condition fluctuations on work quality” are, in other words, rules for selecting a part whose quality is more likely to deteriorate due to work condition fluctuations, for example. It may be set based on the size of the work site, the position of the work site on the substrate, etc., depending on the type of work on the substrate, the contents of work condition fluctuations, and the like.
 (6)当該電気回路製造支援装置が、さらに、
 前記対象部位品質判断部が、前記監視対象部位の作業品質の低下の程度が設定程度を超えていると判断した場合に、その監視対象部位の作業品質を改善するための改善処置を決定する改善処置決定部と、
 その改善処置決定部によって決定された改善処置を、前記対基板作業機と前記電気回路製造ラインのオペレータとの少なくとも一方に通知する処置通知部と
 を備えた(1)項ないし(5)項のいずれか1つに記載の電気回路製造支援装置。
(6) The electrical circuit manufacturing support device further includes:
When the target part quality determination unit determines that the degree of deterioration of the work quality of the monitoring target part exceeds the set level, an improvement for determining an improvement measure for improving the work quality of the monitoring target part A treatment determining unit;
Item (1) to Item (5), further comprising a treatment notification unit that notifies the improvement treatment determined by the improvement treatment determination unit to at least one of the on-board work machine and the operator of the electric circuit manufacturing line. The electrical circuit manufacturing support apparatus according to any one of the above.
 本項の態様によれば、作業条件変動に起因して監視対象部位の品質低下が生じた場合、その作業条件変動に応じた適切な処置が決定され、その処置が通知される。そして、その処置が施されることによって、不良の発生のより確実な未然防止・抑制がなされることになる。その意味において、本項の態様によれば、電気回路の品質面においてより進んだ支援を行うことが可能となる。品質低下と判断された場合の改善処置の決定において、どのような改善処置を決定するかについては、作業条件変動の内容に応じて予め設定しておき、実際の決定は、その設定に従って行えばよい。なお、対基板作業機は、自身への改善処置の通知により、その改善処置を自動的に実行可能に構成されていることが望ましい。 According to the aspect of this section, when the quality of the monitoring target part is deteriorated due to the work condition fluctuation, an appropriate action according to the work condition fluctuation is determined and the action is notified. And by performing the treatment, the occurrence of defects can be prevented and suppressed more reliably. In that sense, according to the aspect of this section, it is possible to provide more advanced support in terms of the quality of the electric circuit. In determining the improvement measures when it is determined that the quality is deteriorated, what kind of improvement measures should be determined is set in advance according to the contents of the change in the working conditions, and the actual determination can be made according to the settings. Good. In addition, it is desirable that the substrate working machine is configured to be able to automatically execute the improvement procedure by notifying the improvement procedure to itself.
 (7)前記改善処置決定部が、前記決定された改善処置が前記対基板作業機に対して施されたにも拘わらず前記監視対象部位の作業品質の改善が見られないときには、施された改善処置とは別の改善処置を決定するように構成され、
 前記処置通知部が、その別の改善処置を前記対基板作業機と前記電気回路製造ラインのオペレータとの少なくとも一方に通知するように構成された(6)項に記載の電気回路製造支援装置。
(7) The improvement treatment determination unit is applied when improvement of the work quality of the monitoring target portion is not seen even though the determined improvement treatment is applied to the substrate work machine. Configured to determine a remedial action separate from the remedial action,
The electrical circuit manufacturing support apparatus according to (6), wherein the treatment notifying unit is configured to notify at least one of the anti-substrate work machine and an operator of the electrical circuit production line of the other improvement measures.
 本項の態様によれば、電気回路の品質面に関し、さらに進んだ支援が可能となる。複数の改善処置のうちどの処置を決定するかについては、作業条件変動の内容、改善処置の実施のし易さ,効果の程度等を考慮して、改善処置の優先順位を設定しておき、実際の決定は、その設定に従って行えばよい。 ) According to the aspect of this section, it is possible to further support for the quality of the electric circuit. Regarding which of the multiple improvement actions to decide, the priority of improvement actions should be set in consideration of the contents of changes in work conditions, ease of implementation of improvement actions, the degree of effect, etc. The actual decision may be made according to the setting.
 (11)電気回路を構成する回路基板に対する作業である対基板作業を実行する対基板作業機を備えた電気回路製造ラインによる電気回路の製造を支援するための電気回路製造支援方法であって、
 対基板作業において前記対基板作業機が行った動作と前記対基板作業機に対して行われた処置との少なくとも一方に関する情報を含む作業機関連情報に基づいて、対基板作業における作業条件の変動である作業条件変動を認識する条件変動認識ステップと、
 その認識された作業条件変動が作業品質に影響を及ぼす可能性のある作業部位を特定し、その特定された作業部位の少なくとも1つを、監視対象部位として認定する監視対象部位認定ステップと、
 前記対基板作業機の動作に依拠して取得された動作依拠取得データと、前記対基板作業機による対基板作業の作業結果を検査する検査機による検査データとの少なくとも一方を含む対照用データの、前記認識された作業条件変動の発生前に対基板作業が実行された回路基板についてのものと、その作業条件変動の発生後に対基板作業が実行された回路基板についてのものとを対照して、前記監視対象部位の作業品質の変化に関する判断を行う対象部位品質判断ステップと
 を含む電気回路製造支援方法。
(11) An electric circuit manufacturing support method for supporting the manufacture of an electric circuit by an electric circuit manufacturing line provided with an on-board work machine that performs an on-board work that is a work on a circuit board constituting an electric circuit,
Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work A condition change recognition step for recognizing a change in work condition,
A monitoring target part qualifying step for identifying a work part in which the recognized work condition variation may affect work quality, and certifying at least one of the specified work parts as a monitoring target part;
Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine The circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred. And a target part quality determination step for determining a change in work quality of the monitored part.
 本項は、方法のカテゴリに属する請求可能発明の態様、つまり、請求可能発明に係る電気回路製造支援方法(以下、単に、「支援方法」と言う場合がある)の態様である。本項の態様の技術内容は、先に説明した請求可能発明に係る電気回路製造支援装置の態様の技術内容と同じであるため、ここでの説明は省略する。また、先に掲げた電気回路製造支援装置の態様に関するいくつかの項は、その項において記載されている機能部(具体的に言えば、改善処置決定部,処置通知部等)の「部」を「ステップ」に読み換えて、本項に従属させることで、請求可能発明に係る電気回路製造支援方法のいくつかの態様を示す項となり得る。 This section is an aspect of the claimable invention that belongs to the method category, that is, an aspect of the electric circuit manufacturing support method (hereinafter sometimes simply referred to as “support method”) according to the claimable invention. Since the technical contents of the aspect of this section are the same as the technical contents of the aspect of the electric circuit manufacturing support apparatus according to the claimable invention described above, the description thereof is omitted here. In addition, some items related to the aspect of the electrical circuit manufacturing support apparatus listed above are “parts” of the functional units (specifically, improvement measure determination unit, measure notification unit, etc.) described in the item. Can be converted to “steps” and subordinated to this section to be a section showing some aspects of the electric circuit manufacturing support method according to the claimable invention.
実施例の電気回路製造支援装置と、それが支援する電気回路製造ラインを示す斜視図である。It is a perspective view which shows the electric circuit manufacturing assistance apparatus of an Example, and the electric circuit manufacturing line which it supports. 電気回路製造ラインを構成するはんだ印刷機を、外装パネルを外した状態において示す斜視図である。It is a perspective view which shows the solder printer which comprises an electric circuit manufacturing line in the state which removed the exterior panel. 印刷作業結果検査機による検査を説明するための模式図である。It is a schematic diagram for demonstrating the inspection by a printing work result inspection machine. 部品装着機を構成する装着モジュールの内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the mounting module which comprises a component mounting machine. 装着モジュールに取り付け可能な各種作業ヘッドを示す斜視図である。It is a perspective view which shows the various working heads which can be attached to a mounting module. 電気回路製造支援装置において実行される条件変動認識・監視対象部位認定プログラムを示すフローチャートである。It is a flowchart which shows the condition variation recognition and monitoring object site | part recognition program performed in an electric circuit manufacturing assistance apparatus. 電気回路製造支援装置において実行される品質変化判断・対処プログラムを示すフローチャートである。It is a flowchart which shows the quality change judgment and countermeasure program performed in an electric circuit manufacture assistance apparatus. 安定度指標の一種である工程能力指数CpKの定義式およびそれを説明するためのグラフである。It is a definition formula of process capability index C pK which is a kind of stability index, and a graph for explaining it. 品質変化判断・対処プログラムにおいて実行される品質改善サブルーチンを示すフローチャートである。It is a flowchart which shows the quality improvement subroutine performed in a quality change judgment and countermeasure program. 電気回路製造支援装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of an electric circuit manufacturing assistance apparatus.
 以下、請求可能発明を実施するための形態として、請求可能発明の実施例である電気回路製造支援装置および電気回路製造支援方法について、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の形態で実施することができる。 Hereinafter, an electrical circuit manufacturing support apparatus and an electrical circuit manufacturing support method, which are embodiments of the claimable invention, will be described in detail with reference to the drawings. In addition to the following examples, the claimable invention is implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the form described in the above [Aspect of the Invention] section. can do.
 図1に示すように、実施例の電気回路製造支援装置10(以下、単に「支援装置10」と言う場合がある)は、電気回路製造ライン20が行う電気回路の製造を支援する。以下に、まず、電気回路製造ラインについて説明し、その後に、支援装置10による支援処理の概要,いくつかの支援処理の具体例について説明する。 As shown in FIG. 1, the electric circuit manufacturing support device 10 (hereinafter, may be simply referred to as “support device 10”) of the embodiment supports the manufacturing of the electric circuit performed by the electric circuit manufacturing line 20. Below, an electric circuit manufacturing line is demonstrated first, and the outline | summary of the assistance process by the assistance apparatus 10 and the specific example of some assistance processes are demonstrated after that.
 ≪1.電気回路製造ライン≫
 i)電気回路製造ラインの全体構成
 図1に示すように、電気回路製造ライン20(以下、単に、「製造ライン20」と略す場合がある)は、上流側から順に、基板投入器22,はんだ印刷機24,印刷作業結果検査機26,第1搬送経路切換器28,部品装着機30,第2搬送経路切換器32,装着作業結果検査機34,リフロー炉36,最終検査機38が、並んで配置されており、複数の基板が、それら機器を順次通過して、電気回路の製造が行われる。印刷作業結果検査機26,装着作業結果検査機34,リフロー炉36が、対基板作業機であり、それぞれが行うはんだ印刷作業,部品装着作業,部品固定作業が、対基板作業である。
<< 1. Electrical circuit production line≫
i) Overall Configuration of Electric Circuit Manufacturing Line As shown in FIG. 1, an electric circuit manufacturing line 20 (hereinafter sometimes simply referred to as “manufacturing line 20”) includes, in order from the upstream side, a substrate feeder 22 and solder. The printing machine 24, the printing work result inspection machine 26, the first transport path switching device 28, the component mounting machine 30, the second transport path switching device 32, the mounting work result inspection machine 34, the reflow furnace 36, and the final inspection machine 38 are arranged. The plurality of substrates sequentially pass through these devices, and an electric circuit is manufactured. The printing work result inspection machine 26, the mounting work result inspection machine 34, and the reflow furnace 36 are for the board work machine, and the solder printing work, the part mounting work, and the part fixing work performed by each of them are the board work.
 上記機器の各々について、簡単に説明すれば、基板投入器22は、複数の基板をスタックして収納しており、順次、基板を1枚ずつ、当該製造ライン20に、詳しく言えば、はんだ印刷機24に投入する。はんだ印刷機24は、投入された基板の表面にクリームはんだをスクリーン印刷する作業(はんだ印刷作業)を行う。印刷作業結果検査機26は、はんだ印刷機24によるはんだ印刷作業の結果を検査する。後に詳しく説明するが、部品装着機30は、2レーンで作業を行うことが可能とされており、第1搬送経路切換器28は、印刷作業結果検査機26から搬出された基板を、部品装着機30の2レーンに振り分ける機能を有している。部品装着機30は、1つのベース40と、ベース40に並んで配置されてそれぞれが部品装着装置として機能する6つの装着モジュール42と、それら装着モジュール42を統括して制御する統括制御装置としてのモジュール統括コントローラ44とから構成されており、はんだが印刷された基板が、6つの装着モジュール42を順次通過して搬送される間に、各装着モジュール42によって部品を装着する作業(部品装着作業)が行われて、当該基板への部品装着作業が完了するように構成されている。第2搬送経路切換器32は、部品装着機30において2レーンで搬送されてきた基板の搬送経路を1つの経路に集める機能を有している。装着作業結果検査機34は、部品装着機30による部品装着作業の結果を検査する。リフロー炉36は、部品が装着された基板を加熱することによってクリームはんだを溶融させた後、冷却することでそのはんだを凝固させて、部品の基板への固定作業(部品固定作業)を行う。最終検査機38は、当該製造ライン20の末尾に配置され、各機器によって対基板作業が行われて製造された電気回路の最終検査を行う。なお、本製造ライン20は、各機器24,26,30,34,36,38を統括して制御するラインコントローラ46を備えている。このラインコントローラ46は、それらの各機器とLAN48を介して接続されている。また、支援装置10も、LAN48に接続されており、LAN48を介して、各機器24,26,30,34,36,38およびラインコントローラ46と接続されている。以下に、主要な機器について、個別に詳しく説明する。 Briefly explaining each of the above devices, the substrate feeder 22 stores a plurality of substrates in a stacked manner, and sequentially puts the substrates one by one into the production line 20, more specifically, solder printing. The machine 24 is charged. The solder printer 24 performs an operation (solder printing operation) of screen-printing cream solder on the surface of the substrate that has been input. The printing work result inspection machine 26 inspects the result of the solder printing work by the solder printing machine 24. As will be described in detail later, the component mounting machine 30 can perform work in two lanes, and the first transport path switching unit 28 mounts the board unloaded from the printing work result inspection machine 26 on the component mounting. It has a function to distribute to the two lanes of the machine 30. The component mounting machine 30 is a base 40, six mounting modules 42 that are arranged side by side on the base 40 and each function as a component mounting device, and an overall control device that controls these mounting modules 42 in an integrated manner. The module integrated controller 44 is configured to mount a component by each mounting module 42 while the board on which the solder is printed passes through the six mounting modules 42 in sequence (component mounting operation). And the component mounting work on the board is completed. The second transport path switching unit 32 has a function of collecting the transport paths of the boards transported in two lanes in the component mounting machine 30 into one path. The mounting operation result inspection machine 34 inspects the result of the component mounting operation by the component mounting machine 30. The reflow furnace 36 melts the cream solder by heating the substrate on which the component is mounted, and then solidifies the solder by cooling to perform a fixing operation of the component to the substrate (component fixing operation). The final inspection machine 38 is disposed at the end of the production line 20 and performs final inspection of an electric circuit manufactured by performing a counter-to-board operation by each device. The production line 20 includes a line controller 46 that controls the devices 24, 26, 30, 34, 36, and 38 in an integrated manner. The line controller 46 is connected to these devices via a LAN 48. The support apparatus 10 is also connected to the LAN 48, and is connected to the devices 24, 26, 30, 34, 36, 38 and the line controller 46 via the LAN 48. The main equipment will be described in detail below individually.
 ii)はんだ印刷機
 はんだ印刷機24は、図2に示すように、角パイプを主体に構成されたベースフレーム50を有しており、そのベースフレーム50に支持されて配設された基板コンベア装置52,基板保持・昇降装置54(図では、スクリーン56に隠れて一部しか現われていない),スクリーン保持装置58,スキージ装置60,クリーニング装置62等によって構成されている。
ii) Solder printer As shown in FIG. 2, the solder printer 24 has a base frame 50 mainly composed of square pipes, and is a substrate conveyor device that is supported and arranged on the base frame 50. 52, a substrate holding / lifting device 54 (only a part of the device is hidden behind the screen 56 in the figure), a screen holding device 58, a squeegee device 60, a cleaning device 62, and the like.
 基板コンベア装置52は、基板を上流側から下流側に搬送するとともに、スクリーン56の下方における所定の作業位置に停止させる機能を有している。基板保持・昇降装置54は、作業位置に停止している基板を保持して上昇・下降させる。スクリーン保持装置58は、スクリーン56を保持する保持枠64と、スクリーン56の位置を調整すべく保持枠64の位置調整を行う4つの保持枠位置調整機構66とを有している。スキージ装置60は、1対のスキージ68と、それら1対のスキージ68の各々を上下させるスキージ上下機構70とを有するスキージユニット72と、1対のスキージ68を前後に動かすべくスキージユニット72を前後に移動させるユニット移動機構74とを含んで構成されている。 The substrate conveyor device 52 has a function of transporting the substrate from the upstream side to the downstream side and stopping the substrate at a predetermined work position below the screen 56. The substrate holding / lifting device 54 holds and lifts / lowers the substrate stopped at the work position. The screen holding device 58 includes a holding frame 64 that holds the screen 56 and four holding frame position adjustment mechanisms 66 that adjust the position of the holding frame 64 in order to adjust the position of the screen 56. The squeegee device 60 includes a squeegee unit 72 having a pair of squeegees 68 and a squeegee raising / lowering mechanism 70 for moving the pair of squeegees 68 up and down, and moving the pair of squeegee units forward and backward. And a unit moving mechanism 74 to be moved.
 基板コンベア装置52によって、上流側から搬入された基板は、上記作業位置で停止させられ、その停止させられた基板は、基板保持・昇降装置54によって保持され、その後上昇させられ、スクリーン56の下面に押し当てられる。スクリーン56には、はんだランド(「はんだパッド」とも呼ばれる)を形成するための開口(透孔)が設けられる一方、スクリーン56の上面には、クリームはんだが供給されている。1対のスキージ68の一方のみがスクリーンの56の上面に押し当てられた状態で、スキージユニット72が、ユニット移動機構74によって、前後の一方に移動させられることで、スクリーン56の上面に供給されているクリームはんだが、スクリーン56の開口を通って、押し当てられた基板の上面に付着させられる。それによって、はんだランドが、開口によって規定される特定のランドパターンで基板の上面に形成される。このようにして、基板表面へのはんだ印刷が完了する。印刷が完了した基板は、基板保持・昇降装置54に下降させられた後、保持が解除され、基板コンベア装置52によって、下流側に搬出される。はんだ印刷機では、このようにして、1つの基板に対するはんだ印刷作業が行われる。 The substrate carried in from the upstream side by the substrate conveyor device 52 is stopped at the above-mentioned working position, and the stopped substrate is held by the substrate holding / lifting device 54 and then raised, and the lower surface of the screen 56 Pressed against. The screen 56 is provided with openings (through holes) for forming solder lands (also referred to as “solder pads”), and cream solder is supplied to the upper surface of the screen 56. With only one of the pair of squeegees 68 pressed against the upper surface of the screen 56, the squeegee unit 72 is moved to one of the front and rear by the unit moving mechanism 74, thereby being supplied to the upper surface of the screen 56. The cream solder is applied to the upper surface of the pressed substrate through the opening of the screen 56. Thereby, solder lands are formed on the upper surface of the substrate with a specific land pattern defined by the openings. In this way, solder printing on the substrate surface is completed. After the printing is completed, the substrate is lowered by the substrate holding / elevating device 54, then the holding is released, and the substrate is conveyed to the downstream side by the substrate conveyor device 52. In the solder printer, the solder printing operation for one substrate is performed in this way.
 なお、はんだ印刷の際、スクリーン56と基板保持・昇降装置54によって保持された基板との位置合わせが行われる。図には省略しているが、はんだ印刷機24は、スクリーン56と、上昇させられる前の状態の基板との間を移動してスクリーン56の下面と基板の上面との両者を撮像可能な撮像装置を有している。この撮像装置によって、基板の表面に付された基板基準マークと、スクリーン56の下面に付されたスクリーン基準マークとが撮像され、それらの撮像によって得られた撮像データを基に、基板とスクリーンとの相対位置ズレ量が把握される。その把握された相対位置ズレ量に基づいて、保持枠位置調整機構66によってスクリーン56の位置が調整され、その後に、基板保持・昇降装置54によって基板が上昇させられ、はんだ印刷が行われる。 Note that, during solder printing, the screen 56 and the substrate held by the substrate holding / lifting device 54 are aligned. Although not shown in the drawing, the solder printer 24 moves between the screen 56 and the substrate in a state before being raised, and can image both the lower surface of the screen 56 and the upper surface of the substrate. I have a device. With this imaging device, the substrate reference mark attached to the surface of the substrate and the screen reference mark attached to the lower surface of the screen 56 are imaged. Based on the imaging data obtained by the imaging, the substrate and the screen The amount of relative positional deviation is grasped. Based on the grasped relative positional deviation amount, the position of the screen 56 is adjusted by the holding frame position adjusting mechanism 66, and then the board is raised by the board holding / lifting device 54, and solder printing is performed.
 上記クリーニング装置62は、はんだランドの擦れ,はみ出しといった面積・体積の過少若しくは過多が発生した場合等に、スクリーン56の下面を清浄する装置である。クリーニング装置62は、1対のローラに捲回されてそれらの間に渡された不織布76と、洗浄液であるアルコールを不織布76に含浸させるためのノズル78とを有するクリーニングユニット80を有しており、そのクリーニングユニット80が、図では隠れているユニット移動機構によって、前後に移動させられるように構成されている。不織布76がスクリーン56の下面に接触する状態で、ユニット移動機構によって、クリーニングユニット80が移動させられることで、スクリーン56の下面が、その不織布76によって拭かれるようにして清浄される。なお、不織布76の下方には、その不織布76をバックアップするバックアップ部材82が設けられており、不織布76はそのバックアップ部材82にバックアップされた状態で、スクリーン56の下面に接触させられる。クリーニングユニット80には、図示しないバキューム吸引器が設けられており、その吸引器によって、バックアップ部材82に設けられたスロットおよび不織布76を介して、スクリーン56に付着している付着物を吸引することが可能となっている。クリーニング装置62によるクリーニングは、アルコールの不織布76への含浸および吸引器による吸引を伴わずに行われるドライクリーニング,アルコールの含浸を伴って行われるウェットクリーニング,アルコールの含浸および吸引を伴って行われるバキュームクリーニングの3つのモードで実施可能とされており、それらのモードのいずれかが選択されて、その選択されたモードで、スクリーン56の下面が清浄される。なお、クリーニング装置62は、定期的に自動で、外部からの信号に基づいて自動で、あるいは、オペレータの操作によって手動で、クリーニングを行うようにされている。 The cleaning device 62 is a device that cleans the lower surface of the screen 56 when the area / volume is excessive or excessive, such as solder land rubbing or protrusion. The cleaning device 62 has a cleaning unit 80 having a non-woven fabric 76 wound around a pair of rollers and passed between them, and a nozzle 78 for impregnating the non-woven fabric 76 with alcohol as a cleaning liquid. The cleaning unit 80 is configured to be moved back and forth by a unit moving mechanism that is hidden in the drawing. The cleaning unit 80 is moved by the unit moving mechanism while the nonwoven fabric 76 is in contact with the lower surface of the screen 56, so that the lower surface of the screen 56 is cleaned by being wiped by the nonwoven fabric 76. A backup member 82 for backing up the nonwoven fabric 76 is provided below the nonwoven fabric 76, and the nonwoven fabric 76 is brought into contact with the lower surface of the screen 56 while being backed up by the backup member 82. The cleaning unit 80 is provided with a vacuum suction device (not shown), and the suction material sucks the deposits adhering to the screen 56 through the slot and the nonwoven fabric 76 provided in the backup member 82. Is possible. The cleaning by the cleaning device 62 is dry cleaning performed without impregnation of alcohol into the nonwoven fabric 76 and suction with a suction device, wet cleaning performed with alcohol impregnation, and vacuum performed with alcohol impregnation and suction. The three modes of cleaning can be performed, and any one of these modes is selected, and the lower surface of the screen 56 is cleaned in the selected mode. The cleaning device 62 is configured to perform cleaning automatically periodically, automatically based on an external signal, or manually by an operator's operation.
 はんだ印刷機24は、コンピュータを主体とした制御装置であるコントローラ84を備えており、当該はんだ印刷機24を構成する上述の各装置,各機構の作動は、そのコントローラ84によって行われる。ちなみに、コントローラ84は、オペレータの操作パネルの操作によって入力されたはんだIDを基に、現在供給されているクリームはんだを把握、管理している。なお、はんだ印刷機24は、スクリーン56の上面に供給されているクリームはんだの粘度調整等のため、当該はんだ印刷機24の内部の温度を調整するエアコンディショナ86をも備えている。 The solder printer 24 includes a controller 84 that is a control device mainly composed of a computer, and the operation of each of the above-described devices and mechanisms constituting the solder printer 24 is performed by the controller 84. Incidentally, the controller 84 grasps and manages the currently supplied cream solder based on the solder ID input by the operation of the operator's operation panel. The solder printer 24 also includes an air conditioner 86 that adjusts the temperature inside the solder printer 24 for adjusting the viscosity of the cream solder supplied to the upper surface of the screen 56.
 iii)印刷作業結果検査機
 印刷作業結果検査機26は、内部構造の図示は省略するが、基板コンベア装置と、検査ヘッドと、その検査ヘッドを移動させるヘッド移動装置とを含んで構成されている。基板コンベア装置は、はんだが印刷された基板を上流側から搬入して下流側に搬出するとともに、所定の検査位置に定置させる機能を有している。検査ヘッドは、検査位置に定置させられた基板の表面の情報を得るための作業ヘッドである。ヘッド移動装置は、いわゆるXY型の移動装置であり、検査ヘッドを基板搬送方向に平行な方向(X方向)に移動させるX方向移動機構と、その機構自体をX方向に直角な方向(Y方向)に移動させるY方向移動機構とを含んで構成されており、基板の上方において、検査ヘッドを、基板の表面に平行な一平面に沿って移動させる。
iii) Printing Work Result Inspection Machine The printing work result inspection machine 26 is configured to include a substrate conveyor device, an inspection head, and a head moving device that moves the inspection head, although illustration of the internal structure is omitted. . The board conveyor device has a function of carrying the solder printed board from the upstream side and carrying it out to the downstream side, and placing it at a predetermined inspection position. The inspection head is a work head for obtaining information on the surface of the substrate placed at the inspection position. The head moving device is a so-called XY type moving device, and an X direction moving mechanism for moving the inspection head in a direction parallel to the substrate transport direction (X direction) and a direction perpendicular to the X direction (Y direction). The Y-direction moving mechanism is moved to move the inspection head along a plane parallel to the surface of the substrate above the substrate.
 はんだ印刷作業の結果、基板の表面には、それぞれが作業部位となる複数のはんだランド(「はんだパッド」と呼ぶこともできる)が形成されている。詳しい説明は省略するが、図3に模式的に示すように、検査ヘッドは、はんだ印刷作業の結果を検査するための印刷結果検査ヘッド90であり、この印刷結果検査ヘッド90は、基板の表面に格子が形成されるよう4方向から斜めにスリット光を照射する光源と、基板の表面に形成された光の格子を2方向から斜めに撮像する撮像装置としてのカメラとを含んで構成されている。照射されたスリット光によってできる格子を構成する光の線92は、基板上のはんだランド94、つまり、はんだが印刷された箇所に形成された部分が、はんだランド94が形成されていない基板自体の表面に形成された部分からシフトすることになる。このシフトの量は、はんだランドの厚み(高さ)によって異なる。このような原理を利用し、カメラによって得られた撮像データを処理することにより、印刷作業結果検査機26は、はんだランド94の、X方向およびY方向の位置ズレ量,回転方向の位置ズレ量(回転角度若しくは方位におけるズレ量),面積および体積を取得する。なお、上記カメラは、複数のはんだランド94を一視野に収めて撮像可能であり、印刷作業結果検査機26では、一度に複数のはんだランド94の検査が可能とされている。 As a result of the solder printing operation, a plurality of solder lands (also referred to as “solder pads”), each serving as a work site, are formed on the surface of the substrate. Although detailed description is omitted, as schematically shown in FIG. 3, the inspection head is a printing result inspection head 90 for inspecting the result of the solder printing operation, and this printing result inspection head 90 is the surface of the substrate. A light source that irradiates slit light obliquely from four directions so that a grating is formed on the substrate, and a camera as an imaging device that images the grating of light formed on the surface of the substrate obliquely from two directions. Yes. A light line 92 constituting a lattice formed by the irradiated slit light is a solder land 94 on the substrate, that is, a portion formed at a place where the solder is printed is on the substrate itself on which the solder land 94 is not formed. It will shift from the part formed in the surface. The amount of this shift varies depending on the thickness (height) of the solder land. By using this principle and processing the image data obtained by the camera, the printing work result inspection machine 26 can detect the positional deviation amount of the solder land 94 in the X and Y directions and the positional deviation amount in the rotational direction. (Amount of deviation in rotation angle or direction), area, and volume are acquired. The camera can image a plurality of solder lands 94 in one field of view, and the printing work result inspection machine 26 can inspect a plurality of solder lands 94 at a time.
 印刷作業結果検査機26は、あるはんだランド94についての上記ズレ量,面積の正規の面積からの変動量である面積変動量,体積の正規体積からの変動量である体積変動量が、そのはんだランド94について規定された限界値(不良判定用限界値)を超えている場合に、そのはんだランド94が、不良部位であると認定し、操作パネルのディスプレイ等を介して、オペレータに、その不良となった作業部位,その不良の内容等の印刷不良情報を報知する。オペレータは、上記報知された情報に基づいて、はんだ印刷機24によるはんだ印刷作業の条件の変更(プログラムの変更,温度の変更,はんだの追加供給,クリーニング装置62によるスクリーン56のクリーニング等が含まれる)を行う。 The printing work result inspection machine 26 has the above-mentioned deviation amount, soldering area 94, the amount of change in area from the normal area, and the amount of volume change, which is the amount of change in volume from the normal volume. When the limit value (defect determination limit value) defined for the land 94 is exceeded, the solder land 94 is recognized as a defective portion, and the defect is notified to the operator via the display on the operation panel. The printing failure information such as the work site and the content of the failure is notified. Based on the notified information, the operator includes changes in the conditions of solder printing work by the solder printer 24 (program change, temperature change, additional supply of solder, cleaning of the screen 56 by the cleaning device 62, etc. )I do.
 iv)部品装着機
 部品装着機30は、基板に部品を装着するための作業機であり、先に説明したように、ベース40と、6つの装着モジュール42と、モジュール統括コントローラ44とを含んで構成されている。図4は外装パネルを外した状態の装着モジュール42を示しており、この図を参照しつつ説明すれば、装着モジュール42は、モジュールベース100と、モジュールベース100に上架されたビーム102と、モジュールベース100に配設された基板コンベア装置104と、当該モジュール42の正面側においてモジュールベース100に交換可能に取り付けられてそれぞれが部品供給装置として機能する複数の部品フィーダ106と、基板コンベア装置104と複数の部品フィーダ106との間においてモジュールベース100に固定されたベース固定式の部品カメラ108と、複数の部品フィーダ106のいずれかから供給される部品を保持してその部品を基板Sに装着するために離脱させる装着ヘッド110(「作業ヘッド」の一種である)と、ビーム102に配設されて装着ヘッド110を移動させるヘッド移動装置112とを含んで構成されている。
iv) Component Mounting Machine The component mounting machine 30 is a working machine for mounting components on a board, and includes a base 40, six mounting modules 42, and a module overall controller 44 as described above. It is configured. FIG. 4 shows the mounting module 42 with the exterior panel removed. With reference to this figure, the mounting module 42 includes a module base 100, a beam 102 overlaid on the module base 100, and a module. A substrate conveyor device 104 disposed on the base 100, a plurality of component feeders 106 that are replaceably attached to the module base 100 on the front side of the module 42, and each function as a component supply device; a substrate conveyor device 104; A base-fixed component camera 108 fixed to the module base 100 between the plurality of component feeders 106 and a component supplied from any of the plurality of component feeders 106 are held and the component is mounted on the substrate S. Mounting head 110 to be removed for the purpose of And a is) is configured to include a head moving device 112 for moving the mounting head 110 is disposed in the beam 102.
 基板コンベア装置104は、基板を搬送するトラック(レーン)を2つ有しており、各トラックに基板を上流側から搬入し、各トラックから下流側に搬出する。基板コンベア装置104は、各トラックの下部に昇降可能な支持テーブルを有しており、所定の位置にまで搬入された基板Sは、上昇した支持テーブルによって支持され、その位置において固定される。つまり、基板コンベア装置104は、部品装着作業において基板Sを所定の作業位置に固定する基板固定装置として機能する。基板コンベア装置104は、各装着モジュール42に配設されているため、当該部品装着機30は、2レーンで部品装着作業を実施可能とされている。ちなみに、基板コンベア装置104による基板の搬送方向である基板搬送方向は、図に示すX方向(Y方向,Z方向とともに矢印で図示)である。 The substrate conveyor device 104 has two tracks (lanes) for transporting the substrate, and the substrate is loaded into each track from the upstream side and unloaded from each track to the downstream side. The substrate conveyor device 104 has a support table that can be moved up and down at the lower part of each track, and the substrate S carried to a predetermined position is supported by the raised support table and fixed at that position. That is, the board conveyor device 104 functions as a board fixing device that fixes the board S to a predetermined work position in the component mounting work. Since the board conveyor device 104 is disposed in each mounting module 42, the component mounting machine 30 can perform component mounting work in two lanes. Incidentally, the substrate transport direction, which is the substrate transport direction by the substrate conveyor device 104, is the X direction shown in the figure (shown with arrows together with the Y direction and Z direction).
 ヘッド移動装置112は、いわゆるXY型移動装置であり、装着ヘッド110が脱着可能に取り付けられるヘッド取付体114と、そのヘッド取付体114をX方向に移動させるX方向移動機構と、ビーム102に支持され、そのX方向移動機構を、装着ヘッド110を部品フィーダ106と基板Sとにわたって移動させるべく移動させるY方向移動機構とを含んで構成されている。なお、ヘッド取付体114の下部には、基板Sの表面を撮像するための基板カメラ116が固定されている。 The head moving device 112 is a so-called XY type moving device, and is supported by the beam 102, a head mounting body 114 to which the mounting head 110 is detachably mounted, an X direction moving mechanism for moving the head mounting body 114 in the X direction, and the beam 102. The X-direction moving mechanism includes a Y-direction moving mechanism that moves the mounting head 110 to move over the component feeder 106 and the substrate S. A substrate camera 116 for capturing an image of the surface of the substrate S is fixed to the lower portion of the head attachment body 114.
 装着ヘッド110は、いわゆるインデックス型の装着ヘッドであり。図5(a)に示すように、それぞれが、部品保持デバイスとして機能して負圧の供給(「圧力が大気圧よりも低下させられること」を意味する)によって部品を下端部において吸着保持する8つの吸着ノズル118を有しており、それらは、リボルバ120に保持されている。リボルバ120は、間欠回転し、特定位置に位置する1の吸着ノズル118が、ノズル昇降機構によって、昇降可能、つまり、上下方向(Z方向)に移動可能とされている。特定位置に位置する吸着ノズル118は、下降した際に、負圧が供給されることによって、部品を保持し、また、負圧の供給が断たれることで、吸着保持している部品を離脱させる。ちなみに、8つの吸着ノズル118の各々は、ノズル回転機構によって、自身の軸線(以下、「ノズル軸線」という場合がある)回りに、つまり、ノズル軸線を中心に回転させられるようになっており、当該装着ヘッド110は、各吸着ノズル118によって保持されている部品の回転位置(「回転姿勢」,「方位」と言うこともできる)を、変更・調整することが可能とされている。 The mounting head 110 is a so-called index type mounting head. As shown in FIG. 5 (a), each functions as a component holding device and sucks and holds the component at the lower end by supplying a negative pressure (meaning that “the pressure is reduced below atmospheric pressure”). Eight suction nozzles 118 are provided and are held by the revolver 120. The revolver 120 rotates intermittently, and one suction nozzle 118 located at a specific position can be moved up and down by the nozzle lifting mechanism, that is, can be moved in the vertical direction (Z direction). When the suction nozzle 118 located at a specific position is lowered, negative pressure is supplied to hold the component, and when the negative pressure is cut off, the suction holding component is removed. Let Incidentally, each of the eight suction nozzles 118 can be rotated around its own axis (hereinafter sometimes referred to as “nozzle axis”) by the nozzle rotation mechanism, that is, around the nozzle axis. The mounting head 110 can change / adjust the rotational positions (also referred to as “rotational posture” and “azimuth”) of the components held by the respective suction nozzles 118.
 複数の部品フィーダ106の各々には、部品保持テープ(複数の部品がテープに保持されたものであり、「部品テーピング」とも呼ばれる)が捲回されたリールが、セットされており、複数の部品フィーダ106の各々は、その部品保持テープを間欠的に送り出すことによって、所定の部品供給部位において、順次、部品を1つずつ供給する。部品の補給は、リールを交換しつつ、部品テーピングを繋ぎ合わせるようにして行ってもよく(スプライシング)また、部品フィーダ106ごとリールを交換して行ってもよい。なお、装着モジュール42は、複数の部品フィーダ106に代えて、いわゆるトレイ型の部品供給装置をも取付可能とされている。なお、部品は部品IDにて管理されており、各装着モジュール42は、自身のコントローラによって、自身においてどんな部品が供給されているかを把握している。 Each of the plurality of component feeders 106 is set with a reel on which a component holding tape (a plurality of components are held on the tape, also called “component taping”) is wound. Each of the feeders 106 supplies parts one by one sequentially at a predetermined part supply site by intermittently sending out the part holding tape. The replenishment of the parts may be performed by splicing the part taping while exchanging the reels (splicing), or may be performed by exchanging the reels together with the part feeder 106. The mounting module 42 can also be attached with a so-called tray-type component supply device in place of the plurality of component feeders 106. The components are managed by the component ID, and each mounting module 42 grasps what components are supplied by itself by its own controller.
 1の装着モジュール42による部品装着作業について説明すれば、まず、基板コンベア装置104によって、作業に供される基板Sが、上流側から搬入され、所定の作業位置にて固定される。次いで、基板カメラ116がヘッド移動装置112によって移動させられ、基板Sの上面に付された基準マークが撮像される。その撮像によって得られた撮像データに基づき、装着位置の基準となる座標系が決定される。次に、ヘッド移動装置112によって、装着ヘッド110が複数の部品フィーダ106の上方に位置させられ、8つの吸着ノズル118の各々において部品が順次保持される。装着ヘッド110が基板Sの上方に移動させられる際中に、部品カメラ108の上方を通過し、吸着ノズル118の各々に保持された部品が、部品カメラ108によって撮像される。その撮像データに基づき、各部品のノズル軸線に対する位置ズレ量(回転位置ズレをも含む概念である)が把握される。続いて、装着ヘッド42は、基板Sの上方に移動させられ、上記位置ズレ量に基づく補正を行いつつ、各部品が、順次、装着プログラムによって定められた設定位置に装着される。装着プログラムによって定められた回数部品フィーダ106と基板Sとの間を装着ヘッド42が往復させられ、装着ヘッド42による部品の保持・装着が、上記のように繰り返されて、1つの装着モジュール42による部品装着作業が完了する。1つの基板Sが、6つの装着モジュール42を通過する際、1つの基板Sに対する各装着モジュール42による上述の部品装着作業が順次行われ、部品装着機30による1つの基板に対する装着作業が完了する。なお、部品装着作業において、吸着ノズル118が複数の部品フィーダ106からの部品を吸着保持する際に、ミスをする(吸着保持できない)場合がある。この吸着保持ミスが発生した場合は、再度、同じ吸着ノズル118で同じ部品フィーダ106からの部品を吸着保持することでリカバリされる。ちなみに、この吸着保持ミスは、部品ごと、吸着ノズル118ごとに、カウントされる。 Describing the component mounting work by the first mounting module 42, first, the board S to be used for the work is carried in from the upstream side by the board conveyor device 104 and fixed at a predetermined work position. Next, the substrate camera 116 is moved by the head moving device 112, and the reference mark attached to the upper surface of the substrate S is imaged. Based on the imaging data obtained by the imaging, a coordinate system serving as a reference for the mounting position is determined. Next, the mounting head 110 is positioned above the plurality of component feeders 106 by the head moving device 112, and the components are sequentially held in each of the eight suction nozzles 118. While the mounting head 110 is moved above the substrate S, the components passing through the component camera 108 and held by each of the suction nozzles 118 are imaged by the component camera 108. Based on the imaging data, a positional deviation amount (a concept including a rotational positional deviation) of each component with respect to the nozzle axis is grasped. Subsequently, the mounting head 42 is moved above the substrate S, and each component is sequentially mounted at a set position determined by the mounting program while performing correction based on the positional deviation amount. The mounting head 42 is reciprocated between the component feeder 106 and the substrate S a number of times determined by the mounting program, and the holding and mounting of the components by the mounting head 42 are repeated as described above, and one mounting module 42 Parts installation work is completed. When one board S passes through the six mounting modules 42, the above-described component mounting work by each mounting module 42 on one board S is sequentially performed, and the mounting work on one board by the component mounting machine 30 is completed. . In the component mounting operation, when the suction nozzle 118 sucks and holds the components from the plurality of component feeders 106, a mistake may not be made (cannot be sucked and held). When this suction holding error occurs, recovery is performed by sucking and holding components from the same component feeder 106 with the same suction nozzle 118 again. Incidentally, this suction holding error is counted for each component and each suction nozzle 118.
 装着モジュール42は、装着ヘッド110に代えて、他の作業ヘッドを取り付け可能である。例えば、図5(b)に示す装着ヘッド122を取り付けることができる。この装着ヘッド122は、いわゆるシングルノズル型の装着ヘッドである。この装着ヘッド122は、部品保持デバイスとしての吸着ノズル124が1つだけ設けられている。一度に1つの部品しか吸着保持することができないが、比較的大きな部品をも吸着保持可能とされている。この装着ヘッド122も、ノズル昇降機構,ノズル回転機構を備えており、吸着ノズル124は、部品の保持・離脱の際に昇降させられ、かつ、部品の回転位置の変更・調整のためにノズル軸線回りに回転させられる。ちなみに、装着ヘッド110が有する8つの吸着ノズル118,装着ヘッド122が有する吸着ノズル124は、自動的に交換可能となっており、交換用の吸着ノズル118,124は、基板コンベア装置104と複数の部品フィーダ106との間に配置されたノズルストッカ126に収容されている。なお、X方向においてノズルストッカ126とで部品カメラ108を挟んだ位置には、ノズルクリーナ128が配設されている。このノズルクリーナ128は、ブラシを主要構成要素とするものであり、吸着ノズル118,124の下端をそのブラシに接触させるようにして装着ヘッド110,122がヘッド移動装置112によって移動させられることで、吸着ノズル118,124に付着している異物等を除去する機能を有している。また、吸着ノズル118,124、装着ヘッド110,122には、ノズルID,ヘッドIDが付されるとともに、各装着モジュール42は、そのノズルID,ヘッドIDを認識する機能を有しており、自身の現在の部品装着作業において使用されている吸着ノズル,作業ヘッドを把握している。 The mounting module 42 can be mounted with another working head instead of the mounting head 110. For example, the mounting head 122 shown in FIG. 5B can be attached. The mounting head 122 is a so-called single nozzle type mounting head. This mounting head 122 is provided with only one suction nozzle 124 as a component holding device. Although only one part can be sucked and held at a time, relatively large parts can be sucked and held. The mounting head 122 also includes a nozzle lifting / lowering mechanism and a nozzle rotating mechanism, and the suction nozzle 124 is lifted / lowered when holding / removing the component, and the nozzle axis line is used for changing / adjusting the rotational position of the component. Rotated around. Incidentally, the eight suction nozzles 118 included in the mounting head 110 and the suction nozzles 124 included in the mounting head 122 are automatically replaceable, and the replacement suction nozzles 118 and 124 are connected to the substrate conveyor device 104 and a plurality of suction nozzles. It is accommodated in a nozzle stocker 126 arranged between the component feeder 106. A nozzle cleaner 128 is disposed at a position where the component camera 108 is sandwiched between the nozzle stocker 126 in the X direction. The nozzle cleaner 128 has a brush as a main component, and the mounting heads 110 and 122 are moved by the head moving device 112 so that the lower ends of the suction nozzles 118 and 124 are in contact with the brush. It has a function of removing foreign substances adhering to the suction nozzles 118 and 124. The suction nozzles 118 and 124 and the mounting heads 110 and 122 are assigned a nozzle ID and a head ID, and each mounting module 42 has a function of recognizing the nozzle ID and the head ID. The suction nozzle and work head used in the current component mounting work are grasped.
 装着モジュール42は、さらに、装着ヘッド110に代えて、例えば、図5(c)に示す検査ヘッド130を取り付け可能である。この検査ヘッド128は、基板Sの表面を撮像可能な撮像装置として、基板カメラ132を備えている。この基板カメラ132は、比較的大きな視野を有し、基板Sに装着された複数の部品を一視野に収めて撮像可能であり、また、比較的解像度の高いカメラである。したがって、基板カメラ132は、装着された部品の装着位置のズレ等に関する検査に適したカメラである(その意味で、以下、「検査用カメラ130」と言う場合がある)。検査ヘッド130を取り付けた装着モジュール42は、部品装着機30の下流側に配置された装着作業結果検査機34と同等の機能を有することとなる。つまり、検査モジュールとして機能することとなる。例えば、検査対象となる部品、つまり、作業部位が多い場合には、この検査機34だけでは、装着結果の検査作業に時間がかかり過ぎることになる。そのような場合に、例えば、6つの装着モジュール42の最下流側に位置するものに検査ヘッド130を取り付け、装着作業結果検査機34に加えてそのモジュール42をも装着作業結果検査機として機能させることで、検査長時間化による当該電気回路製造ラインの生産性の低下を、抑制することが可能となる。なお、それらの作業ヘッド110,122,130の相互の交換は、レバー操作によって、ワンタッチにて行うことができるようになっている。 The mounting module 42 can be further mounted with, for example, an inspection head 130 shown in FIG. 5C instead of the mounting head 110. The inspection head 128 includes a substrate camera 132 as an imaging device capable of imaging the surface of the substrate S. The board camera 132 has a relatively large field of view, can capture a plurality of components mounted on the board S in one field of view, and has a relatively high resolution. Accordingly, the board camera 132 is a camera suitable for inspection relating to a shift of the mounting position of the mounted component (in this sense, it may be hereinafter referred to as “inspection camera 130”). The mounting module 42 to which the inspection head 130 is attached has a function equivalent to that of the mounting work result inspection machine 34 disposed on the downstream side of the component mounting machine 30. That is, it functions as an inspection module. For example, when there are a large number of parts to be inspected, that is, work parts, it takes too much time to inspect the mounting result with only this inspection machine 34. In such a case, for example, the inspection head 130 is attached to the one located on the most downstream side of the six mounting modules 42, and the module 42 functions as a mounting work result inspection machine in addition to the mounting work result inspection machine 34. Thus, it is possible to suppress a decrease in productivity of the electric circuit manufacturing line due to a long inspection time. The working heads 110, 122, and 130 can be exchanged with one touch by lever operation.
 なお、装着モジュール42の各々は、モジュールIDによって識別され、モジュール統括コントローラ44は、そのモジュールIDを把握することで、どの装着モジュール42がベース40上のどの位置に配置されているかを認識している。 Each of the mounting modules 42 is identified by the module ID, and the module controller 44 recognizes which mounting module 42 is located at which position on the base 40 by grasping the module ID. Yes.
 v)装着作業結果検査機
 装着作業結果検査機34は、内部構造の図示は省略するが、印刷作業結果検査機26と同様、基板コンベア装置と、検査ヘッドと、その検査ヘッドを移動させるヘッド移動装置とを含んで構成されている。基板コンベア装置は、部品が装着された基板を上流側から搬入して下流側搬出するとともに、所定の検査位置に定置させる機能を有している。基板コンベア装置およびヘッド移動装置は、印刷作業結果検査機26のものと同様の構成となっているが、検査ヘッドは、印刷作業結果検査機26のものとは異なる構成となっている。装着検査結果検査機34が備える検査ヘッド、つまり、装着検査ヘッドは、基板表面と基板に装着された部品の上面とを上方から撮像する撮像装置としての基板カメラを主要構成要素として構成されたものであり、その基板カメラによって、二次元的な撮像データが取得される。
v) Mounting Work Result Inspection Machine Although the internal structure of the mounting work result inspection machine 34 is not shown, the substrate conveyor device, the inspection head, and the head movement for moving the inspection head are the same as the printing work result inspection machine 26. And the device. The board conveyor device has a function of carrying in a board on which components are mounted from the upstream side and carrying it out to the downstream side and placing the board at a predetermined inspection position. The substrate conveyor device and the head moving device have the same configuration as that of the printing work result inspection machine 26, but the inspection head has a configuration different from that of the printing work result inspection machine 26. The inspection head provided in the mounting inspection result inspection machine 34, that is, the mounting inspection head is configured with a substrate camera as an imaging device that images the substrate surface and the upper surface of a component mounted on the substrate from above as a main component. The two-dimensional imaging data is acquired by the substrate camera.
 部品装着作業によって、数多くの部品が基板の表面に装着され、それらの部品のそれぞれが作業部位となる。装着作業結果検査機34は、装着検査ヘッドの基板カメラによって取得された撮像データに基づいて、装着位置についての部品のX方向およびY方向の位置ズレ量,回転方向のズレ量(回転角度若しくは方位におけるズレ量)を取得し、部品の欠品,部品立ち(いわゆる「チップ立ち」)の発生を確認する。部品の欠品,部品立ちの発生を確認した場合は、その発生の事実をもってその作業部位が作業不良であると認定、つまり、その作業部位が不良部位であると認定する。一方、装着位置の位置ズレに関しては、ある部品の上記ズレ量が、その部品について規定された限界値(不良判定用限界値)を超えている場合に、その部品、つまり、その作業部位が不良部位であると認定する。作業不良を認定した場合に、その不良部位と作業不良の内容等の装着不良情報を、操作パネルのディスプレイ等を介して、オペレータに報知する。オペレータは、上記報知された情報に基づいて、部品装着機30による部品装着作業の条件の変更(位置ズレ補正量等に関するプログラムの変更)や、吸着ノズル,供給される部品の交換等を行う。ちなみに、装着作業結果検査機34の装着検査ヘッドが有する基板カメラは、印刷作業結果検査機26の印刷検査ヘッド90の有するカメラ、部品装着機30に取付られる検査ヘッド122の検査用基板カメラ132と同様、一視野に複数の作業部位(装着された部品)を収めることができ、当該装着作業結果検査機34は、一度に複数の部品についての作業の結果を検査することが可能となっている。 A large number of components are mounted on the surface of the substrate by the component mounting operation, and each of these components becomes a work site. The mounting work result inspection machine 34, based on the imaging data acquired by the substrate camera of the mounting inspection head, the amount of positional displacement of the component in the X and Y directions and the amount of positional displacement (rotation angle or direction). The amount of misalignment) is obtained and the occurrence of missing parts or standing parts (so-called “chip standing”) is confirmed. When it is confirmed that a part is missing or standing, it is recognized that the work site is defective due to the fact of the occurrence, that is, the work site is recognized as a defective part. On the other hand, regarding the displacement of the mounting position, if the amount of deviation of a part exceeds the limit value (defect determination limit value) specified for that part, that part, that is, its work site is defective. It is recognized as a part. When the operation defect is recognized, the operator is notified of the installation failure information such as the defective part and the content of the operation defect via the display of the operation panel. Based on the notified information, the operator changes the condition of the component mounting operation by the component mounting machine 30 (changes in the program related to the misalignment correction amount, etc.), replaces the suction nozzle, and the supplied component. Incidentally, the substrate camera included in the mounting inspection head of the mounting operation result inspection machine 34 includes the camera included in the printing inspection head 90 of the printing operation result inspection machine 26, and the inspection substrate camera 132 of the inspection head 122 attached to the component mounting machine 30. Similarly, a plurality of work parts (mounted parts) can be stored in one field of view, and the mounting work result inspection machine 34 can inspect the results of work on a plurality of parts at a time. .
 vi)リフロー炉
 リフロー炉36は、装着作業結果検査機34から搬入された基板、つまり、部品が装着された基板を搬出口まで搬送するコンベア装置と、コンベア装置によって搬送される基板を加熱するための熱風式,赤外線式等のヒータとを含んで構成されている。部品が装着された基板が、コンベア装置で搬送される最中に、ヒータによって加熱されることで、クリームはんだが溶融し、搬出口付近で冷却(自然冷却)されることによって、そのはんだが凝固して、部品が固定される。コンベア装置による基板の搬送速度、炉内の温度プロファイル(基板が炉内を搬送される際の搬送位置変化に対する基板加熱温度の変化の様子)等は、製造される基板の大きさ,部品数,クリームはんだの種類等に応じて、任意に設定可能とされている。
 vii)最終検査機
 最終検査機38は、装着作業結果検査機34と略同様の構成とされている。検査ヘッドが有する基板カメラによって取得された撮像データに基づいて、部品固定位置についての部品のX方向およびY方向の位置ズレ量,回転方向のズレ量(回転角度若しくは方位におけるズレ量)を取得し、部品の欠品,部品立ち(いわゆる「チップ立ち」)の発生を確認する。部品の欠品,部品立ちの発生を確認した場合は、その発生の事実をもってその作業部位が作業不良であると認定、つまり、その作業部位が不良部位であると認定する。一方、部品固定位置の位置ズレに関しては、ある部品の上記ズレ量が、その部品について規定された限界値(不良判定用限界値)を超えている場合に、その部品、つまり、その作業部位が不良部位であると認定する。本最終検査機38は、それらに加え、凝固したはんだについての検査をも実行する。具体的に言えば、上記撮像データに基づいて、各部品が載置されているはんだランドの各々の外形寸法の正規の外形寸法に対する差(外形寸法変動量)、簡単に言えば、はんだランドの形状不良を確認する。例えば、はんだがダレてはんだランドの面積が過多となった場合には、隣接するはんだランドと繋がり、電気回路がショート等してしまうことになり、はんだランドの外形は、そのような観点から検査され、はんだランドどうしが互いに接触している場合に、それらのはんだランドが不良部位であると認定する。その不良部位と作業不良の内容等の不良情報を、操作パネルのディスプレイ等を介して、オペレータに報知する。オペレータは、上記報知された情報に基づいて、リフロー炉36の搬送速度,温度プロファイルを調整する。なお、部品の固定位置についての不良は、リフロー炉36による部品固定作業の不良だけではなく、部品装着機30による部品装着作業の作業品質の低下によっても引き起こされる。したがって、その意味において、最終検査機38は、リフロー炉36による部品固定作業の作業結果のみならず、部品装着装置30による装着作業の結果を検査する検査機としても機能するものとなっている。つまり、最終検査機38は、装着作業結果検査機としても、また、固定作業結果検査機としても機能するものとなっている。
 viii)ラインコントローラ
 ラインコントローラ46は、製造ライン20を統括して制御する機能を主機能とする制御装置であり、現時点において各機器によって作業されている基板の把握、基板が製造ライン20による電気回路の製造予定数および製造実績数,製造ライン20の製造タクト等の管理、各機器について共通した設定項目についてのオペレータの入力操作による設定処理等を行う。なお、各機器は、現在自身が作業を行っている基板の基板IDを認識する機能を有している。各機器は、自身が対基板作業を行う基板の基板IDを把握しており、ラインコントローラ46は、各機器からの基板ID情報を基に、製造ライン20を追加する基板を管理している。なお、ラインコントローラ46は、そのような機能の他に、オペレータを管理する機能をも有し、オペレータ自身によって入力されたオペレータIDに基づいて、誰が現在製造ライン20のオペレータであるかを把握している。
vi) Reflow furnace The reflow furnace 36 heats the substrate carried from the mounting work result inspection machine 34, that is, the conveyor device that conveys the substrate on which the component is mounted to the carry-out port, and the substrate conveyed by the conveyor device. And a hot air type, infrared type heater and the like. While the board on which the components are mounted is transported by the conveyor device, it is heated by a heater so that the cream solder melts and is cooled (naturally cooled) near the carry-out port, so that the solder is solidified. Then, the parts are fixed. The substrate transport speed by the conveyor device, the temperature profile in the furnace (changes in the substrate heating temperature relative to the transport position change when the substrate is transported in the furnace), etc. It can be set arbitrarily according to the type of cream solder.
vii) Final Inspection Machine The final inspection machine 38 has substantially the same configuration as the mounting work result inspection machine 34. Based on the imaging data acquired by the board camera that the inspection head has, the positional displacement amount of the component in the X direction and the Y direction and the displacement amount in the rotational direction (deviation amount in the rotation angle or direction) with respect to the component fixing position are acquired. Check the occurrence of missing parts and standing parts (so-called “chip standing”). When it is confirmed that a part is missing or standing, it is recognized that the work site is defective due to the fact of the occurrence, that is, the work site is recognized as a defective part. On the other hand, regarding the displacement of the component fixing position, when the displacement amount of a certain component exceeds a limit value (defect determination limit value) defined for the component, the component, that is, the work site is It is recognized as a defective part. In addition to these, the final inspection machine 38 also performs inspection on the solidified solder. More specifically, based on the imaging data, the difference between the outer dimensions of each solder land on which each component is placed with respect to the normal outer dimension (outer dimension fluctuation amount). Check for shape defects. For example, if the solder sag and the area of the solder land becomes excessive, it will be connected to the adjacent solder land and the electrical circuit will be short-circuited, etc. The external shape of the solder land is inspected from such a viewpoint. When the solder lands are in contact with each other, the solder lands are recognized as defective parts. The operator is notified of defect information such as the contents of the defective part and work defect via the display on the operation panel. The operator adjusts the conveyance speed and temperature profile of the reflow furnace 36 based on the notified information. The defect in the component fixing position is caused not only by the defect in the component fixing operation by the reflow furnace 36 but also by the deterioration of the work quality of the component mounting operation by the component mounting machine 30. Therefore, in that sense, the final inspection machine 38 functions as an inspection machine that inspects not only the result of the component fixing work by the reflow furnace 36 but also the result of the mounting work by the component mounting apparatus 30. That is, the final inspection machine 38 functions as both a mounting work result inspection machine and a fixed work result inspection machine.
viii) Line Controller The line controller 46 is a control device whose main function is to control and control the production line 20, grasps the board currently being worked on by each device, and the board is an electric circuit by the production line 20. The number of scheduled productions and the actual number of productions, the production tact of the production line 20, etc. are managed, and the setting process by the operator's input operation for the setting items common to each device is performed. Each device has a function of recognizing the substrate ID of the substrate on which the device is currently working. Each device grasps the substrate ID of the substrate on which it performs the substrate work, and the line controller 46 manages the substrate to which the production line 20 is added based on the substrate ID information from each device. In addition to such a function, the line controller 46 also has a function of managing an operator, and grasps who is currently an operator of the production line 20 based on an operator ID input by the operator himself. ing.
 ≪2.電気回路製造支援装置による支援処理の概要≫
 電気回路製造支援装置10は、汎用コンピュータが所定のプログラムを実行することによって実現され、製造ライン20によって製造される電気回路の品質面における支援を行う。詳しく言えば、先に説明したように、それぞれが対基板作業機であるはんだ印刷機24,部品装着機30,リフロー炉36による対基板作業の作業不良については、印刷作業結果検査機26,装着作業結果検査機34,最終検査機38によって検出されるため、本支援装置10は、製造される電気回路の品質に対する高い信頼性を維持すべく、不良と認定される基準に達しないまでの品質低下を把握するための支援処理を行う。そしてその支援処理を効率的に行うため、対基板作業機において作業条件の変動が発生した場合に、その作業条件変動に関係する作業部位の品質低下を監視するようにされている。そのため、本支援装置10の支援処理は、大きくは、作業条件変動を認識し、監視する対象となる作業部位を認定するための条件変動認識・監視対象部位認定処理と、認定された作業部位についての作業品質の変化に関する判断を行い、品質低下があった場合にそれに対処するための品質変化判断・対処処理との2つの処理と、品質変化判断・対処処理のなかで行われる品質改善処理とを含んでいる。以下に、それら3つの処理に用いられる情報,データを説明した上で、それら3つの処理を、順次、説明し、その後で、本支援装置10の機能構成について説明する。
≪2. Outline of support processing by the electrical circuit manufacturing support device >>
The electric circuit manufacturing support apparatus 10 is realized by a general-purpose computer executing a predetermined program, and supports the quality of the electric circuit manufactured by the manufacturing line 20. More specifically, as described above, each of the solder printing machine 24, the component mounting machine 30, and the reflow furnace 36, each of which is a board working machine, has a printing work result inspection machine 26 and a mounting. Since it is detected by the work result inspection machine 34 and the final inspection machine 38, the support apparatus 10 has a quality that does not reach a standard that is recognized as defective in order to maintain high reliability with respect to the quality of the manufactured electric circuit. Support processing to grasp the decline. In order to efficiently perform the support process, when a change in the work condition occurs in the substrate work machine, the deterioration of the quality of the work part related to the change in the work condition is monitored. For this reason, the support process of the support apparatus 10 mainly recognizes a change in work condition and recognizes a work part to be monitored and recognizes a work part to be monitored and a part to be monitored and a recognized work part. The quality improvement process performed in the quality change judgment and the coping process, and the two processes of the quality change judgment and coping process for coping with the quality degradation Is included. The information and data used for these three processes will be described below, the three processes will be described sequentially, and then the functional configuration of the support apparatus 10 will be described.
[A]支援処理で用いられる情報・データ
 支援処理において用いられる情報・データは、大きくは、2つに類別することができる。その1つは、作業条件変動を認識するための情報である「作業機関連情報」であり、もう1つは、品質低下を判断するために対照される「品質低下判断時対照用データ(以下、単に、「対照用データ」と言う場合がある)」である。ちなみに、それらの情報・データは、支援処理にあたって、支援装置10が有する情報・データ格納部に格納される。以下に、それぞれについて、順次説明する。
[A] Information / Data Used in Support Processing Information / data used in support processing can be roughly classified into two types. One is “work machine-related information” which is information for recognizing fluctuations in work conditions, and the other is “data for determining deterioration of quality (hereinafter referred to as“ reference data for determining deterioration ”). , Sometimes simply referred to as “control data”). Incidentally, such information / data is stored in the information / data storage unit of the support apparatus 10 in the support process. Each will be described in turn below.
 i)作業機関連情報
 作業機関連情報は、簡単に言えば、対基板作業機が1つの基板に対して対基板作業を行った際、どのようなデバイスや資材が使用されたか,どのような動作が行われたか,当該作業機の状態がどのような状態であったか等を表す情報であり、さらに2つに類別することができる。その1つは、対基板作業機が実際に行った作業に関する情報(作業実績情報)であり、もう1つは、対基板作業機に対して実際に行われた処置に関する情報(処置情報)である。作業機関連情報は、主に、各対基板作業機が1つの基板に対して対基板作業を完了した都度、その対基板作業機から支援装置に送信される。なお、先に説明したオペレータに関する情報も作業機関連情報の一種であり、そのような情報は、ラインコントローラ46から送信される。
i) Work machine-related information In simple terms, work machine-related information indicates what devices and materials were used when the anti-substrate work machine performed anti-substrate work on one board, and what kind of device and materials were used. This is information indicating whether the operation has been performed, the state of the work machine, and the like, and can be further classified into two. One is information related to the work actually performed by the substrate working machine (work result information), and the other is information related to the treatment actually performed on the substrate working machine (treatment information). is there. The work machine related information is transmitted from the counter work machine to the support device mainly when each of the work machines has completed the work on the board. The information related to the operator described above is also a kind of work implement related information, and such information is transmitted from the line controller 46.
 作業実績情報の具体例について以下に列挙すれば、はんだ印刷機24に関しては、例えば、はんだIDから認識可能な現在供給されているクリームはんだの種別,ロット番号,供給元(ベンダ)、はんだ印刷機24が把握しているスクリーンID,スキージID等の各デバイスのID、スキージのスクリーンへの加圧力(印圧),スキージの速度等はんだ印刷の際のスキージの動作についての情報、スクリーン56の基板からの離脱速度、機内の温度,湿度等が、作業実績情報に含まれる。また、撮像装置による基板基準マークの撮像データから得られる情報等も、広い意味で、作業実績情報に含まれる。部品装着機30に関しては、例えば、部品IDから認識可能な現在供給されている部品の種別,ロット番号,供給元、部品装着機30が把握している部品フィーダID,トレイID,ノズルID,ヘッドID,モジュールID等の各種デバイスのID、装着動作におけるノズルの下降速度等の種々のデバイスの動作速度、装着プログラムにおいて設定されていた各部品の装着位置等が、作業実績情報に含まれる。また、基板カメラ116による基板基準マークの撮像データから得られる情報、吸着ノズル118,124に吸着保持された部品の部品カメラ108による撮像データから得られる情報(ノズル軸線に対する部品の位置ズレ,部品若しくは吸着ノズル毎の吸着ミスの回数等)等も、広い意味で、作業実績情報に含まれる。リフロー炉36に関しては、例えば、設定されていた基板の搬送速度、設定されていた温度プロフィール等が、作業実績情報に含まれる。作業実績情報は、端的には、1の基板に対する対基板作業についてのものと、他の1つの基板に対する対基板作業についてのものを比較することによって、作業条件が変動したこを把握可能な情報であると言える。 Specific examples of work performance information are listed below. For the solder printer 24, for example, the type of solder cream that is currently supplied that can be recognized from the solder ID, the lot number, the supplier (vendor), and the solder printer 24, the ID of each device such as the screen ID and squeegee ID, the squeegee pressure (printing pressure) on the screen, the speed of the squeegee, etc., information about the operation of the squeegee during solder printing, the substrate of the screen 56 The work performance information includes the speed of separation from the machine, the temperature inside the machine, the humidity, and the like. In addition, information obtained from the imaging data of the substrate reference mark by the imaging device is also included in the work performance information in a broad sense. With respect to the component mounting machine 30, for example, the type, lot number, supply source, component feeder ID, tray ID, nozzle ID, and head that are currently recognized by the component mounting machine 30 can be recognized from the component ID. The work performance information includes IDs of various devices such as IDs and module IDs, operation speeds of various devices such as a nozzle lowering speed in the mounting operation, and mounting positions of the respective parts set in the mounting program. In addition, information obtained from imaging data of the substrate reference mark by the substrate camera 116, information obtained from imaging data of the component sucked and held by the suction nozzles 118 and 124 by the component camera 108 (component displacement, component or The number of suction mistakes for each suction nozzle is also included in the work result information in a broad sense. Regarding the reflow furnace 36, for example, the set substrate conveyance speed, the set temperature profile, and the like are included in the work performance information. The work performance information is information that can be grasped that the working condition has fluctuated by comparing the information on the work on the substrate with respect to one board and the work on the work on the board with another board. It can be said that.
 処置情報の具体例について以下に列挙すれば、はんだ印刷機24に関しては、例えば、クリームはんだが追加供給された,各種のデバイスが交換された,はんだ印刷機の動作プログラムが変更された等の処置を行った事実、スクリーン56に対してクリーニングが行われた事実およびその行われたクリーニングのモード等に関する情報が、処置情報に含まれる。部品装着機30に関しては、部品が追加補給された,各種デバイス(ノズル,ヘッド,モジュール等)が交換された,装着プログラム(装着位置等)が変更されたといった事実等に関する情報が、処置情報に含まれる。リフロー炉36に関しては、例えば、基板の搬送速度,温度プロフィールが変更された事実に関する情報が、処置情報に含まれる。処置情報は、端的には、作業条件変動を引き起こす処置が実際に行われたことを直接的に表す情報であると言える。 Specific examples of the treatment information will be listed below. For the solder printer 24, for example, the cream solder is additionally supplied, various devices are replaced, the operation program of the solder printer is changed, and the like. Information on the fact that the screen 56 has been cleaned, the fact that the screen 56 has been cleaned, the mode of the cleaning that has been performed, and the like are included in the treatment information. Regarding the component placement machine 30, information on the fact that parts have been replenished, various devices (nozzles, heads, modules, etc.) have been replaced, and the placement program (mounting position, etc.) has been changed is the treatment information. included. Regarding the reflow furnace 36, for example, information on the fact that the substrate conveyance speed and the temperature profile have been changed is included in the treatment information. In short, it can be said that the treatment information is information directly representing that a treatment that causes a change in the working condition is actually performed.
 ii)品質低下判断時対照用データ
 対照用データには、動作依拠取得データと検査データとの少なくとも一方が含まれる。動作依拠取得データは、先に説明したように、対基板作業機が対基板作業を行う上での動作に関するデータ、動作を行っている際若しくは動作後の対基板作業機の状態(ステータス)に関するデータ、動作の対象物の動き,状態に関するデータ等、対基板作業機において検出・測定・認識可能の種々のデータが含まれる。先に説明した作業実績情報の多くは、この動作依拠取得データとして扱うことができる。具体的に例示すれば、はんだ印刷機24に関しては、スキージのスクリーンへの加圧力(印圧),撮像装置による基板基準マークの撮像データから得られる当該マークのズレに関するデータ等、種々のデータが、動作依拠取得データとなり得る。また、部品装着機30に関しては、吸着ノズル118,124に吸着保持された部品の部品カメラ108による撮像データから得られるデータ(ノズル軸線に対する部品の位置ズレ等に関するデータ等)、部品ごとの或いは吸着ノズルごとの吸着ミスの回数,確率、基板カメラ116による基板基準マークの撮像データから得られる当該マークのズレに関するデータ等が、動作依拠取得データとなり得る。リフロー炉36に関しては、基板の搬送速度,炉内の温度プロファイルが、動作依拠取得データとなり得る。 それらの動作依拠取得データは、例えば、それら対基板作業機が対基板作業を行った都度、それら対基板作業機から支援装置10に送られる。
ii) Data for quality deterioration judgment control data The control data includes at least one of operation-based acquisition data and inspection data. As described above, the operation-based acquisition data is data related to the operation of the substrate work machine for performing the work on the substrate, and the state (status) of the substrate work machine during or after the operation. Various data that can be detected / measured / recognized by the on-board work machine, such as data, data on the movement and state of the object to be operated, are included. Much of the work result information described above can be handled as this operation-based acquisition data. More specifically, regarding the solder printer 24, various data such as pressure applied to the screen of the squeegee (printing pressure), data on the deviation of the mark obtained from the imaging data of the board reference mark by the imaging device, and the like. , It can be action-based acquisition data. Further, regarding the component mounting machine 30, data obtained from imaging data by the component camera 108 of the components sucked and held by the suction nozzles 118 and 124 (data on position displacement of the component with respect to the nozzle axis line, etc.), for each component or for suction The number of suction mistakes for each nozzle, the probability, the data regarding the deviation of the mark obtained from the imaging data of the substrate reference mark by the substrate camera 116, and the like can be the operation-based acquisition data. Regarding the reflow furnace 36, the substrate transfer speed and the temperature profile in the furnace can be the operation-based acquisition data. The operation-based acquisition data is sent to the support device 10 from the substrate working machine every time the substrate working machine performs the substrate working, for example.
 検査データは、対基板作業が行われた作業部位についてのその対基板作業の作業結果を検査する検査機、具体的には、印刷作業結果検査機26,装着作業結果検査機34,最終検査機38による検査データが、場合によっては検査モジュールとされた装着モジュール42による検査データが含まれる。検査データは、それらの検査機が1の基板に対する検査を行った都度、それら検査機から支援装置10に送信される。対照用データは、作業部位の作業品質の低下を判断するために対照されるデータであることから、相当数の基板の各々についてのデータであることが望ましく、本支援装置10の情報・データ格納部には、連続して製造される若しくは製造された相当数の基板についての対照用データが、格納されるようになっている。検査データの具体例について以下に列挙すれば、印刷作業結果検査機26に関して言えば、例えば、上述の各はんだランドの印刷位置ズレ量,面積変動量,体積変動量等が、検査データに含まれる。また、装着作業結果検査機34に関して言えば、例えば、上述の各部品の装着位置ズレ量等が、最終検査機38に関して言えば、例えば、上述の各部品の固定位置ズレ量,はんだランドの外形寸法変動量等が、それぞれ、検査データに含まれる。 The inspection data is an inspection machine that inspects the work result of the work on the substrate for the work site where the work on the board is performed, specifically, the print work result inspection machine 26, the mounting work result inspection machine 34, and the final inspection machine. The inspection data by 38 includes the inspection data by the mounting module 42 which is an inspection module in some cases. The inspection data is transmitted from the inspection machine to the support device 10 every time the inspection machine inspects one substrate. Since the comparison data is data to be compared in order to determine the deterioration of the work quality of the work site, it is desirable that the data for each of a considerable number of boards is stored. The section stores reference data for a considerable number of substrates manufactured or manufactured in succession. Specific examples of the inspection data will be listed below. For the printing work result inspection machine 26, for example, the above-described print position shift amount, area variation amount, volume variation amount, etc. of each solder land are included in the inspection data. . Further, regarding the mounting work result inspection machine 34, for example, the above-described mounting position shift amount of each component, for example, regarding the final inspection machine 38, for example, the above-described fixed position shift amount of each component, the outer shape of the solder land. Each of the dimension variation amounts is included in the inspection data.
[B]条件変動認識・監視対象部位認定処理
 条件変動認識・監視対象部位認定処理は、図6にフローチャートを示す条件変動認識・監視対象認定プログラムが実行されることによって行われる。このプログラムは、いずれかの対基板作業機が、1の基板に対して対基板作業を完了したことをトリガとして開始される。その対基板作業機が、はんだ印刷機24,部品装着機30,リフロー炉36のいずれであっても、当該プログラムの実行によって、その対基板作業機に応じた処理がなされる。
[B] Condition Fluctuation Recognition / Monitoring Target Part Approval Processing The condition fluctuation recognition / monitoring target part recognition processing is performed by executing a condition fluctuation recognition / monitoring target recognition program whose flowchart is shown in FIG. This program is started when one of the substrate work machines has completed the work on the substrate for one substrate. Regardless of the solder printing machine 24, the component mounting machine 30, or the reflow furnace 36, processing corresponding to the board working machine is performed by executing the program.
 以下にフローチャートに沿って、当該処理の内容を説明する。当該処理では、まず、ステップ1(以下、「S1」と略す、他のステップも同様である)において、条件変動認識フラグFvが、“0”にリセットされる。このフラグFvは、支援装置10が、作業条件変動を認識した場合に、“1”にセットされるフラグである。続くS2において、今回対基板作業が行われた基板(今回作業基板)の作業機関連情報が参照される。作業機関連情報は、対基板作業機等から送られて、情報・データ格納部の作業機関連情報バッファに格納される。次のS3において、今回作業基板の作業機関連情報の中に、詳しく言えば、上述の処置情報の中に、認識すべき作業条件変動(要認識作業条件変動)を引き起こす処置が実際に行われた旨の情報が含まれている場合には、S4において、第1条件変動認識処理として、条件変動認識フラグFvが“1”にセットされ、含まれていない場合には、1条件変動認識処理がスキップされて、S5に移行する。 The contents of the process will be described below along the flowchart. In this process, first, in step 1 (hereinafter abbreviated as “S1”, the same applies to other steps), the condition variation recognition flag Fv is reset to “0”. This flag Fv is a flag that is set to “1” when the support apparatus 10 recognizes a change in work condition. In subsequent S2, the work machine related information of the board (current work board) on which the current board work has been performed is referred to. The work machine related information is sent from the substrate work machine or the like and stored in the work machine related information buffer of the information / data storage unit. In the next S3, in the work implement related information of the work board this time, more specifically, in the above-described treatment information, a treatment that causes a change in work condition to be recognized (required work condition change required) is actually performed. If the information indicating that the condition change is included is included, the condition change recognition flag Fv is set to “1” as the first condition change recognition process in S4. Is skipped and the process proceeds to S5.
 S5では、今回作業基板の作業機関連情報と、上記作業機関連情報バッファに既に格納されている前回対基板作業が行われた基板(前回作業基板)の作業機関連情報とが比較される。詳しく言えば、今回作業基板と前回作業基板との作業実績情報どうしが比較される。ついでS6において、それらの情報に差異があるか否かが判断され、差異があると判断された場合には、S7において、その差異が要認識作業条件変動に相当するか否かが判断され、相当すると判断された場合には、S8において、第2条件変動認識処理として、条件変動認識フラグFvが“1”にセットされる。差異が認められないと判断された場合、差異が認められてもその差異が要認識作業条件変動に相当するものではないと判断された場合には、第2条件変動認識処理はスキップされる。なお、要認識作業条件変動に相当するか否かの判断は、比較される作業実績情報の種類,差異の程度等によって判断すればよく、また、その際に、作業機関連情報に含まれるオペレータに関する情報、詳しくは、オペレータの資質,能力,熟練度等を基準に判断することも可能である。本支援装置10では、このように、2種の作業機関連情報に基づいて、今回作業基板についての対基板作業に、認識すべき、つまり、対処すべき作業条件変動の有無が判断される。 In S5, the work machine related information of the current work board is compared with the work machine related information of the board (previous work board) on which the previous work on the board has already been stored, which is already stored in the work machine related information buffer. More specifically, the work result information of the current work board and the previous work board are compared. Next, in S6, it is determined whether or not there is a difference between these pieces of information. If it is determined that there is a difference, it is determined in S7 whether or not the difference corresponds to a change in work condition requiring recognition. If it is determined that it corresponds, the condition fluctuation recognition flag Fv is set to “1” as the second condition fluctuation recognition processing in S8. When it is determined that a difference is not recognized, the second condition change recognition process is skipped when it is determined that the difference does not correspond to the recognition condition change requiring recognition even if the difference is recognized. It should be noted that the determination as to whether or not the work condition needs to be recognized can be made based on the type of work performance information to be compared, the degree of difference, etc., and the operator included in the work implement related information at that time It is also possible to make a judgment based on the information, in detail, the qualities, abilities, skill, etc. of the operator. In this way, the support apparatus 10 determines whether or not there is a change in work conditions that should be recognized, that is, dealt with in the work against the board for the current work board, based on the two types of work machine related information.
 S9において、条件変動認識フラグFvに基づき、最終的に、今回作業基板の対基板作業において、要認識作業条件変動が発生したか否かの判断がなされ、要認識作業条件変動が発生したと判断された場合には、S10以降の処理が行われる。S10では、ある種の作業条件変動によってどの作業部位が影響を受けるかを示した表形式のデータである条件変動・部位関係付けテーブルを参照して、作業機関連情報に基づき、作業条件変動が作業品質に影響を及ぼす可能性のある作業部位、つまり、影響部位が特定される。このテーブルは、予め設定されており、情報・データ格納部に格納されている。続くS11では、予め設定された認定規則に従って、影響部位の中から、1以上の監視対象部位が認定される。この規則は、情報・データ格納部に格納されている。影響部位のすべてが監視対象部位として認定される場合もあるが、絞り込みを行う場合には、上記設定規則として、作業条件変動の作業品質への影響の現れ易さを考慮して設定された規則を採用し、その規則に従って監視対象部位の認定が行われればよい。監視対象部位が認定された後、S12において、この作業条件変動が、今回作業基板の基板IDおよび認定された監視対象部位についてのデータ等のその作業条件変動に関連するデータ(条件変動関連データ)等を伴って、情報・データ格納部の特定の領域に設定されている作業条件変動監視リストに登録される。後に説明する品質変化判断・対処処理は、作業条件変動ごとに、その作業条件変動に関連する処理を、1の処理対象として行うため、作業条件変動監視リストは、その処理の対象となる作業条件変動を特定するために設けられており、1つの対象となる作業条件変動とそれに付随する条件変動関連データは、1つ処理対象のセットデータとして、対象となる作業条件変動ごとに格納される。登録された作業条件変動は、原則として、ある作業条件変動による品質低下が発生しなかったと判断されるまで、若しくは、発生しても改善処置によって品質が改善されるまで、当該リストからは、抹消されない。S12を終了して、対基板作業が行われた1つの基板についての当該プログラムによる1連の処理が終了する。上記S9において、今回作業基板の対基板作業において、要認識作業条件変動が発生していないと判断がなされた場合には、S10以降はスキップされて、当該プログラムによる1連の処理が終了する。 In S9, based on the condition change recognition flag Fv, it is finally determined whether or not a change in the required work condition has occurred in the current work board-to-board work, and it is determined that the change in the required work condition has occurred. If so, the processing after S10 is performed. In S10, with reference to the condition variation / part relation table, which is tabular data indicating which work parts are affected by a certain kind of work condition fluctuation, the work condition fluctuation is determined based on the work equipment related information. Work parts that may affect work quality, that is, affected parts are identified. This table is set in advance and stored in the information / data storage unit. In subsequent S11, one or more monitoring target parts are certified from the affected parts according to a preset authorization rule. This rule is stored in the information / data storage unit. Although all of the affected parts may be certified as monitored parts, when narrowing down, the above-mentioned setting rule is a rule that is set in consideration of the ease with which the influence of work condition changes on work quality appears. It is sufficient that the monitoring target part is authorized according to the rules. After the monitoring target part is certified, in S12, the work condition fluctuation is data related to the work condition fluctuation, such as data on the board ID of the current work board and the certified monitoring target part (condition fluctuation related data). Are registered in the work condition fluctuation monitoring list set in a specific area of the information / data storage unit. Since the quality change determination / handling process to be described later performs processing related to the work condition variation as one processing target for each work condition variation, the work condition variation monitoring list includes the work condition subject to the processing. It is provided to identify a variation, and one target work condition variation and accompanying condition variation related data are stored as one set of processing target data for each target work condition variation. In principle, registered work condition fluctuations are deleted from the list until it is judged that quality deterioration due to certain work condition fluctuations has not occurred, or even if they occur, the quality is improved by improvement measures. Not. After completing S12, a series of processes by the program for one substrate on which the substrate work has been performed is completed. In S9, if it is determined that no change in the work condition to be recognized has occurred in the current work board-to-board work, S10 and the subsequent steps are skipped, and a series of processing by the program ends.
[C]品質変化判断・対処処理
 品質変化判断・対処処理は、図7にフローチャートを示す品質変化判断・対処プログラムが実行されることによって行われる。このプログラムは、上記作業条件変動監視リストに登録された作業条件変動が影響を与える可能性のある基板についての検査が、その作業条件変動が発生した対基板作業の結果を検査する検査機によって実行された都度、詳しく言えば、上記処理対象とされた基板1つ1つの検査の終了の都度行われる。ちなみに、処理の対象となる基板は、条件変動関連データとして格納されている基板IDを基に判断され、その基板IDの基板以降に連続して対基板作業が行われたいくつかの基板が対象とされる。
[C] Quality Change Judgment / Countermeasure Processing Quality change judgment / handling processing is performed by executing a quality change judgment / handling program shown in the flowchart of FIG. This program is used to inspect a board that may be affected by fluctuations in the work conditions registered in the work condition fluctuation monitoring list by an inspection machine that inspects the results of work against the board where the fluctuations in the work conditions occurred. More specifically, it is performed every time the inspection of each substrate to be processed is completed. By the way, the substrate to be processed is determined based on the substrate ID stored as the condition fluctuation related data, and several substrates that have been subjected to the substrate work successively after the substrate of the substrate ID are the targets. It is said.
 以下にフローチャートに沿って、品質変化判断・対処処理の内容を説明する。当該処理では、まず、S21において、品質低下認定フラグFqの値が判断される。このフラグFqは、上記条件変動関連データの1つとして、初期値が“0”にセットされて、リストに登録され、その処理対象となる作業条件変動に起因して監視対象部位の作業品質が低下したと認定された場合に、“1”にセットされる。品質低下認定フラグFqが“1”である場合には、既に、品質低下が発生しているため、後に説明するS22の品質改善処理が実行される。品質低下が発生したか否かの判断は、作業条件変動が発生した時点から、所定数の基板に対して対基板作業が行われたことを条件として行うため、作業条件変動後に対基板作業が行われた基板数をカウントするための条件変動後作業基板数カウンタCnが、作業変動関連データの1つとして格納されており、このカウンタCnは、S21の判断において品質低下が認定されていないと判断された場合に、S23において、カウントアップされる。そして、S24において、その基板数が、設定数Cn0(後に説明する安定度の評価に有効な数に設定されている)に達していない場合には、当該プログラムによる1連の処理は終了し、設定数Cn0に到達した場合には、S25以下の処理が実行される。 The contents of the quality change determination / coping process will be described below with reference to the flowchart. In this process, first, in S21, the value of the quality deterioration certification flag Fq is determined. This flag Fq is set as one of the above condition fluctuation related data, the initial value is set to “0”, registered in the list, and the work quality of the monitoring target part is caused by the work condition fluctuation to be processed. It is set to “1” when it is recognized that it has dropped. When the quality degradation recognition flag Fq is “1”, quality degradation has already occurred, so the quality improvement process of S22 described later is executed. Judgment as to whether or not quality degradation has occurred is based on the condition that the substrate work has been performed on a predetermined number of substrates from the time when the work condition change occurs. The post-fluctuation work substrate counter Cn for counting the number of substrates performed is stored as one of the work variation-related data, and this counter Cn is not judged to have been deteriorated in quality in the determination of S21. If it is determined, it is counted up in S23. In S24, if the number of substrates has not reached the set number Cn 0 (set to a number effective for the stability evaluation described later), a series of processing by the program ends. When the set number Cn 0 is reached, the processing from S25 is executed.
 S25では、情報・データ格納部に格納されている作業条件変動発生前の監視対象部位の対照用データが抽出される。具体的には、作業条件変動が発生した基板の前の基板から遡った設定数Cn0の基板についての対照用データが抽出される。続くS26では、抽出された対照用データを用い、作業条件変動発生前の各監視対象部位の作業結果の安定度指標の指標値PsB(以下、安定度指標の指標値を、「安定度指標値」と略することがある)が算出される。より詳しく言えば、対基板作業およびその作業結果における1以上の対照項目についての安定度指標値PsAが算出され、算出された安定度指標値PsBは、S27において、条件変動関連データの1つとして、情報・データ格納部に格納される。安定度指標は、対照項目の正規の値からのズレについての安定度を示すようなものを採用できる。具体的には、例えば、工程能力指数CpKを採用することが可能である。この工程能力指数CpKは、品質管理の分野で常用されている安定度指標であり、図8に示すような式で定義されるものである(規格上限LU,規格下限LLは、検査機に不良の判定のために規定された前述の不良判定用限界値より相当に小さく設定されている)。ちなみに、工程能力指数CpKは、その値が大きいほど安定していることを示す安定度指標である。なお、安定度指標は、工程能力指数CpKの他、対照項目である各種のズレについての基準値からのズレ量の平均,そのズレ量の管理限界値との関係,ズレのバラつき範囲、作業ミスの回数,確率(逆に言えば、作業成功の回数,確率)等、種々のものを採用することができる。 In S25, the control data of the monitoring target part stored in the information / data storage unit before the change of the working condition is extracted. Specifically, the control data for the set number Cn 0 of the substrates traced back from the substrate in front of the substrate on which the working condition change occurred is extracted. In subsequent S26, using the extracted control data, the index value Ps B of the stability index of the work result of each monitoring target part before the occurrence of the work condition change (hereinafter, the index value of the stability index is referred to as “stability index”). May be abbreviated as “value”). More specifically, the stability index value Ps A for one or more control items in the board work and the result of the work is calculated, and the calculated stability index value Ps B is 1 in the condition variation related data in S27. One is stored in the information / data storage unit. As the stability index, it is possible to adopt a stability index that indicates the stability with respect to the deviation from the normal value of the control item. Specifically, for example, the process capability index C pK can be adopted. This process capability index C pK is a stability index that is commonly used in the field of quality control, and is defined by the formula shown in FIG. 8 (the standard upper limit L U and the standard lower limit L L are inspections). It is set to be considerably smaller than the above-mentioned limit value for defect determination prescribed for determining defects in the machine). Incidentally, the process capability index C pK is a stability index indicating that the larger the value is, the more stable the process capability index C pK is. In addition to the process capability index C pK , the stability index is the average of the amount of deviation from the reference value for various deviations, which are the control items, the relationship with the control limit value of the deviation, the range of deviation variation, the work Various things such as the number of mistakes and the probability (in other words, the number and probability of work success) can be adopted.
 次いで、S28において、情報・データ格納部に格納されている作業条件変動発生後の監視対象部位の対照用データが抽出される。具体的には、作業条件変動が発生した基板以後の設定数Cn0の基板についての対照用データが抽出される。続くS29において、抽出された対照用データを用い、作業条件変動発生後の各監視対象部位の作業結果の安定度指標の指標値PsAが算出される。そしてS30において、各監視対象部位について、作業条件変動発生前安定度指標値PsBと、作業条件変動発生後安定度指標値PsAとが比較され、安定度指標値Psが、設定閾値ΔPsを超えて低下している場合に、監視対象部位の作業品質の低下の程度が設定程度を超えていると判断される。設定程度を超えて作業品質が低下していると判断された場合は、S31において、先に説明した品質低下認定フラグFqが“1”にセットされ、S32において、処置テーブルを参照して、改善処置が決定される。この処置テーブルは、作業条件変動と、その作業条件変動に起因する品質低下を改善するための改善処置とが関連付けられた表形式のデータであり、予め設定されて、情報・データ格納部に格納されている。決定された改善処置は、S33において、品質低下が発生している旨の情報ともに、当該作業時条件変動が発生した対基板作業機およびラインコントローラに通知される。それにより、それらの対基板作業機およびラインコントローラの操作パネルを介して、オペレータに報知される。その改善処置が対基板作業機によって自動的に実施できるものである場合には、その通知を受け対基板作業機は自動で、その処置を実施する。一方で、S30において、監視対象部位の作業品質が設定程度を超えて低下していないと判断された場合には、作業条件変動に起因する作業品質の低下は無かったものとして、S34において、その旨が対基板作業機およびラインコントローラに通知され、S35において、登録されている作業条件変動およびそれに関連する条件変動関連データが、上記作業条件変動監視リストから抹消され、処理の対象から外される。S33、もしくは、S35の処理の終了により、当該プログラムによる1連の処理は終了する。 Next, in S28, the control data of the monitoring target part after the change of the working condition stored in the information / data storage unit is extracted. Specifically, reference data is extracted for a set number of substrates Cn 0 after the substrate on which the working condition change occurred. In subsequent S29, using the extracted control data, an index value Ps A of the stability index of the work result of each monitoring target part after the work condition variation occurs is calculated. In S30, the stability index value Ps B before the occurrence of work condition fluctuation and the stability index value Ps A after the occurrence of work condition fluctuation are compared with each other to be monitored, and the stability index value Ps sets the set threshold value ΔPs. In the case of a decrease in excess, it is determined that the degree of decrease in work quality of the monitoring target part exceeds the set level. If it is determined that the work quality has deteriorated beyond the set level, the quality deterioration certification flag Fq described above is set to “1” in S31, and the improvement is made by referring to the treatment table in S32. Treatment is determined. This action table is tabular data in which work condition fluctuations and improvement actions for improving quality deterioration caused by the work condition fluctuations are associated with each other. The action table is preset and stored in the information / data storage unit. Has been. In S33, the determined improvement measures are notified to the on-board work machine and the line controller in which the working condition variation has occurred, together with information indicating that the quality degradation has occurred. Thereby, the operator is notified via the operation board of the substrate working machine and the line controller. If the improvement procedure can be automatically performed by the substrate working machine, the substrate working machine automatically receives the notification and performs the treatment. On the other hand, in S30, when it is determined that the work quality of the monitoring target part has not decreased beyond the set level, it is assumed that there is no decrease in work quality due to the change in the work condition. In step S35, the registered work condition change and the related condition change related data are deleted from the work condition change monitoring list and removed from the processing target. . With the end of the process of S33 or S35, a series of processes by the program ends.
[D]品質改善処理
 品質改善処理は、先の品質変化判断・対処処理において、品質低下が認定され、改善処置が一旦通知されたを条件に、S22において実行される処理であり、図9にフローチャートを示す品質改善サブルーチンが実行されることによって行われる処理である。ちなみに本サブルーチンによる処理の終了により、品質変化判断・対処も終了する。
[D] Quality Improvement Process The quality improvement process is a process executed in S22 on the condition that the quality deterioration is recognized and the improvement process is once notified in the previous quality change determination / handling process. This is processing performed by executing a quality improvement subroutine showing a flowchart. Incidentally, the quality change determination / coping is also finished by the end of the processing by this subroutine.
 以下にフローチャートに沿って、品質改善処理の内容を説明する。品質改善処理は、改善処置が実施されていることを前提として行われるため、まず、S41において、改善処置実施フラグFiに基づく判断が行われる。このフラグFiは、上記条件変動関連データの1つとして情報・データ格納部に格納されており、改善処置が実施されていない場合に“0”に、実施されている場合に“1”にセットされる。なお、改善処置の実施されたか否かは、対基板作業機からの情報と今回処理を行っている基板の基板IDとに基づいて判断される。また、改善処置が実施されてから対基板作業が行われた基板の数をカウントするための改善処置後作業基板数カウンタCn’が、採用され、条件変動関連データの1つとして情報・データ格納部に格納されている。まずS41において、改善処置実施フラグFiに基づく判断がなされ、未だ改善処理が実施されていなかった場合には、S42において、今回の基板が、新たに改善処置が実施された基板であるか否かが判断され、改善処置が実施されていない場合には、当該サブルーチンによる一連の処理は終了する。新たに改善処置が実施された場合には、S43において、改善処置実施フラグFiが“1”にセットされ、S44において、改善処置後作業基板数カウンタCn’がリセットされた後、S45において、そのカウンタCn’がカウントアップされる。一方、S41において、既に、改善処置が実施されていると判断された場合は、S42~S44はスキップされて、S45において、カウンタCn’がカウントアップされる。 The contents of the quality improvement process are explained below according to the flowchart. Since the quality improvement process is performed on the assumption that the improvement process is being performed, first, in S41, a determination based on the improvement process execution flag Fi is performed. This flag Fi is stored in the information / data storage unit as one of the condition fluctuation related data, and is set to “0” when the improvement measure is not implemented, and set to “1” when the improvement procedure is implemented. Is done. Whether or not improvement measures have been implemented is determined based on information from the substrate working machine and the substrate ID of the substrate currently being processed. Further, a post-improvement work substrate counter Cn ′ for counting the number of substrates that have been subjected to the substrate work after the improvement treatment has been adopted is adopted, and information / data storage is performed as one of the condition variation related data. Stored in the department. First, in S41, a determination is made based on the improvement measure execution flag Fi, and if the improvement process has not been executed yet, in S42, whether or not the current board is a board that has been newly improved. Is determined, and the improvement process is not performed, the series of processing by the subroutine ends. When a new improvement process is performed, the improvement process execution flag Fi is set to “1” in S43, and the post-improvement work substrate counter Cn ′ is reset in S44. Counter Cn ′ is counted up. On the other hand, if it is determined in S41 that improvement treatment has already been performed, S42 to S44 are skipped, and the counter Cn 'is incremented in S45.
 続くS46において、改善処置後作業基板数カウンタCn’についての判断がなされ、そのカウンタCn’の値が、設定数Cn0’(Cn0と同じ値)に達していないと判断された場合には、当該サブルーチンによる一連の処理は終了する。設定数Cn0’に達したと判断された場合には、S47において、先に説明した要領と同じ要領で、情報・データ格納部に格納されている改善処置実施後の監視対象部位の対照用データが抽出される。具体的には、改善処置が実施された基板以後の設定数Cn0’の基板についての対照用データが抽出される。続くS48において、先に説明した要領と同じ要領で、抽出された対照用データを用い、改善処置実施後の各監視対象部位の作業結果の安定度指標の指標値PsA’算出される。そして、S49において、各監視対象部位について、作業条件変動発生前安定度指標値PsBと、改善処置実施後安定度指標値PsA’とが比較され、安定度指標値Psが、設定閾値ΔPsを超えて低下している場合に、監視対象部位の作業品質の低下の程度が設定程度を超えている、つまり、改善処置による作業品質の改善が見られなかったと判断される。 In subsequent S46, improvement after treatment work board counter Cn 'is determined for made, the counter Cn' if the value of is determined to not reached (the same value as Cn 0) set number Cn 0 'is Then, a series of processing by the subroutine ends. If it is determined that the set number Cn 0 ′ has been reached, in S47, the same as the procedure described above, for comparison of the monitoring target site after the implementation of the improvement measures stored in the information / data storage unit Data is extracted. Specifically, control data for a set number of substrates Cn 0 ′ after the substrate on which the improvement treatment has been performed is extracted. In subsequent S48, using the extracted control data in the same manner as described above, the index value Ps A 'of the stability index of the work result of each monitoring target site after the implementation of the improvement treatment is calculated. In S49, the stability index value Ps B before the occurrence of work condition fluctuation is compared with the stability index value Ps A ′ after the improvement treatment for each monitoring target part, and the stability index value Ps is set to the set threshold value ΔPs. In the case where the work quality has been lowered beyond the range, it is determined that the degree of work quality degradation of the monitoring target part has exceeded the set level, that is, the work quality has not been improved by the remedial action.
 S49において作業品質に改善が見られたと判断された場合には、S50において、品質が改善された旨の通知が、対基板作業機およびラインコントローラ46に発せられる。続く、S51において、登録されている当該作業条件変動およびそれに関連する条件変動関連データが、上記作業条件変動監視リストから抹消され、処理の対象から外され、その後に、当該サブルーチンによる一連の処理は終了する。一方、S49において改善処置による作業品質の改善が見られなかったと判断された場合には、S52において、処置テーブルに次の改善処置が設定されているか否かの判断がなされる。処置テーブルには、優先順位付けがされた複数の改善処置がリストアップ可能であり、複数の改善処置がリストアップされているときには、その優先順位に従って、改善処置が決定されるようになっている。次の順位の改善処置がある場合には、S53において、そのテーブルを参照して、次の順位の改善処置が決定される。つまり、処置テーブルに複数の改善処置が設定されている場合は、品質の改善が見られるまで、繰り返し、改善処置が設定されている範囲において、別の改善処置が決定されるのである。そして、S54において、品質低下が継続している旨および次順位の改善処置が、作業時条件変動が発生した対基板作業機およびラインコントローラ46に通知される。S52において次の改善処置が設定されていないと判断された場合には、S55において、品質低下が未だ継続している旨および改善処置を通知できなかった旨が、上記対基板作業機およびラインコントローラ46に通知される。そして、S56において、登録されている当該作業条件変動およびそれに関連する条件変動関連データが、上記作業条件変動監視リストから抹消され、処理の対象から外され、その後に、当該サブルーチンによる一連の処理は終了する。 If it is determined in S49 that the work quality has been improved, a notification that the quality has been improved is sent to the substrate work machine and the line controller 46 in S50. Subsequently, in S51, the registered work condition change and the related condition change related data are deleted from the work condition change monitoring list and removed from the processing target. Thereafter, a series of processing by the subroutine is performed. finish. On the other hand, if it is determined in S49 that the work quality has not been improved by the improvement procedure, it is determined in S52 whether or not the next improvement procedure is set in the treatment table. In the action table, a plurality of prioritized improvement actions can be listed, and when a plurality of improvement actions are listed, the improvement action is determined according to the priority. . If there is an improvement action of the next rank, the next improvement action is determined by referring to the table in S53. That is, when a plurality of improvement actions are set in the action table, another improvement action is determined repeatedly within a range where the improvement actions are set until quality improvement is observed. Then, in S54, the fact that the quality degradation is continuing and the improvement action of the next order are notified to the substrate work machine and the line controller 46 in which the working condition fluctuation has occurred. If it is determined in S52 that the next improvement measure is not set, it is determined in S55 that the quality degradation is still continuing and that the improvement measure could not be notified. 46 is notified. In S56, the registered work condition fluctuation and the related condition fluctuation-related data are deleted from the work condition fluctuation monitoring list and removed from the processing target. Thereafter, a series of processing by the subroutine is performed. finish.
[E]電気回路製造支援装置の機能構成
 電気回路製造支援装置10は、上記のような条件変動認識・監視対象部位認定処理,品質変化判断・対処処理,品質改善処理を行うことから、図10に示すような機能構成を有していると考えることができる。具体的に言えば、支援装置10は、それぞれが仮想的な内部バス150によって互いに繋がる複数の機能部である情報・データ入手部152,条件変動認識部154,監視対象部位認定部156,対象部位品質判断部158,改善処置決定部160,情報・処置通知部162,情報・データ格納部164を有している。そして、支援装置10は、LAN48を介して、それぞれが対基板作業機であるはんだ印刷機24,部品装着機30,リフロー炉36と、また、印刷作業結果検査機26,装着作業結果検査機34,最終検査機38と繋がっている。
[E] Functional Configuration of Electric Circuit Manufacturing Support Device The electric circuit manufacturing support device 10 performs the condition variation recognition / monitoring target part recognition processing, quality change determination / handling processing, and quality improvement processing as described above. It can be considered that it has a functional configuration as shown in FIG. Specifically, the support apparatus 10 includes an information / data acquisition unit 152, a condition variation recognition unit 154, a monitoring target part recognition unit 156, and a target part, each of which is a plurality of functional units connected to each other by a virtual internal bus 150. It has a quality judgment unit 158, an improvement treatment determination unit 160, an information / treatment notification unit 162, and an information / data storage unit 164. The support apparatus 10 is connected to the solder printing machine 24, the component mounting machine 30, the reflow furnace 36, the printing work result inspection machine 26, and the mounting work result inspection machine 34, each of which is a substrate work machine, via the LAN 48. , It is connected to the final inspection machine 38.
 各機能部について説明すれば、情報・データ入手部152は、対基板作業機および検査機から、作業実績情報,処置情報等の上記作業機関連情報、動作依拠取得データ,検査データ等の対照用データ等を入手する機能を有する。また、条件変動認識部154は、上記作業機関連情報に基づいて作業条件変動を認識する機能を、監視対象部位認定部156は、上記影響部位を特定するとともにそれら影響部位の中から監視対象部位を認定する機能を、対象部位品質判断部158は、作業条件変動の前後における対照用データから監視対象部位の作業品質の変化に関する判断を行う機能を、改善処置決定部160は、作業条件変動に起因する監視対象部位の作業品質を改善するための改善処置を決定する機能を、情報・処置通知部162は、その決定されら改善処置を対基板作業機,オペレータに通知する機能を、それぞれ有している。そして、情報・データ格納部164は、上記作業機関連情報,上記対照用データを始め、先に説明した各種の情報,データ,テーブル,リスト,規則等を格納する機能を有している。 Explaining each functional unit, the information / data obtaining unit 152 is used for comparing the above-mentioned work machine related information such as work performance information and treatment information, operation-based acquisition data, inspection data, etc. from the substrate work machine and the inspection machine. It has a function to obtain data. In addition, the condition fluctuation recognition unit 154 has a function of recognizing work condition fluctuations based on the work implement related information, and the monitoring target part recognition unit 156 specifies the influence part and monitors the part to be monitored from the influence parts. The target part quality judging unit 158 has a function for judging the change of the work quality of the monitoring target part from the control data before and after the change of the work condition, and the improvement treatment determining part 160 is used for the change of the work condition. The information / treatment notifying unit 162 has a function of notifying the on-board work machine and the operator of the determined improvement treatment, and a function for determining the improvement treatment for improving the work quality of the monitoring target site. is doing. The information / data storage unit 164 has a function of storing the work implement related information and the comparison data, and various information, data, tables, lists, rules, and the like described above.
 条件変動認識・監視対象部位認定処理,品質変化判断・対処処理,品質改善処理との関係において、さらに詳しく説明すれば、条件変動認識部154は、S1~S9の処理によって実現される機能を、監視対象部位認定部156は、S10~S12の処理によって実現される機能を、対象部位品質判断部158は、S23~S30の処理によって実現される機能を、改善処置決定部160は、S32,S52,S53の処理によって実現される機能を、情報・データ格納部164は、S33,S34,S50,S54,S55等の処理によって実現される機能を、それぞれ有している。なお、支援装置10が実行する支援処理は、電気回路製造支援方法に該当し、条件変動認識部154,監視対象部位認定部156,対象部位品質判断部158,改善処置決定部160,情報・処置通知部162の各々の機能を実現させるための処理は、それぞれ、電気回路製造支援方法における条件変動認識ステップ,監視対象部位認定ステップ,対象部位品質判断ステップ,改善処置決定ステップ,処置通知ステップに該当する。 More specifically, in relation to the condition variation recognition / monitoring target part recognition processing, quality change determination / handling processing, and quality improvement processing, the condition variation recognition unit 154 has the functions realized by the processing of S1 to S9. The monitoring target part recognition unit 156 has a function realized by the processes of S10 to S12, the target part quality judgment unit 158 has a function realized by the processes of S23 to S30, and the improvement measure determination unit 160 has S32 and S52. , S53, the information / data storage unit 164 has functions realized by S33, S34, S50, S54, S55 and the like. The support processing executed by the support device 10 corresponds to an electrical circuit manufacturing support method, and includes a condition variation recognition unit 154, a monitoring target part recognition unit 156, a target part quality determination unit 158, an improvement measure determination unit 160, information and measures. The processing for realizing each function of the notification unit 162 corresponds to a condition variation recognition step, a monitoring target part recognition step, a target part quality determination step, an improvement action determination step, and a action notification step in the electric circuit manufacturing support method, respectively. To do.
≪3.電気回路製造支援装置による支援処理の具体例≫
 次に、支援装置10によって行う支援処理の具体例として、いくつかの作業条件変動に対する処理の具体例について説明する。
≪3. Specific examples of support processing by an electrical circuit manufacturing support device >>
Next, as specific examples of the support processing performed by the support device 10, specific examples of processing for some work condition fluctuations will be described.
 i)部品装着機における吸着ノズルの交換
 部品装着機30における吸着ノズル118,124の交換は、部品保持デバイスの交換であり、部品装着作業の作業品質、詳しくは、装着される部品の装着精度に影響を与える作業条件変動の一例である。吸着ノズル118,124の交換は、作業機関連情報である上記作業実績情報、具体的には、ノズルIDが、前回作業基板と今回作業基板とで異なることによって認識される。吸着ノズル118,124の交換が認識された場合、交換された吸着ノズル118,124によって装着された部品が、影響部位として特定される。そして、監視対象部位として、その吸着ノズル118,124によって装着された部品のうち、最も大きい部品、最も小さい部品,1つの部品についての端子数が最も多い部品が認定される。装着作業結果検査機34からの検査データのうち、吸着ノズル118,124の交換前に部品装着作業が行われた基板における監視対象部位についての装着位置の位置ズレ量および交換後に部品装着作業が行われた基板における監視対象部位についての装着位置の位置ズレ量が対照用データとして用いられ、監視対象部位の各々についての吸着ノズル118,124の交換前後におけるそれらの位置ズレ量に対する工程能力指数CpKが安定度指標値としてそれぞれ算出され、それら工程能力指数CpKが比較されて、監視対象部位の各々に対する品質低下の有無が判断される。また、部品装着機30からの動作依拠取得データのうち、監視対象部位となる部品の部品カメラ108による撮像データに基づいて取得されたその部品の吸着ノズル118,124の軸線に対するズレ、つまり、吸着ノズル118,124によるその部品の吸着保持位置のズレ量も、対照用データとして用いられ、監視対象部位の各々についての吸着ノズル118,124の交換前後におけるそれらの位置ズレ量に対する工程能力指数CpKが安定度指標値としてそれぞれ算出され、それら工程能力指数CpKが比較されて、監視対象部位の各々に対する品質低下の有無が判断される。さらに、動作依拠取得データのうち、監視対象部位となる部品が部品フィーダ106から吸着ノズル118,124によって取り出される際の吸着保持ミスの回数も対照用データとして用いられ、監視対象部位の各々についての吸着ノズル118,124の交換前後における吸着保持ミス率(厳密には、吸着保持成功率である)が安定度指標値としてそれぞれ算出され、それら吸着保持ミス率が比較されて、監視対象部位の各々に対する品質低下の有無が判断される。いずれかの監視対象部位において品質の低下が発生していると判断された場合、第1順位の改善処置として、ノズルクリーナ128を利用した吸着ノズル118,124の自動クリーングが、第2順位の改善処置として、オペレータによるノズルの曲がりの修正が、第3順位の改善処置として、吸着ノズル118,124の再交換が、決定される。
i) Replacement of the suction nozzle in the component mounting machine Replacement of the suction nozzles 118 and 124 in the component mounting machine 30 is replacement of the component holding device, and the work quality of the component mounting work, specifically, the mounting accuracy of the mounted component It is an example of the working condition fluctuation | variation which affects. The replacement of the suction nozzles 118 and 124 is recognized by the fact that the work performance information that is work implement related information, specifically, the nozzle ID is different between the previous work board and the current work board. When the replacement of the suction nozzles 118 and 124 is recognized, the component mounted by the replaced suction nozzles 118 and 124 is identified as the affected part. Then, among the parts mounted by the suction nozzles 118 and 124, the largest part, the smallest part, and the part with the largest number of terminals for one part are certified as the monitoring target part. Of the inspection data from the mounting operation result inspection machine 34, the amount of displacement of the mounting position for the monitoring target portion on the board on which the component mounting operation has been performed before replacement of the suction nozzles 118, 124 and the component mounting operation are performed after replacement. The displacement amount of the mounting position for the monitored portion on the broken substrate is used as control data, and the process capability index C pK with respect to those displacement amounts before and after replacement of the suction nozzles 118 and 124 for each of the monitored portions. Are respectively calculated as stability index values, and the process capability indexes C pK are compared to determine whether or not there is a quality deterioration for each of the monitored parts. Further, out of the operation-based acquisition data from the component mounting machine 30, the displacement of the component with respect to the axis of the suction nozzles 118 and 124 acquired based on the imaging data of the component camera 108 of the component to be monitored, that is, the suction shift amount of the suction holding position of the component by the nozzle 118, 124 is also used as a control data, the process capability index C pK for position shift amount thereof in the before and after replacement of the suction nozzle 118, 124 for each of the monitor target Are respectively calculated as stability index values, and the process capability indexes C pK are compared to determine whether or not there is a quality deterioration for each of the monitored parts. Further, in the operation-based acquisition data, the number of suction holding mistakes when the part to be monitored is taken out from the component feeder 106 by the suction nozzles 118 and 124 is also used as the reference data, and for each monitored part. The suction holding error rate (strictly speaking, the suction holding success rate) before and after the replacement of the suction nozzles 118 and 124 is calculated as a stability index value, and these suction holding error rates are compared, and each of the monitoring target parts is compared. It is determined whether or not there is a deterioration in quality. When it is determined that quality degradation has occurred in any of the monitoring target parts, the automatic cleaning of the suction nozzles 118 and 124 using the nozzle cleaner 128 as the first order improvement measure improves the second order. As the treatment, the correction of the bending of the nozzle by the operator is decided, and the replacement of the suction nozzles 118 and 124 is decided as the third order improvement treatment.
 ii)部品装着機における部品ロットの変更
 部品装着機30においてスプライシング若しくは部品フィーダ106の交換等によって部品を補給した場合、ロットの変更が発生する。部品ロットの変更は、部品装着作業の作業品質、詳しくは、その部品の装着精度に影響を与える作業条件変動である。部品のロットの変更があった場合、作業機関連情報である上記作業実績情報として、部品IDが採用され、その部品IDが、前回作業基板と今回作業基板とで異なることによって認識される。部品のロットの変更が認識された場合、変更されたロットの部品が、影響部位として特定される。そして、監視対象部位として、影響部位として特定された部品のすべてが認定される。装着作業結果検査機34からの検査データのうち、部品ロットの変更前に部品装着作業が行われた基板における監視対象部位についての装着位置の位置ズレ量および変更後に部品装着作業が行われた基板における監視対象部位についての装着位置の位置ズレ量が対照用データとして用いられ、監視対象部位の各々についての部品ロット変更前後におけるそれらの位置ズレ量に対する工程能力指数CpKが安定度指標値としてそれぞれ算出され、それら工程能力指数CpKが比較されて、監視対象部位の各々に対する品質低下の有無が判断される。また、部品装着機30からの動作依拠取得データのうち、監視対象部位となる部品の部品カメラ108による撮像データに基づいて取得されたその部品の吸着ノズル118,124の軸線に対するズレ、つまり、吸着ノズル118,124によるその部品の吸着保持位置のズレ量も、対照用データとして用いられ、監視対象部位の各々についての部品ロット変更前後におけるそれらの位置ズレ量に対する工程能力指数CpKが安定度指標値としてそれぞれ算出され、それら工程能力指数CpKが比較されて、監視対象部位の各々に対する品質低下の有無が判断される。さらに、動作依拠取得データのうち、監視対象部位となる部品が部品フィーダ106から吸着ノズル118,124によって取り出される際の吸着保持ミスの回数も対照用データとして用いられ、監視対象部位の各々についての部品ロット変更前後における吸着保持ミス率(厳密には、吸着保持成功率である)が安定度指標値としてそれぞれ算出され、それら吸着保持ミス率が比較されて、監視対象部位の各々に対する品質低下の有無が判断される。また、いずれかの監視対象部位において品質の低下が発生していると判断された場合、部品フィーダ106ごと部品を交換したことによって部品のロットが変更されたときには、まず、部品フィーダ106だけを、さらに別の部品フィーダ106に交換する処置が、その処置でも改善が見られないときには、続いて、部品をさらに別のロットの部品に交換する処置が、順次、改善処置として決定され、通知される。一方、スプライシング等によって部品だけを交換したことによって部品のロットが変更されたときには、部品をさらに別のロットの部品に交換する処置が、唯一の改善処置として決定され、通知される。
ii) Change of parts lot in the component mounting machine When the parts are replenished in the component mounting machine 30 by splicing or replacement of the parts feeder 106, a lot change occurs. The change of the part lot is a change in work condition that affects the work quality of the part mounting work, specifically, the mounting accuracy of the part. When there is a change in a lot of parts, a part ID is adopted as the work performance information that is work implement related information, and the part ID is recognized by being different between the previous work board and the current work board. When the change of the part lot is recognized, the part of the changed lot is identified as the affected part. And all the parts specified as an influence part are authorized as a monitoring object part. Of the inspection data from the mounting operation result inspection machine 34, the amount of displacement of the mounting position for the monitoring target part in the substrate on which the component mounting operation has been performed before the change of the component lot and the substrate on which the component mounting operation has been performed after the change Is used as control data, and the process capability index C pK with respect to those positional deviation amounts before and after changing the part lot for each of the monitoring target parts is used as the stability index value. The calculated process capability indexes C pK are compared, and it is determined whether or not there is a quality deterioration for each of the monitoring target parts. Further, out of the operation-based acquisition data from the component mounting machine 30, the displacement of the component with respect to the axis of the suction nozzles 118 and 124 acquired based on the imaging data of the component camera 108 of the component to be monitored, that is, the suction The deviation amount of the suction holding position of the part by the nozzles 118 and 124 is also used as control data, and the process capability index C pK with respect to the positional deviation amount before and after the part lot change for each monitored part is a stability index. each is computed as the value is compared their process capability index C pK, whether degradation for each of the monitor target is determined. Further, in the operation-based acquisition data, the number of suction holding mistakes when the part to be monitored is taken out from the component feeder 106 by the suction nozzles 118 and 124 is also used as the reference data, and for each monitored part. The suction retention error rate (strictly speaking, the suction retention success rate) before and after the parts lot change is calculated as a stability index value, and these suction retention error rates are compared to reduce the quality degradation for each of the monitored parts. Presence or absence is determined. Further, when it is determined that quality degradation has occurred in any of the monitoring target parts, when the part lot is changed by exchanging parts together with the part feeder 106, first, only the part feeder 106 is changed. If the procedure for replacing another component feeder 106 does not show improvement, the procedure for replacing the component with a component in another lot is sequentially determined and notified as an improvement procedure. . On the other hand, when the lot of a part is changed by exchanging only the part by splicing or the like, a process for replacing the part with a part in another lot is determined and notified as the only improvement process.
 iii)はんだ印刷機におけるスクリーンのクリーニング
 はんだ印刷機24におけるスクリーン56は、はんだランドの擦れ,はみ出し,突起等を防止するための有効な手段であり、はんだ印刷機24では、定期的に自動でドライクリーニングが行われる。この定期的なドライクリーニングは、はんだ印刷作業における作業条件変動となる。定期的なドライクリーニングが実施された場合、作業機関連情報である上記処置情報として、そのクリーニングが実施された事実がはんだ印刷機24から支援装置10に送られ、支援装置10は、そのクリーニングの実施を、作業条件変動と認識する。ドライクリーニングの場合、印刷されるすべてのはんだランドが影響部位として特定され、監視対象部位として、最も面積の小さなはんだランド,最も面積の大きなはんだランド,最も近接した2つのはんだランド,X方向Y方向のそれぞれにおける基板の両端の各々に最も近いはんだランド,基板の最も中央に位置するはんだランドが、認定される。監視対象部位の各々におけるドライクリーニング前の面積変動量,体積変動量のそれぞれについての工程能力指数CpKおよびドライクリーニング前の面積変動量,体積変動量についての工程能力指数CpKが安定度指標値として算出され、各監視対象部位についてのそれらが比較されて、作業品質の低下が判断される。品質の低下があった場合には、第1順位の改善処置として、ウェットクリーニングが、第2順位の改善処置として、バキュームクリーニングが決定される。
iii) Screen Cleaning in Solder Printer The screen 56 in the solder printer 24 is an effective means for preventing the solder land from rubbing, protruding, and protruding. Cleaning is performed. This regular dry cleaning causes a change in working conditions in the solder printing operation. When periodic dry cleaning is performed, the fact that the cleaning has been performed is sent from the solder printer 24 to the support device 10 as the processing information that is information related to the work machine. Implementation is recognized as a change in working conditions. In the case of dry cleaning, all the solder lands to be printed are identified as affected parts, and the smallest solder lands, the largest solder lands, the two closest solder lands, and the X direction and Y direction are monitored parts. The solder land closest to each of the both ends of the board in each of the above, the solder land located at the center of the board is certified. Area variation amount before dry cleaning in each of the monitored site, the process capability index C pK and dry cleaning before the area change amount for each of the volume variation, the process capability index C pK is stability index values for the volume change amount Are calculated for each of the monitoring target parts, and the deterioration of the work quality is determined. When the quality is deteriorated, wet cleaning is determined as the first order improvement process, and vacuum cleaning is determined as the second order improvement process.
 iv)その他の作業条件変動
 上記3つの具体例以外に、種々の作業条件変動が存在している。そのいくつかについて列挙すれば、はんだ印刷機24に関しては、例えば、基板のロット変更,スキージの交換,クリームはんだの追加供給,スキージの移動速度の変更,機内の設定温度の変更等が、部品装着機30に関しては、例えば、装着ヘッド110,122の交換,装着モジュール46の交換,基板のロットの変更,装着位置等に関する装着プログラムの変更等が、また、リフロー炉に関しては、例えば、炉内の温度プロファイルの変更,基板搬送速度の変更等が、それぞれ、作業条件変動に該当する。本装着装置10は、用いる基板関連情報を適切に選択することにより、種々の作業条件変動を認定可能とされている。対照用データも、作業条件変動に応じた適切なものを選択可能であり、また、影響部位の特定,監視対象部位の認定の規則,安定度指標値,対処処置等も、任意に設定可能とされている。すなわち、本装着装置10は、幅広い種類の作業条件変動に容易に対処可能とされているのである。
iv) Other working condition fluctuations In addition to the above three specific examples, there are various working condition fluctuations. To list some of them, for example, changing the lot of the board, changing the squeegee, supplying additional cream solder, changing the moving speed of the squeegee, changing the set temperature inside the machine, etc. Regarding the machine 30, for example, replacement of the mounting heads 110, 122, replacement of the mounting module 46, change of the lot of the substrate, change of the mounting program regarding the mounting position, etc., and for the reflow furnace, for example, in the furnace A change in temperature profile, a change in substrate transfer speed, and the like correspond to variations in work conditions. The mounting apparatus 10 can recognize various work condition fluctuations by appropriately selecting board-related information to be used. The control data can be selected appropriately according to changes in work conditions, and the identification of affected parts, the rules for qualifying monitored parts, stability index values, countermeasures, etc. can be set arbitrarily. Has been. That is, the mounting apparatus 10 can easily cope with a wide variety of work condition fluctuations.
 10:電気回路製造支援装置  20:電気回路製造ライン  24:はんだ印刷機  26:印刷作業結果検査機  30:部品装着機  34:装着作業結果検査機  36:リフロー炉  38:最終検査機  42:装着モジュール  46:ラインコントローラ  56:スクリーン  60:スキージ装置  62:クリーニング装置  106:部品フィーダ 〔部品供給装置〕  110:装着ヘッド  118:吸着ノズル〔部品保持デバイス〕  122:装着ヘッド  124:吸着ノズル〔部品保持デバイス〕  126:ノズルストッカ  128:ノズルクリーナ  152:情報・データ入手部  154:条件変動認識部  156:監視対象部位認定部  158:対象部位品質判断部  160:改善処置決定部  162:情報・処置通知部  164:情報・データ格納部

                                                                                
10: Electric circuit manufacturing support device 20: Electric circuit manufacturing line 24: Solder printer 26: Printing work result inspection machine 30: Component mounting machine 34: Mounting work result inspection machine 36: Reflow furnace 38: Final inspection machine 42: Mounting module 46: line controller 56: screen 60: squeegee device 62: cleaning device 106: component feeder [component feeder] 110: mounting head 118: suction nozzle [component holding device] 122: mounting head 124: suction nozzle [component holding device] 126: Nozzle stocker 128: Nozzle cleaner 152: Information / data acquisition unit 154: Condition variation recognition unit 156: Monitored part recognition unit 158: Target part quality judgment unit 160: Improvement treatment determination unit 162: Information / treatment notification unit 164: Information / data storage

Claims (6)

  1.  電気回路を構成する回路基板に対する作業である対基板作業を実行する対基板作業機を備えた電気回路製造ラインによる電気回路の製造を支援するための電気回路製造支援装置であって、
     対基板作業において前記対基板作業機が行った動作と前記対基板作業機に対して行われた処置との少なくとも一方に関する情報を含む作業機関連情報に基づいて、対基板作業における作業条件の変動である作業条件変動を認識する条件変動認識部と、
     その認識された作業条件変動が作業品質に影響を及ぼす可能性のある作業部位を特定し、その特定された作業部位の少なくとも1つを、監視対象部位として認定する監視対象部位認定部と、
     前記対基板作業機の動作に依拠して取得された動作依拠取得データと、前記対基板作業機による対基板作業の作業結果を検査する検査機による検査データとの少なくとも一方を含む対照用データの、前記認識された作業条件変動の発生前に対基板作業が実行された回路基板についてのものと、その作業条件変動の発生後に対基板作業が実行された回路基板についてのものとを対照して、前記監視対象部位の作業品質の変化に関する判断を行う対象部位品質判断部と
     を備えた電気回路製造支援装置。
    An electrical circuit manufacturing support apparatus for supporting the manufacture of an electrical circuit by an electrical circuit manufacturing line provided with a counter-board work machine for performing a counter-board work that is a work on a circuit board constituting an electric circuit,
    Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work A condition fluctuation recognizing unit for recognizing work condition fluctuations,
    A monitoring part identifying unit that identifies a working part where the recognized work condition variation may affect work quality, and authorizes at least one of the identified working parts as a monitoring target part;
    Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine The circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred. An electrical circuit manufacturing support apparatus comprising: a target part quality determination unit that performs a determination on a change in work quality of the monitoring target part.
  2.  前記対象部位品質判断部が、前記監視対象部位に対する対基板作業とその監視対象部位の作業結果との少なくとも一方についての前記認識された作業条件変動の発生前における安定度と発生後における安定度とを比較して、その監視対象部位の作業品質の変化に関する判断を行うように構成された請求項1に記載の電気回路製造支援装置。 The target part quality determination unit includes a stability before the occurrence of the recognized change in work conditions and a stability after the occurrence of at least one of the work on the substrate for the monitoring target part and the work result of the monitoring target part; The electric circuit manufacturing support apparatus according to claim 1, configured to make a determination regarding a change in work quality of the monitoring target part.
  3.  前記監視対象部位認定部が、作業条件変動の作業品質への影響の現れ易さを考慮して設定された規則に基づき、前記特定された作業部位のいくつかのものを、前記監視対象部位として認定するように構成された請求項1または請求項2に記載の電気回路製造支援装置。 Based on the rules set in consideration of the easiness of appearance of the influence on the work quality due to fluctuations in work conditions, the part to be monitored is identified as the part to be monitored as the part to be monitored The electric circuit manufacturing support apparatus according to claim 1 or 2, which is configured to be authorized.
  4.  当該電気回路製造支援装置が、さらに、
     前記対象部位品質判断部が、前記監視対象部位の作業品質の低下の程度が設定程度を超えていると判断した場合に、その監視対象部位の作業品質を改善するための改善処置を決定する改善処置決定部と、
     その改善処置決定部によって決定された改善処置を、前記対基板作業機と前記電気回路製造ラインのオペレータとの少なくとも一方に通知する処置通知部と
     を備えた請求項1ないし請求項3のいずれか1つに記載の電気回路製造支援装置。
    The electrical circuit manufacturing support device further includes
    When the target part quality determination unit determines that the degree of deterioration of the work quality of the monitoring target part exceeds the set level, an improvement for determining an improvement measure for improving the work quality of the monitoring target part A treatment determining unit;
    The treatment notifying unit according to any one of claims 1 to 3, further comprising a treatment notifying unit for notifying at least one of the anti-substrate work machine and an operator of the electric circuit manufacturing line of the improvement measure determined by the improvement measure determining unit. The electric circuit manufacturing support apparatus according to one.
  5.  前記改善処置決定部が、前記決定された改善処置が前記対基板作業機に対して施されたにも拘わらず前記監視対象部位の作業品質の改善が見られないときには、施された改善処置とは別の改善処置を決定するように構成され、
     前記処置通知部が、その別の改善処置を前記対基板作業機と前記電気回路製造ラインのオペレータとの少なくとも一方に通知するように構成された請求項4に記載の電気回路製造支援装置。
    When the improvement treatment determining unit does not improve the work quality of the monitoring target portion even though the determined improvement treatment is applied to the substrate work machine, Is configured to determine another remedial action,
    The electrical circuit manufacturing support apparatus according to claim 4, wherein the treatment notifying unit is configured to notify at least one of the anti-substrate work machine and an operator of the electrical circuit production line of the other improvement measures.
  6.  電気回路を構成する回路基板に対する作業である対基板作業を実行する対基板作業機を備えた電気回路製造ラインによる電気回路の製造を支援するための電気回路製造支援方法であって、
     対基板作業において前記対基板作業機が行った動作と前記対基板作業機に対して行われた処置との少なくとも一方に関する情報を含む作業機関連情報に基づいて、対基板作業における作業条件の変動である作業条件変動を認識する条件変動認識ステップと、
     その認識された作業条件変動が作業品質に影響を及ぼす可能性のある作業部位を特定し、その特定された作業部位の少なくとも1つを、監視対象部位として認定する監視対象部位認定ステップと、
     前記対基板作業機の動作に依拠して取得された動作依拠取得データと、前記対基板作業機による対基板作業の作業結果を検査する検査機による検査データとの少なくとも一方を含む対照用データの、前記認識された作業条件変動の発生前に対基板作業が実行された回路基板についてのものと、その作業条件変動の発生後に対基板作業が実行された回路基板についてのものとを対照して、前記監視対象部位の作業品質の変化に関する判断を行う対象部位品質判断ステップと
     を含む電気回路製造支援方法。
                                                                                    
    An electrical circuit manufacturing support method for supporting the manufacture of an electrical circuit by an electrical circuit manufacturing line provided with an on-board work machine for performing on-board work, which is work on a circuit board constituting an electric circuit,
    Based on work machine related information including information on at least one of an operation performed by the substrate work machine and a treatment performed on the substrate work machine in the board work, a change in work conditions in the board work A condition change recognition step for recognizing a change in work condition,
    A monitoring target part qualifying step for identifying a work part in which the recognized work condition variation may affect work quality, and certifying at least one of the specified work parts as a monitoring target part;
    Control data including at least one of operation-based acquisition data acquired based on the operation of the substrate-working machine and inspection data by an inspection machine that inspects a work result of the substrate-working by the substrate-working machine The circuit board for which the board work was performed before the recognized change in the work condition was compared with the circuit board for which the board work was performed after the work condition change occurred. And a target part quality determination step for determining a change in work quality of the monitored part.
PCT/JP2012/063277 2011-05-31 2012-05-24 Electrical-circuit manufacturing assistance device and electrical-circuit manufacturing assistance method WO2012165275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011121939A JP5781835B2 (en) 2011-05-31 2011-05-31 Electric circuit manufacturing support apparatus and electric circuit manufacturing support method
JP2011-121939 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165275A1 true WO2012165275A1 (en) 2012-12-06

Family

ID=47259132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063277 WO2012165275A1 (en) 2011-05-31 2012-05-24 Electrical-circuit manufacturing assistance device and electrical-circuit manufacturing assistance method

Country Status (2)

Country Link
JP (1) JP5781835B2 (en)
WO (1) WO2012165275A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014091546A1 (en) * 2012-12-10 2017-01-05 富士機械製造株式会社 Solder printing machine
CN107561382A (en) * 2017-08-23 2018-01-09 南方电网科学研究院有限责任公司 A kind of monitoring method and device of transmission facility operation conditions
CN114073178A (en) * 2019-07-23 2022-02-18 株式会社富士 Data management device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557854B2 (en) * 2015-04-09 2019-08-14 パナソニックIpマネジメント株式会社 Operation parameter setting support system for component mounting equipment
JP6835878B2 (en) 2017-02-02 2021-02-24 株式会社Fuji Production control equipment
US11503753B2 (en) 2017-07-25 2022-11-15 Fuji Corporation Substrate processing management system
EP3764762B1 (en) 2018-03-09 2023-07-19 Fuji Corporation Component mounter
EP3809811A4 (en) 2018-06-12 2021-06-16 Fuji Corporation Component mounting machine and component mounting system
CN112602385B (en) * 2018-08-28 2022-08-30 株式会社富士 Control program inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124699A (en) * 2001-10-11 2003-04-25 Fuji Mach Mfg Co Ltd Equipment and method for inspection work result of substrate, system and method for manufacturing electric circuit
JP2004235582A (en) * 2003-01-31 2004-08-19 Omron Corp Method for inspection of mounting error, and substrate inspection apparatus using this method
JP2005142419A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Managing method of component and component tape
JP2006317266A (en) * 2005-05-12 2006-11-24 Omron Corp Inspection standard setting system, inspection standard setting method and process inspection device
JP2007335609A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Quality control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124699A (en) * 2001-10-11 2003-04-25 Fuji Mach Mfg Co Ltd Equipment and method for inspection work result of substrate, system and method for manufacturing electric circuit
JP2004235582A (en) * 2003-01-31 2004-08-19 Omron Corp Method for inspection of mounting error, and substrate inspection apparatus using this method
JP2005142419A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Managing method of component and component tape
JP2006317266A (en) * 2005-05-12 2006-11-24 Omron Corp Inspection standard setting system, inspection standard setting method and process inspection device
JP2007335609A (en) * 2006-06-14 2007-12-27 Matsushita Electric Ind Co Ltd Quality control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014091546A1 (en) * 2012-12-10 2017-01-05 富士機械製造株式会社 Solder printing machine
CN107561382A (en) * 2017-08-23 2018-01-09 南方电网科学研究院有限责任公司 A kind of monitoring method and device of transmission facility operation conditions
CN107561382B (en) * 2017-08-23 2019-11-01 南方电网科学研究院有限责任公司 A kind of monitoring method and device of transmission facility operation conditions
CN114073178A (en) * 2019-07-23 2022-02-18 株式会社富士 Data management device
CN114073178B (en) * 2019-07-23 2023-07-14 株式会社富士 Data management device

Also Published As

Publication number Publication date
JP2012248815A (en) 2012-12-13
JP5781835B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5781835B2 (en) Electric circuit manufacturing support apparatus and electric circuit manufacturing support method
WO2012165276A1 (en) Board operation assisting device, and board operation assisting method
JP5781834B2 (en) Substrate work inspection support device
JP5819709B2 (en) Anti-substrate work support apparatus and anti-substrate operation support method
US20100152877A1 (en) Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
JP6835878B2 (en) Production control equipment
JP5816532B2 (en) Anti-substrate work support device
JP6524418B2 (en) Component mounting system and component mounting method
JP6830538B2 (en) Board work management system
JP2007149817A (en) Mounting line, its managing method and inspection machine
JP7065270B2 (en) Error cause estimation device and error cause estimation method
JP6259565B2 (en) Mounting management device, inspection management device, mounting system, mounting management method and program thereof, and inspection management method and program thereof
JP2007189029A (en) Mounting system, mounting machine, mounting method of printer and electronic component
WO2012165277A1 (en) Substrate-processing assistance device
JP6270841B2 (en) Inspection control device, mounting system, and inspection control method
JPWO2019049318A1 (en) Board-to-board working machine
JP7197705B2 (en) Mounting equipment, mounting system, and inspection mounting method
JP7061703B2 (en) Production control method
JP7394293B2 (en) Nozzle maintenance analysis system and nozzle maintenance analysis method
WO2024053099A1 (en) Substrate production system and substrate production method
JP6442593B2 (en) Mounting processing apparatus and method for controlling mounting processing apparatus
WO2022269679A1 (en) Control method for component mounting system, and component mounting system
JP6715266B2 (en) Repair device and repair method
JP2023100538A (en) Component mounting device and component mounting system
JP2024005780A (en) Management program for surface-mounted machine, management device, management method and component mounting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792744

Country of ref document: EP

Kind code of ref document: A1