WO2012164814A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2012164814A1
WO2012164814A1 PCT/JP2012/002683 JP2012002683W WO2012164814A1 WO 2012164814 A1 WO2012164814 A1 WO 2012164814A1 JP 2012002683 W JP2012002683 W JP 2012002683W WO 2012164814 A1 WO2012164814 A1 WO 2012164814A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
light
scatterer
photovoltaic device
Prior art date
Application number
PCT/JP2012/002683
Other languages
English (en)
French (fr)
Inventor
篠原 亘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012164814A1 publication Critical patent/WO2012164814A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell module described above does not have a solar cell layer disposed in the end region, sunlight incident on the end region does not contribute to power generation. Therefore, there is room for further improvement.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for increasing the contribution of light incident on the solar cell module to power generation.
  • a solar cell module includes a photovoltaic device and an optical path changing member that is provided in at least a part of the periphery of the photovoltaic device and changes an optical path of incident light. And an insulating translucent member disposed so as to cover the photovoltaic device and the optical path changing member.
  • the optical path changing member is provided at a position facing the end region of the translucent member, and is configured such that at least a part of the light incident on and transmitted through the end region is directed to the photovoltaic device.
  • the contribution of light incident on the solar cell module to power generation can be increased.
  • FIG. 2 is an AA cross-sectional view of the solar cell module shown in FIG. It is a schematic sectional drawing which shows an example of a photovoltaic device. It is an expanded sectional view of the outer edge part of the solar cell module shown in FIG. It is a figure which shows the microscope image of the surface of a scatterer of the side facing a translucent member. 6 is a graph showing the surface shape of the scatterer shown in FIG. It is an expanded sectional view of the outer edge part of the solar cell module which concerns on 2nd Embodiment. It is an expanded sectional view of the outer edge part of the solar cell module which concerns on 3rd Embodiment.
  • FIG. 1 is a top view when the solar cell module according to the present embodiment is viewed from the side opposite to the light receiving surface.
  • FIG. 2 is a cross-sectional view taken along the line AA of the solar cell module shown in FIG. In FIG. 1, the sealing material and the protective material are omitted.
  • the solar cell module 10 includes a photovoltaic device 12, a scatterer 14, a translucent member 16, an insulator 20, a current collector wiring (tab wiring) 22, a filler 24, and a protective material 26.
  • the photovoltaic device 12 is a rectangular flat plate or film unit, and a plurality of photovoltaic elements 28 are arranged in an aligned state. Each photovoltaic element 28 is appropriately connected to each other in series or in parallel.
  • the translucent member 16 is made of a material that transmits light, and a plurality of photovoltaic elements 28 are formed as the photovoltaic device 12 on the back surface 16b opposite to the light receiving surface 16a.
  • a scatterer 14 is provided so as to surround the photovoltaic device 12 at a position facing a non-power generation region (end region) around the region where the photovoltaic device 12 is formed.
  • the scatterer 14 does not need to be arrange
  • the scatterer 14 functions as an optical path changing member that changes the optical path of the incident light.
  • the optical path changing member any member that changes the optical path of incident light, such as a scatterer that scatters light, a reflector that reflects light, a refractor that refracts light, or a composite thereof, is used. obtain.
  • the translucent member 16 is disposed so as to cover the photovoltaic device 12 and the scatterer 14 when the light receiving surface 16a is viewed from the front.
  • the translucent member 16 insulating glass, plastic, or the like can be used, and in particular, a material having high transmittance with respect to light having a wavelength included in sunlight is preferable.
  • FIG. 3 is a schematic cross-sectional view showing an example of a photovoltaic element.
  • the photovoltaic element 28 includes a first electrode layer 30, a semiconductor layer 32, a transparent conductive film 34, and a second electrode layer 36.
  • the first electrode layer 30, the semiconductor layer 32, the transparent conductive film 34, and the second electrode layer 36 are sequentially stacked on the translucent member 16 while performing known laser patterning.
  • the first electrode layer 30 is formed on the surface of the translucent member 16 and has conductivity and translucency.
  • ZnO which has high light transmittance, low resistance, and low cost, is used.
  • the semiconductor layer 32 generates charges (electrons and holes) by incident light from the first electrode layer 30 side.
  • the semiconductor layer 32 for example, an amorphous silicon semiconductor layer having a pin junction or a pn junction as a basic structure, or a single layer or a stacked body of a microcrystalline silicon semiconductor layer can be used.
  • the semiconductor layer 32 according to the present embodiment is configured by laminating an amorphous silicon semiconductor and a microcrystalline silicon semiconductor from the first electrode layer 30 side. Note that in this specification, the term “microcrystal” means not only a complete crystal state but also a state partially including an amorphous state.
  • the transparent conductive film 34 is formed on the semiconductor layer 32.
  • the transparent conductive film 34 prevents the semiconductor layer 32 and the second electrode layer 36 from being alloyed, and the connection resistance between the semiconductor layer 32 and the second electrode layer 36 can be reduced.
  • the second electrode layer 36 is formed on the transparent conductive film 34.
  • the transparent conductive film 34 and the second electrode layer 36 of one photovoltaic element 28 are in contact with the first electrode layer 30 of another adjacent photovoltaic element 28. Thereby, one photovoltaic element 28 and the other photovoltaic element 28 are electrically connected in series.
  • the current collection wiring 22 guides the electric charge generated by the plurality of photovoltaic elements 28 connected in series in this way to the outside of the solar cell module 10.
  • the current collector wiring 22 has a conducting portion 22a that is electrically connected to the photovoltaic elements 28 at both ends among the plurality of photovoltaic elements 28 connected in series.
  • the current collector wiring 22 is preferably made of a low resistivity material such as copper.
  • An insulator 20 is disposed in a predetermined region between the current collecting wiring 22 and the plurality of photovoltaic elements 28, and the lead-out wiring 22b of the current collecting wiring 22 and the plurality of photovoltaic elements 28 are partially provided. Insulated.
  • the filler 24 seals the photovoltaic device 12, the scatterer 14, and the current collector wiring 22 between the translucent member 16 and the protective material 26, and cushions the impact applied to the photovoltaic element 28.
  • EVA is used as the filler 24.
  • the protective material 26 is disposed on the filler 24.
  • glass is used as the protective material 26.
  • a through hole 38 is provided in the filler 24 and the protective material 26.
  • One end of the lead-out wiring 22 b of the current collection wiring 22 is drawn out from the through hole 38 and connected to the terminal box 40.
  • FIG. 4 is an enlarged cross-sectional view of the outer edge portion of the solar cell module shown in FIG.
  • the scatterer 14 is such that at least a part of the light incident on the end region R of the light receiving surface 16 a and transmitted through the translucent member 16 is scattered toward the photovoltaic device 12. It is configured. Thereby, among the light incident on the translucent member 16 from the light receiving surface 16a, the light L that is not directly incident on the photovoltaic device 12 because it is incident on the end region existing in the outer peripheral portion of the solar cell module is Scattered by the scatterer 14. Then, at least a part of the scattered light is incident on the photovoltaic device 12 which is a power generation region by internal reflection in the translucent member 16. As a result, the contribution of light incident on the solar cell module 10 to power generation can be increased.
  • the solar cell module 10 may be provided with a reflector 42 on the outer peripheral wall thereof. As a result, among the light scattered by the scatterer 14, even the light L ′ that is scattered toward the outside without being scattered toward the photovoltaic device 12 is directed toward the photovoltaic device 12 by the reflector 42. It can be reflected again. As a result, the contribution of light incident on the solar cell module 10 to power generation can be further increased.
  • the reflector 42 is made of a material having a higher reflectance than the translucent member 16.
  • the solar cell module 10 according to the present embodiment is not provided with a frame that enhances impact resistance and strength by covering a part or side of the light receiving surface of the translucent member 16. Therefore, in translucent member 16 according to the present embodiment, incident portion 16a1 through which light enters from the outside can be provided in outer edge region R1 of light receiving surface 16a. By omitting the frame in this manner, the solar cell module can be reduced in weight and simplified, and light blocked by the frame can be taken into the solar cell module.
  • FIG. 5 is a view showing a microscopic image of the surface of the scatterer 14 on the side facing the translucent member 16.
  • FIG. 6 is a graph showing the surface shape of the scatterer shown in FIG.
  • the scatterer 14 has an uneven surface on the side facing the translucent member 16.
  • the scatterer 14 is preferably made of a transparent material such as an acrylic resin (having a refractive index of about 1.3 to 1.5), for example, and is formed by a mold. Thereby, the scatterer which has the predetermined uneven
  • the scatterer may be made of metal or glass.
  • the scatterer may be a composite of resin, metal, glass, or the like. Further, a reflective film may be provided on the uneven surface of the scatterer.
  • the scatterer 14 is preferably made of a material that is less permeable to moisture and gas than the filler 24 so that moisture and external gas do not reach the photovoltaic device 12. Thereby, the environmental resistance performance of a solar cell module can be improved compared with the case where there is no scatterer.
  • the uneven shape of the scatterer 14 is preferably such that a concave surface and a convex surface are periodically formed in a direction X from the outer edge (four sides) 12a of the photovoltaic device 12 toward the outer edge (four sides) 10a of the solar cell module 10. This facilitates the control of scattering.
  • the uneven shape described above has a plurality of lines extending substantially in parallel along the outer edge 12 a of the photovoltaic device 12. It has the strip convex part 14a. It is preferable that at least a part of the linear protrusion 14a is a curved surface. In the present embodiment, the linear protrusion 14a has an arch shape.
  • the distance between the line protrusions 14a and the adjacent line protrusions 14a is 1 to 10 ⁇ m.
  • the cross-sectional shape of the scatterer 14 may be an inverted arch shape, a triangular shape, a rectangular shape, or the like other than the arch shape obtained by cutting a part of a circle.
  • the light reaching the scatterer 14 scatters in the direction intersecting the outer edge 12a of the photovoltaic device 12 on the uneven surface, but is less likely to scatter in a direction parallel to the outer edge 12a. . That is, light that has reached the scatterer 14 without directly entering the photovoltaic device 12 is prevented from leaking out of the solar cell module 10 without being scattered toward the photovoltaic device 12.
  • a solar cell module according to an example is manufactured based on the above embodiment, and the open circuit voltage Voc, the short circuit current Isc, the fill factor F.V. F. , Maximum output Pmax, and module conversion efficiency ⁇ _module were obtained.
  • the solar cell module according to the example uses a large glass substrate (1100 mm ⁇ 1300 mm) having a size called the fifth generation.
  • the scatterer 14 is sandwiched between bonding surfaces corresponding to the outer peripheral portions (non-power generation regions) of the two glass substrates.
  • the scatterer 14 is provided over a width of 10 mm along two short sides (sides of 1100 mm in length) of the glass substrate.
  • the scatterer 14 is not provided along the two long sides (sides having a length of 1300 mm) of the glass substrate. As shown in FIG. 6, the line protrusions 14 a in the scatterer 14 according to the embodiment have an interval between adjacent line protrusions of about 10 ⁇ m and a height difference of about 2 ⁇ m.
  • the average value of the short circuit current Isc of the solar cell module according to the example is 1.447 [A]
  • the short circuit current Isc of the solar cell module according to the comparative example has an average value of 1. 433 [A]. Therefore, in the solar cell module according to the example, the short-circuit current Isc is improved by about 1% by the action of the scatterer.
  • FIG. 7 is an enlarged cross-sectional view of the outer edge portion of the solar cell module according to the second embodiment.
  • the solar cell module 50 according to the second embodiment is characterized in that the reflector 52 is provided on the back surface side of the scatterer 14 (on the side opposite to the surface on which the linear protrusions 14a are provided). is there.
  • the reflector 52 is provided on the side opposite to the side facing the translucent member 16 of the scatterer 14, and reflects the light transmitted through the scatterer 14 without being scattered on the surface of the scatterer 14. The reflected light is incident on the translucent member 16 again, so that at least a part thereof is directed to the photovoltaic device 12.
  • the reflector 52 can further increase the contribution of light incident on the solar cell module 50 to power generation.
  • the reflector 52 is made of a material having a higher reflectance than the material of the scatterer 14.
  • FIG. 8 is an enlarged cross-sectional view of the outer edge portion of the solar cell module according to the third embodiment.
  • the solar cell module 60 according to the third embodiment is characterized in that a reflector 62 is provided on the back surface side of the protective material 26 (on the side opposite to the surface covered with the filler 24).
  • the reflector 62 is provided on the opposite side of the scatterer 14 to the side facing the translucent member 16, with the protective material 26 being sandwiched between them.
  • the light that has passed through is reflected.
  • the reflected light is incident on the translucent member 16 again, so that at least a part thereof is directed to the photovoltaic device 12.
  • the reflector 62 can further increase the contribution of light incident on the solar cell module 50 to power generation.
  • FIG. 9 is an enlarged cross-sectional view of the outer edge portion of the solar cell module according to the fourth embodiment.
  • the solar cell module 70 according to the fourth embodiment is significant in that a scatterer 72 and a reflector 74 are provided on the back surface side of the protective material 26 (on the side opposite to the surface covered with the filler 24). It is a feature.
  • the scatterer 72 has the same shape as the scatterer 14 according to the first embodiment.
  • the scatterer 72 scatters at least part of the light incident from the light receiving surface 16 a and transmitted through the translucent member 16, the filler 24, and the protective material 26 toward the translucent member 16. It is configured to let you. Thereby, the light L that is not directly incident on the photovoltaic device 12 out of the light incident on the translucent member 16 from the light receiving surface 16a is scattered by the scatterer 72, and at least a part of the scattered light is The light is incident on the photovoltaic device 12 which is a power generation region due to internal reflection or total reflection in the translucent member 16. As a result, the contribution of light incident on the solar cell module 70 to power generation can be increased.
  • the reflector 74 is provided on the opposite side of the scatterer 14 from the side facing the protective material 26, and reflects the light transmitted through the scatterer 72 without being scattered on the surface of the scatterer 72. The reflected light is incident on the translucent member 16 again, so that at least a part thereof is directed to the photovoltaic device 12. As a result, the reflector 74 can further increase the contribution of light incident on the solar cell module 70 to power generation.
  • FIG. 10 is an enlarged cross-sectional view of the outer edge portion of the solar cell module according to the fifth embodiment.
  • the solar cell module 80 according to the fifth embodiment is characterized in that a sealing body 82 is provided around the outer edge portions of the scatterer 14 and the filler 24.
  • the sealing body 82 is preferably a resin having insulation and weather resistance made of butyl rubber or the like.
  • the sealing body 82 preferably has a high barrier performance against moisture and other gases. Thereby, the aged deterioration of the photovoltaic apparatus 12 and the filler 24 can be suppressed more.
  • FIG. 11 is an enlarged cross-sectional view of the outer edge portion of the solar cell module according to the sixth embodiment.
  • the photovoltaic device 12 is sandwiched between the translucent member 16 and the translucent member 92.
  • translucent member 92 is glass.
  • a wedge-shaped reflector 94 is provided on the back surface 92 a side of the translucent member 92 opposite to the surface in contact with the translucent member 16.
  • the wedge-shaped reflector 94 is configured such that its thickness increases from the outer edge of the solar cell module 90 toward the outer edge 12a of the photovoltaic device 12, and is inclined with respect to the back surface 92a of the translucent member 92. Thus, a reflective surface 94a is formed. Therefore, the light incident from the light receiving surface 16a and transmitted through the translucent member 16 and the translucent member 92 is reflected by the reflecting surface 94a, so that the photovoltaic device 12 in the central portion of the solar cell module 90 is reflected. It becomes easier to face.
  • a plurality of reflectors 96 are provided on the light receiving surface 16 a of the translucent member 16.
  • the reflector 96 can increase the light incident on the photovoltaic device 12 by reflecting the light reflected by the reflecting surface 94a of the wedge-shaped reflector 94 again.
  • the plurality of reflectors 96 are arranged in the form of dots or stripes on the light receiving surface 16a.
  • the size and arrangement of the reflector 96 may be set so that as much light L that is not directly incident on the photovoltaic device 12 is converted into electricity by the photovoltaic device 12 as much as possible.
  • region 94b between the reflective surface 94a of the wedge-shaped reflector 94 and the back surface 92a of the translucent member 92 is comprised with the transparent material, this area
  • the scatterer in each of the embodiments described above achieves light scattering by devising the surface shape of the scatterer.
  • light scattering is realized by partially changing the refractive index of the scatterer.
  • FIG. 12 is a schematic diagram showing a cross section of the scatterer according to the seventh embodiment.
  • the scatterer 100 according to the present embodiment is configured such that the refractive index is periodically different in the direction X from the outer edge side of the photovoltaic device toward the outer edge side of the solar cell module.
  • the scatterer 100 is configured such that regions 100a having a relatively high refractive index and regions 100b having a relatively low refractive index are alternately arranged.
  • the scatterer 100 which concerns on this Embodiment is used instead of the scatterer 14 shown, for example in FIG.
  • the solar cell module provided with the scatterer 100 can exhibit the function similar to the solar cell module which concerns on each above-mentioned embodiment.
  • the present invention has been described with reference to each of the above-described embodiments, but the present invention is not limited to the above-described embodiments, and those in which the configurations of the embodiments are appropriately combined or replaced. Are also included in the present invention.
  • the described embodiments can also be included in the scope of the present invention.
  • the first electrode layer 30 As the first electrode layer 30 according to each of the above-described embodiments, one type or a plurality of types selected from metal oxides such as SnO 2 , In 2 O 3 , TiO 2 , Zn 2 SnO 4 in addition to ZnO. You may be comprised by the laminated body of. Note that these metal oxides may be doped with F, Sn, Al, Ga, Nb, or the like.
  • ethylene resin such as EEA, PVB, silicone, urethane, acrylic, epoxy resin, and the like may be used.
  • EFE fluorine resin
  • PVDF polyvinyl fluoride
  • PCTFE polyvinyl fluoride
  • PCTFE polyvinyl fluoride
  • acrylic acrylonitrile-semiconductor
  • the scatterer 14 sandwiched between the translucent member 16 and the protective material 26 may be made of a highly rigid material in order to increase the strength of the entire solar cell module. Moreover, in order to improve the impact resistance of the whole solar cell module, you may comprise with a material with high impact absorption.
  • the present invention can be used for solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール10、光起電力装置12と、光起電力装置12の周囲の少なくとも一部に設けられ、入射した光の光路を変化させる光路変化部材と、光起電力装置12および光路変化部材を覆うように配設されている絶縁性の透光性部材16と、を備える。光路変化部材は、透光性部材16の端部領域と対向する位置に設けられ、端部領域に入射し透過した光の少なくとも一部が光起電力装置12に向かうように構成されている。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池は、クリーンで無尽蔵なエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。例えば、非晶質シリコン太陽電池層を2枚のガラスで挟み込んだ太陽電池モジュールが考案されている(特許文献1参照)。
特開2001-326372号公報
 しかしながら、前述の太陽電池モジュールは、端部領域に太陽電池層が配置されていないため、端部領域に入射した太陽光は発電に寄与しない。そのため、更なる改善の余地がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、太陽電池モジュールに入射した光の発電への寄与を高める技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、光起電力装置と、光起電力装置の周囲の少なくとも一部に設けられ、入射した光の光路を変化させる光路変化部材と、光起電力装置および光路変化部材を覆うように配設されている絶縁性の透光性部材と、を備える。光路変化部材は、透光性部材の端部領域と対向する位置に設けられ、端部領域に入射し透過した光の少なくとも一部が光起電力装置に向かうように構成されている。
 本発明によれば、太陽電池モジュールに入射した光の発電への寄与を高めることができる。
本実施の形態に係る太陽電池モジュールを受光面と反対側から見た場合の上面図である。 図1に示す太陽電池モジュールのA-A断面図である。 光起電力素子の一例を示す概略断面図である。 図2に示す太陽電池モジュールの外縁部の拡大断面図である。 透光性部材と対向する側の、散乱体の表面の顕微鏡像を示す図である。 図5に示す散乱体のB-B断面における表面形状を示すグラフである。 第2の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。 第3の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。 第4の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。 第5の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。 第6の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。 第7の実施の形態に係る散乱体の断面を示す模式図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 以下の各図に示す各層、各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。
 (第1の実施の形態)
 図1は、本実施の形態に係る太陽電池モジュールを受光面と反対側から見た場合の上面図である。図2は、図1に示す太陽電池モジュールのA-A断面図である。なお、図1では、封止材および保護材は省略してある。
 太陽電池モジュール10は、光起電力装置12、散乱体14、透光性部材16、絶縁体20、集電配線(タブ配線)22、充填剤24および保護材26を備える。
 光起電力装置12は、長方形の平板またはフィルム状のユニットであり、複数の光起電力素子28が整列した状態で配置されている。それぞれの光起電力素子28は、互いに直列または並列に適宜接続されている。
 透光性部材16は、光を透過させる材料で構成されており、受光面16aと反対側の裏面16b上に、光起電力装置12として複数の光起電力素子28が形成されている。また、光起電力装置12が形成されている領域の周囲の非発電領域(端部領域)と対向する位置には、散乱体14が光起電力装置12を取り囲むように設けられている。なお、散乱体14は、光起電力装置12の周囲の全てに配置されている必要はなく、光起電力装置12の周囲の少なくとも一部に設けられていてもよい。
 また、散乱体14は、入射した光の光路を変化させる光路変化部材として機能する。なお、光路変化部材としては、光を散乱する散乱体、光を反射する反射体、光を屈折する屈折体、およびそれらの複合体など、入射した光の光路を変化させるものであれば採用し得る。
 このように、透光性部材16は、受光面16aを真正面から見た場合、光起電力装置12および散乱体14を覆うように配設されている。なお、透光性部材16としては、絶縁性を有するガラス、プラスチックなどを用いることができ、特に太陽光に含まれる波長の光に対する透過率が高い材料が好適である。
 次に、光起電力素子28について説明する。図3は、光起電力素子の一例を示す概略断面図である。光起電力素子28は、第1電極層30、半導体層32、透明導電膜34および第2電極層36を有する。第1電極層30、半導体層32、透明導電膜34および第2電極層36は、周知のレーザパターニングを施されながら透光性部材16上に順次積層される。
 第1電極層30は、透光性部材16の面上に形成されており、導電性および透光性を有する。本実施の形態に係る第1電極層30としては、高い光透過性、低抵抗性を有し、低価格であるZnOが用いられる。
 半導体層32は、第1電極層30側からの入射光により電荷(電子および正孔)を生成する。半導体層32としては、例えば、pin接合またはpn接合を基本構造として有するアモルファスシリコン半導体層や微結晶シリコン半導体層の単層体あるいは積層体を用いることができる。本実施の形態に係る半導体層32は、第1電極層30側からそれぞれ非晶質シリコン半導体、微結晶シリコン半導体が積層されたものとして構成されている。なお、本明細書において、「微結晶」の用語は、完全な結晶状態のみならず、部分的に非結晶状態を含む状態をも意味するものとする。
 透明導電膜34は、半導体層32上に形成されている。透明導電膜34により、半導体層32と第2電極層36が合金化することが防止され、半導体層32と第2電極層36との接続抵抗を減少させることができる。
 第2電極層36は、透明導電膜34上に形成される。一の光起電力素子28の透明導電膜34と第2電極層36は、隣接する他の光起電力素子28の第1電極層30に接触する。これにより、一の光起電力素子28と他の光起電力素子28とが電気的に直列に接続される。
 集電配線22は、このように直列に接続された複数の光起電力素子28によって生成される電荷を、太陽電池モジュール10の外部に導く。集電配線22は、直列に接続された複数の光起電力素子28のうち両端にある光起電力素子28と導通する導通部22aを有する。集電配線22としては、銅などの低抵抗率の材料が好ましい。なお、集電配線22と複数の光起電力素子28との間の所定の領域には絶縁体20が配置され、集電配線22の引き出し配線22bと複数の光起電力素子28とが部分的に絶縁される。
 充填剤24は、光起電力装置12、散乱体14および集電配線22を、透光性部材16と保護材26との間に封止し、光起電力素子28に加えられる衝撃を緩衝するように配置される。本実施の形態では、充填剤24としてEVAを用いる。保護材26は、充填剤24上に配置される。本実施形態では、保護材26としてガラスを用いる。
 充填剤24および保護材26には貫通孔38が設けられている。集電配線22の引き出し配線22bの一方の端部は、貫通孔38から外部に引き出され、端子ボックス40に接続されている。
 次に、本実施の形態に係る散乱体について図4を参照して更に詳述する。図4は、図2に示す太陽電池モジュールの外縁部の拡大断面図である。
 図4に示すように、散乱体14は、受光面16aの端部領域Rに入射し透光性部材16を透過した光の少なくとも一部が光起電力装置12に向けて散乱されるように構成されている。これにより、受光面16aから透光性部材16に入射した光のうち、太陽電池モジュールの外周部に存在する端部領域に入射したために光起電力装置12に直接入射しなかった光Lは、散乱体14により散乱される。そして、散乱された光の少なくとも一部は、透光性部材16における内面反射により、発電領域である光起電力装置12に入射することとなる。その結果、太陽電池モジュール10に入射した光の発電への寄与を高めることができる。
 なお、太陽電池モジュール10は、その外周壁に反射体42を設けてもよい。これにより、散乱体14において散乱した光のうち、光起電力装置12に向かって散乱せず外側へ向かって散乱した光L’であっても、反射体42により光起電力装置12に向かって再度反射させることができる。その結果、太陽電池モジュール10に入射した光の発電への寄与を更に高めることができる。なお、反射体42は、透光性部材16よりも反射率の高い材料で構成されている。
 また、本実施の形態に係る太陽電池モジュール10は、透光性部材16の受光面の一部や側面を覆うことで耐衝撃性や強度を高めるフレームを設けていない。そのため、本実施の形態に係る透光性部材16においては、受光面16aの外縁領域R1に、外部から光が入射する入射部16a1を設けることができる。このようにフレームを省略することで、太陽電池モジュールの軽量化、簡素化が図られるだけでなく、フレームによって遮られていた光を太陽電池モジュール内に取り込むことができる。
 図5は、透光性部材16と対向する側の、散乱体14の表面の顕微鏡像を示す図である。図6は、図5に示す散乱体のB-B断面における表面形状を示すグラフである。
 図5、図6に示すように、散乱体14は、透光性部材16と対向する側に凹凸形状の表面を有する。散乱体14は、例えば、アクリル樹脂(屈折率1.3~1.5程度)などの透明な材料が好ましく、型などにより成型されたものが用いられる。これにより、散乱を生ずる所定の凹凸形状を有する散乱体を容易に量産することができる。なお、散乱体は、金属やガラスなどで構成してもよい。また、散乱体は、樹脂、金属、ガラスなどの複合体であってもよい。また、散乱体の凹凸表面に反射膜を設けてもよい。
 また、散乱体14は、水分や外部のガスが光起電力装置12に到達しないように、少なくとも充填剤24よりも水分やガスが透過しにくい材料で構成するとよい。これにより、散乱体がない場合と比較して、太陽電池モジュールの耐環境性能を高めることができる。
 散乱体14の凹凸形状は、光起電力装置12の外縁(四辺)12aから太陽電池モジュール10の外縁(四辺)10aに向かう方向Xへ凹面と凸面とが周期的に形成されているとよい。これにより、散乱の制御が容易となる。本実施の形態に係る散乱体14においては、図4乃至図6に示すように、前述の凹凸形状は、光起電力装置12の外縁12aに沿って略平行に延在している複数の線条凸部14aを有する。線条凸部14aは、少なくとも一部が曲面で構成されているとよい。本実施の形態では、線条凸部14aはアーチ形状を有している。また、線条凸部14aは、隣接する線条凸部14aとの間隔が1~10μmが好ましい。なお、散乱体14の断面形状は、前述のように、円の一部を切り取ったアーチ形状以外にも、逆アーチ形状、三角形状、矩形状等であってもよい。
 これにより、散乱体14に到達した光は、凹凸形状の表面において、光起電力装置12の外縁12aと交差する方向への散乱は生じつつ、外縁12aと平行な方向への散乱が生じにくくなる。つまり、光起電力装置12に直接入射せずに散乱体14に到達した光が、光起電力装置12に向かって散乱せずに太陽電池モジュール10の外部へ漏れ出ることが抑制される。
 (実施例)
 以上の実施の形態に基づいて実施例に係る太陽電池モジュールを作製し、開放電圧Voc、短絡電流Isc、曲線因子F.F.、最大出力Pmax、モジュール変換効率η_module、をそれぞれ求めた。実施例に係る太陽電池モジュールは、第5世代といわれるサイズの大型のガラス基板(1100mm×1300mm)を用いている。散乱体14は、2枚のガラス基板の外周部(非発電領域)に相当する貼合面において挟まれている。散乱体14は、ガラス基板の2つの短辺(長さ1100mmの辺)に沿って幅10mmに渡って設けられている。なお、散乱体14は、ガラス基板の2つの長辺(長さ1300mmの辺)に沿っては設けられていない。実施例に係る散乱体14における線条凸部14aは、図6に示すように、隣接する線条凸部との間隔が約10μm、高低差が約2μmである。
 (比較例)
 実施例に係る太陽電池モジュールと同様にして比較例に係る太陽電池モジュールを作製した。ただし、散乱体は設けなかった。
 実施例については同じサンプルを3つ、比較例については同じサンプルを4つ作製し、それぞれについてモジュールの特性を測定した。その測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例に係る太陽電池モジュールの短絡電流Iscは、平均値が1.447[A]であり、比較例に係る太陽電池モジュールの短絡電流Iscは、平均値が1.433[A]であった。したがって、実施例に係る太陽電池モジュールは、散乱体の働きにより短絡電流Iscが約1%向上した。
 (第2の実施の形態)
 以下では、主として第1の実施の形態に係る太陽電池モジュール10と異なる構成について説明し、重複する構成については説明を適宜省略する。図7は、第2の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。
 第2の実施の形態に係る太陽電池モジュール50は、散乱体14の裏面側(線条凸部14aが設けられている面と反対側)に反射体52が設けられている点が大きな特徴である。反射体52は、散乱体14の透光性部材16と対向する側と反対側に設けられており、散乱体14の表面で散乱せずに散乱体14を透過した光を反射する。反射された光は、再度透光性部材16に入射することで、少なくともその一部は光起電力装置12に向かうことになる。その結果、反射体52は、太陽電池モジュール50に入射した光の発電への寄与を更に高めることができる。なお、反射体52は、散乱体14の材料よりも反射率の高い材料で構成されている。
 (第3の実施の形態)
 図8は、第3の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。第3の実施の形態に係る太陽電池モジュール60は、保護材26の裏面側(充填剤24で覆われている面と反対側)に反射体62が設けられている点が大きな特徴である。反射体62は、散乱体14の透光性部材16と対向する側と反対側に保護材26を挟んで設けられており、散乱体14の表面で散乱せずに散乱体14および保護材26を透過した光を反射する。反射された光は、再度透光性部材16に入射することで、少なくともその一部は光起電力装置12に向かうことになる。その結果、反射体62は、太陽電池モジュール50に入射した光の発電への寄与を更に高めることができる。
 (第4の実施の形態)
 図9は、第4の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。第4の実施の形態に係る太陽電池モジュール70は、保護材26の裏面側(充填剤24で覆われている面と反対側)に散乱体72および反射体74が設けられている点が大きな特徴である。なお、散乱体72は、第1の実施の形態に係る散乱体14と形状は同じである。
 図9に示すように、散乱体72は、受光面16aから入射し、透光性部材16、充填剤24および保護材26を透過した光の少なくとも一部を透光性部材16に向けて散乱させるように構成されている。これにより、受光面16aから透光性部材16に入射した光のうち、光起電力装置12に直接入射しなかった光Lは、散乱体72により散乱され、散乱された光の少なくとも一部は、透光性部材16における内面反射や全反射などにより、発電領域である光起電力装置12に入射することとなる。その結果、太陽電池モジュール70に入射した光の発電への寄与を高めることができる。
 反射体74は、散乱体14の保護材26と対向する側と反対側に設けられており、散乱体72の表面で散乱せずに散乱体72を透過した光を反射する。反射された光は、再度透光性部材16に入射することで、少なくともその一部は光起電力装置12に向かうことになる。その結果、反射体74は、太陽電池モジュール70に入射した光の発電への寄与を更に高めることができる。
 (第5の実施の形態)
 図10は、第5の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。第5の実施の形態に係る太陽電池モジュール80は、散乱体14および充填剤24の外縁部の周囲に封止体82が設けられている点が大きな特徴である。封止体82は、ブチルゴム等からなる絶縁性と耐候性を有する樹脂が好適である。特に、封止体82は、水分やその他のガスに対するバリア性能が高いものがよい。これにより、光起電力装置12や充填剤24の経年劣化をより抑制できる。
 (第6の実施の形態)
 図11は、第6の実施の形態に係る太陽電池モジュールの外縁部の拡大断面図である。第6の実施の形態に係る太陽電池モジュール90は、透光性部材16および透光性部材92により光起電力装置12を挟み込んでいる。本実施の形態では、透光性部材92はガラスである。透光性部材92の、透光性部材16と接する面の反対側の裏面92a側には、楔状反射体94が設けられている。
 楔状反射体94は、その厚みが、太陽電池モジュール90の外縁から光起電力装置12の外縁12aに向かって厚くなるよう構成されており、透光性部材92の裏面92aに対して斜めになるように反射面94aが形成されている。したがって、受光面16aから入射し透光性部材16および透光性部材92を透過した光は、反射面94aによって反射されることで、太陽電池モジュール90の中央部にある光起電力装置12に向かいやすくなる。
 また、透光性部材16の受光面16aには、複数の反射体96が設けられている。反射体96は、楔状反射体94の反射面94aにより反射された光を再度反射することで、光起電力装置12に入射する光を増大させることができる。複数の反射体96は、受光面16a上にドット状またはストライプ状に配置されている。
 受光面16a上で反射体96が占める割合が増えると、透光性部材16に入射する光が減少してしまう一方、反射体96が占める割合が減ると、楔状反射体94で反射した光を再度反射する光の量が減少してしまう。この点を考慮して、光起電力装置12に直接入射しなかった光Lが少しでも多く光起電力装置12で電気に変換されるように、反射体96の大きさや配置を設定するとよい。なお、楔状反射体94の反射面94aと透光性部材92の裏面92aとの間の領域94bは、透明な材料で構成されているが、この領域94bが中空であってもよい。
 (第7の実施の形態)
 上述の各実施の形態における散乱体は、光の散乱を散乱体の表面形状の工夫によって達成している。本実施の形態では、散乱体の屈折率を部分的に変化させることで光の散乱を実現している。
 図12は、第7の実施の形態に係る散乱体の断面を示す模式図である。本実施の形態に係る散乱体100は、光起電力装置の外縁側から太陽電池モジュールの外縁側に向かう方向Xへ周期的に屈折率が異なるように構成されている。具体的には、散乱体100は、相対的に屈折率の高い領域100aと相対的に屈折率の低い領域100bとが交互に並んでいるように構成されている。
 なお、本実施の形態に係る散乱体100は、例えば、図4などに示す散乱体14の代わりとして用いられる。これにより、散乱体100を備えた太陽電池モジュールは、上述の各実施の形態に係る太陽電池モジュールと同様の機能を発揮できる。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上述の各実施の形態に係る第1電極層30としては、ZnOの他、SnO、In、TiO、ZnSnOなどのの金属酸化物より選択された一種類あるいは複数種類の積層体により構成されていてもよい。なお、これらの金属酸化物には、F、Sn、Al、Ga、Nbなどがドープされていてもよい。
 また、上述の充填剤24としては、EVAの他、EEA等のエチレン系樹脂、PVB、シリコーン、ウレタン、アクリル、エポキシ樹脂などを用いてもよい。
 また、上述の保護材26としては、ガラスの他、PET/Al箔/PETからなる積層体、フッ素系樹脂(ETFE、PVDF、PCTFE等)、PC、PET、PEN、PVF、アクリル等の樹脂の単層体や金属箔を挟んだ構造、およびSUSやガルバリウム等の鋼板を用いてもよい。
 また、透光性部材16と保護材26との間に挟まれている散乱体14は、太陽電池モジュール全体の強度を高めるために、剛性の高い材料で構成してもよい。また、太陽電池モジュール全体の耐衝撃性を高めるために、衝撃吸収性の高い材料で構成してもよい。
 10 太陽電池モジュール、 12 光起電力装置、 12a 外縁、 14 散乱体、 14a 線条凸部、 16 透光性部材、 16a 受光面、 16b 裏面、 20 絶縁体、 22 集電配線、 24 充填剤、 26 保護材、 28 光起電力素子、 38 貫通孔、 40 端子ボックス、 42 反射体。
 本発明は、太陽電池に利用できる。

Claims (6)

  1.  光起電力装置と、
     前記光起電力装置の周囲の少なくとも一部に設けられ、入射した光の光路を変化させる光路変化部材と、
     前記光起電力装置および前記光路変化部材を覆うように配設されている絶縁性の透光性部材と、を備え、
     前記光路変化部材は、前記透光性部材の端部領域と対向する位置に設けられ、前記端部領域に入射し透過した光の少なくとも一部が前記光起電力装置に向かうように構成されていることを特徴とする太陽電池モジュール。
  2.  前記光路変化部材は、前記透光性部材と対向する側に凹凸形状の表面を有することを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記凹凸形状は、光起電力装置の外縁から太陽電池モジュールの外縁に向かう方向へ凹面と凸面とが周期的に形成されている形状を含むことを特徴とする請求項2に記載の太陽電池モジュール。
  4.  前記凹凸形状は、前記光起電力装置の外縁に沿って延在している複数の線条凸部を有し、
     前記線条凸部は、少なくとも一部が曲面で構成されていることを特徴とする請求項2または3に記載の太陽電池モジュール。
  5.  前記光路変化部材の前記透光性部材と対向する側と反対側に、前記光路変化部材を透過した光を反射する反射体を備えたことを特徴とする請求項1乃至4のいずれか1項に記載の太陽電池モジュール。
  6.  前記透光性部材は、受光面の外縁に、外部から光が入射する入射部を有することを特徴とする請求項1乃至5のいずれか1項に記載の太陽電池モジュール。
PCT/JP2012/002683 2011-05-27 2012-04-18 太陽電池モジュール WO2012164814A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119118 2011-05-27
JP2011119118A JP2014157846A (ja) 2011-05-27 2011-05-27 太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2012164814A1 true WO2012164814A1 (ja) 2012-12-06

Family

ID=47258692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002683 WO2012164814A1 (ja) 2011-05-27 2012-04-18 太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP2014157846A (ja)
WO (1) WO2012164814A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114286A1 (de) * 2013-01-28 2014-07-31 Curto, Vincenzo Gabriele Reflexionsflächeneinrichtung für photovoltaikanlagen
FR3038141A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique double arriere
FR3038139A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique et multirefringence variable arriere total
FR3038137A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique et multirefringence variable arriere locale
FR3038136A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable arriere locale
FR3038138A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable arriere totale
FR3038142A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique simple arriere
FR3038135A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable a texturation locale
FR3038140A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique triple
FR3042334A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif photonique encapsule d'augmentation de rendement photovoltaique
FR3042349A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a simple filtration plasmonique face arriere et double filtration plasmonique face avant
FR3042333A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a double filtration plasmonique face arriere et simple filtration plasmonique face avant
FR3042347A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a filtration plasmonique
FR3042348A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a filtration plasmonique dedouble

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582999A (zh) * 2022-02-25 2022-06-03 晶澳(扬州)新能源有限公司 太阳能电池组件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718458U (ja) * 1993-09-09 1995-03-31 三洋電機株式会社 太陽電池モジュ−ル
JP2002513210A (ja) * 1998-04-24 2002-05-08 エイエスイー・アメリカス・インコーポレーテッド 太陽電池間に反射体を有する太陽電池モジュール
WO2010038482A1 (ja) * 2008-10-03 2010-04-08 凸版印刷株式会社 太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718458U (ja) * 1993-09-09 1995-03-31 三洋電機株式会社 太陽電池モジュ−ル
JP2002513210A (ja) * 1998-04-24 2002-05-08 エイエスイー・アメリカス・インコーポレーテッド 太陽電池間に反射体を有する太陽電池モジュール
WO2010038482A1 (ja) * 2008-10-03 2010-04-08 凸版印刷株式会社 太陽電池モジュール

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114286A1 (de) * 2013-01-28 2014-07-31 Curto, Vincenzo Gabriele Reflexionsflächeneinrichtung für photovoltaikanlagen
FR3038141A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique double arriere
FR3038139A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique et multirefringence variable arriere total
FR3038137A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique et multirefringence variable arriere locale
FR3038136A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable arriere locale
FR3038138A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable arriere totale
FR3038142A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique simple arriere
FR3038135A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique frontale et multirefringence variable a texturation locale
FR3038140A1 (fr) * 2015-06-24 2016-12-30 Lionel Girardie Dispositif optique photovoltaique a filtration plasmonique triple
FR3042334A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif photonique encapsule d'augmentation de rendement photovoltaique
FR3042349A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a simple filtration plasmonique face arriere et double filtration plasmonique face avant
FR3042333A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a double filtration plasmonique face arriere et simple filtration plasmonique face avant
FR3042347A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a filtration plasmonique
FR3042348A1 (fr) * 2015-10-08 2017-04-14 Athelios Dispositif optique photovoltaique a filtration plasmonique dedouble

Also Published As

Publication number Publication date
JP2014157846A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2012164814A1 (ja) 太陽電池モジュール
JP5842170B2 (ja) 太陽電池モジュール
KR100990114B1 (ko) 인터커넥터를 구비한 태양 전지 모듈 및 이의 제조 방법
KR101890324B1 (ko) 태양 전지 모듈 및 이에 적용되는 리본 결합체
WO2012046319A1 (ja) 太陽電池モジュール、光起電力装置、及び太陽電池モジュールの製造方法
JP2001148500A (ja) 太陽電池モジュール
JP6611062B2 (ja) 太陽電池モジュール
JP2013098496A (ja) 太陽電池モジュールおよびその製造方法
TWI545790B (zh) 光電變換裝置
KR20160129670A (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
JP3022508B1 (ja) 太陽電池モジュール
JP2012044024A (ja) 太陽電池モジュール
JP5554409B2 (ja) 光電変換装置
JP2000114572A (ja) 太陽電池モジュ―ル
KR102196929B1 (ko) 태양 전지 모듈 및 이에 사용되는 후면 기판
WO2017002287A1 (ja) 太陽電池モジュール
JP2005217357A (ja) 立体構造太陽電池及び立体構造太陽電池モジュール
JP5197199B2 (ja) 太陽電池モジュール
US10629763B2 (en) Solar cell module
JP6086778B2 (ja) 太陽電池用プリズム部材および太陽電池モジュール
KR20160041649A (ko) 태양 전지용 리본 및 이를 포함하는 태양 전지 모듈
US20150107649A1 (en) Light Deflecting Layer For Photovoltaic Solar Panels
JPWO2016031231A1 (ja) 太陽電池モジュール
JP6693828B2 (ja) 太陽電池および太陽電池モジュール
TWM504356U (zh) 四柵匯流排太陽能電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP