WO2012164901A1 - 放射線被曝量取得方法および装置並びに放射線画像撮影システム - Google Patents

放射線被曝量取得方法および装置並びに放射線画像撮影システム Download PDF

Info

Publication number
WO2012164901A1
WO2012164901A1 PCT/JP2012/003464 JP2012003464W WO2012164901A1 WO 2012164901 A1 WO2012164901 A1 WO 2012164901A1 JP 2012003464 W JP2012003464 W JP 2012003464W WO 2012164901 A1 WO2012164901 A1 WO 2012164901A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiation exposure
artifact
exposure dose
frame
Prior art date
Application number
PCT/JP2012/003464
Other languages
English (en)
French (fr)
Inventor
中津川 晴康
大田 恭義
西納 直行
吉田 豊
神谷 毅
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12791986.8A priority Critical patent/EP2716221A4/en
Publication of WO2012164901A1 publication Critical patent/WO2012164901A1/ja
Priority to US14/092,449 priority patent/US20140086390A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5294Devices using data or image processing specially adapted for radiation diagnosis involving using additional data, e.g. patient information, image labeling, acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a radiation exposure dose acquisition method and apparatus for acquiring a radiation exposure dose of a human body based on a radiographic image signal acquired by radiographing a human body including an artifact, and a radiographic imaging system.
  • radiography in a medical field where radiography is performed, not only radiography of a patient's still image but also radiography of a moving image such as a fluoroscopic image may be performed.
  • radiographic imaging of a moving image a large number of radiographic images are captured at a predetermined frame rate, so that the radiation exposure amount of the patient is larger than that of still image capturing.
  • an area dosimeter is provided in the radiation source that emits radiation, and the radiation exposure received by the patient is obtained based on the value measured by the dosimeter.
  • a method has been proposed.
  • Patent Document 1 it is proposed to acquire the exposure dose of the patient in general still image shooting, but nothing is proposed regarding the acquisition of the radiation exposure dose in the fluoroscopic image shooting as described above. Not.
  • a method for capturing a fluoroscopic image for example, there is a method of performing imaging while moving a radiation irradiation range on a patient.
  • an image of an artifact is reflected in all the frames obtained by capturing such a fluoroscopic image.
  • the artifact appears in only a part of the frames, it is necessary to acquire the exposure dose of the patient through the entire fluoroscopic image taking into consideration that point.
  • the present invention provides a radiation exposure dose acquisition method and apparatus capable of acquiring a more accurate radiation exposure dose of a human body and radiographic imaging even when radiographing a human body in which an artificial object is embedded.
  • the purpose is to provide a system.
  • the present invention can obtain a more accurate radiation exposure amount of the human body even in the case of continuous radiography while moving the radiation irradiation range relative to the human body in which the artifact is embedded.
  • An object of the present invention is to provide a radiation exposure dose acquisition method and apparatus.
  • the radiation exposure dose acquisition device of the present invention is detected by a radiological image detector by irradiation of radiation transmitted through a human body, and an artifact information acquisition unit that acquires information on an artifact included in a human body that is an imaging target of radiation imaging
  • a radiation exposure dose acquisition unit that acquires the radiation exposure dose of the human body based on the radiographic image signal, and the radiation exposure dose acquisition unit indicates that the artifact is included in the human body by the artifact information acquisition unit
  • the correction is performed such that the radiation exposure amount based on the radiation image signal is increased by a predetermined correction radiation exposure amount.
  • the human body identification information and information related to the human body artifact are set in advance, and the artifact information acquisition unit is configured to store the human body identification information.
  • the information regarding the artificial object corresponding to the reception and the identification information of the received human body can be acquired.
  • the identification information of the human body can be included in the radiography menu.
  • the artifact information acquisition unit acquires artifact identification information for identifying the artifact as information on the artifact
  • the radiation exposure dose acquisition unit corresponds to the artifact identification information and the corrected radiation exposure amount.
  • the table may be attached, and correction may be performed based on the artifact identification information acquired by the artifact information acquisition unit and the table.
  • the radiation exposure dose acquisition unit acquires the radiation exposure signal of the human body based on the radiation image signal for each frame detected by the radiation image detector by continuous radiation irradiation on the human body. It is possible to perform correction so as to increase the correction radiation exposure amount according to the frame rate.
  • the radiation exposure amount acquisition unit based on the radiation image signal for each frame detected by the radiation image detector by continuously irradiating the human body with radiation while moving the radiation irradiation range with respect to the human body, the radiation exposure amount acquisition unit, It is assumed that the radiation exposure dose of the human body is acquired, and correction that increases the correction radiation exposure dose according to the moving speed of the radiation irradiation range can be performed.
  • a radiographic imaging display system includes the radiation exposure acquisition apparatus and a radiographic imaging apparatus that performs radiography to acquire a radiographic image signal, and the radiographic imaging apparatus includes human body identification information.
  • the radiographic imaging is performed based on the imaging menu.
  • the radiation exposure dose acquisition method of the present invention is a radiation exposure dose acquisition that acquires a radiation exposure dose of a human body based on a radiation image signal detected by a radiation image detector by irradiation of radiation transmitted through a human body including an artifact.
  • the radiation exposure dose acquisition apparatus of the present invention is configured to detect each frame detected by a radiological image detector by continuously radiographing a living body by moving a radiation irradiation range relative to a living body including an artifact.
  • a radiation exposure amount acquisition unit for acquiring a radiation exposure amount of a living body based on continuous radiation imaging, and a frame including an image signal representing an image of an artifact among a plurality of frames.
  • An artificial object frame specifying unit that specifies the artificial object frame, and the radiation exposure amount acquisition unit corrects the radiation exposure amount based on the information of the artificial object frame, thereby correcting the living body at the time of radiography of the artificial object frame. It is characterized by acquiring the radiation exposure dose.
  • the artificial object frame specifying unit is configured to perform artificial manipulation based on radiation dose information detected by a radiation dose detection unit provided between a living body and a radiation image detector.
  • the object frame can be specified.
  • the artifact frame specifying unit can acquire the time variation of the radiation dose information during continuous radiography.
  • the radiation exposure dose acquisition unit corrects the radiation exposure dose acquired based on the radiation image signal of the artifact frame using the radiation dose information detected by the radiation dose detection unit.
  • the radiation exposure dose of the living body at the time of radiography can be acquired.
  • the radiation exposure acquisition unit corrects the radiation exposure acquired based on the radiation image signal of the artifact frame using the temporal variation of the radiation dose information, the frame rate of the radiography, and the speed of the movement. You can do it.
  • the radiation dose detection unit can be provided on the radiation image detector.
  • the radiation dose detector can be provided at the peripheral edge on the radiation image detector.
  • the radiation dose detection unit can be provided on at least two sides facing each other in the moving direction on the radiation image detector.
  • an index indicating that the object is an artifact is provided for the artifact, and the artifact frame specifying unit identifies the artifact frame by recognizing the image signal of the index included in the radiation image signal for each frame. I can do it.
  • the index includes information used for correcting the radiation exposure dose
  • the radiation exposure dose acquisition unit can correct the radiation exposure dose based on the information included in the index.
  • the radiation exposure dose acquisition method provides a method for each frame detected by a radiation image detector by moving a radiation irradiation range relative to a living body including an artifact and continuously radiographing the living body.
  • the radiation exposure of the human body based on the radiation image signal detected by the radiation image detector by the irradiation of the radiation transmitted through the human body including the artifact.
  • the quantity information on the artifact included in the human body is acquired, and if information indicating that the artifact is included in the human body is acquired as information regarding the artifact, it is based on the radiographic image signal. Since the correction for increasing the radiation exposure amount by the predetermined correction radiation exposure amount is performed, it is possible to acquire a more accurate radiation exposure amount of the human body in consideration of the radiation absorption by the artifact.
  • a human body identification information and information related to the human body artifact are set in advance, and accepted human body identification.
  • information related to an artificial object corresponding to information is acquired, patient information that has been set and input in the past can be used as human body identification information.
  • Information about can be obtained.
  • the correction radiation when acquiring the radiation exposure amount of the human body based on the radiation image signal for each frame detected by the radiation image detector by continuous radiation irradiation on the human body, the correction radiation according to the frame rate of the radiation image signal When correction is performed to increase only the exposure dose, it is possible to correct the appropriate radiation exposure dose according to the number of frames.
  • an appropriate radiation exposure correction can be performed according to the number of frames as described above.
  • radiation imaging is performed by moving a radiation irradiation range relative to a living body including an artificial object and acquiring the radiation image signal for each frame.
  • the artifact of the plurality of frames By identifying a frame including an image signal representing an image as an artifact frame and correcting the radiation exposure based on the information of the identified artifact frame, the living body at the time of radiography of the artifact frame is corrected. Since the radiation exposure is acquired, the artifact frame can be appropriately identified with a simple configuration, and the artifact is reflected in the radiation image. Body and can obtain the radiation exposure throughout considering the radiation imaging more accurately.
  • the radiation exposure dose acquired based on the radiation image signal of the artifact frame is corrected using the radiation dose information detected by the radiation dose detection unit.
  • the accurate radiation exposure dose can be acquired by a simpler correction method.
  • the artifact frame is identified by recognizing the image signal of the index included in the radiographic image signal for each frame, Since the artifact frame can be specified only by performing image recognition, the artifact frame can be specified with a simpler configuration.
  • the index provided for the artificial object includes information used for correcting the radiation exposure dose
  • the radiation exposure dose is corrected based on the information included in the index. Can be corrected more easily without performing particularly complicated calculations.
  • the block diagram which shows schematic structure of the whole radiographic imaging system using 1st Embodiment of the radiation exposure amount acquisition apparatus of this invention.
  • the figure which shows schematic structure of the radiographic imaging apparatus of 1st Embodiment.
  • Timing chart showing the relationship between radiation exposure timing and charge accumulation timing in the radiation image detector
  • the figure which shows an example of the table which matched patient information and artifact information The figure which shows an example of the table which matched the artifact information and correction
  • amendment radiation exposure dose The figure which shows an example of the table which matched the moving speed of the artifact information, the radiation irradiation unit and the radiation image detector, and the corrected radiation exposure amount
  • the block diagram which shows schematic structure of the whole radiographic imaging system using 2nd Embodiment of the radiation exposure amount acquisition apparatus of this invention.
  • the figure which shows the radiographic image detector provided with the 1st and 2nd dosimetry sensor The flowchart for demonstrating the effect
  • variation of the radiation dose detected by the 1st and 2nd dosimetry sensor The figure for demonstrating the calculation method of the correction
  • FIG. 1 is a block diagram showing a schematic configuration of the entire radiographic image capturing system of the present embodiment.
  • the radiographic image capturing system captures a fluoroscopic image (moving image) of a patient while relatively moving the radiation irradiation range and the radiographic image detector with respect to the patient.
  • An exposure amount of a patient is acquired based on an imaging device 10, a radiographic image display device 20 that displays a fluoroscopic image captured by the radiographic image capturing device 10, and an image signal of the fluoroscopic image captured by the radiographic image capturing device 10.
  • Radiation exposure dose acquisition device 30, radiation exposure dose management device 40 that stores and manages the exposure dose for each patient acquired by radiation exposure dose acquisition device 30, and system control device that controls the entire radiographic imaging system 50.
  • the radiographic imaging apparatus 10 includes an X-ray tube, a diaphragm, and the like, and a radiation irradiation unit 11 that irradiates the patient with radiation emitted from the X-ray tube and transmitted through the diaphragm.
  • a radiation image detector 12 that detects transmitted radiation and outputs a radiation image signal representing a radiation image of a patient
  • a radiation image storage unit 13 that stores a radiation image signal output from the radiation image detector 12, and a radiation image
  • a control unit 14 that controls the entire photographing apparatus 10.
  • the radiographic imaging device 10 of the present embodiment is configured as shown in FIG. 2, and a patient H in which an artificial object I (for example, an artificial bone) is embedded in the body is placed on the imaging table 16.
  • the radiographic image is taken while moving the radiation irradiation unit 11 and the radiation image detector 12 in the direction of the arrow in FIG.
  • the radiographic image detector 12 can repeatedly perform recording and reading of radiographic images, and so-called direct recording, in which radiographic images are recorded by generating and accumulating charges by directly receiving radiation.
  • a radiation image detector of the type may be used, or so-called indirect radiation image detection, in which radiation images are recorded by once converting the radiation into visible light, and converting the visible light into electric charge and storing it.
  • a vessel may be used.
  • a radiographic image signal is read out by turning on and off a TFT (thin film transistor) switch.
  • a read-out type or a so-called optical read-out type in which a radiation image signal is read out by irradiating read light can be used, but not limited to this, other types may be used.
  • the radiographic image capturing apparatus 10 of the present embodiment captures a fluoroscopic image (moving image) of a patient in which an artifact is embedded as described above, and the control unit 14 performs the radiographic image capturing.
  • the radiation irradiation unit 11 and the radiation image detector 12 are controlled.
  • the control unit 14 irradiates the radiation from the radiation irradiating unit 11 at a predetermined frame rate, and controls the radiation image detector 12 so that the recording and reading of the radiation image are performed by the irradiation of the radiation. Is.
  • the radiation image signal for each frame output from the radiation image detector 12 is sequentially stored in the radiation image storage unit 13.
  • the configuration of the radiographic image capturing apparatus 10 is not limited to the configuration in which the patient is imaged in the lying position as illustrated in FIG. 2, and may be a configuration in which the patient is imaged in the standing position. Moreover, the structure which can image
  • the radiographic image display device 20 generates a display control signal by performing predetermined processing on the radiographic image signal for each frame read from the radiographic image storage unit 13 of the radiographic image capturing device 10, and generates the display control signal. Based on this, a fluoroscopic image of the patient is displayed on the monitor.
  • the radiation exposure dose acquisition device 30 reads from the radiation image storage unit 13 of the radiation image capturing device 10 and the artifact information acquisition unit 31 that acquires information about the artifacts included in the body of the patient (hereinafter referred to as artifact information).
  • a radiation exposure dose acquisition unit 32 that acquires the radiation exposure dose of the patient based on the issued radiation image signal for each frame is provided.
  • the artifact information acquisition unit 31 has a table in which patient information and artifact information are associated with each other.
  • the artifact information acquisition unit 31 receives patient information included in an imaging menu input in the input unit 60 described later, and refers to the table. Then, the artificial object information corresponding to the received patient information is acquired, and the acquired artificial object information is output to the radiation exposure dose acquisition unit 32.
  • the radiation exposure dose acquisition unit 32 calculates the radiation exposure dose of the patient based on the radiographic image signal for each frame as described above. Furthermore, an artifact is embedded from the artifact information acquisition unit 31. When the artifact information indicating this is acquired, correction is performed so as to increase the radiation exposure amount calculated based on the radiation image signal by a predetermined correction radiation exposure amount.
  • the radiation exposure management apparatus 40 stores the radiation exposure dose of the patient acquired by the radiation exposure acquisition apparatus 30 and manages the radiation exposure dose for each patient.
  • the system control device 50 outputs control signals to the radiation image capturing device 10, the radiation image display device 20, the radiation exposure dose acquisition device 30, and the radiation exposure dose management device 40 described above, and controls these operations. It controls the input and output of signals between devices.
  • the system control device 50 is provided with an input unit 60.
  • This input unit 60 receives an input of an imaging menu including patient information.
  • the patient information includes at least information for identifying the patient, such as the patient's name, sex, and patient ID number.
  • the imaging menu includes, for example, information on an imaging region, tube voltage, tube current, irradiation time, and fluoroscopic image for irradiating the imaging region with an appropriate dose of radiation.
  • There are imaging conditions such as the frame rate of imaging and the moving speed of the radiation irradiation unit 11 and the radiation image detector 12.
  • the input information received by the input unit 60 is output to each device by the system control device 50 as necessary.
  • a patient is placed on the imaging table 16 provided in the radiographic imaging device 10, and the patient is positioned (S10).
  • an imaging menu including patient information of an imaging target is input by the user using the input unit 60.
  • the patient information included in the imaging menu received by the input unit 60 is output by the system control device 50 to the artifact information acquisition unit 31 of the radiation exposure dose acquisition device 30 and also output to the radiation exposure dose management device 40.
  • the imaging conditions included in the imaging menu are output and set to the control unit 14 of the radiographic image capturing apparatus 10 (S12).
  • an instruction to start capturing a fluoroscopic image of the patient is input by the user using the input unit 60, and the radiographic image capturing apparatus 10 is configured to capture a fluoroscopic image from the system control device 50 in response to the input.
  • the control signal is output, and the radiographic image capturing apparatus 10 starts capturing a fluoroscopic image according to the input control signal (S14).
  • the radiation irradiation unit 11 and the radiation image detector 12 move relative to the patient according to the input control signal, and the X-ray tube of the radiation irradiation unit 11 based on the input imaging conditions. Is controlled, and a predetermined dose of radiation is intermittently irradiated toward the patient at a predetermined frame rate.
  • the radiation that has passed through the patient is applied to the radiation image detector 12, photoelectrically converted by the radiation image detector 12, and stored as a charge signal.
  • the charge signal accumulated in the radiation image detector 12 is read by the control unit 14 and converted into a digital signal by an A / D converter (not shown). Thereafter, it is stored in the radiation image storage unit 13.
  • FIG. 4 is a timing chart showing the irradiation timing of radiation from the X-ray tube of the radiation irradiation unit 11 and the charge accumulation timing in the radiation image detector 12. It should be noted that the period during which the radiographic image detector 12 is not accumulating charges (accumulation OFF period) is a period during which a charge signal is read from the radiographic image detector 12.
  • the radiation irradiation by the X-ray tube and the recording and reading of the radiation image in the radiation image detector 12 are repeatedly performed at a predetermined frame rate, whereby the radiation image storage unit 13 stores the radiation for each frame.
  • Image signals are stored sequentially.
  • the radiographic image signals for each frame stored in the radiographic image storage unit 13 are sequentially read out and output to the radiographic image display device 20.
  • the radiographic image display device 20 sequentially generates a display control signal based on the input radiographic image signal for each frame, and sequentially outputs the display control signal to the monitor to display the patient's fluoroscopic image on the monitor as a moving image ( S16).
  • the system control device 50 outputs a control signal to the radiographic image capturing device 10 so as to end the fluoroscopic image capturing,
  • the radiographic image capturing apparatus 10 ends the fluoroscopic image capturing in accordance with the input control signal (S18).
  • the radiation exposure dose of the patient is acquired by the radiation exposure dose acquisition device 30.
  • the radiation exposure dose received by the patient during imaging of each frame of the fluoroscopic image is calculated based on the radiation image signal of each frame (S20).
  • E.E. is based on the radiographic image signal of each frame.
  • I. Exposure Index
  • a predetermined calculation area is set in the radiation image of each frame.
  • the calculation area for example, the entire area of the radiographic image, the area arbitrarily set by the user, the area defined based on the information on the imaging region, or the range of 10% of the image size from the center of the radiographic image.
  • An area etc. can be adopted.
  • an area excluding a so-called blank area obtained based on a histogram of a radiographic image, an area of 90% of the total density width from the central density of the radiographic image, or the like can be employed.
  • the representative value V of the calculation area set above is calculated.
  • the representative value V the density value itself of the radiation image, or a statistical feature value in which the average value of all density values, the median value, the mode value, or the trimmed average value is added to the density value itself, etc. Can do.
  • the E.E. I. Is calculated.
  • E. I. C 0 ⁇ g (V) g (V): inverse calibration function C 0 : 100 ⁇ Gy (constant)
  • g (V) is a function defined based on the radiation image obtained with the quality of RQA5.
  • the magnitude of the representative value V differs depending on the difference in sensitivity due to the difference in scintillators in the radiation image detector, the difference in the calculation region setting method or the calculation method of the representative value V described above, and g (V) is a function that normalizes the difference. In other words, if any radiation image detector type receives the same dose with the quality of RQA5, E.E. I. Will be almost the same value.
  • the radiation exposure dose acquisition unit 32 calculates E.E. based on the radiation image signal of each frame.
  • I. Is used to acquire the radiation exposure dose received by the patient during imaging of each frame.
  • E.I. I. As a method for acquiring the radiation exposure dose using, for example, a function that defines these relationships, a lookup table, or the like may be set in advance.
  • the radiation irradiated to the patient is absorbed by the artificial object before reaching the radiation image detector 12. Therefore, when the radiation exposure dose is calculated based on the radiation image signal in which the image signal of the artifact is reflected, the value is smaller than the radiation exposure dose actually received by the patient.
  • the artifact information acquisition unit 31 acquires artifact information corresponding to the patient information based on the input patient information (S22). More specifically, a table in which patient information and artifact information are associated with each other as shown in FIG. 5 is set in advance in the artifact information acquisition unit 31, and the artifact information acquisition unit 31 includes the table.
  • the artifact information corresponding to the patient to be imaged is acquired with reference to FIG.
  • the artifact information the presence / absence information of the artifact indicating whether or not the artifact is included in the patient's body and the identification for identifying the artifact. Information is assumed to be set in advance.
  • the artifact information acquired by the artifact information acquisition unit 31 is output to the radiation exposure amount acquisition unit 32.
  • a table in which the artifact information and the corrected radiation exposure dose as shown in FIG. 6 are associated in advance is set in the radiation exposure dose acquisition unit 32, and the radiation exposure dose acquisition unit 32 is input.
  • a corrected radiation exposure dose is acquired based on the artifact information and the table (S24).
  • the radiation exposure acquisition unit 32 acquires the total radiation exposure of the patient by performing correction by adding the radiation exposure calculated based on the radiation image signal for each frame and the corrected radiation exposure. (S26).
  • the total radiation exposure acquired by the radiation exposure acquisition unit 32 is input to the radiation exposure management apparatus 40, and the radiation exposure management apparatus 40 registers the total radiation exposure together with the patient information set and input in advance. (S28). Then, the radiation exposure management apparatus 40 displays the registered total radiation exposure together with the patient information as necessary, or calculates a cumulative total radiation exposure from the past for a predetermined patient, and the value is previously stored. A warning message is displayed when the specified value is exceeded.
  • the radiographic imaging system of the present embodiment when acquiring the radiation exposure dose of the patient based on the radiographic image signal detected by the radiographic image detector 12 by irradiation of the radiation transmitted through the patient including the artifact, When information about an artifact contained in the patient's body is acquired and information indicating that the artifact is included in the patient's body is acquired as information about the artifact, the radiation exposure dose based on the radiographic image signal is calculated. Since the correction is performed so as to increase by a predetermined correction radiation exposure dose, it is possible to obtain a more accurate radiation exposure dose of the human body considering the radiation absorption by the artifact.
  • a fixed corrected radiation exposure amount is acquired for predetermined artifact information regardless of the moving speed of the radiation irradiation unit 11 and the radiographic image detector 12.
  • the moving distance and the frame rate of the radiation irradiation unit 11 and the radiation image detector 12 are constant, the number of frames changes according to the moving speed of the radiation irradiation unit 11 and the radiation image detector 12, and the correction is performed. Since the magnitude of the corrected radiation exposure to be changed also changes, information on the movement speed included in the imaging menu is set in advance by setting a table in which the artifact information, the movement speed, and the correction radiation exposure dose are associated with each other as shown in FIG. Based on the above, a corrected radiation exposure dose considering the moving speed may be acquired.
  • the number of frames changes according to the frame rate, and the magnitude of the corrected radiation exposure to be corrected also changes. Therefore, as shown in FIG. 7, a table in which the artifact information, the frame rate, and the corrected radiation exposure dose are associated with each other is set in advance, and the corrected radiation considering the moving speed based on the frame rate information included in the imaging menu.
  • the exposure dose may be acquired.
  • the corrected radiation exposure dose may also be set in advance in consideration of the movement distance.
  • correction is performed by adding the corrected radiation exposure amount to the radiation exposure amount calculated based on the radiation image signal.
  • the correction may be performed such that the radiation exposure dose calculated based on the radiation image signal is multiplied by a coefficient larger than 1 to increase the correction radiation exposure dose.
  • the artifact information acquisition part 31 acquired artifact information based on the patient information contained in an imaging
  • the input part 60 May receive the input of the artifact information, and the artifact information acquisition unit 31 may acquire the received artifact information.
  • a sensor capable of selectively detecting the artificial object included in the patient's body is provided in the imaging table 16 or the radiation irradiation unit 11.
  • the presence / absence information of the artifact may be acquired based on the detection signal output from the sensor.
  • a mark representing the identification information of the artifact may be provided in advance for the artifact, and the identification information of the artifact may be acquired by recognizing the image of the mark.
  • the information regarding the radiation absorption such as the material, thickness and shape of the artifact is included in the mark, and the correction radiation exposure corresponding to the information is set in the radiation exposure acquisition unit 32 in advance.
  • the radiation exposure dose acquisition unit 32 may perform correction by adding the corrected radiation exposure dose corresponding to the acquired information to the radiation exposure dose calculated based on the radiation image signal for each frame.
  • the radiographic imaging system of the said embodiment photographs a moving image, moving the radiation irradiation part 11 and the radiographic image detector 12, it is not restricted to this,
  • the present invention is the radiation irradiation part 11 and radiation.
  • the present invention can be applied to a radiographic image system that captures a moving image while the image detector 12 is fixed, and can also be applied to a radiographic image capturing system that captures not only a moving image but also a still image.
  • FIG. 9 is a block diagram showing a schematic configuration of the entire radiographic image capturing system of the present embodiment.
  • the radiographic imaging system of this embodiment includes a radiographic imaging device 10, a radiographic image display device 20, a radiation exposure dose acquisition device 70, a radiation exposure dose management device 40, and a system control device. 50.
  • the radiation display device 20, the radiation exposure management device 40, the system control device 50, and the input unit 60 are the same as those in the radiation image capturing system of the first embodiment.
  • radiographic imaging system of this embodiment differs in the structure of the radiographic imaging apparatus 10 and the radiation exposure amount acquisition apparatus 70 from the radiographic imaging system of 1st Embodiment. Therefore, the following description will focus on differences from the radiographic imaging system of the first embodiment.
  • the radiographic image capturing apparatus 10 of the present embodiment includes a radiation irradiation unit 11, a radiographic image detector 12, a radiographic image storage unit 13, and a control unit 14 similar to those in the first embodiment, and further includes a patient and a radiographic image.
  • a radiation dose detector 15 is provided between the detector 12 and detects the dose of radiation that has passed through the patient.
  • the radiation dose detection unit 15 is provided between the patient and the radiation image detector 12.
  • the radiation image detector 12. It comprises a first dose measurement sensor 15a and a second dose measurement sensor 15b provided on the radiation irradiation surface.
  • 11 is a view of the radiological image detector 12 of FIG. 10 and the first and second dose measurement sensors 15a and 15b as viewed from above.
  • the first dose measurement sensor 15 a and the second dose measurement sensor 15 b are provided along sides facing each other in the moving direction of the radiation image detector 12.
  • the dose measurement sensor is provided along only the side corresponding to the moving direction, but it is more preferable to provide the dose measurement sensor along the four sides of the radiation image detector 12.
  • the first and second dose measurement sensors 15a and 15b it is desirable to use a thin sensor that hardly absorbs radiation, for example, a sensor made of an organic photoelectric conversion material (OPC).
  • OPC organic photoelectric conversion material
  • the radiation image detector 12 is a laminate of a scintillator layer that converts radiation into visible light and a sensor substrate that includes a TFT, a CMOS switch, or the like that detects light emitted from the scintillator layer. It is desirable to arrange the scintillator layer on the side opposite to the irradiation side. That is, it is desirable to arrange the first and second dose measurement sensors 15a and 15b, the sensor substrate, and the scintillator layer in this order from the radiation irradiation side.
  • the distance between the light emitting portion of the scintillator layer and the sensor substrate can be shortened by arranging as described above. As a result, blurring of the radiographic image due to diffusion of light emitted from the scintillator layer can be suppressed, and a greater signal intensity can be obtained.
  • the configuration of the radiation image detector 12 as described above is not limited to the second embodiment, and can be employed in the other embodiments described above.
  • the first and second dose measurement sensors 15a and 15b are provided on the radiation image detector 12.
  • the present invention is not limited to this, and between the patient and the radiation image detector 12. If it exists, you may make it install in another predetermined position.
  • the radiation dose detection unit 15 sequentially outputs the detected radiation dose information to an artifact frame specifying unit 71 described later in parallel with the radiographic image capturing.
  • the configuration of the radiographic image capturing apparatus 10 is not limited to the configuration in which the patient is imaged in the lying position, but may be the configuration in which the patient is imaged in the standing position, as in the first embodiment. Moreover, the structure which can image
  • the radiation exposure dose acquisition device 70 converts the radiation image signal of the frame including the image signal of the image of the artifact out of the radiation image signals for each frame read from the radiation image storage unit 13 of the radiation image capturing device 10 into the artifact.
  • the radiation exposure dose acquisition for acquiring the radiation exposure dose of the patient based on the artifact image specifying unit 71 specified as a frame and the radiation image signal for each frame read from the radiation image storage unit 13 of the radiation image capturing apparatus 10 Part 72.
  • the artifact frame specifying unit 71 is obtained by capturing a fluoroscopic image based on the radiation dose information output from the first dose measurement sensor 15a and the second dose measurement sensor 15b constituting the radiation dose detection unit 15.
  • the artifact frame is specified from the plurality of frames.
  • the artifact frame specifying unit 71 of the present embodiment adds information indicating that it is an artifact frame to the radiation image signal of the frame determined to be an artifact frame and stores it.
  • the patient is placed on the imaging table 16 provided in the radiographic imaging device 10, and the patient is positioned (S30).
  • the control unit 14 of the image capturing apparatus 10 is set (S32).
  • the imaging conditions input here include a tube voltage, a tube current, an irradiation time for irradiating an appropriate dose of radiation to the imaging region of a patient, a frame rate for capturing a fluoroscopic image, and the like. For example, a frame rate of 5 fps to 60 fps is set as the frame rate for capturing a fluoroscopic image.
  • an instruction to start capturing a fluoroscopic image of the patient is input by the user using the input unit 60, and the radiographic image capturing apparatus 10 is configured to capture a fluoroscopic image from the system control device 50 in response to the input.
  • the control signal is output, and the radiographic image capturing apparatus 10 starts capturing a fluoroscopic image according to the input control signal (S34).
  • the radiation irradiation unit 11 and the radiation image detector 12 move relative to the patient according to the input control signal, and the X-ray tube of the radiation irradiation unit 11 based on the input imaging conditions. Is controlled, and a predetermined dose of radiation is intermittently irradiated toward the patient at a predetermined frame rate.
  • the radiation that has passed through the patient is applied to the radiation image detector 12, photoelectrically converted by the radiation image detector 12, and stored as a charge signal.
  • the charge signal accumulated in the radiation image detector 12 is read by the control unit 14 and converted into a digital signal by an A / D converter (not shown). Thereafter, it is stored in the radiation image storage unit 13.
  • the radiation irradiation timing from the X-ray tube of the radiation irradiation unit 11 and the charge accumulation timing in the radiation image detector 12 are the same as those in the timing chart of the first embodiment shown in FIG.
  • the radiation irradiation by the X-ray tube and the recording and reading of the radiation image in the radiation image detector 12 are repeatedly performed at a predetermined frame rate, whereby the radiation image storage unit 13 stores the radiation for each frame.
  • Image signals are stored sequentially.
  • the radiographic image signals for each frame stored in the radiographic image storage unit 13 are sequentially read out and output to the radiographic image display device 20.
  • the radiographic image display device 20 sequentially generates a display control signal based on the input radiographic image signal for each frame, and sequentially outputs the display control signal to the monitor to display the patient's fluoroscopic image on the monitor as a moving image ( S36).
  • the radiation transmitted through the patient by the first and second dose measuring sensors 15a and 15b provided on the radiation image detector 12 is obtained.
  • the doses are sequentially detected, and the detected radiation doses are sequentially input to the artifact frame specifying unit 71 of the radiation exposure dose acquisition apparatus 30 (S38).
  • the artifact frame specifying unit 71 acquires the temporal variation of the input radiation dose, and identifies the artifact frame in which the image of the artifact is reflected based on the temporal variation. (S40).
  • the artifact-frame specifying unit 71 performs the process shown in FIG. 13 based on the radiation dose detected by the first dose measurement sensor 15a and the radiation dose detected by the second dose measurement sensor 15b. The time variation of the radiation dose detected by each sensor as shown is acquired.
  • the radiation dose detected by each sensor becomes small.
  • the artifact frame specifying unit 71 is upstream from the first time point t1 when the radiation dose detected by the first dosimetry sensor 15a arranged on the downstream side starts to decrease.
  • a frame photographed until time point t2 when the radiation dose detected by the second dosimetry sensor 15b arranged on the side decreases once and returns to a substantially constant value is specified as an artifact frame.
  • the moving speed of the radiation irradiating unit 11 and the radiation image detector 12 and the frame rate of radiographic imaging of the fluoroscopic image are set in advance.
  • the artifact frame is specified based on the time from the time point t1 to the second time point t2.
  • the radiographic image signal of each frame read from the radiographic image storage unit 13 is also input to the artifact frame specifying unit 71, and the radiographic image signal of the frame specified as the artifact frame as described above is input.
  • Information indicating that it is an artifact frame (hereinafter referred to as artifact frame information) is added as header information, and the radiation image signal is stored together with the artifact frame information (S42).
  • the system control device 50 outputs a control signal to the radiographic image capturing device 10 so as to end the fluoroscopic image capturing,
  • the radiographic image capturing apparatus 10 ends the fluoroscopic image capturing in accordance with the input control signal (S44).
  • the radiation exposure dose of the patient is acquired by the radiation exposure dose acquisition device 70.
  • the radiation image signal of each frame stored in the artifact frame specifying unit 71 is output to the radiation exposure amount acquiring unit 72 together with the artifact frame information.
  • the radiation exposure dose received by the patient during imaging of each frame of the fluoroscopic image is calculated based on the radiation image signal of each frame (S46).
  • E.E. is based on the radiographic image signal of each frame, as in the first embodiment.
  • the radiation exposure dose is acquired based on the above.
  • E.I. I. Calculation method and E.E. I. The method for acquiring the radiation exposure amount based on the above is as described in the first embodiment.
  • the radiation irradiated to the patient is absorbed by the artificial object before reaching the radiation image detector 12, and thus the artificial object frame
  • the radiation exposure dose is calculated based on the radiation image signal, the value is smaller than the radiation exposure dose actually received by the patient.
  • the actual amount while the artificial object frame is captured is acquired.
  • the radiation exposure dose of the patient is acquired (S48).
  • the radiation exposure dose acquisition unit 72 performs correction by adding a predetermined correction radiation exposure dose to the radiation exposure dose calculated based on the radiation image signal of the artifact frame.
  • information about the dose detected by the first or second dose measurement sensor 15a, 15b at the time when the correction target artificial object frame is photographed is used as the correction radiation exposure.
  • the decrease in the detected dose of each sensor due to the absorption of the radiation of the artifact is taken as the corrected radiation exposure.
  • the corrected radiation exposure dose a1 is added to the radiation exposure dose corresponding to the artificial object frame photographed at the time t3 shown in FIG.
  • the corrected radiation exposure dose a2 is added to the radiation exposure dose corresponding to the artifact frame photographed at time t4 shown in FIG.
  • the maximum corrected radiation exposure dose a3 when the detected dose has decreased most is added. That is, for example, the correction radiation exposure dose a3 is added to the radiation exposure dose corresponding to the artificial object frame photographed at time t5 shown in FIG.
  • the radiation exposure amount acquisition unit 72 captures the radiation exposure amount while the artificial object frame corrected as described above is captured, and the radiation exposure amount while the frame other than the artifact frame is captured. Is added to calculate the total radiation exposure received by the patient (S50).
  • the total radiation exposure acquired by the radiation exposure acquisition unit 72 is input to the radiation exposure management apparatus 40.
  • the radiation exposure management apparatus 40 calculates the total radiation exposure together with the patient ID information set and input in advance. Register (S52). Then, the radiation exposure management apparatus 40 displays the registered total radiation exposure together with the patient ID information as necessary, or calculates a cumulative total radiation exposure from the past for a predetermined patient, Or a warning message is displayed when the value exceeds a preset value.
  • the radiographic imaging system of the second exemplary embodiment based on the radiation dose information detected by the radiation dose detection unit 15 provided between the patient and the radiographic image detector 12, out of a plurality of frames.
  • the frame containing the image signal representing the image of the artificial object is specified as the artificial object frame, and the radiation exposure amount is corrected based on the information of the specified artificial object frame. Since the radiation exposure amount of the living body at the time is acquired, the artifact frame can be appropriately identified with a simple configuration, and further, the radiation through the entire radiography considering the reflection of the artifact on the radiation image The exposure dose can be acquired more accurately.
  • the radiographic imaging system of the above embodiment when the radiation exposure dose corresponding to the artifact frame is calculated, a decrease in the detected dose of the first or second dose measurement sensor 15a, 15b is corrected as the radiation exposure dose.
  • the artificial object is placed at a timing at which it is contained in the first or second dose measurement sensor 15 a, 15 b.
  • a corrected radiation exposure amount corresponding to the actual radiation exposure amount of the patient can be calculated, but the artifact is more than the first or second dose measurement sensor 15a, 15b. If it is larger, for example, as shown in the second figure from the top in FIG.
  • the artifacts flank with the artifacts protruding from the first or second dose measurement sensors 15a, 15b. Beam may is taken, this case, the first or second dose measuring sensors 15a, by the correction radiation exposure amount protruding from 15b becomes small.
  • the artifact is the first or second dose measurement.
  • the artifact frame is photographed at the timing when it protrudes from the sensors 15a and 15b. In such a case as well, as described above, correction is made by the amount that protrudes from the first or second dose measurement sensor 15a or 15b. Radiation exposure will be reduced.
  • the corrected radiation is based on the size of the artifacts in the radiation image and the amount of protrusion from the first or second dose measurement sensor 15a, 15b.
  • the exposure dose may be calculated.
  • the second dose measurement sensor 15b could detect the artifact, but the first dose measurement
  • the artificial object cannot be detected by the sensor 15a, and conversely, the artificial object can be detected by the first dosimetry sensor 15a, but the artificial object cannot be detected by the second dosimetry sensor 15b.
  • the start of the artifact frame could be detected, but the end of the artifact frame could not be detected. Conversely, the end of the artifact frame could be detected, but the start of the artifact frame could not be detected. As a result, the number of artifact frames is unknown.
  • the frames from the nth frame to the (n + 2) th frame are artificial based on the moving speed of the radiation image detector 12 and the frame rate of radiographic image capturing. What is necessary is just to specify that it is a thing frame.
  • the image is taken temporally before the last frame based on the moving speed of the radiographic image detector 12 and the radiographic image capture frame rate.
  • the artifact frame may be specified by counting the number of artifact frames. By doing so, the artifact frame can be specified, and an accurate radiation exposure dose can be calculated. Further, as described above, when the start or end of the artifact frame cannot be detected, the artifact frame may be specified by referring to the radiation image detected by the radiation image detector 12. .
  • the radiation exposure amount is calculated after the fluoroscopic image capturing is completed.
  • the dose may be calculated and the radiation exposure dose of the patient in the middle of imaging may be displayed.
  • correction is performed by adding the corrected radiation exposure to the radiation exposure calculated based on the radiation image signal of the artifact frame.
  • the method of acquiring the radiation exposure amount during imaging of the object frame is not limited to this.
  • the radiation exposure dose of the patient while the artifact frame is being captured may be acquired by linear interpolation.
  • the radiation exposure dose calculated based on the radiation image signal of the frame immediately before or after the artifact frame may be directly used as the radiation exposure dose of the patient while the artifact frame is being captured.
  • the radiation exposure amount calculated based on the radiation image signal of a frame other than the other artifact frame may be adopted. Or you may make it correct
  • the artifact frame is specified based on the temporal variation of the radiation dose detected by the first and second dose measurement sensors 15a and 15b.
  • an index such as a mark indicating an artificial object is provided for an artificial object embedded in a patient's body
  • the artificial object frame specifying unit 71 includes the above-described index in the radiographic image signal of each frame.
  • the artifact frame may be specified by recognizing whether or not an image signal representing the above is included. Note that the image recognition of the mark is a well-known technique, and therefore the description thereof is omitted here.
  • the radiation exposure dose acquisition part 72 may correct
  • information on radiation absorption such as the material, thickness, and shape of the artifact is included in the index, and a corrected radiation exposure dose corresponding to the information is set in the radiation exposure dose acquisition unit 72.
  • the radiation exposure dose acquisition unit 72 performs correction by adding the corrected radiation exposure dose corresponding to the acquired information to the radiation exposure dose calculated based on the radiation image signal of the artifact frame. You may do it.
  • the radiation exposure dose acquisition device is configured as an independent device.
  • the radiation exposure acquisition device may be incorporated as a part of another device such as a radiographic imaging device. Good. Specifically, it may be provided in a console including the system control apparatus 50 or may be provided in the radiographic image capturing apparatus 10.
  • the radiation image detector 12 is accommodated in a portable electronic cassette, and an electronic circuit such as LSI (Large Scale Integration), PLD (Programmable Logic Device), FPGA (Field-Programmable) is included in the electronic cassette.
  • LSI Large Scale Integration
  • PLD Programmable Logic Device
  • FPGA Field-Programmable
  • the hardware frame may be specified and the radiation exposure may be acquired by such hardware. By adopting such a configuration, it is possible to pursue real-time characteristics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】人工物が埋め込まれた人体を放射線撮影する場合において、より正確な人体の放射線被曝量を取得する。 【解決手段】人工物が含まれる人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて人体の放射線被曝量を取得する際、人体内に含まれる人工物に関する情報を取得し、その人工物に関する情報として人体内に人工物が含まれることを示す情報が取得された場合には、放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うようにする。

Description

放射線被曝量取得方法および装置並びに放射線画像撮影システム
 本発明は、人工物が含まれる人体を放射線撮影することによって取得された放射線画像信号に基づいて人体の放射線被曝量を取得する放射線被曝量取得方法および装置並びに放射線画像撮影システムに関するものである。
 近年、放射線撮影を行う医療現場において、放射線撮影による患者の被曝量を管理することが重要視されている。放射線撮影による患者の被曝とガンなどの疾患などとの関連が注目されているため、放射線撮影による患者の被曝量を保存し、患者が累積的に受ける放射線被曝量を把握して管理することが要求されている。
 さらに、放射線撮影を行う医療現場においては、患者の静止画の放射線撮影だけでなく、透視画像のような動画の放射線撮影も行われる場合がある。このような動画の放射線撮影の場合、所定のフレームレートで多数の放射線画像の撮影を行うことになるので、患者の放射線被曝量は静止画撮影よりも大きなものとなる。
 したがって、このような動画の放射線撮影における患者の放射線被曝量の管理はより重要なものとなる。
 放射線撮影によって患者が受ける放射線被曝量を計測する方法としては、たとえば、放射線を射出する放射線源に面積線量計を設け、この線量計によって計測された値に基づいて患者が受ける放射線被曝量と取得する方法が提案されている。
 しかしながら、このような方法を採用する場合、患者の被曝量を計測するための線量計を新たに設ける必要があり、コストアップになる問題がある。
 そこで、上記のような線量計を設けるのではなく、患者の放射線画像を検出する放射線画像検出器によって検出された画像信号に基づいて患者の被曝量を取得することが提案されている(たとえば特許文献1参照)。
特許第4387644号公報
 しかしながら、放射線撮影を行う医療現場においては、たとえば人工骨などの人工物が体内に埋め込まれた患者の放射線撮影を行う場合もあり、このような場合に、特許文献1に記載のように単純に放射線画像検出器の画像信号に基づいて患者の被曝量を取得しようとすると、算出値が本来患者が被曝している量とは異なる懸念がある。すなわち、人工物での放射線吸収により、放射線画像検出器への放射線到達量が減少するからである。
 また、特許文献1においては、一般的な静止画撮影における患者の被曝量を取得することが提案されているが、上述したような透視画像の撮影における放射線被曝量の取得については何も提案されていない。
 透視画像の撮影方法としては、たとえば患者に対して放射線の照射範囲を移動させながら撮影を行う方法があるが、このような透視画像の撮影による全てのフレームに人工物の像が写り込むわけでなく、一部のフレームのみに人工物が写り込むことになるので、その点も考慮して透視画像の撮影全体を通しての患者の被曝量を取得する必要がある。
 本発明は、上記の事情に鑑み、人工物が埋め込まれた人体を放射線撮影する場合においても、より正確な人体の放射線被曝量を取得することができる放射線被曝量取得方法および装置並びに放射線画像撮影システムを提供することを目的とする。
 また、本発明は、人工物が埋め込まれた人体に対して放射線の照射範囲を相対的に移動させながら連続的に放射線撮影する場合においても、より正確な人体の放射線被曝量を取得することができる放射線被曝量取得方法および装置を提供することを目的とする。
 本発明の放射線被曝量取得装置は、放射線撮影の撮影対象である人体内に含まれる人工物に関する情報を取得する人工物情報取得部と、人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて、人体の放射線被曝量を取得する放射線被曝量取得部とを備え、放射線被曝量取得部が、人工物情報取得部によって人体内に人工物が含まれることを示す情報が取得された場合には、放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うものであることを特徴とする。
 また、上記本発明の放射線被曝量取得装置においては、人体の識別情報とその人体の人工物に関する情報とが対応付けられたものを予め設定し、人工物情報取得部を、人体の識別情報を受け付け、その受け付けた人体の識別情報に対応する人工物に関する情報を取得するものとできる。
 また、人体の識別情報を、放射線撮影の撮影メニューに含めることができる。
 また、人工物情報取得部を、人工物に関する情報として人工物を識別するための人工物識別情報を取得するものとし、放射線被曝量取得部を、人工物識別情報と補正放射線被曝量とを対応付けたテーブルを有するものとし、人工物情報取得部よって取得された人工物識別情報と上記テーブルとに基づいて補正を行うものとできる。
 また、放射線被曝量取得部を、人体に対する連続的な放射線の照射によって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、人体の放射線被曝量を取得するものとし、放射線画像信号のフレームレートに応じた補正放射線被曝量だけ増加させるような補正を行うものとできる。
 また、放射線被曝量取得部を、人体に対して放射線の照射範囲を移動させながら人体に放射線を連続的に照射することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、人体の放射線被曝量を取得するものとし、放射線の照射範囲の移動速度に応じた補正放射線被曝量だけ増加させるような補正を行うものとできる。
 本発明の放射線画像撮影表示システムは、上記放射線被曝量取得装置と、放射線撮影を行って放射線画像信号を取得する放射線画像撮影装置とを備え、放射線画像撮影装置が、人体の識別情報が含まれた撮影メニューに基づいて放射線撮影を行うものであることを特徴とする。
 本発明の放射線被曝量取得方法は、人工物が含まれる人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて、人体の放射線被曝量を取得する放射線被曝量取得方法であって、人体内に含まれる人工物に関する情報を取得し、その人工物に関する情報として人体内に人工物が含まれることを示す情報が取得された場合には、放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うことを特徴とする。
 本発明の放射線被曝量取得装置は、人工物が含まれる生体に対して放射線の照射範囲を相対的に移動させて生体を連続的に放射線撮影することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、連続的な放射線撮影による生体の放射線被曝量を取得する放射線被曝量取得部と、複数のフレームのうちの人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定する人工物フレーム特定部とを備え、放射線被曝量取得部が、人工物フレームの情報に基づいて放射線被曝量を補正することによって、人工物フレームの放射線撮影の際の生体の放射線被曝量を取得するものであることを特徴とする。
 また、上記本発明の放射線被曝量取得装置においては、人工物フレーム特定部を、生体と放射線画像検出器との間に設けられた放射線量検出部によって検出された放射線の線量情報に基づいて人工物フレームを特定するものとできる。
 また、人工物フレーム特定部を、連続的な放射線撮影が行われている間における放射線の線量情報の時間変動を取得するものとできる。
 また、放射線被曝量取得部を、人工物フレームの放射線画像信号に基づいて取得された放射線被曝量を、放射線量検出部によって検出された放射線の線量情報を用いて補正することによって、人工物フレームの放射線撮影の際の生体の放射線被曝量を取得するものとできる。
 また、放射線被曝量取得部を、人工物フレームの放射線画像信号に基づいて取得された放射線被曝量を、放射線の線量情報の時間変動と放射線撮影のフレームレートと上記移動の速度とを用いて補正するものとできる。
 また、放射線量検出部を、放射線画像検出器上に設けられたものとできる。
 また、放射線量検出部を、放射線画像検出器上の周縁部に設けられたものとできる。
 また、放射線量検出部を、放射線画像検出器上の少なくとも上記移動方向について対向する2辺に設けられたものとできる。
 また、人工物に対して人工物であることを示す指標を設け、人工物フレーム特定部を、フレーム毎の放射線画像信号に含まれる上記指標の画像信号を認識することによって人工物フレームを特定するものとできる。
 また、上記指標を、放射線被曝量の補正に用いられる情報を含むものとし、放射線被曝量取得部を、上記指標に含まれる情報に基づいて放射線被曝量の補正を行うものとできる。
 本発明の放射線被曝量取得方法は、人工物が含まれる生体に対して放射線の照射範囲を相対的に移動させて生体を連続的に放射線撮影することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、連続的な放射線撮影による生体の放射線被曝量を取得する放射線被曝量取得方法であって、複数のフレームのうちの人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定し、その特定した人工物フレームの情報に基づいて放射線被曝量を補正することによって、人工物フレームの放射線撮影の際の生体の放射線被曝量を取得することを特徴とする。
 本発明の放射線被曝量取得方法および装置並びに放射線画像撮影システムによれば、人工物が含まれる人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて人体の放射線被曝量を取得する際、人体内に含まれる人工物に関する情報を取得し、その人工物に関する情報として人体内に人工物が含まれることを示す情報が取得された場合には、放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うようにしたので、人工物による放射線の吸収も考慮したより正確な人体の放射線被曝量を取得することができる。
 また、上記本発明の放射線被曝量取得方法および装置並びに放射線画像撮影システムにおいて、人体の識別情報とその人体の人工物に関する情報とが対応付けられたものを予め設定し、受け付けられた人体の識別情報に対応する人工物に関する情報を取得するようにした場合には、人体の識別情報として従来も設定入力されていた患者情報などを用いることができるので、従来装置からの簡易な変更によって人工物に関する情報を取得することができる。
 また、人工物を識別するための人工物識別情報と補正放射線被曝量とを対応付けたテーブルを設け、受け付けられた人工物識別情報と上記テーブルとに基づいて補正を行うようにした場合には、放射線の吸収の程度が互いに異なる複数の人工物のそれぞれに対応した補正を行うことができる。
 また、人体に対する連続的な放射線の照射によって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて人体の放射線被曝量を取得する際、その放射線画像信号のフレームレートに応じた補正放射線被曝量だけ増加させるような補正を行うようにした場合には、フレーム数に応じた適切な放射線被曝量の補正を行うことができる。
 また、人体に対して放射線の照射範囲を移動させながら放射線を連続的に照射して取得したフレーム毎の放射線画像信号に基づいて人体の放射線被曝量を取得する際、放射線の照射範囲の移動速度に応じた補正放射線被曝量だけ増加させるような補正を行うようにした場合には、上記と同様にフレーム数に応じた適切な放射線被曝量の補正を行うことができる。
 本発明の放射線被曝量取得方法および装置によれば、人工物が含まれる生体に対して放射線の照射範囲を相対的に移動させて放射線撮影し、その撮影により取得されたフレーム毎の放射線画像信号に基づいて放射線被曝量を取得する際、たとえば生体と放射線画像検出器との間に設けられた放射線量検出部によって検出された放射線の線量情報に基づいて、複数のフレームのうちの人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定し、その特定した人工物フレームの情報に基づいて放射線被曝量を補正することによって、人工物フレームの放射線撮影の際の生体の放射線被曝量を取得するようにしたので、人工物フレームを簡易な構成によって適切に特定することができ、さらに人工物の放射線画像への写り込みも考慮した放射線撮影全体を通しての放射線被曝量をより正確に取得することができる。
 また、上記本発明の放射線被曝量取得方法および装置において、人工物フレームの放射線画像信号に基づいて取得された放射線被曝量を、放射線量検出部によって検出された放射線の線量情報を用いて補正することによって人工物フレームの放射線撮影の際の放射線被曝量を取得するようにした場合には、より簡易な補正方法によって正確な放射線被曝量を取得することができる。
 また、人工物に対して人工物であることを示す指標を設け、フレーム毎の放射線画像信号に含まれる上記指標の画像信号を認識することによって人工物フレームを特定するようにした場合には、画像認識を行うだけで人工物フレームを特定することができるので、より簡易な構成で人工物フレームを特定することができる。
 また、上記人工物に対して設けられた指標に対し、放射線被曝量の補正に用いられる情報を含めるようにし、その指標に含まれる情報に基づいて放射線被曝量の補正を行うようにした場合には、特に複雑な演算などを行うことなく、より簡易に補正を行うことができる。
本発明の放射線被曝量取得装置の第1の実施形態を用いた放射線画像撮影システム全体の概略構成を示すブロック図 第1の実施形態の放射線画像撮影装置の概略構成を示す図 本発明の放射線被曝量取得装置の第1の実施形態を用いた放射線画像撮影システムの作用を説明するためのフローチャート 放射線の照射タイミングと放射線画像検出器における電荷蓄積タイミングとの関係を示すタイミングチャート 患者情報と人工物情報とを対応付けたテーブルの一例を示す図 人工物情報と補正放射線被曝量とを対応付けたテーブルの一例を示す図 人工物情報と放射線照射部および放射線画像検出器の移動速度と補正放射線被曝量とを対応付けたテーブルの一例を示す図 人工物情報と放射線撮影のフレームレートと補正放射線被曝量とを対応付けたテーブルの一例を示す図 本発明の放射線被曝量取得装置の第2の実施形態を用いた放射線画像撮影システム全体の概略構成を示すブロック図 第2の実施形態の放射線画像撮影装置の概略構成を示す図 第1および第2の線量計測センサが設けられた放射線画像検出器を示す図 本発明の放射線被曝量取得装置の第2の実施形態を用いた放射線画像撮影システムの作用を説明するためのフローチャート 第1および第2の線量計測センサによって検出された放射線量の時間変動の一例を示す図 第1および第2の線量計測センサから人工物がはみ出した状態で人工物フレームが撮影された場合における補正放射線被曝量の算出方法を説明するための図 人工物フレームの終了が検出できなかった場合における人工物フレームの特定方法を説明するための図 人工物フレームを撮影しているときの放射線被曝量の取得方法を説明するための図
 以下、図面を参照して本発明の放射線被曝量取得装置の第1の実施形態を用いた放射線画像撮影システムについて説明する。図1は、本実施形態の放射線画像撮影システム全体の概略構成を示すブロック図である。
 本実施形態の放射線画像撮影システムは、図1に示すように、患者に対して放射線の照射範囲と放射線画像検出器とを相対的に移動させながら患者の透視画像(動画)を撮影する放射線画像撮影装置10と、放射線画像撮影装置10によって撮影された透視画像を表示する放射線画像表示装置20と、放射線画像撮影装置10によって撮影された透視画像の画像信号に基づいて、患者の被曝量を取得する放射線被曝量取得装置30と、放射線被曝量取得装置30によって取得された患者毎の被曝量を記憶して管理する放射線被曝量管理装置40と、放射線画像撮影システム全体の制御を行うシステム制御装置50とを備えている。
 放射線画像撮影装置10は、図1に示すように、X線管球や絞りなどを備え、X線管球から射出されて絞りを透過した放射線を患者に照射する放射線照射部11と、患者を透過した放射線を検出して患者の放射線画像を表す放射線画像信号を出力する放射線画像検出器12と、放射線画像検出器12から出力された放射線画像信号を記憶する放射線画像記憶部13と、放射線画像撮影装置10全体を制御する制御部14とを備えている。
 より具体的には、本実施形態の放射線画像撮影装置10は、図2に示すように構成されており、人工物I(たとえば人工骨)が体内に埋め込まれた患者Hが撮影台16上に設置され、その患者に対して放射線照射部11と放射線画像検出器12とを図2の矢印方向に移動させながら透視画像の撮影を行うものである。
 放射線画像検出器12は、放射線画像の記録と読出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生して蓄積することによって放射線画像の記録が行われる、いわゆる直接型の放射線画像検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷に変換して蓄積することによって放射線画像の記録が行われる、いわゆる間接型の放射線画像検出器を用いるようにしてもよい。また、上述したようにして電荷を蓄積することによって記録された放射線画像の読出方式としては、TFT(thin film transistor)スイッチがオン・オフされることによって放射線画像信号が読みだされる、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることができるが、これに限らずその他のものを用いるようにしてもよい。
 そして、本実施形態の放射線画像撮影装置10は、上述したように人工物が埋め込まれた患者の透視画像(動画)の撮影を行うものであり、制御部14は、この透視画像の撮影が行われるように放射線照射部11と放射線画像検出器12とを制御するものである。具体的には、制御部14は、所定のフレームレートで放射線照射部11から放射線を照射させるとともに、その放射線の照射によって放射線画像の記録と読出しが行われるように放射線画像検出器12を制御するものである。そして、放射線画像検出器12から出力されたフレーム毎の放射線画像信号を放射線画像記憶部13に順次記憶するものである。
 なお、放射線画像撮影装置10の構成としては、図2に示すような患者を臥位状態で撮影する構成に限らず、患者を立位状態で撮影する構成でもよい。また、患者を立位状態および臥位状態との両方で撮影可能な構成でもよい。
 放射線画像表示装置20は、放射線画像撮影装置10の放射線画像記憶部13から読み出されたフレーム毎の放射線画像信号に対して所定の処理を施して表示制御信号を生成し、その表示制御信号に基づいてモニタに患者の透視画像を表示させるものである。
 放射線被曝量取得装置30は、患者の体内に含まれる人工物に関する情報(以下、人工物情報という)を取得する人工物情報取得部31と、放射線画像撮影装置10の放射線画像記憶部13から読み出されたフレーム毎の放射線画像信号に基づいて、患者の放射線被曝量を取得する放射線被曝量取得部32とを備えている。
 人工物情報取得部31は、患者情報と人工物情報とを対応付けたテーブルを有しており、後述する入力部60において入力された撮影メニューに含まれる患者情報を受け付け、上記テーブルを参照して上記受け付けた患者情報に対応する人工物情報を取得し、その取得した人工物情報を放射線被曝量取得部32に出力するものである。
 放射線被曝量取得部32は、上述したようにフレーム毎の放射線画像信号に基づいて患者の放射線被曝量を算出するものであるが、さらに、人工物情報取得部31から人工物が埋め込まれていることを示す人工物情報を取得した場合には、放射線画像信号に基づいて算出した放射線被曝量に対して所定の補正放射線被曝量だけ増加するような補正を施すものである。
 なお、人工物情報取得部31と放射線被曝量取得部32の作用については、後で詳述する。
 放射線被曝量管理装置40は、放射線被曝量取得装置30において取得された患者の放射線被曝量を記憶し、患者毎の放射線被曝量を管理するものである。
 システム制御装置50は、上述した放射線画像撮影装置10、放射線画像表示装置20、放射線被曝量取得装置30および放射線被曝量管理装置40に制御信号を出力してこれらの動作を制御するとともに、これらの装置間の信号の入出力の制御を行うものである。
 また、システム制御装置50には入力部60が設けられている。この入力部60は、患者情報を含む撮影メニューの入力を受け付けるものである。患者情情報は、たとえば、患者の氏名、性別、患者ID番号などといった患者を識別するための情報を少なくとも含むものである。また、患者情報以外に撮影メニューに含まれるものとしては、たとえば、撮影部位の情報や、その撮影部位に対して適切な線量の放射線を照射するための管電圧、管電流、照射時間、透視画像の撮影のフレームレートおよび放射線照射部11と放射線画像検出器12の移動速度などの撮影条件などがある。
 そして、入力部60において受け付けられた入力情報は、システム制御装置50によって必要に応じて各装置に出力される。
 次に、本実施形態の放射線画像撮影システムの作用について、図3に示すフローチャートを参照しながら説明する。
 まず、放射線画像撮影装置10に設けられた撮影台16の上に患者が設置され、患者のポジショニングが行われる(S10)。
 次に、使用者によって入力部60を用いて撮影対象の患者情報を含む撮影メニューが入力される。そして、入力部60において受け付けられた撮影メニューに含まれる患者情報は、システム制御装置50によって放射線被曝量取得装置30の人工物情報取得部31に出力されるとともに、放射線被曝量管理装置40に出力されて登録される。また、撮影メニューに含まれる撮影条件については放射線画像撮影装置10の制御部14に出力されて設定される(S12)。
 次に、使用者によって入力部60を用いて患者の透視画像の撮影の開始指示が入力され、この入力に応じてシステム制御装置50から放射線画像撮影装置10に対して透視画像の撮影を行うよう制御信号が出力され、放射線画像撮影装置10は、入力された制御信号に応じて透視画像の撮影を開始する(S14)。
 具体的には、入力された制御信号に応じて放射線照射部11と放射線画像検出器12とが患者に対して移動するとともに、入力された撮影条件に基づいて放射線照射部11のX線管球が制御され、所定の線量の放射線が所定のフレームレートで間欠的に患者に向けて照射される。
 そして、患者を透過した放射線は放射線画像検出器12に照射され、放射線画像検出器12において光電変換されて電荷信号として蓄積される。
 そして、各フレームの放射線の照射が終了する毎に、放射線画像検出器12に蓄積された電荷信号は制御部14によって読み出され、A/D変換器(図示省略)によってデジタル信号に変換された後、放射線画像記憶部13に記憶される。
 図4は、放射線照射部11のX線管球からの放射線の照射タイミングと放射線画像検出器12における電荷蓄積タイミングとを示すタイミングチャートである。なお、放射線画像検出器12の電荷の蓄積が行われていない期間(蓄積OFFの期間)は、放射線画像検出器12からの電荷信号の読出期間である。
 上記のようにしてX線管球による放射線の照射と放射線画像検出器12における放射線画像の記録および読出しとが所定のフレームレートで繰り返して行われることによって、放射線画像記憶部13にフレーム毎の放射線画像信号が順次記憶される。
 そして、放射線画像記憶部13に記憶されたフレーム毎の放射線画像信号は順次読み出されて放射線画像表示装置20に出力される。放射線画像表示装置20は、入力されたフレーム毎の放射線画像信号に基づいて表示制御信号を順次生成し、その表示制御信号をモニタに順次出力して患者の透視画像を動画としてモニタに表示させる(S16)。
 そして、使用者によって入力部60を用いて透視画像の撮影終了指示が入力されると、システム制御装置50は、透視画像の撮影を終了するように放射線画像撮影装置10に制御信号を出力し、放射線画像撮影装置10は、入力された制御信号に応じて透視画像の撮影を終了する(S18)。
 次に、上述したような透視画像の撮影が終了すると、放射線被曝量取得装置30において患者の放射線被曝量が取得される。
 具体的には、まず、放射線被曝量取得部32において、各フレームの放射線画像信号に基づいて、透視画像の各フレームの撮影中に患者が受けた放射線被曝量が算出される(S20)。具体的には、本実施形態においては、まず、各フレームの放射線画像信号に基づいてE.I.(Exposure Index)を算出し、このE.I.に基づいて放射線被曝量を取得する。
 E.I.の算出方法については、まず、各フレームの放射線画像内に、所定の計算領域を設定する。この計算領域としては、たとえば放射線画像の全領域や、使用者が任意に設定した領域や、撮影部位の情報に基づいて規定された領域や、放射線画像の中心から画像サイズの10%の範囲の領域などを採用することができる。または、たとえば放射線画像のヒストグラムに基づいて求められる、いわゆる素抜け領域を除く領域や、放射線画像の中心濃度から全濃度幅の90%の領域などを採用することができる。もしくは、上述した条件を組み合わせて特定の計算領域を設定するようにしてもよい。
 次に、上記で設定した計算領域の代表値Vを算出する。代表値Vとしては、放射線画像の濃度値そのものや、濃度値そのものに対して、全濃度値の平均値、中央値、最頻値またはトリム平均値を加味した統計的特徴値などを採用することができる。そして、この代表値に基づいて、下式によりフレーム毎のE.I.を算出する。
E.I.= C × g(V)
g(V):逆校正関数
:100・Gy(定数)
 なお、g(V)は、RQA5の線質にて得られる放射線画像に基づいて規定される関数である。代表値Vは、放射線画像検出器におけるシンチレータの違いなどに起因する感度の違いや、上述した計算領域の設定方法または代表値Vの算出方法の違いによってその大きさが異なるものとなるが、g(V)はその違いを正規化する関数である。つまり、いかなる放射線画像検出器の種類であっても、RQA5の線質で同一の線量を受けた場合、E.I.はほぼ同一の値となることになる。
 上述したようにして、放射線被曝量取得部32において、各フレームの放射線画像信号に基づいて算出されたE.I.を用いて、各フレームの撮影中に患者が受けた放射線被曝量が取得される。なお、E.I.を用いて放射線被曝量を取得する方法としては、たとえば、これらの関係を規定した関数や、ルックアップテーブルなどを予め設定しておくようにすればよい。
 ここで、上述したような透視画像の撮影対象である患者の体内に人工物が含まれている場合には、患者に照射された放射線は放射線画像検出器12に到達する前に人工物によって吸収されるため、人工物の画像信号が写り込んだ放射線画像信号に基づいて放射線被曝量を算出した場合、実際に患者が受けた放射線被曝量よりも小さい値となってしまう。
 そこで、本実施形態においては、撮影対象である患者の体内に人工物が含まれている場合には、上述したように放射線画像信号に基づいて算出された放射線被曝量に対して補正放射線被曝量を加算する補正を行う。
 具体的には、まず、人工物情報取得部31において、入力された患者情報に基づいて、その患者情報に対応する人工物情報が取得される(S22)。より具体的には、人工物情報取得部31には、図5に示すような患者情報と人工物情報とを対応付けたテーブルが予め設定されており、人工物情報取得部31は、このテーブルを参照して撮影対象である患者に対応する人工物情報を取得する。なお、図5に示すように、本実施形態においては、人工物情報として、患者の体内に人工物が含まれているか否かを示す人工物の有無情報と、人工物を識別するための識別情報とが予め設定されているものとする。
 次に、人工物情報取得部31によって取得された人工物情報が、放射線被曝量取得部32に出力される。
 ここで、放射線被曝量取得部32には、図6に示すような人工物情報と補正放射線被曝量とを対応付けたテーブルが予め設定されており、放射線被曝量取得部32は、入力された人工物情報と上記テーブルとに基づいて補正放射線被曝量を取得する(S24)。
 そして、放射線被曝量取得部32は、フレーム毎の放射線画像信号に基づいて算出された放射線被曝量と上記補正放射線被曝量とを加算して補正を行うことによって、患者の総放射線被曝量を取得する(S26)。
 そして、放射線被曝量取得部32において取得された総放射線被曝量は放射線被曝量管理装置40に入力され、放射線被曝量管理装置40は、予め設定入力された患者情報とともに総放射線被曝量を登録する(S28)。そして、放射線被曝量管理装置40は、登録した総放射線被曝量を患者情報とともに必要に応じて表示したり、また、所定の患者について過去からの累積総放射線被曝量を算出し、その値が予め設定された規定値よりも大きくなった場合に警告メッセージを表示したりする。
 本実施形態の放射線画像撮影システムによれば、人工物が含まれる患者を透過した放射線の照射によって放射線画像検出器12により検出された放射線画像信号に基づいて患者の放射線被曝量を取得する際、患者の体内に含まれる人工物に関する情報を取得し、その人工物に関する情報として患者の体内に人工物が含まれることを示す情報が取得された場合には、放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うようにしたので、人工物による放射線の吸収も考慮したより正確な人体の放射線被曝量を取得することができる。
 なお、上記実施形態の放射線画像撮影システムにおいては、放射線照射部11と放射線画像検出器12の移動速度に関わらず、所定の人工物情報に対して一定の補正放射線被曝量を取得するようにしたが、たとえば放射線照射部11と放射線画像検出器12の移動距離とフレームレートが一定である場合には、放射線照射部11と放射線画像検出器12の移動速度に応じてフレーム数が変化し、補正すべき補正放射線被曝量の大きさも変化するので、図6に示すように人工物情報と移動速度と補正放射線被曝量とを対応付けたテーブルを予め設定し、撮影メニューに含まれる移動速度の情報に基づいて、移動速度も考慮した補正放射線被曝量を取得するようにしてもよい。
 また、たとえば放射線照射部11と放射線画像検出器12の移動距離と移動速度が一定である場合には、フレームレートに応じてフレーム数が変化し、補正すべき補正放射線被曝量の大きさも変化するので、図7に示すように人工物情報とフレームレートと補正放射線被曝量とを対応付けたテーブルを予め設定し、撮影メニューに含まれるフレームレートの情報に基づいて、移動速度も考慮した補正放射線被曝量を取得するようにしてもよい。
 また、放射線照射部11と放射線画像検出器12の移動速度とフレームレートとの両方を考慮した補正放射線被曝量を予め設定するようにしてもよいし、さらに放射線照射部11と放射線画像検出器12の移動距離も考慮した補正放射線被曝量を予め設定するようにしてもよい。
 また、上記実施形態の放射線画像撮影システムにおいては、放射線画像信号に基づいて算出された放射線被曝量に対して補正放射線被曝量を加算することによって補正を行うようにしたが、これに限らず、たとえば、放射線画像信号に基づいて算出された放射線被曝量に対して1より大きい係数をかけわせることによって補正放射線被曝量だけ増加するように補正を行うようにしてもよい。
 また、上記実施形態の放射線画像撮影システムにおいては、人工物情報取得部31が、撮影メニューに含まれる患者情報に基づいて人工物情報を取得するようにしたが、これに限らず、入力部60において人工物情報の入力を受け付け、この受け付けられた人工物情報を人工物情報取得部31が取得するようにしてもよい。
 また、人工物が患者の体内に含まれているか否かの情報については、たとえば、患者の体内に含まれる人工物を選択的に検出可能なセンサなどを撮影台16もしくは放射線照射部11などに設け、このセンサから出力される検出信号に基づいて、人工物の有無情報を取得するようにしてもよい。さらに、人工物の識別情報については、人工物に対して人工物の識別情報を表すマークを予め設けておき、このマークを画像認識することによって人工物の識別情報を取得するようにしてもよい。さらに、マークに対して人工物の材質や厚みや形状などの放射線吸収に関する情報を含めるようにするとともに、放射線被曝量取得部32に上記情報に対応する補正放射線被曝量を予め設定しておき、放射線被曝量取得部32が、取得した上記情報に対応する補正放射線被曝量をフレーム毎の放射線画像信号に基づいて算出された放射線被曝量に加算することによって補正を行うようにしてもよい。
 また、上記実施形態の放射線画像撮影システムは放射線照射部11と放射線画像検出器12とを移動させながら動画を撮影するものであるが、これに限らず、本発明は、放射線照射部11と放射線画像検出器12を固定した状態で動画を撮影する放射線画像システムにも適用可能であり、さらに必ずしも動画を撮影するものだけでなく、静止画を撮影する放射線画像撮影システムにも適用可能である。
 次に、本発明の放射線被曝量取得装置の第2の実施形態を用いた放射線画像撮影システムについて説明する。図9は、本実施形態の放射線画像撮影システム全体の概略構成を示すブロック図である。
 本実施形態の放射線画像撮影システムは、図9に示すように、放射線画像撮影装置10と、放射線画像表示装置20と、放射線被曝量取得装置70と、放射線被曝量管理装置40と、システム制御装置50とを備えている。放射線表示装置20、放射線被曝量管理装置40、システム制御装置50および入力部60については、上記第1の実施形態の放射線画像撮影システムと同様である。
 そして、本実施形態の放射線画像撮影システムは、放射線画像撮影装置10と、放射線被曝量取得装置70の構成が、第1の実施形態の放射線画像撮影システムと異なるものでる。したがって、以下、第1の実施形態の放射線画像撮影システムと異なる点を中心に説明する。
 本実施形態の放射線画像撮影装置10は、上記第1の実施形態と同様の放射線照射部11、放射線画像検出器12、放射線画像記憶部13および制御部14を備えるとともに、さらに、患者と放射線画像検出器12との間に設けられ、患者を透過した放射線の線量を検出する放射線量検出部15を備えている。
 放射線量検出部15は、上述したように患者と放射線画像検出器12との間に設けられるものであり、本実施形態においては、図10および図11に示すように、放射線画像検出器12の放射線照射面に設けられた第1の線量計測センサ15aと第2の線量計測センサ15bとから構成されるものである。なお、図11は、図10の放射線画像検出器12と、第1および第2の線量計測センサ15a,15bとを上方から見た図である。
 図11に示すように第1の線量計測センサ15aと第2の線量計測センサ15bとは、放射線画像検出器12の移動方向について対向する辺に沿って設けられている。なお、本実施形態においては、上述したように移動方向について対応する辺のみに沿って線量計測センサを設けるようにしたが、放射線画像検出器12の4辺に沿って設けることがより好ましい。
 第1および第2の線量計測センサ15a,15bとしては、薄型で放射線吸収がほとんどないものを用いることが望ましく、たとえば有機光電変換材料(OPC)からなるものを用いることが望ましい。
 また、放射線画像検出器12として、たとえば放射線を可視光に変換するシンチレータ層と、シンチレータ層から発せられた光を検出するTFTやCMOSスイッチなどを備えたセンサ基板とを積層したものを用いる場合には、シンチレータ層が放射線照射側とは反対側に配置されるようにすることが望ましい。すなわち、放射線照射側から、第1および第2の線量計測センサ15a,15b、センサ基板、シンチレータ層の順番となるように配置することが望ましい。
 シンチレータ層の発光部分は放射線射側により近い部分であるため、上述したように配置することによってシンチレータ層の発光部分とセンサ基板との距離を短くすることができる。これによりシンチレータ層から発せられた光の拡散による放射線画像のボケを抑制することができ、また、より大きな信号強度を得ることができる。
 なお、上述したような放射線画像検出器12の構成は、第2の実施形態に限らず、上述したその他の実施形態においても採用することができる。
 なお、本実施形態においては、第1および第2の線量計測センサ15a,15bを放射線画像検出器12上に設けるようにしたが、これに限らず、患者と放射線画像検出器12との間であれば、その他の所定位置に設置するようにしてもよい。
 そして、放射線量検出部15は、検出した放射線の線量情報を、透視画像の撮影と平行して後述する人工物フレーム特定部71に順次出力するものである。
 なお、放射線画像撮影装置10の構成は、上記第1の実施形態と同様に、患者を臥位状態で撮影する構成に限らず、患者を立位状態で撮影する構成でもよい。また、患者を立位状態および臥位状態との両方で撮影可能な構成でもよい。
 放射線被曝量取得装置70は、放射線画像撮影装置10の放射線画像記憶部13から読み出されたフレーム毎の放射線画像信号のうち、人工物の像の画像信号を含むフレームの放射線画像信号を人工物フレームとして特定する人工物フレーム特定部71と、放射線画像撮影装置10の放射線画像記憶部13から読み出されたフレーム毎の放射線画像信号に基づいて、患者の放射線被曝量を取得する放射線被曝量取得部72とを備えている。
 人工物フレーム特定部71は、放射線量検出部15を構成する第1の線量計測センサ15aと第2の線量計測センサ15bとから出力された放射線の線量情報に基づいて、透視画像の撮影によって取得された複数のフレームの中から人工物フレームを特定するものである。
 さらに、本実施形態の人工物フレーム特定部71は、人工物フレームと判定されたフレームの放射線画像信号に対して人工物フレームであることを示す情報を付加して記憶するものである。
 なお、人工物フレーム特定部71と放射線被曝量取得部72の作用については、後で詳述する。
 次に、本実施形態の放射線画像撮影システムの作用について、図12に示すフローチャートを参照しながら説明する。
 まず、放射線画像撮影装置10に設けられた撮影台16の上に患者が設置され、患者のポジショニングが行われる(S30)。
 次に、使用者によって入力部60を用いて撮影対象の患者のID情報と所定の撮影条件とが入力され、患者のID情報については放射線被曝量管理装置40に登録され、撮影条件については放射線画像撮影装置10の制御部14に設定される(S32)。なお、ここで入力される撮影条件としては、患者の撮影部位に対して適切な線量の放射線を照射するための管電圧、管電流、照射時間や、透視画像の撮影のフレームレートなどがある。透視画像の撮影のフレームレートとしては、たとえば5fps~60fpsのフレームレートが設定される。
 次に、使用者によって入力部60を用いて患者の透視画像の撮影の開始指示が入力され、この入力に応じてシステム制御装置50から放射線画像撮影装置10に対して透視画像の撮影を行うよう制御信号が出力され、放射線画像撮影装置10は、入力された制御信号に応じて透視画像の撮影を開始する(S34)。
 具体的には、入力された制御信号に応じて放射線照射部11と放射線画像検出器12とが患者に対して移動するとともに、入力された撮影条件に基づいて放射線照射部11のX線管球が制御され、所定の線量の放射線が所定のフレームレートで間欠的に患者に向けて照射される。
 そして、患者を透過した放射線は放射線画像検出器12に照射され、放射線画像検出器12において光電変換されて電荷信号として蓄積される。
 そして、各フレームの放射線の照射が終了する毎に、放射線画像検出器12に蓄積された電荷信号は制御部14によって読み出され、A/D変換器(図示省略)によってデジタル信号に変換された後、放射線画像記憶部13に記憶される。なお、放射線照射部11のX線管球からの放射線の照射タイミングと放射線画像検出器12における電荷蓄積タイミングとについては、図4に示した第1の実施形態のタイミングチャートと同様である。
 上記のようにしてX線管球による放射線の照射と放射線画像検出器12における放射線画像の記録および読出しとが所定のフレームレートで繰り返して行われることによって、放射線画像記憶部13にフレーム毎の放射線画像信号が順次記憶される。
 そして、放射線画像記憶部13に記憶されたフレーム毎の放射線画像信号は順次読み出されて放射線画像表示装置20に出力される。放射線画像表示装置20は、入力されたフレーム毎の放射線画像信号に基づいて表示制御信号を順次生成し、その表示制御信号をモニタに順次出力して患者の透視画像を動画としてモニタに表示させる(S36)。
 一方、上述したような透視画像の撮影および表示が行われるのと平行して、放射線画像検出器12上に設けられた第1および第2の線量計測センサ15a,15bによって患者を透過した放射線の線量が順次検出され、その検出された放射線の線量は、放射線被曝量取得装置30の人工物フレーム特定部71に順次入力される(S38)。
 そして、人工物フレーム特定部71は、入力された放射線の線量の時間変動を取得し、その時間変動に基づいて、人工物の像が写りこんでいる人工物フレームを特定する。(S40)。
 具体的には、人工物フレーム特定部71は、第1の線量計測センサ15aによって検出された放射線の線量と第2の線量計測センサ15bによって検出された放射線の線量とに基づいて、図13に示すような各センサによって検出された放射線の線量の時間変動を取得する。
 ここで、第1および第2の線量計測センサ15a,15bの上方を患者に埋め込まれた人工物が通過する際には、各センサに放射線が到達する前にその人工物によって放射線が吸収されてしまうため、図13に示すように、各センサによって検出される放射線の線量は小さくなる。
 このような変化を利用して、人工物フレーム特定部71は、下流側に配置された第1の線量計測センサ15aによって検出される放射線の線量が減少し始めた第1の時点t1から、上流側に配置された第2の線量計測センサ15bによって検出される放射線の線量が一旦減少して再び略一定値に戻った時点t2までの間に撮影されたフレームを人工物フレームとして特定する。なお、人工物フレーム特定部71には、放射線照射部11および放射線画像検出器12の移動速度と、透視画像の放射線撮影のフレームレートとが予め設定されており、これらの情報と上記第1の時点t1から第2の時点t2までの時間とに基づいて人工物フレームを特定するものとする。
 そして、人工物フレーム特定部71には、放射線画像記憶部13から読み出された各フレームの放射線画像信号も入力され、上述したようにして人工物フレームと特定したフレームの放射線画像信号に対して、人工物フレームであることを示す情報(以下、人工物フレーム情報という)をヘッダー情報として付加し、その放射線画像信号を人工物フレーム情報とともに記憶する(S42)。
 そして、使用者によって入力部60を用いて透視画像の撮影終了指示が入力されると、システム制御装置50は、透視画像の撮影を終了するように放射線画像撮影装置10に制御信号を出力し、放射線画像撮影装置10は、入力された制御信号に応じて透視画像の撮影を終了する(S44)。
 次に、上述したような透視画像の撮影が終了すると、放射線被曝量取得装置70において患者の放射線被曝量が取得される。
 具体的には、まず、人工物フレーム特定部71に記憶された各フレームの放射線画像信号が人工物フレーム情報とともに放射線被曝量取得部72に出力される。
 次に、放射線被曝量取得部72において、各フレームの放射線画像信号に基づいて、透視画像の各フレームの撮影中に患者が受けた放射線被曝量が算出される(S46)。具体的には、本実施形態においても、上記第1の実施形態と同様に、各フレームの放射線画像信号に基づいてE.I.が算出され、このE.I.に基づいて放射線被曝量が取得される。なお、E.I.の算出方法およびE.I.に基づく放射線被曝量の取得方法については、上記第1の実施形態において説明したとおりである。
 ここで、上述したように人工物が埋め込まれた患者の透視画像を撮影した場合、患者に照射された放射線は放射線画像検出器12に到達する前に人工物によって吸収されるため、人工物フレームの放射線画像信号に基づいて放射線被曝量を算出した場合、実際に患者が受けた放射線被曝量よりも小さい値となってしまう。
 そこで、本実施形態においては、人工物フレーム特定部71において特定された人工物フレームの情報に基づいて補正された放射線被曝量を取得することによって、人工物フレームが撮影されている間の実際の患者の放射線被曝量を取得する(S48)。
 具体的には、放射線被曝量取得部72は、人工物フレームの放射線画像信号に基づいて算出された放射線被曝量に対して、所定の補正放射線被曝量を加算することによって補正を行う。本実施形態においては、この補正放射線被曝量として、補正対象の人工物フレームが撮影されている時点において第1または第2の線量計測センサ15a,15bによって検出されている線量の情報を用いる。すわなち、人工物の放射線の吸収による各センサの検出線量の減少分を補正放射線被曝量とする。たとえば、図13に示すt3の時点で撮影された人工物フレームに対応する放射線被曝量に対しては補正放射線被曝量a1を加算して補正する。また、図13に示すt4の時点で撮影された人工物フレームに対応する放射線被曝量に対しては補正放射線被曝量a2を加算して補正する。なお、人工物が第1の線量計測センサ15aと第2の線量計測センサ15bとの間を通過しているときに撮影された人工物フレームに対応する放射線被曝量に対しては、各センサの検出線量が最も減少したときの最大補正放射線被曝量a3が加算されるものとする。すなわち、たとえば、図13に示すt5の時点で撮影された人工物フレームに対応する放射線被曝量に対しては補正放射線被曝量a3を加算して補正する。
 次に、放射線被曝量取得部72は、上述したようにして補正された人工物フレームが撮影されている間の放射線被曝量と、人工物フレーム以外のフレームが撮影されている間の放射線被曝量とを加算することによって患者が受けた総放射線被曝量を算出する(S50)。
 そして、放射線被曝量取得部72において取得された総放射線被曝量は放射線被曝量管理装置40に入力され、放射線被曝量管理装置40は、予め設定入力された患者のID情報とともに総放射線被曝量を登録する(S52)。そして、放射線被曝量管理装置40は、登録した総放射線被曝量を患者のID情報とともに必要に応じて表示したり、また、所定の患者について過去からの累積総放射線被曝量を算出し、その値が予め設定された規定値よりも大きくなった場合に警告メッセージを表示したりする。
 第2の実施形態の放射線画像撮影システムによれば、患者と放射線画像検出器12との間に設けられた放射線量検出部15によって検出された放射線の線量情報に基づいて、複数のフレームのうちの人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定し、その特定した人工物フレームの情報に基づいて放射線被曝量を補正することによって、人工物フレームの放射線撮影の際の生体の放射線被曝量を取得するようにしたので、人工物フレームを簡易な構成によって適切に特定することができ、さらに人工物の放射線画像への写り込みも考慮した放射線撮影全体を通しての放射線被曝量をより正確に取得することができる。
 なお、上記実施形態の放射画像撮影システムにおいては、人工物フレームに対応する放射線被曝量を算出する際、第1または第2の線量計測センサ15a,15bの検出線量の減少分を補正放射線被曝量として用いるようにしたが、このような方法の場合、たとえば図14の一番上の図に示すように、人工物が第1または第2の線量計測センサ15a,15b内に収まるようなタイミングで人工物フレームが撮影された場合には、実際の患者の放射線被曝量に見合った補正放射線被曝量を算出することができるが、人工物が第1または第2の線量計測センサ15a,15bよりも大きい場合には、たとえば図14の上から2番目の図に示すように、人工物が第1または第2の線量計測センサ15a,15bからはみ出した状態で人工物フレームが撮影される場合があり、このような場合、第1または第2の線量計測センサ15a,15bからはみ出した分だけ補正放射線被曝量が少なくなってしまう。
 また、人工物が第1または第2の線量計測センサ15a,15bより小さい場合でも、図14の上から3番目と4番目の図に示すように、人工物が第1または第2の線量計測センサ15a,15bからはみ出したタイミングで人工物フレームが撮影される場合があり、このような場合にも、上記と同様に、第1または第2の線量計測センサ15a,15bからはみ出した分だけ補正放射線被曝量が少なくなってしまう。
 そこで、人工物フレームのうち、最初の1枚または最初の1枚から数枚の人工物フレームや、最後の1枚または最後の1枚から数枚の人工物フレームについては、そのフレームに対応する放射線画像検出器12によって検出された放射線画像を参照し、その放射線画像内に写っている人工物の大きさや、第1または第2の線量計測センサ15a,15bからのはみ出し量に基づいて補正放射線被曝量を算出するようにしてもよい。
 また、放射線画像検出器12の移動速度と放射線画像の撮影のフレームレートによっては、図15に示すように、第2の線量計測センサ15bによっては人工物を検出できたが、第1の線量計測センサ15aによっては人工物を検出できなかったり、また逆に第1の線量計測センサ15aによっては人工物を検出できたが、第2の線量計測センサ15bによっては人工物を検出できなかったりする場合がある。
 このような場合、人工物フレームの開始は検出できたが、人工物フレームの終了が検出できなかったり、逆に、人工物フレームの終了は検出できたが、人工物フレームの開始が検出できなかったりして、人工物フレームの数が分からないことになる。
 そこで、このような場合には、たとえば図15に示すような場合には、放射線画像検出器12の移動速度と放射線画像の撮影のフレームレートに基づいて、nフレーム目からn+2フレーム目までが人工物フレームであることを特定するようにすればよい。また、逆に、最後の人工物フレームしか検出できなかった場合には、放射線画像検出器12の移動速度と放射線画像の撮影のフレームレートに基づいて、最後のフレームから時間的に前に撮影された人工物フレームの枚数をカウントすることによって人工物フレームを特定するようにしてもよい。このようにすることによって人工物フレームを特定することができ、正確な放射線被曝量を算出することができる。 また、上述したように人工物フレームの開始または終了が検出できなかった場合には、放射線画像検出器12によって検出された放射線画像を参照することによって、人工物フレームを特定するようにしてもよい。
 また、上記実施形態の放射線画像撮影システムにおいては、透視画像の撮影が終了した後に放射線被曝量を算出するようにしたが、これに限らず、透視画像の撮影中に上記と同様にして放射線被曝量を算出し、撮影途中の患者の放射線被曝量を表示などするようにしてもよい。
 また、上記実施形態の放射線画像撮影システムにおいては、人工物フレームの放射線画像信号に基づいて算出された放射線被曝量に対して補正放射線被曝量を加算することによって補正を行うようにしたが、人工物フレームの撮影中の放射線被曝量の取得方法としてはこれに限らず、たとえば、図16に示すように、人工物フレームの直前および直後のフレームの放射線画像信号に基づいて算出された放射線被曝量を直線補間することによって人工物フレームが撮影されている間の患者の放射線被曝量を取得するようにしてもよい。
 また、人工物フレームの直前または直後のフレームの放射線画像信号に基づいて算出された放射線被曝量をそのまま人工物フレームが撮影されている間の患者の放射線被曝量として採用するようにしてもよいし、その他の人工物フレーム以外のフレームの放射線画像信号に基づいて算出された放射線被曝量を採用するようにしてもよい。もしくは、人工物フレームの放射線画像信号に基づいて算出された放射線被曝量に対して、予め設定された所定の放射線被曝量を加算することによって補正するようにしてもよいし、人工物フレームの放射線画像信号に基づいて算出された放射線被曝量に対して、予め設定された1より大きい所定の係数を掛け合わせることによって補正するようにしてもよい。
 また、上記実施形態の放射線画像撮影システムにおいては、第1および第2の線量計測センサ15a,15bによって検出された放射線の線量の時間変動に基づいて人工物フレームを特定するようにしたが、これに限らず、たとえば、患者の体内に埋め込まれる人工物に対し、人工物であることを示すマークなどの指標を設けるようにし、人工物フレーム特定部71が、各フレームの放射線画像信号に上記指標を表す画像信号が含まれるか否かを画像認識することによって人工物フレームを特定するようにしてもよい。なお、マークの画像認識については既に公知な技術であるのでここでは説明を省略する。
 また、上述したように人工物に対して指標を設ける場合には、その指標に対し、人工物であることを示す情報だけでなく、放射線被曝量の補正に関する情報を含めるようにしてもよい。そして、放射線被曝量取得部72が、その指標に含まれる補正に関する情報を取得することによって、人工物フレームに対応する放射線被曝量を補正するようにしてもよい。具体的には、たとえば、上記指標に対して人工物の材質や厚みや形状などの放射線吸収に関する情報を含めるようにするとともに、放射線被曝量取得部72に上記情報に対応する補正放射線被曝量を予め設定しておき、放射線被曝量取得部72が、取得した上記情報に対応する補正放射線被曝量を人工物フレームの放射線画像信号に基づいて算出された放射線被曝量に加算することによって補正を行うようにしてもよい。
 また、上記第1および第2の実施形態では放射線被曝量取得装置を独立した装置として構成しているが、放射線画像撮影装置などの他の装置の一部として組み込むなど、どのような態様としてもよい。具体的には、システム制御装置50を含むコンソールに設けるようにしてもよいし、放射線画像撮影装置10に設けるようにしてもよい。また、放射線画像検出器12が可搬型の電子カセッテに収容されたものであり、その電子カセッテ内にLSI(Large Scale Integration)などの電子回路や、PLD(Programmable Logic Device)・FPGA(Field-Programmable Gate Array)などのプログラマブルな電子回路などのハードウェアが設けられている場合には、そのようなハードウェアによって人工物フレームの特定や放射線被曝量の取得を行わせるようにしてもよい。このような構成を採用することによってよりリアルタイム性を追求することができる。

Claims (19)

  1.  放射線撮影の撮影対象である人体内に含まれる人工物に関する情報を取得する人工物情報取得部と、
     前記人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて、前記人体の放射線被曝量を取得する放射線被曝量取得部とを備え、
     前記放射線被曝量取得部が、前記人工物情報取得部によって前記人体内に人工物が含まれることを示す情報が取得された場合には、前記放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うものであることを特徴とする放射線被曝量取得装置。
  2.  前記人体の識別情報と該人体の前記人工物に関する情報とが対応付けられたものが予め設定されており、
     前記人工物情報取得部が、前記人体の識別情報を受け付け、該受け付けた人体の識別情報に対応する前記人工物に関する情報を取得するものであることを特徴とする請求項1記載の放射線被曝量取得装置。
  3.  前記人体の識別情報が、前記放射線撮影の撮影メニューに含まれるものであることを特徴とする請求項2記載の放射線被曝量取得装置。
  4.  前記人工物情報取得部が、前記人工物に関する情報として前記人工物を識別するための人工物識別情報を取得するものであり、
     前記放射線被曝量取得部が、前記人工物識別情報と前記補正放射線被曝量とを対応付けたテーブルを有し、前記人工物情報取得部よって取得された人工物識別情報と前記テーブルとに基づいて前記補正を行うものであることを特徴とする請求項1から3いずれか1項記載の放射線被曝量取得装置。
  5.  前記放射線被曝量取得部が、前記人体に対する連続的な放射線の照射によって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、前記人体の放射線被曝量を取得するものであるともに、
     前記放射線画像信号のフレームレートに応じた前記補正放射線被曝量だけ増加させるような補正を行うものであることを特徴とする請求項1から4いずれか1項記載の放射線被曝量取得装置。
  6.  前記放射線被曝量取得部が、前記人体に対して前記放射線の照射範囲を移動させながら前記人体に前記放射線を連続的に照射することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、前記人体の放射線被曝量を取得するものであるともに、
     前記放射線の照射範囲の移動速度に応じた前記補正放射線被曝量だけ増加させるような補正を行うものであることを特徴とする請求項1から5いずれか1項記載の放射線被曝量取得装置。
  7.  請求項3記載の放射線被曝量取得装置と、
     前記放射線撮影を行って前記放射線画像信号を取得する放射線画像撮影装置とを備え、
     該放射線画像撮影装置が、前記人体の識別情報が含まれた撮影メニューに基づいて前記放射線撮影を行うものであることを特徴とする放射線画像撮影システム。
  8.  人工物が含まれる人体を透過した放射線の照射によって放射線画像検出器により検出された放射線画像信号に基づいて、前記人体の放射線被曝量を取得する放射線被曝量取得方法であって、
     前記人体内に含まれる人工物に関する情報を取得し、
     前記人工物に関する情報として前記人体内に人工物が含まれることを示す情報が取得された場合には、前記放射線画像信号に基づく放射線被曝量を所定の補正放射線被曝量だけ増加させるような補正を行うことを特徴とする放射線被曝量取得方法。
  9.  人工物が含まれる生体に対して放射線の照射範囲を相対的に移動させて前記生体を連続的に放射線撮影することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、前記連続的な放射線撮影による前記生体の放射線被曝量を取得する放射線被曝量取得部と、
     複数の前記フレームのうちの前記人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定する人工物フレーム特定部とを備え、
     前記放射線被曝量取得部が、前記人工物フレームの情報に基づいて前記放射線被曝量を補正することによって、前記人工物フレームの前記放射線撮影の際の前記生体の放射線被曝量を取得するものであることを特徴とする放射線被曝量取得装置。
  10.  前記人工物フレーム特定部が、前記生体と前記放射線画像検出器との間に設けられた放射線量検出部によって検出された前記放射線の線量情報に基づいて前記人工物フレームを特定するものであることを特徴とする請求項9記載の放射線被曝量取得装置。
  11.  前記人工物フレーム特定部が、前記連続的な放射線撮影が行われている間における前記放射線の線量情報の時間変動を取得するものであることを特徴とする請求項10記載の放射線被曝量取得装置。
  12.  前記放射線被曝量取得部が、前記人工物フレームの放射線画像信号に基づいて取得された放射線被曝量を、前記放射線量検出部によって検出された放射線の線量情報を用いて補正することによって、前記人工物フレームの前記放射線撮影の際の前記生体の放射線被曝量を取得するものであることを特徴とする請求項10または11記載の放射線被曝量取得装置。
  13.  前記放射線被曝量取得部が、前記人工物フレームの放射線画像信号に基づいて取得された放射線被曝量を、前記放射線の線量情報の時間変動と前記放射線撮影のフレームレートと前記移動の速度とを用いて補正するものであることを特徴とする請求項12記載の放射線被曝量取得装置。
  14.  前記放射線量検出部が、前記放射線画像検出器上に設けられたものであることを特徴とする請求項10から13いずれか1項記載の放射線被曝量取得装置。
  15.  前記放射線量検出部が、前記放射線画像検出器上の周縁部に設けられたものであることを特徴とする請求項14記載の放射線被曝量取得装置。
  16.  前記放射線量検出部が、前記放射線画像検出器上の少なくとも前記移動方向について対向する2辺に設けられたものであることを特徴とする請求項15記載の放射線被曝量取得装置。
  17.  前記人工物に対して人工物であることを示す指標が設けられており、
     前記人工物フレーム特定部が、前記フレーム毎の放射線画像信号に含まれる前記指標の画像信号を認識することによって前記人工物フレームを特定するものであることを特徴とする請求項9記載の放射線被曝量取得装置。
  18.  前記指標が、前記放射線被曝量の補正に用いられる情報を含むものであり、
     前記放射線被曝量取得部が、前記指標に含まれる情報に基づいて前記放射線被曝量の補正を行うものであることを特徴とする請求項17記載の放射線被曝量取得装置。
  19.  人工物が含まれる生体に対して放射線の照射範囲を相対的に移動させて前記生体を連続的に放射線撮影することによって放射線画像検出器により検出されたフレーム毎の放射線画像信号に基づいて、前記連続的な放射線撮影による前記生体の放射線被曝量を取得する放射線被曝量取得方法であって、
     複数の前記フレームのうちの前記人工物の像を表す画像信号が含まれているフレームを人工物フレームとして特定し、
     該特定した人工物フレームの情報に基づいて前記放射線被曝量を補正することによって、前記人工物フレームの前記放射線撮影の際の前記生体の放射線被曝量を取得することを特徴とする放射線被曝量取得方法。
PCT/JP2012/003464 2011-05-30 2012-05-28 放射線被曝量取得方法および装置並びに放射線画像撮影システム WO2012164901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12791986.8A EP2716221A4 (en) 2011-05-30 2012-05-28 METHOD AND DEVICE FOR OBTAINING RADIATION DOSE, AND RADIOGRAPHIC IMAGE CAPTURE SYSTEM
US14/092,449 US20140086390A1 (en) 2011-05-30 2013-11-27 Radiation exposure dose obtaining method and apparatus, and radiation image capturing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-120440 2011-05-30
JP2011120439 2011-05-30
JP2011-120439 2011-05-30
JP2011120440 2011-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/092,449 Continuation US20140086390A1 (en) 2011-05-30 2013-11-27 Radiation exposure dose obtaining method and apparatus, and radiation image capturing system

Publications (1)

Publication Number Publication Date
WO2012164901A1 true WO2012164901A1 (ja) 2012-12-06

Family

ID=47258777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003464 WO2012164901A1 (ja) 2011-05-30 2012-05-28 放射線被曝量取得方法および装置並びに放射線画像撮影システム

Country Status (4)

Country Link
US (1) US20140086390A1 (ja)
EP (1) EP2716221A4 (ja)
JP (1) JPWO2012164901A1 (ja)
WO (1) WO2012164901A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147196A (ko) * 2015-06-12 2016-12-22 삼성전자주식회사 엑스선 장치 및 엑스선 촬영 방법
WO2021033667A1 (ja) * 2019-08-19 2021-02-25 富士フイルム株式会社 医療支援装置、その作動方法及び作動プログラム、並びに医療支援システム
JP7151841B1 (ja) 2021-08-27 2022-10-12 コニカミノルタ株式会社 画像処理装置、放射線撮影システム、画像処理プログラム及び画像処理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009471A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 粒子線治療装置
JP6377102B2 (ja) * 2016-07-07 2018-08-22 キヤノン株式会社 放射線撮影システム、線量指標の管理方法及びプログラム
DE102018201247A1 (de) * 2018-01-26 2019-08-01 Carl Zeiss Industrielle Messtechnik Gmbh Objektdurchstrahlungsvorrichtung und Verfahren zum Ermitteln eines Zustandes einer Objektdurchstrahlungsvorrichtung
CN111603187B (zh) * 2019-02-25 2024-02-13 上海西门子医疗器械有限公司 自适应图像质量优化方法和装置、存储介质和医疗设备
WO2022032455A1 (en) * 2020-08-10 2022-02-17 Shanghai United Imaging Healthcare Co., Ltd. Imaging systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065815A (ja) * 2002-08-09 2004-03-04 Toshiba Medical System Co Ltd 放射線量推定装置および放射線診断装置
JP2005270286A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 放射線被曝量評価システム及びその評価方法
JP2005296277A (ja) * 2004-04-09 2005-10-27 Toshiba Corp X線診断装置及びその診断方法
JP2007097909A (ja) * 2005-10-05 2007-04-19 Bio Arts:Kk 放射線被曝線量管理システム及び記憶媒体
WO2008096813A1 (ja) * 2007-02-08 2008-08-14 Hitachi Medical Corporation X線ct装置
JP4387644B2 (ja) 2002-08-05 2009-12-16 キヤノン株式会社 被写体に照射されたx線の線量を求める方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1005565C2 (nl) * 1997-03-18 1998-09-24 Franciscus Pieter Bernoski Inrichting en werkwijze voor het meten van de positie van een met tenminste één bot in een lichaam verbonden implantaat.
DE10137245A1 (de) * 2001-07-30 2003-02-27 Siemens Ag Verfahren zum Ermitteln einer Röntgenstrahlendosis
CN1937960A (zh) * 2004-07-07 2007-03-28 株式会社东芝 X-射线检查方法及x-射线检查装置
RU2010130474A (ru) * 2007-12-21 2012-01-27 Конинклейке Филипс Электроникс, Н.В. (Nl) Синхронный интервенционный сканер

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387644B2 (ja) 2002-08-05 2009-12-16 キヤノン株式会社 被写体に照射されたx線の線量を求める方法及び装置
JP2004065815A (ja) * 2002-08-09 2004-03-04 Toshiba Medical System Co Ltd 放射線量推定装置および放射線診断装置
JP2005270286A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 放射線被曝量評価システム及びその評価方法
JP2005296277A (ja) * 2004-04-09 2005-10-27 Toshiba Corp X線診断装置及びその診断方法
JP2007097909A (ja) * 2005-10-05 2007-04-19 Bio Arts:Kk 放射線被曝線量管理システム及び記憶媒体
WO2008096813A1 (ja) * 2007-02-08 2008-08-14 Hitachi Medical Corporation X線ct装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716221A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147196A (ko) * 2015-06-12 2016-12-22 삼성전자주식회사 엑스선 장치 및 엑스선 촬영 방법
KR102487533B1 (ko) 2015-06-12 2023-01-13 삼성전자주식회사 엑스선 장치 및 엑스선 촬영 방법
WO2021033667A1 (ja) * 2019-08-19 2021-02-25 富士フイルム株式会社 医療支援装置、その作動方法及び作動プログラム、並びに医療支援システム
JP7151841B1 (ja) 2021-08-27 2022-10-12 コニカミノルタ株式会社 画像処理装置、放射線撮影システム、画像処理プログラム及び画像処理方法
JP2023032705A (ja) * 2021-08-27 2023-03-09 コニカミノルタ株式会社 画像処理装置、放射線撮影システム、画像処理プログラム及び画像処理方法

Also Published As

Publication number Publication date
EP2716221A1 (en) 2014-04-09
US20140086390A1 (en) 2014-03-27
JPWO2012164901A1 (ja) 2015-02-23
EP2716221A4 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2012164901A1 (ja) 放射線被曝量取得方法および装置並びに放射線画像撮影システム
JP4522044B2 (ja) 放射線撮影装置
US7177455B2 (en) Image pasting system using a digital detector
US9753158B2 (en) Radiographic imaging apparatus, radiographic imaging system, and radiographic imaging method
JP2004069441A (ja) 被曝面積線量計測方法及び装置、吸収面積線量計測方法及び装置、プログラム、記憶媒体、並びに放射線撮影装置
JP5816316B2 (ja) 放射線画像検出装置およびその作動方法、並びに放射線撮影装置
JP5602014B2 (ja) X線診断装置
JP5930480B2 (ja) 放射線被曝量取得装置および方法並びにプログラム
JP2010017376A (ja) 放射線画像撮影装置
JP2005312810A5 (ja)
WO2012164900A1 (ja) 放射線被曝量取得方法および装置並びに放射線画像撮影システム
EP1080690B1 (en) X-ray camera
JP2011212434A (ja) 放射線画像撮影方法および装置
Schaetzing Management of pediatric radiation dose using Agfa computed radiography
JP2011177424A (ja) シェーディング補正装置および方法並びにプログラム
JP2009142497A (ja) X線診断装置
JP2002034961A (ja) 放射線撮影装置及び放射線撮影方法
JP5743731B2 (ja) 放射線画像撮影装置および方法
JP2018141636A (ja) 線量評価装置、線量測定装置、照射時間評価装置、線量評価方法および線量評価プログラム
JP5755941B2 (ja) 放射線被曝量取得装置および作動方法並びにプログラム
JP5845000B2 (ja) 放射線画像撮影方法および装置
WO2017169312A1 (ja) 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム
JP5420360B2 (ja) 放射線撮影管理システム
JP2004337197A (ja) X線画像撮影装置
JP2011092555A (ja) 放射線画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012791986

Country of ref document: EP