WO2012165077A1 - 改質器 - Google Patents

改質器 Download PDF

Info

Publication number
WO2012165077A1
WO2012165077A1 PCT/JP2012/060439 JP2012060439W WO2012165077A1 WO 2012165077 A1 WO2012165077 A1 WO 2012165077A1 JP 2012060439 W JP2012060439 W JP 2012060439W WO 2012165077 A1 WO2012165077 A1 WO 2012165077A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
layer
passage
separation
heating
Prior art date
Application number
PCT/JP2012/060439
Other languages
English (en)
French (fr)
Inventor
岩切 保憲
隆夫 和泉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/819,588 priority Critical patent/US9308509B2/en
Priority to EP12792000.7A priority patent/EP2716596B1/en
Priority to CN201280002827.5A priority patent/CN103097285B/zh
Priority to JP2013517925A priority patent/JP5673816B2/ja
Publication of WO2012165077A1 publication Critical patent/WO2012165077A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2474Mixing means, e.g. fins or baffles attached to the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2493Means for assembling plates together, e.g. sealing means, screws, bolts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a reformer configured by laminating a reforming layer and a heating layer, and more particularly to a reformer that heats the reforming layer by an exothermic reaction by a combustion catalyst and supplies a reformed gas.
  • a method of supplying a reformed gas obtained by reforming a liquid fuel may be used, and in this reforming, a high carbon number organic liquid such as gasoline is used as the reformed fuel.
  • the reforming is performed by evaporating the gas or introducing it into a reformer together with other components necessary for the reforming reaction using gas fuel.
  • the reformed fuel is reformed by the reforming catalyst in the reformer, but heat is required for the reforming reaction. It is important to be done.
  • Patent Document 1 is disclosed as an example of such a reformer.
  • the combustion passage and the reforming passage are installed with a wall therebetween, and the combustion gas supplied to the combustion passage generates heat by burning on the combustion catalyst.
  • the reforming reaction in the reforming layer is performed by transmitting the reforming catalyst to the reforming catalyst in the reforming passage.
  • the combustion gas can be supplied most easily if the combustion gas and the combustion support gas are mixed in advance and supplied to the reformer when supplying the combustion gas. it can.
  • the exothermic reaction is biased near the entrance of the combustion passage, there is a problem that a sufficient amount of heat generation cannot be obtained on the downstream side of the combustion passage and the reforming reaction is not sufficiently performed.
  • the combustion gas is separated from the combustion support gas and introduced to a place where it is desired to generate heat in the combustion passage using a pipe, so that the entire combustion catalyst generates heat.
  • the reaction was to take place.
  • the present invention has been proposed in view of the above-described circumstances, and an object thereof is to provide a reformer capable of causing an exothermic reaction widely in the entire combustion catalyst with a simple structure.
  • the reformer according to the present invention is configured by laminating a reforming layer for reforming reformed fuel with a reforming catalyst and a heating layer for heating the reforming layer by an exothermic reaction by a combustion catalyst.
  • a gas mixture obtained by mixing the combustion gas and the combustion support gas is supplied to the heating passage of the bed.
  • the heating passage is separated into a plurality of separation passages by a separation wall parallel to the wall surface to which the combustion catalyst is applied, and the plurality of separation passages discharge mixed gas to different positions of the combustion catalyst.
  • FIG. 1 is a diagram showing the structure of a reformer according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a diagram showing a porous metal installed in the reformer according to the first embodiment to which the present invention is applied.
  • FIG. 3 is a diagram showing a detailed cross-sectional structure of the reforming layer and the heating layer of the reformer according to the first embodiment to which the present invention is applied.
  • FIG. 4 is a diagram showing a detailed cross-sectional structure of the reforming layer and the heating layer of the reformer according to the first embodiment to which the present invention is applied.
  • FIG. 5 is a diagram showing a detailed cross-sectional structure of the reforming layer and the heating layer of the reformer according to the second embodiment to which the present invention is applied.
  • FIG. 1 is a diagram showing the structure of a reformer according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a diagram showing a porous metal installed in the reformer according to the first embodiment to which the present
  • FIG. 6 is a diagram showing a detailed cross-sectional structure of the reforming layer and the heating layer of the reformer according to the third embodiment to which the present invention is applied.
  • FIG. 7 is a diagram showing the structure of the switching unit of the reformer according to the third embodiment to which the present invention is applied.
  • FIG. 8 is a diagram showing a detailed cross-sectional structure of the reforming layer and the heating layer of the reformer according to the fourth embodiment to which the present invention is applied.
  • FIG. 1 is a view showing the structure of a reformer according to this embodiment
  • FIG. 1 (a) is a perspective view showing the overall configuration
  • FIG. 1 (b) is an exploded perspective view of a reforming layer and a heating layer. .
  • a reformer 1 heats a reforming layer 2 by reforming reformed fuel with a reforming catalyst and an exothermic reaction by a combustion catalyst.
  • the heating layer 3 is laminated, and the outer wall 4 is laminated on the top and bottom.
  • FIG. 1A shows a structure in which four modified layers 2 and three heating layers 3 are laminated, the number of laminated layers is not limited to this.
  • the reforming layer 2 includes a metal plate 6 on which the reforming catalyst 5 is applied, a metal frame 7 that defines the height of the reforming passage, and a lower surface on the reforming layer side.
  • the reforming catalyst 5 is applied to the metal plate 9 and the metal plate 9 is coated on the upper surface on the heating layer side.
  • a diffusion structure 15 for diffusing the reformed fuel flowing on the metal plate 6 is installed.
  • the diffusion structure 15 is, for example, fins arranged in a zigzag pattern shown in FIG. 1B, a porous metal, a baffle plate, or the like shown in FIG.
  • the heating layer 3 is a metal plate 9 to which a combustion catalyst 8 is applied, a first metal frame 10 that defines a part of the height of the heating passage, and a metal plate in which an opening is provided in a part of the wall surface.
  • the 3rd metal frame 14 which prescribes
  • a diffusion structure 16 is provided on the metal plate 9 to which the combustion catalyst 8 is applied to diffuse the flowing combustion gas and supporting gas.
  • the diffusion structure 16 is, for example, fins arranged in a zigzag pattern shown in FIG. 1B, a porous metal, a baffle plate, or the like shown in FIG.
  • the heights of the first to third metal frames 10, 12, and 14 that define a part of the height of the heating passage are obtained by dividing the height of the normal heating passage. It does not increase the height.
  • the height of the first to third metal frames 10, 12, and 14 is about 0.2 mm
  • the height of the metal frame 7 that defines the height of the reforming passage is about 0.5 mm.
  • the laminated reformer 1 according to the present embodiment can be manufactured by laminating the modified layer 2 and the heating layer 3 having such a configuration and joining the outer peripheral surfaces thereof by welding.
  • the reformer 1 As shown in FIG. 3A, the reformer 1 according to this embodiment is formed by laminating a reforming layer 2 and a heating layer 3, and the reformed gas reformed in the reforming layer 2 is The fuel cell 30 is supplied. The components remaining after the reaction by the fuel cell 30 are circulated to the heating layer 3 as a combustion gas.
  • FIG. 3B shows an enlarged cross-sectional view of the reforming layer 2 and the heating layer 3 in the reformer 1 having such a configuration.
  • the reforming catalyst 2 is applied to the flow path walls 21 and 22 composed of parallel walls, and the heating layer 3 is composed of parallel walls.
  • the combustion catalyst 8 is applied to the flow path wall 23 on the side adjacent to the reforming layer 2 among the walls 23 and 24.
  • a mixed gas obtained by mixing the combustion gas and the combustion support gas is supplied to the heating passage 25 of the heating layer 3 and heated by the first and second separation walls 11 and 13 parallel to the wall surface on which the combustion catalyst 8 is applied.
  • the passage 25 is separated into a plurality of separation passages.
  • the opening part of the 1st separation wall 11 and the 2nd separation wall 13 is arrange
  • the opening area of the inlet 26 through which the mixed gas flows into the heating layer 3 is larger than the opening area of the outlet 27 through which the mixed gas flows out.
  • the case where two separation walls are separated into three separation passages is shown as an example, but the number of separation passages may be two or more than three.
  • the reformed fuel gas is supplied to the reforming passage 28, the reforming reaction is performed by the reforming catalyst 5, and the reformed gas is output.
  • FIG. 4A is an enlarged cross-sectional view of the modified layer 2 and the heating layer 3
  • FIGS. 4B, 4C, and 4D are respectively XX, YY, and FIG. It is sectional drawing in ZZ.
  • FIG. 4 the case where the gas flow direction of the reforming layer 2 is the same as the gas flow direction of the heating layer 3 will be described.
  • the heating passage 25 of the heating layer 3 is divided into three separation passages 31a and 31b from the side closer to the reforming layer 2 by two sheets of the first separation wall 11 and the second separation wall 13. , 31c.
  • the heating layer 3 flows into the heating passage 25 in a state where a combustion gas such as a hydrocarbon fuel or hydrogen and a combustion support gas such as air are mixed in advance, and the mixed gas that flows into the separation layer 31a, It is separated into 31b and 31c and flows. Thereafter, since the two separation walls 11 and 13 are provided with openings at different positions, the three separation passages 31a, 31b, and 31c discharge mixed gas to different positions of the combustion catalyst 8, respectively.
  • the separation passage 31 a supplies a mixed gas to part A of the combustion catalyst 8
  • the separation passage 31 b discharges the mixed gas to part B of the combustion catalyst 8
  • the separation passage 31 c serves as the combustion catalyst 8.
  • the mixed gas is discharged to part C.
  • the mixed gas that has flowed into the separation passage 31a contacts the combustion catalyst 8 immediately after the inflow, so that heat is generated by the combustion reaction near the inlet of the heating layer 3 and reforming with the wall sandwiched between them.
  • the reforming catalyst 5 in the layer 2 is heated to promote the reforming reaction in the vicinity of the inlet of the reforming layer 2.
  • the mixed gas that has flowed into the separation passages 31b and 31c does not come into contact with the combustion catalyst 8 in the vicinity of the inlet of the heating layer 3, and therefore proceeds through the heating passage 25 without reacting.
  • the first separation wall 11 that separated the separation passage 31 b and the separation passage 31 a is interrupted, so that the mixed gas flowing through the separation passage 31 b enters the combustion catalyst 8. It is discharged and generates a combustion reaction in part B to generate heat. As a result, the reforming catalyst 5 of the reforming layer 2 across the wall is heated, and the reforming reaction in the central portion of the reforming layer 2 is promoted.
  • the second separation wall 13 that separated the separation passage 31b and the separation passage 31c is interrupted, so that the mixed gas that has flowed through the separation passage 31c becomes a combustion catalyst. 8 and generates heat by causing a combustion reaction in part C.
  • the reforming catalyst 5 of the reforming layer 2 across the wall is heated, and the reforming reaction in the vicinity of the outlet of the reforming layer 2 is promoted.
  • the wall surface 32 is provided at the outlet of the separation passage 31c, the mixed gas flowing through the separation passage 31c changes to the combustion catalyst 8 side and reliably reacts with the combustion catalyst 8.
  • diffusion members 33 and 34 are provided at portions where the first separation wall 11 and the second separation wall 13 are interrupted, respectively, and the mixed gas flowing through the separation passages 31b and 31c is guided toward the combustion catalyst 8. It plays the role of changing the flow as it is.
  • the reformed fuel is reformed into a reformed gas by performing an exothermic reaction in the entire heating layer 3.
  • the mixed gas obtained by mixing the combustion gas and the combustion support gas is supplied to the heating passage 25 and the heating passage 25 is separated from the separation wall 11. , 13, and the separation passages discharge the mixed gas to different positions of the combustion catalyst 8 respectively, so that the entire combustion catalyst 8 can perform an exothermic reaction widely with a simple structure without using a pipe or the like. Can wake up. Thereby, a wide range of the reforming layer 2 can be maintained at a temperature suitable for the reforming reaction, and a good reforming reaction can be realized.
  • the passage can be made wider than the conventional pipe, the mixed gas can be introduced in a wide range, and the exothermic reaction can be caused widely in the entire combustion catalyst 8.
  • the diffusion structure for diffusing the gas is provided in the reforming layer 2 and the heating layer 3, the flowing gas is diffused to react in a wide range. Can wake up.
  • the fins 15 and 16 arranged in a staggered manner are provided as the diffusion structure, the gas flowing with a simple structure can be efficiently diffused. .
  • the porous metal is provided as the diffusion structure, the flowing gas can be more reliably diffused.
  • the reformed gas reformed in the reforming layer 2 is supplied as the fuel gas of the fuel cell, so that it can be used as a reformer for the fuel cell. it can.
  • FIG. 5 (a) is an enlarged cross-sectional view of the modified layer 2 and the heating layer 3.
  • FIGS. 5 (b), (c), and (d) are respectively XX, YY, and FIG. It is sectional drawing in ZZ.
  • FIG. 5 the case where the gas flow direction of the modified layer 2 is opposite to the gas flow direction of the heating layer 3 will be described.
  • the heating passage 25 of the heating layer 3 is formed into the reforming layer 2 by two sheets of the first separation wall 11 and the second separation wall 13. It is separated into three separation passages 31a, 31b, and 31c from the near side.
  • the heating layer 3 raises the temperature of the C portion located near the inlet of the reforming layer 2 and the reformed fuel gas of the reforming layer 2 is supplied. It is necessary to make the reforming reaction near the entrance to be performed most actively. Therefore, the positions where the separation passages 31a, 31b, and 31c discharge the mixed gas need to be arranged closer to the inlet side than the outlet side of the reforming passage 28.
  • the wall surface 51 is provided so that the mixed gas does not flow into the separation passage 31a that supplies the mixed gas to the part A located near the outlet of the reformed layer 2.
  • the mixed gas that has flowed in is separated into two of the separation passages 31b and 31c and flows, so that more mixed gas is introduced into the back of the heating passage 25.
  • the mixed gas does not flow in and the combustion catalyst 8 is not applied, so that no exothermic reaction occurs.
  • the first separation wall 11 is interrupted, so the mixed gas that has flowed through the separation passage 31b is discharged to the combustion catalyst 8, and the combustion reaction occurs in the B part. Wake up and generate heat. As a result, the reforming catalyst 5 of the reforming layer 2 across the wall is heated, and the reforming reaction in the central portion of the reforming layer 2 is promoted.
  • the second separation wall 13 is interrupted, so the mixed gas that has flowed through the separation passage 31c is discharged to the combustion catalyst 8, and the combustion reaction occurs in the C part. Wake up and generate heat. Thereby, the reforming catalyst 5 of the reforming layer 2 across the wall is heated, and the reforming reaction in the vicinity of the inlet of the reforming layer 2 is promoted.
  • the position at which the mixed gas is discharged to the combustion catalyst 8 is reformed. It could be arranged closer to the inlet side than the outlet side of the passage 28. Thereby, the temperature on the inlet side of the reforming layer 2 can be increased to further promote the reforming reaction.
  • the amount of heat generated in each part of the combustion catalyst 8 can be changed according to the cross-sectional areas of the separation passages 31a, 31b, 31c.
  • the ratio of the cross-sectional area of the separation passage 31c and the separation passage 31b to 2: 1 it is possible to set the heat generation amount in the C portion of the combustion catalyst 8 to about twice the heat generation amount in the B portion. is there.
  • the reforming reaction of the reforming layer 2 can be further promoted by setting the cross-sectional area to be larger in the separation passage closer to the inlet side of the reforming passage 28 where the mixed gas is discharged. it can.
  • the separation passages 31a, 31b, and 31c are positioned closer to the inlet side than the outlet side of the reforming passage 28 so that the mixed gas is discharged. Therefore, a larger amount of mixed gas can be supplied to the inlet side of the reforming layer 2 where a large amount of heat generation is required, thereby increasing the temperature in the vicinity of the inlet of the reforming layer 2 and performing the reforming reaction. Can be promoted.
  • the cross-sectional areas of the separation passages 31a, 31b, and 31c are set so that the separation passage closer to the inlet side of the reforming passage 28 has a larger mixed gas discharge position. Therefore, a larger amount of mixed gas can be supplied to the inlet side of the reforming layer 2 that requires a large amount of heat generation, thereby increasing the temperature near the inlet of the reforming layer 2 and further promoting the reforming reaction. be able to.
  • FIG. 6 (a) is an enlarged cross-sectional view of the modified layer 2 and the heating layer 3.
  • FIGS. 6 (b), (c), and (d) are respectively XX, YY, and FIG. It is sectional drawing in ZZ.
  • the heating passage 25 is separated into two separation passages 63a and 63b by the separation wall 62, and these separation passages 63a and 63b are separated from the heating passage 25.
  • the arrangement from the wall surface to which the combustion catalyst 8 is applied is switched with the switching unit 64 in the middle of That is, the separation passage 63a is disposed at a position in contact with the combustion catalyst 8 on the upstream side of the switching portion 64, and the separation passage 63b is disposed at a position on the downstream side of the switching portion 64 so that the separation passage 63b is in contact with the combustion catalyst 8. .
  • the mixed gas flowing through the separation passages 63a and 63b flows without being mixed by the switching unit 64 and flows up and down.
  • the mixed gas that has flowed into the separation passage 63a comes into contact with the combustion catalyst 8 immediately after flowing in, generates heat at the portion A near the inlet of the heating layer 3, and heats the reforming catalyst 5 across the wall to reform the reforming layer 2
  • the reforming reaction in the vicinity of the inlet is promoted.
  • the mixed gas that has flowed into the separation passage 63b proceeds through the heating passage 25 without reacting because it is not in contact with the combustion catalyst 8 before the switching portion 64.
  • the upper and lower sides of the separation passage 63a and the separation passage 64b are reversed.
  • the mixed gas flowing through the lower separation passage 63a is brought to the right side (lower side in FIG. 7), and the mixed gas flowing through the upper separation passage 63b is left side. (The upper side in FIG. 7), the upper and lower separation passages 63a are turned upward and the upper separation passages 63b are lower. The arrangement is changed.
  • the mixed gas in the separation passage 63b that has not been in contact with the combustion catalyst 8 comes into contact with the combustion catalyst 8 and generates heat at the portion B on the outlet side of the heating layer 3, thereby heating the reforming catalyst 5 sandwiching the wall.
  • the reforming reaction in the vicinity of the outlet of the reforming layer 2 is promoted.
  • FIG. 6 demonstrated as an example the case where there are two separation passages, it is also possible to provide three or more separation passages by providing a plurality of switching units 64.
  • the switching unit 64 it is preferable to arrange the switching unit 64 so that it is closer to the inlet side than the outlet side of the modified layer 2.
  • the gas flow directions of the reforming layer 2 and the heating layer 3 are the same direction, the gas flows in the reforming layer 2 and the heating layer 3 in opposite directions. In this case, it is arranged close to the outlet side of the heating layer 3.
  • each separation passage 63a, 63b is larger as the separation passage closer to the combustion catalyst 8 on the inlet side of the reforming passage 28.
  • the cross-sectional area of the separation passage 63a is increased, and the gas flow directions of the reforming layer 2 and the heating layer 3 are opposite directions. In some cases, the cross-sectional area of the separation passage 63b is increased.
  • the position for switching the arrangement of the separation passage is arranged closer to the inlet side than the outlet side of the reforming passage 28, so that reforming that requires a large amount of heat generation is required. More combustion reactions can occur on the inlet side of the layer 2, thereby increasing the temperature near the inlet of the reformed layer 2 and promoting the reforming reaction.
  • the separation passage closer to the combustion catalyst 5 on the inlet side of the reforming passage 28 is set so that the cross-sectional area of the separation passage becomes larger.
  • a larger amount of mixed gas can be supplied to the required inlet side of the reforming layer 2, thereby increasing the temperature in the vicinity of the inlet of the reforming layer 2 and promoting the reforming reaction.
  • FIG. 8 is a diagram showing a detailed cross-sectional structure of the modified layer 2 and the heating layer 3.
  • the reformer 81 according to this embodiment has a structure in which the reforming layer 2 is provided adjacent to both sides of the heating layer 3.
  • FIG. 8B shows an enlarged cross-sectional view of the reforming layer 2 and the heating layer 3 in the reformer 81 having such a configuration.
  • the reforming layer 2 has the reforming catalyst 5 applied to the flow path walls on both sides constituted by parallel walls, and the heating layer 3 also has flow on both sides constituted by parallel walls.
  • a combustion catalyst 8 is applied to the road wall.
  • the heating layer 3 is separated into five separation passages 86a to 86e by four separation walls 82 to 85, and has a vertically symmetrical structure with the central separation passage 86c as the center.
  • the mixed gas introduced into the heating layer 3 flows into the heating passage 25 in a state where the combustion gas and the combustion support gas are mixed in advance, and the mixed gas that flows in is separated into five separation passages 86a to 86e and flows. To go.
  • the mixed gas that has flowed into the separation passages 86 a and 86 e comes into contact with the combustion catalyst 8 immediately after inflow. 5 is heated to promote the reforming reaction in the vicinity of the inlet of the reforming layer 2.
  • the mixed gas flowing into the separation passages 86b to 86d advances through the heating passage 25 in the vicinity of the inlet of the heating layer 3 without contacting with the combustion catalyst 8 and without reacting. Then, in the central portion of the heating layer 3, the separation walls 82 and 85 are interrupted and the mixed gas flowing through the separation passages 86b and 86d is discharged to the combustion catalyst 8, and heat is generated by the combustion reaction. 5 is heated to promote the reforming reaction in the central portion of the reforming layer 2.
  • the mixed gas that has flowed into the separation passage 86 c travels further through the heating passage 25, and the separation walls 83 and 84 are interrupted near the outlet of the heating layer 3 and discharged to the combustion catalyst 8. Then, a combustion reaction occurs near the outlet of the heating layer 3 to generate heat, and the reforming catalyst 5 sandwiching the wall is heated to promote the reforming reaction near the outlet of the reforming layer 2.
  • the reformer 81 promotes the reforming reaction of the reforming layers 2 on both sides even when the reforming layers 2 are adjacent to both sides of the heating layer 3.
  • the mixed gas obtained by mixing the combustion gas and the combustion support gas is supplied to the heating passage, and the heating passage is separated into a plurality of separation passages by the separation wall. Since the separation passages discharge the mixed gas to different positions of the combustion catalyst, it is possible to cause an exothermic reaction widely throughout the combustion catalyst with a simple structure without using a pipe or the like. Thereby, a wide range of the reforming layer can be maintained at a temperature suitable for the reforming reaction, and a good reforming reaction can be realized. Therefore, the reformer according to one embodiment of the present invention can be used industrially.

Abstract

 本発明の改質器1は、改質燃料を改質触媒5で改質する改質層2と、燃焼触媒8による発熱反応で改質層2を加熱する加熱層3とを積層して構成されており、加熱層3の加熱通路25に被燃焼ガスと支燃ガスとを混合した混合ガスを供給し、加熱通路25は燃焼触媒8が塗布された壁面に平行な分離壁11、13で複数の分離通路31a~31cに分離され、複数の分離通路31a~31cはそれぞれ燃焼触媒8の異なる位置に混合ガスを吐出する。

Description

改質器
 本発明は、改質層と加熱層とを積層して構成された改質器に係り、特に燃焼触媒による発熱反応で改質層を加熱して改質ガスを供給する改質器に関する。
 地球環境問題への関心の高まりから、近年では各種の燃料電池の利用が検討されている。この中で効率のよい固体酸化物型燃料電池の場合には、水素の多く含まれたガスを燃料ガスとして供給し、酸素を酸化剤として用いて水素、一酸化炭素及び炭化水素との電気化学反応で発電を行っている。
 また、燃料ガスとしては、液体燃料を改質して得られた改質ガスを供給する方法が取られることもあり、この改質に際しては改質燃料としてガソリンをはじめとする高炭素数有機液体を蒸発ガス化したり、ガス燃料を用いて改質反応に必要な他成分と一緒に改質器に導入したりして改質が行われている。この際、改質燃料は改質器内の改質触媒によって改質されるが、改質反応には熱が必要となるので、改質触媒への熱の供給が触媒全体で過不足なく広範囲に行われることが重要である。
 そこで、従来では燃焼層と改質層とを分離した構造の改質器が提案されており、このような改質器の一例として特許文献1が開示されている。特許文献1に開示された改質器では、燃焼通路と改質通路が壁を隔てて設置され、燃焼通路に供給された燃焼用ガスが燃焼触媒上で燃焼することによって発熱し、この熱を改質通路の改質触媒に伝達することによって改質層での改質反応を行わせている。
 従来、このような改質器では、燃焼ガスを供給する際に外部で被燃焼ガスと支燃ガスとを予め混合して改質器に供給すれば、最も簡単に燃焼ガスを供給することができる。しかし、この方法では燃焼通路の入口付近で発熱反応が偏って起こるために、燃焼通路の下流側では十分な発熱量が得られず改質反応が十分に行われないという問題があった。
 そこで、特許文献1に開示された改質器では、被燃焼ガスを支燃ガスとは分離して燃焼通路内の発熱させたい場所までパイプを使って導入することによって、燃焼触媒の全体で発熱反応が起こるようにしていた。
特開2002-80203号公報
 しかしながら、上述した特許文献1に開示された改質器では、パイプを使って被燃焼ガスを燃焼通路内の各部に導入しているので、パイプの配設などによって装置が複雑になってしまうという問題点があった。特に、燃焼層をより多く積層すればするほど、装置の複雑さは増大してしまうので、この問題を解決することは重要であった。
 そこで、本発明は、上述した実情に鑑みて提案されたものであり、簡単な構造で燃焼触媒の全体で広く発熱反応を起こすことのできる改質器を提供することを目的とする。
 本発明に係る改質器は、改質燃料を改質触媒で改質する改質層と、燃焼触媒による発熱反応で改質層を加熱する加熱層とを積層して構成されており、加熱層の加熱通路には被燃焼ガスと支燃ガスとを混合した混合ガスを供給している。そして、加熱通路は燃焼触媒が塗布された壁面に平行な分離壁で複数の分離通路に分離され、複数の分離通路はそれぞれ燃焼触媒の異なる位置に混合ガスを吐出することを特徴としている。
図1は、本発明を適用した第1実施形態に係る改質器の構造を示す図である。 図2は、本発明を適用した第1実施形態に係る改質器に設置される多孔体金属を示す図である。 図3は、本発明を適用した第1実施形態に係る改質器の改質層と加熱層の詳細な断面構造を示す図である。 図4は、本発明を適用した第1実施形態に係る改質器の改質層と加熱層の詳細な断面構造を示す図である。 図5は、本発明を適用した第2実施形態に係る改質器の改質層と加熱層の詳細な断面構造を示す図である。 図6は、本発明を適用した第3実施形態に係る改質器の改質層と加熱層の詳細な断面構造を示す図である。 図7は、本発明を適用した第3実施形態に係る改質器の切替部の構造を示す図である。 図8は、本発明を適用した第4実施形態に係る改質器の改質層と加熱層の詳細な断面構造を示す図である。
 以下、本発明を適用した第1~第4実施形態について図面を参照して説明する。
[第1実施形態]
 [改質器の構成]
 図1は本実施形態に係る改質器の構造を示す図であり、図1(a)は全体構成を示す斜視図、図1(b)は改質層と加熱層の分解斜視図である。
 図1(a)に示すように、本実施形態に係る改質器1は、改質燃料を改質触媒で改質する改質層2と、燃焼触媒による発熱反応で改質層2を加熱する加熱層3とを積層し、上下に外壁4を積層して構成されている。図1(a)では改質層2が4層、加熱層3が3層積層された構造を示しているが、積層数はこれに限定されるわけではない。
 次に、図1(b)を参照して改質層2と加熱層3の構造を説明する。図1(b)に示すように、改質層2は、改質触媒5が塗布された金属板6と、改質通路の高さを規定する金属枠7と、改質層側となる下面に改質触媒5が塗布され、加熱層側となる上面に燃焼触媒8が塗布された金属板9とを積層して構成されている。ここで、金属板6上には流れてくる改質燃料を拡散するための拡散構造15が設置されている。この拡散構造15は、例えば図1(b)に示す千鳥状に配置されたフィンや図2に示す多孔体金属、邪魔板などである。
 加熱層3は、燃焼触媒8が塗布された金属板9と、加熱通路の高さの一部を規定する第1金属枠10と、壁面の一部に開口部が設けられた金属板である第1分離壁11と、加熱通路の高さの一部を規定する第2金属枠12と、第1分離壁11とは異なる位置に開口部が設けられた金属板である第2分離壁13と、加熱通路の高さの一部を規定する第3金属枠14と、金属板で形成された外壁4とを積層して構成されている。また、燃焼触媒8が塗布された金属板9上には流れてくる被燃焼ガスと支燃ガスとを拡散するための拡散構造16が設置されている。この拡散構造16は、例えば図1(b)に示す千鳥状に配置されたフィンや図2に示す多孔体金属、邪魔板などである。
 ここで、加熱通路の高さの一部を規定する第1~第3金属枠10、12、14の高さは、通常の加熱通路の高さを分割したものであり、加熱通路全体の高さを高くしてしまうものではない。例えば、第1~第3金属枠10、12、14の高さは0.2mm程度であり、改質通路の高さを規定する金属枠7の高さは0.5mm程度である。
 このような構成の改質層2と加熱層3とを積層し、これらの外周面を溶接で接合することによって本実施形態に係る積層型の改質器1を製造することができる。
 次に、図3を参照して、改質層2と加熱層3の詳細な断面構造を説明する。図3(a)に示すように、本実施形態に係る改質器1は、改質層2と加熱層3とを積層して形成され、改質層2で改質された改質ガスは燃料電池30へ供給される。そして、燃料電池30による反応で残った成分は被燃焼ガスとして加熱層3に循環される。
 このような構成の改質器1における改質層2と加熱層3の拡大断面図を図3(b)に示す。図3(b)に示すように、改質層2は並行壁で構成される流路壁21、22に改質触媒5が塗布されており、加熱層3は並行壁で構成される流路壁23、24のうち改質層2に隣接する側の流路壁23に燃焼触媒8が塗布されている。
 加熱層3の加熱通路25には被燃焼ガスと支燃ガスとを混合した混合ガスが供給され、燃焼触媒8が塗布された壁面に平行な第1及び第2分離壁11、13によって、加熱通路25は複数の分離通路に分離されている。そして、複数の分離通路はそれぞれ燃焼触媒8の異なる位置に混合ガスを吐出するように、第1分離壁11と第2分離壁13の開口部はそれぞれ異なる位置に配置されている。また、加熱層3に混合ガスが流入する入口26の開口面積は、混合ガスが流出する出口27の開口面積よりも広くなっている。尚、本実施形態では分離壁が2枚で3つの分離通路に分離する場合を一例として示しているが、分離通路の数は2つでもよいし、3つより多くてもよい。
 一方、改質層2では、改質通路28に改質燃料ガスが供給され、改質触媒5で改質反応が行われて改質ガスが出力される。
 [改質器の機能]
 次に、図4を参照して改質層2と加熱層3による機能を説明する。図4(a)は改質層2と加熱層3の拡大断面図であり、図4(b)、(c)、(d)はそれぞれ図4(a)のX-X、Y-Y、Z-Zにおける断面図である。図4では、改質層2のガスの流れる方向が加熱層3のガスの流れる方向と同一の場合について説明する。
 図4(a)に示すように、加熱層3の加熱通路25は、第1分離壁11と第2分離壁13の2枚によって、改質層2に近いほうから3つの分離通路31a、31b、31cに分離されている。
 加熱層3には、炭化水素系燃料や水素などの被燃焼ガスと空気などの支燃ガスとが予め混合された状態で加熱通路25に流入し、流入した混合ガスは3つの分離通路31a、31b、31cに分離されて流れていく。この後、2つの分離壁11、13はそれぞれ異なる位置に開口部が設けられているので、3つの分離通路31a、31b、31cはそれぞれ燃焼触媒8の異なる位置に混合ガスを吐出する。例えば、図4(a)では分離通路31aが燃焼触媒8のA部に混合ガスを供給し、分離通路31bが燃焼触媒8のB部に混合ガスを吐出し、分離通路31cが燃焼触媒8のC部に混合ガスを吐出している。
 加熱層3の入口に近いA部では、分離通路31aに流入した混合ガスが流入直後から燃焼触媒8に接触するので、加熱層3の入口付近で燃焼反応によって発熱し、壁を挟んだ改質層2の改質触媒5を加熱して改質層2の入口付近における改質反応を促進する。一方、分離通路31b、31cに流入した混合ガスは、加熱層3の入口付近では燃焼触媒8と接触しないので、反応することなく加熱通路25を奥へ向かって進んでいく。
 加熱層3の中央部に位置するB部では、分離通路31bと分離通路31aとを分離していた第1分離壁11が途切れることによって、分離通路31bを流れてきた混合ガスが燃焼触媒8に吐出され、B部で燃焼反応を起こして発熱する。これにより壁を挟んだ改質層2の改質触媒5が加熱され、改質層2の中央部における改質反応が促進される。
 さらに、加熱層3の出口付近に位置するC部では、分離通路31bと分離通路31cとを分離していた第2分離壁13が途切れることによって、分離通路31cを流れてきた混合ガスが燃焼触媒8に吐出され、C部で燃焼反応を起こして発熱する。これにより壁を挟んだ改質層2の改質触媒5が加熱され、改質層2の出口付近における改質反応が促進される。また、分離通路31cの出口には壁面32が設けられているので、分離通路31cを流れてきた混合ガスは燃焼触媒8の側へ流れが変わって確実に燃焼触媒8と反応することになる。
 尚、第1分離壁11及び第2分離壁13が途切れる部分には、それぞれ拡散部材33、34が設けられており、分離通路31b、31cを流れてきた混合ガスが燃焼触媒8の方向へ導かれるように流れを変える役割を果たしている。
 このようにして本実施形態に係る改質器1では、加熱層3の全体で発熱反応を行って改質燃料を改質ガスに改質している。
 [第1実施形態の効果]
 以上詳細に説明したように、本実施形態に係る改質器1によれば、被燃焼ガスと支燃ガスとを混合した混合ガスを加熱通路25に供給するとともに、加熱通路25を分離壁11、13で複数の分離通路に分離して各分離通路がそれぞれ燃焼触媒8の異なる位置に混合ガスを吐出するので、パイプなどを用いることなく簡単な構造で燃焼触媒8の全体で広く発熱反応を起こすことができる。これにより、改質層2の広い範囲を改質反応に適した温度に保つことができ、良好な改質反応を実現することができる。
 また、従来のパイプよりも通路を幅広にできるため、混合ガスを広範囲に導入でき、燃焼触媒8の全体で広く発熱反応を起こすことができる。
 また、本実施形態に係る改質器1によれば、改質層2及び加熱層3にガスを拡散するための拡散構造を設けたので、流れてくるガスを拡散させて広い範囲で反応を起こすことができる。
 さらに、本実施形態に係る改質器1によれば、拡散構造として千鳥状に配置されたフィン15、16を設けたので、簡単な構造で流れてくるガスを効率的に拡散させることができる。
 また、本実施形態に係る改質器1によれば、拡散構造として多孔体金属を設けたので、流れてくるガスをより確実に拡散させることができる。
 さらに、本実施形態に係る改質器1によれば、改質層2で改質された改質ガスを燃料電池の燃料ガスとして供給するので、燃料電池用の改質器として利用することができる。
[第2実施形態]
 次に、本発明を適用した第2実施形態について図5を参照して説明する。ただし、第1実施形態と同一の部分については同一の番号を付して詳細な説明は省略する。図5(a)は改質層2と加熱層3の拡大断面図であり、図5(b)、(c)、(d)はそれぞれ図5(a)のX-X、Y-Y、Z-Zにおける断面図である。図5では、改質層2のガスの流れる方向が加熱層3のガスの流れる方向と反対方向である場合について説明する。
 図5(a)に示すように、本実施形態に係る改質器では、加熱層3の加熱通路25が、第1分離壁11と第2分離壁13の2枚によって、改質層2に近いほうから3つの分離通路31a、31b、31cに分離されている。
 ここで、改質器としての改質効率を高めるために、加熱層3は改質層2の入口付近に位置するC部の温度を高くして、改質層2の改質燃料ガスが供給される入口付近での改質反応を最も活発に行わせる必要がある。そのため、分離通路31a、31b、31cが混合ガスを吐出する位置は、改質通路28の出口側よりも入口側に近く配置する必要がある。
 そこで、本実施形態では、改質層2の出口付近に位置するA部に混合ガスを供給する分離通路31aには混合ガスが流れ込まないように壁面51を設けている。これにより本実施形態の加熱層3では、流入した混合ガスは分離通路31b、31cの2つに分離されて流れていくので、より多くの混合ガスが加熱通路25の奥へ導入される。これにより、加熱層3の入口に近いA部では、混合ガスが流入することなく、燃焼触媒8も塗布されていないので発熱反応が起こることはない。
 一方、A部よりも加熱通路25の奥に入ったB部では、第1分離壁11が途切れるので、分離通路31bを流れてきた混合ガスが燃焼触媒8に吐出され、B部で燃焼反応を起こして発熱する。これにより壁を挟んだ改質層2の改質触媒5が加熱され、改質層2の中央部における改質反応が促進される。
 さらに、B部よりも加熱通路25を奥に入ったC部では、第2分離壁13が途切れるので、分離通路31cを流れてきた混合ガスが燃焼触媒8に吐出され、C部で燃焼反応を起こして発熱する。これにより壁を挟んだ改質層2の改質触媒5が加熱され、改質層2の入口付近における改質反応が促進される。
 上述したように、本実施形態では、分離通路31aに混合ガスが流れ込まないようにして分離通路31b、31cだけに流れるようにしたので、混合ガスが燃焼触媒8に吐出される位置を、改質通路28の出口側よりも入口側に近くなるように配置することができた。これにより、改質層2の入口側の温度を上昇させて改質反応をより促進させることができる。
 また、燃焼触媒8の各部における発熱量を分離通路31a、31b、31cの断面積によって変化させることも可能である。例えば、分離通路31cと分離通路31bの断面積の比を2:1にしておくことによって、燃焼触媒8のC部における発熱量をB部における発熱量の約2倍に設定することが可能である。この際、混合ガスを吐出する位置が改質通路28の入口側に近い分離通路ほど断面積が大きくなるように設定しておくことによって、改質層2の改質反応をより促進させることができる。
[第2実施形態の効果]
 以上詳細に説明したように、本実施形態に係る改質器によれば、分離通路31a、31b、31cが混合ガスを吐出する位置を改質通路28の出口側よりも入口側に近くなるように配置したので、多くの発熱量が要求される改質層2の入口側に混合ガスをより多く供給することができ、これによって改質層2の入口付近の温度を高めて改質反応を促進することができる。
 また、本実施形態に係る改質器によれば、分離通路31a、31b、31cの断面積を、混合ガスの吐出位置が改質通路28の入口側に近い分離通路ほど大きくなるように設定したので、多くの発熱量が要求される改質層2の入口側に混合ガスをより多く供給することができ、これによって改質層2の入口付近の温度を高めて改質反応をより促進することができる。
[第3実施形態]
 次に、本発明を適用した第3実施形態について図6を参照して説明する。ただし、第1及び第2実施形態と同一の部分については同一の番号を付して詳細な説明は省略する。図6(a)は改質層2と加熱層3の拡大断面図であり、図6(b)、(c)、(d)はそれぞれ図6(a)のX-X、Y-Y、Z-Zにおける断面図である。
 図6(a)に示すように、本実施形態に係る改質器では、分離壁62によって加熱通路25が2つの分離通路63a、63bに分離され、これらの分離通路63a、63bが加熱通路25の途中にある切替部64を境に、燃焼触媒8が塗布された壁面からの配置が切り替えられている。すなわち、切替部64より上流側では分離通路63aが燃焼触媒8に接する位置に配置され、切替部64より下流側では上下が逆転して分離通路63bが燃焼触媒8に接する位置に配置されている。
 このような構造により、分離通路63a、63bを流れる混合ガスは、切替部64で混ざることなく上下が入れ替わって流れていく。分離通路63aに流入した混合ガスは、流入した直後から燃焼触媒8に接触して加熱層3の入口付近のA部で発熱し、壁を挟んだ改質触媒5を加熱して改質層2の入口付近における改質反応を促進する。
 一方、分離通路63bに流入した混合ガスは、切替部64の手前では燃焼触媒8との接触がないため反応することなく加熱通路25を奥へ進んでいく。そして、切替部64では分離通路63aと分離通路64bの上下が逆転する。
 ここで、切替部64の構造の一例を、図7を参照して説明する。図7に示すように、切替部64では、下側の分離通路63aを流れてきた混合ガスは右側(図7の下側)に寄せられ、上側の分離通路63bを流れてきた混合ガスは左側(図7の上側)に寄せられた後、それぞれ上下に連通する通路を別々に通って上下の位置を逆転し、下側だった分離通路63aが上側へ、上側だった分離通路63bが下側へと配置が変更される。
 この後、燃焼触媒8と接触していなかった分離通路63bの混合ガスは、燃焼触媒8と接触して加熱層3の出口側のB部で発熱し、壁を挟んだ改質触媒5を加熱して改質層2の出口付近における改質反応を促進する。
 尚、図6では分離通路が2つの場合を一例として説明したが、切替部64を複数設けることによって3つ以上の分離通路を設けることも可能である。
 また、切替部64を設ける位置は改質層2の出口側よりも入口側に近くなるように配置することが好ましい。例えば、改質層2と加熱層3のガスの流れる方向が同一方向である場合には加熱層3の入口側に近く配置し、改質層2と加熱層3のガスの流れる方向が反対方向である場合には加熱層3の出口側に近く配置する。
 さらに、各分離通路63a、63bの断面積は、改質通路28の入口側で燃焼触媒8に近い分離通路ほど大きくすることが好ましい。例えば、改質層2と加熱層3のガスの流れる方向が同一方向である場合には分離通路63aの断面積を大きくし、改質層2と加熱層3のガスの流れる方向が反対方向である場合には分離通路63bの断面積を大きくする。
[第3実施形態の効果]
 以上詳細に説明したように、本実施形態に係る改質器によれば、加熱通路25の途中で分離通路の配置を切り替えるようにしたので、各分離通路を流れる混合ガスが混ざることがなくなり、燃焼反応した後の混合ガスによって未反応の混合ガスが希釈されることを防止できる。これにより燃焼効率を向上させることができる。
 また、本実施形態に係る改質器によれば、分離通路の配置を切り替える位置を、改質通路28の出口側よりも入口側に近く配置したので、多くの発熱量が要求される改質層2の入口側でより多くの燃焼反応を起こすことができ、これによって改質層2の入口付近の温度を高めて改質反応を促進することができる。
 さらに、本実施形態に係る改質器によれば、改質通路28の入口側で燃焼触媒5に近い分離通路ほど、分離通路の断面積が大きくなるように設定したので、多くの発熱量が要求される改質層2の入口側に混合ガスをより多く供給することができ、これによって改質層2の入口付近の温度を高めて改質反応を促進することができる。
[第4実施形態]
 次に、本発明を適用した第4実施形態について図8を参照して説明する。ただし、第1~第3実施形態と同一の部分については同一の番号を付して詳細な説明は省略する。図8は改質層2と加熱層3の詳細な断面構造を示す図である。図8(a)に示すように、本実施形態に係る改質器81は、改質層2が加熱層3の両側に隣接して設けられている構造である。
 このような構成の改質器81における改質層2と加熱層3の拡大断面図を図8(b)に示す。図8(b)に示すように、改質層2は並行壁で構成された両側の流路壁に改質触媒5が塗布されており、加熱層3も並行壁で構成された両側の流路壁に燃焼触媒8が塗布されている。
 加熱層3は、4枚の分離壁82~85で5つの分離通路86a~86eに分離されており、中央の分離通路86cを中心にして上下対称な構造となっている。
 加熱層3に導入される混合ガスは、被燃焼ガスと支燃ガスとが予め混合された状態で加熱通路25に流入し、流入した混合ガスは5つの分離通路86a~86eに分離して流れていく。
 加熱層3の入口付近では、分離通路86a、86eに流入した混合ガスが流入直後から燃焼触媒8に接触するので、加熱層3の入口付近で燃焼反応によって発熱し、壁を挟んだ改質触媒5を加熱して改質層2の入口付近での改質反応を促進する。
 一方、分離通路86b~86dに流入した混合ガスは、加熱層3の入口付近では燃焼触媒8と接触せずに反応することなく加熱通路25を奥へと進んでいく。そして、加熱層3の中央部分では、分離壁82、85が途切れて分離通路86b、86dを流れていた混合ガスが燃焼触媒8に吐出され、燃焼反応によって発熱し、壁を挟んだ改質触媒5を加熱して改質層2の中央部分での改質反応を促進する。
 また、分離通路86cに流入した混合ガスは加熱通路25をさらに奥まで進んでいき、加熱層3の出口付近で分離壁83、84が途切れて燃焼触媒8に吐出される。そして、加熱層3の出口付近で燃焼反応を起こして発熱し、壁を挟んだ改質触媒5を加熱して改質層2の出口付近での改質反応を促進する。
 このようにして、本実施形態に係る改質器81は、加熱層3の両側に改質層2が隣接している場合でも、両側の改質層2の改質反応を促進させている。
 [第4実施形態の効果]
 以上詳細に説明したように、本実施形態に係る改質器81によれば、加熱層3の両側に改質層2が隣接する場合でも、簡単な構造で燃焼触媒8の全体で広く発熱反応を起こすことができる。これにより、改質層2の広い範囲を改質反応に適した温度に保つことができ、良好な改質反応を実現することができる。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 本出願は、2011年6月1日に出願された日本国特許願第2011-123128号に基づく優先権を主張しており、この出願の内容が参照により本発明の明細書に組み込まれる。
 本発明の一態様に係る改質器によれば、被燃焼ガスと支燃ガスとを混合した混合ガスを加熱通路に供給するとともに、加熱通路を分離壁で複数の分離通路に分離して各分離通路がそれぞれ燃焼触媒の異なる位置に混合ガスを吐出するので、パイプなどを用いることなく簡単な構造で燃焼触媒の全体で広く発熱反応を起こすことができる。これにより、改質層の広い範囲を改質反応に適した温度に保つことができ、良好な改質反応を実現することができる。したがって、本発明の一態様に係る改質器は、産業上利用可能である。
 1 改質器
 2 改質層
 3 加熱層
 4 外壁
 5 改質触媒
 6、9 金属板
 7 金属枠
 8 燃焼触媒
 10 第1金属枠
 11 第1分離壁
 12 第2金属枠
 13 第2分離壁
 14 第3金属枠
 15、16 拡散構造
 25 加熱通路
 31a~31c、63a、63b、86a~86e 分離通路
 28 改質通路
 30 燃料電池
 33、34 拡散部材
 62、82~85 分離壁
 64 切替部

Claims (9)

  1.  改質燃料を改質触媒で改質する改質層と、燃焼触媒による発熱反応で前記改質層を加熱する加熱層とを積層して構成される改質器であって、
     前記加熱層内の加熱通路に被燃焼ガスと支燃ガスとを混合した混合ガスを供給し、前記加熱通路は前記燃焼触媒が塗布された壁面に平行な分離壁で複数の分離通路に分離され、前記複数の分離通路はそれぞれ前記燃焼触媒の異なる位置に前記混合ガスを吐出することを特徴とする改質器。
  2.  改質層で改質燃料が流れる方向は加熱層で混合ガスが流れる方向に対して反対方向であり、
     前記複数の分離通路が前記混合ガスを吐出する位置は、前記改質層内の改質通路の出口側よりも入口側に近く配置されることを特徴とする請求項1に記載の改質器。
  3.  改質層で改質燃料が流れる方向は加熱層で混合ガスが流れる方向に対して反対方向であり、
     前記複数の分離通路の断面積は、前記混合ガスを吐出する位置が前記改質通路の入口側に近い分離通路ほど大きくなるように設定されていることを特徴とする請求項1に記載の改質器。
  4.  前記複数の分離通路は前記加熱通路の途中で前記燃焼触媒が塗布された壁面からの配置が切り替えられることを特徴とする請求項1に記載の改質器。
  5.  前記燃焼触媒が塗布された壁面からの配置が切り替えられる位置は、前記改質通路の出口側よりも入口側に近く配置されることを特徴とする請求項4に記載の改質器。
  6.  前記複数の分離通路の断面積は、前記改質通路の入口側で前記燃焼触媒に近い分離通路ほど大きくなるように設定されていることを特徴とする請求項4または請求項5に記載の改質器。
  7.  前記改質層又は前記加熱層にはガスを拡散するための拡散構造が設けられていることを特徴とする請求項1~6のいずれか1項に記載の改質器。
  8.  前記拡散構造は千鳥状に配置されたフィンであることを特徴とする請求項7に記載の改質器。
  9.  前記拡散構造は多孔体金属であることを特徴とする請求項7に記載の改質器。
PCT/JP2012/060439 2011-06-01 2012-04-18 改質器 WO2012165077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/819,588 US9308509B2 (en) 2011-06-01 2012-04-18 Reformer
EP12792000.7A EP2716596B1 (en) 2011-06-01 2012-04-18 Reformer
CN201280002827.5A CN103097285B (zh) 2011-06-01 2012-04-18 用于燃料电池的改性器
JP2013517925A JP5673816B2 (ja) 2011-06-01 2012-04-18 改質器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-123128 2011-06-01
JP2011123128 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165077A1 true WO2012165077A1 (ja) 2012-12-06

Family

ID=47258941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060439 WO2012165077A1 (ja) 2011-06-01 2012-04-18 改質器

Country Status (5)

Country Link
US (1) US9308509B2 (ja)
EP (1) EP2716596B1 (ja)
JP (1) JP5673816B2 (ja)
CN (1) CN103097285B (ja)
WO (1) WO2012165077A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208803A (ja) * 1990-01-12 1991-09-12 Mitsubishi Heavy Ind Ltd 水素原料改質装置
JP2002080203A (ja) 2000-07-07 2002-03-19 Nippon Soken Inc 改質器
JP2005298260A (ja) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd 燃料改質システム
JP2011123128A (ja) 2009-12-08 2011-06-23 Hoya Corp 光学要素の位置制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423022A (en) * 1979-05-22 1983-12-27 The Lummus Company Processes for carrying out catalytic exothermic and endothermic high-pressure gas reactions
JPH0422827Y2 (ja) * 1987-09-25 1992-05-26
JPH0930801A (ja) * 1995-07-19 1997-02-04 Mitsubishi Electric Corp 改質反応器
JP3129670B2 (ja) * 1997-02-28 2001-01-31 三菱電機株式会社 燃料改質装置
DE10007764A1 (de) * 2000-02-20 2001-08-23 Gen Motors Corp Brennerelement
US6936364B2 (en) * 2001-10-24 2005-08-30 Modine Manufacturing Company Method and apparatus for vaporizing fuel for a reformer fuel cell system
US7014835B2 (en) 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
US8038960B2 (en) * 2004-01-30 2011-10-18 Idemitsu Kosan Co., Ltd. Reformer
KR100639008B1 (ko) * 2005-04-13 2006-10-25 삼성에스디아이 주식회사 평판형 개질기 및 이를 채용한 연료 전지 시스템
WO2006127889A2 (en) * 2005-05-25 2006-11-30 Velocys Inc. Support for use in microchannel processing
US8017088B2 (en) * 2005-09-27 2011-09-13 Samsung Sdi Co., Ltd. Fuel reformer
KR100898855B1 (ko) * 2006-07-21 2009-05-21 주식회사 엘지화학 열교환기를 포함한 마이크로 채널 개질 반응기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208803A (ja) * 1990-01-12 1991-09-12 Mitsubishi Heavy Ind Ltd 水素原料改質装置
JP2002080203A (ja) 2000-07-07 2002-03-19 Nippon Soken Inc 改質器
JP2005298260A (ja) * 2004-04-09 2005-10-27 Nissan Motor Co Ltd 燃料改質システム
JP2011123128A (ja) 2009-12-08 2011-06-23 Hoya Corp 光学要素の位置制御装置

Also Published As

Publication number Publication date
EP2716596B1 (en) 2018-01-24
US9308509B2 (en) 2016-04-12
JPWO2012165077A1 (ja) 2015-02-23
CN103097285A (zh) 2013-05-08
EP2716596A1 (en) 2014-04-09
US20130160364A1 (en) 2013-06-27
CN103097285B (zh) 2014-12-31
JP5673816B2 (ja) 2015-02-18
EP2716596A4 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5111492B2 (ja) 化学反応触媒で選択的に被覆される流体循環路を備える熱交換器システム
US20010018140A1 (en) Catalytic burner element inside a fuel cell with structured catalytic coated surfaces
KR102107529B1 (ko) 고체 산화물 연료 전지
EA014205B1 (ru) Каталитический реактор, содержащий первые и вторые проточные каналы, расположенные попеременно
US7297425B1 (en) Interconnect device, fuel cell and fuel cell stack
US9166244B2 (en) Fuel cell
JP4963372B2 (ja) 反応器、反応器の製造方法、及び反応器用単位部材
JP2007299537A (ja) 燃料電池
JP5673816B2 (ja) 改質器
JP4952011B2 (ja) ガス混合器及び水素生成装置
JP4210906B2 (ja) 直交流型燃料改質器
JP2013503031A (ja) 触媒反応モジュール
US10301999B2 (en) Combined heat exchanging and fluid mixing apparatus
JP2007048486A (ja) 燃料電池用セパレータおよび燃料電池セル
US20020106596A1 (en) Catalytic burner element inside a fuel cell with structured catalytic coated surfaces
JP2000159501A (ja) 水素含有ガス生成装置
JP2013222592A (ja) 燃料電池装置
JP4826185B2 (ja) 反応器及び発電装置
JP4782492B2 (ja) 水素供給装置
JP4322519B2 (ja) 触媒反応器
JP5239125B2 (ja) 反応器
KR20240033490A (ko) 연료전지용 분리판
JP2007015872A (ja) 水素供給装置
JP2007165144A (ja) 高選択性流体反応器
JPH02195654A (ja) 内部改質形燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002827.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819588

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012792000

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013517925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE