WO2012164628A1 - 有機el表示パネルの製造方法、および有機el表示パネルの製造装置 - Google Patents

有機el表示パネルの製造方法、および有機el表示パネルの製造装置 Download PDF

Info

Publication number
WO2012164628A1
WO2012164628A1 PCT/JP2011/003136 JP2011003136W WO2012164628A1 WO 2012164628 A1 WO2012164628 A1 WO 2012164628A1 JP 2011003136 W JP2011003136 W JP 2011003136W WO 2012164628 A1 WO2012164628 A1 WO 2012164628A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nozzles
droplets
openings
volume
Prior art date
Application number
PCT/JP2011/003136
Other languages
English (en)
French (fr)
Inventor
竹内 孝之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/003136 priority Critical patent/WO2012164628A1/ja
Priority to JP2012509791A priority patent/JP5785935B2/ja
Priority to CN201180003548.6A priority patent/CN103026789B/zh
Priority to KR1020127001058A priority patent/KR101751552B1/ko
Priority to US13/356,111 priority patent/US8435093B2/en
Publication of WO2012164628A1 publication Critical patent/WO2012164628A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a method of manufacturing an organic EL display panel including an organic EL element, and an apparatus for manufacturing an organic EL display panel.
  • an organic EL display panel in which an organic EL element is disposed on a substrate as a display device is in widespread use.
  • the organic EL display panel has high visibility because it utilizes an organic EL element that emits light by itself, and further, is a completely solid-state element, and thus has characteristics such as excellent impact resistance.
  • the organic EL element is a current drive type light emitting element, and is configured by laminating an organic light emitting layer or the like that performs an electroluminescent phenomenon by recombination of carriers between an anode and a cathode electrode pair.
  • organic EL elements corresponding to each color of red (R), green (G), and blue (B) are sub-pixels, and the combination of three sub-pixels of R, G, and B is one. It corresponds to a pixel (one pixel).
  • an organic EL display panel one in which an organic light emitting layer of an organic EL element is formed by a wet process (coating step) such as an inkjet method is known (for example, Patent Document 1).
  • the inkjet head is scanned with respect to openings (corresponding to the organic light emitting layer formation region) provided in a matrix in the partition layer on the substrate.
  • droplets of the ink containing the organic material and the solvent constituting the organic light emitting layer are ejected from the plurality of nozzles provided in the inkjet head to the respective openings.
  • a droplet is usually ejected a plurality of times for one opening.
  • the volume of the droplet discharged from each nozzle is adjusted by changing the waveform of the drive voltage applied to the piezo element provided for each nozzle.
  • the light emission luminance among the pixels it is necessary for the light emission luminance among the pixels to be uniform. Since the emission luminance depends on the film thickness of the organic light emitting layer, when forming the organic light emitting layer by the above method, it is necessary to make the total volume of the droplets discharged to each opening uniform. However, even in the case where drive signals of the same waveform are given to the respective piezo elements, since the ejection characteristics differ from one nozzle to another, the volumes of droplets ejected from the respective nozzles may vary. As a result, the total volume of the ejected droplets differs between the openings, and the light emission luminance varies among the pixels.
  • Patent Document 1 it is necessary to generate a drive voltage of a desired waveform for each nozzle.
  • the inkjet apparatus is forced to have a very complicated control.
  • the present invention has been made in view of the above problems, and a method of manufacturing an organic EL display panel, etc., capable of making the total amount of the volume of droplets discharged to each opening uniform by simple control. Intended to be provided.
  • an EL substrate provided with a partition layer in which a plurality of openings are formed in a matrix in pixel units, an ink droplet containing an organic material and a solvent
  • the plurality of nozzles are divided into nozzle groups having a one-to-one correspondence with the respective openings so that a predetermined number of nozzles can be assigned to each unit, and droplets discharged to the respective openings for each nozzle group
  • the number of droplets ejected by each nozzle belonging to the nozzle group is determined for each nozzle based on the variation in droplet volume detected for each nozzle in the second step so that the total amount of Second In the process, while the inkjet head is scanned in the row direction
  • a plurality of nozzles are arranged one to one with each of the openings so that a predetermined number of nozzles can be allocated to each opening.
  • the nozzle group is divided into the corresponding nozzle groups, and the number of droplets ejected by each nozzle belonging to the nozzle group is determined for each nozzle group.
  • the number of times of the discharge performed by each nozzle is based on the variation in the volume of the droplets detected for each nozzle in the second step so that the total amount of the volume of the droplets discharged to each opening becomes a reference range. Is determined for each nozzle. That is, since it is the number of times of droplet discharge that is individually changed for each nozzle in one aspect of the present invention, complex control is performed such as generating a drive voltage having a different waveform for each nozzle as in Patent Document 1. There is no need.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the organic EL display panel according to Embodiment 1.
  • FIG. 3 is a schematic view showing the shape of a partition layer of the organic EL display panel according to Embodiment 1.
  • 5 is a view showing an example of a manufacturing process of the organic EL display panel according to Embodiment 1.
  • FIG. 5 is a view showing an example of a manufacturing process of the organic EL display panel according to Embodiment 1.
  • FIG. It is a figure which shows the main structures of an inkjet apparatus. It is a functional block diagram of an inkjet device.
  • FIG. 6 is a view showing a positional relationship (at the time of horizontal striking) of a substrate to be coated and a head portion according to Embodiment 1;
  • FIG. 6 is a view showing a positional relationship (at the time of horizontal striking) of a substrate to be coated and a head portion according to Embodiment 1;
  • FIG. 5 is a diagram showing a control flow in a coating process according to Embodiment 1. It is a figure which shows the control flow of the discharge frequency control part in the process of selecting the nozzle which performs droplet discharge. In the case where the number of times of ejection M B at step S210 of FIG. 9 was determined to be even, it is a diagram showing the control flow of the discharge count control block. In the case where the number of times of ejection M B at step S210 of FIG. 9 was determined to be an odd number, it shows a control flow of the discharge count control unit 300. It is a figure which shows the control flow of the discharge frequency control part in the case of using C rank nozzle. When ejection number M C at step S505 in FIG.
  • FIG. 6 is a view showing a positional relationship (during vertical striking) of a substrate to be coated and a head portion according to Embodiment 1; FIG.
  • FIG. 14 is a diagram showing a control flow of a discharge number control unit in the step of selecting a nozzle for performing droplet discharge according to a second embodiment.
  • FIG. 16 is a diagram showing a control flow of a discharge number control unit in a step of selecting a nozzle for performing droplet discharge according to a modification of the second embodiment. It is a figure which shows the positional relationship of the board
  • an EL substrate provided with a partition layer in which a plurality of openings are formed in a matrix in pixel units, an ink substrate containing an organic material and a solvent
  • the plurality of nozzles are divided into nozzle groups having a one-to-one correspondence with the respective openings so that a predetermined number of nozzles can be assigned to each unit, and droplets discharged to the respective openings for each nozzle group
  • the number of droplets ejected by each nozzle belonging to the nozzle group is determined for each nozzle based on the variation in droplet volume detected for each nozzle in the second step so that the total amount of The third to do
  • one light emitting color is determined as one sub-pixel in each of the openings, and the light is discharged to each of the openings.
  • a target value is set for each luminescent color as the total volume of the droplets, and the reference range is the target between the openings through which the droplets of the ink containing the organic material of the same luminescent color are ejected. Within ⁇ 2% of the value.
  • one light emitting color is determined as one sub-pixel in each of the openings, and the light is discharged to each of the openings.
  • a target value is set for each luminous color as the total volume of droplets, and in the third step, among the nozzles belonging to the nozzle group, the detection value in the second step is a unit from each of the nozzles Assuming that each of the nozzles within the first range performs droplet discharge with respect to a preset value set as the volume of droplets discharged per number of times, a volume equal to or greater than the target value It is judged whether or not the liquid droplet can be discharged, and when it is judged that the liquid droplet having the volume equal to or more than the target value can be discharged, the nozzle within the first range is selected as the nozzle used for the liquid droplet discharge.
  • the nozzle using the nozzle within the first range and the nozzle within the second range where the variation from the set value is larger than the first range is used for droplet discharge Choose as.
  • the set of nozzles when it is determined in the third step that droplets having a volume equal to or greater than the target value can not be discharged, It is determined whether or not there is a set of nozzles whose detected value in the second step is higher than the set value and a nozzle whose set value is lower among the nozzles in the second range, and the set of the nozzles If it is determined that there exist, the set of nozzles is selected as the nozzle used for droplet discharge.
  • the set of nozzles in the first range is selected as the nozzles used for droplet discharge.
  • the landing positions of the droplets discharged from the nozzles belonging to the nozzle group in the openings are , Adjusted to be dispersed in each of the openings.
  • the landing positions of the droplets discharged from the nozzles belonging to the nozzle group in the openings are The adjustment is made to be symmetrical with respect to a virtual line connecting the centers of the openings arranged in the column direction.
  • the shape of each of the openings is a long shape having long sides in the column direction.
  • An apparatus for manufacturing an organic EL display panel includes an ink jet head in which a plurality of nozzles for discharging droplets of an ink containing an organic material and a solvent are arranged in a row direction;
  • the inkjet head is arranged in the row direction with respect to an EL substrate provided with a droplet volume detection unit that detects the volume of the ejected droplet for each nozzle, and a partition layer in which a plurality of openings are formed in a matrix in pixel units.
  • a head scanning unit for causing the nozzle to scan, and a discharge frequency control unit for determining the discharge frequency of droplets performed by each of the nozzles for each nozzle, and discharging the droplets from the nozzles by the determined discharge frequency
  • the plurality of nozzles are divided into nozzle groups corresponding one-to-one with the respective openings such that a predetermined number of nozzles are assigned to the respective openings.
  • the number control unit is configured to adjust each of the droplet volumes detected by the droplet volume detection unit based on the variation in the volume of the droplets so that the total volume of the droplets ejected to the respective openings is within the reference range.
  • the number of discharges of the nozzles is determined for each nozzle.
  • the light emission color of 1 is determined as one sub-pixel in each of the openings, and the light is discharged to the respective openings.
  • a target value is set for each luminescent color as the total volume of the droplets, and the reference range is the target between the openings through which the droplets of the ink containing the organic material of the same luminescent color are ejected. Within ⁇ 2% of the value.
  • FIG. 1 is a partial cross-sectional view showing the configuration of the organic EL display panel 100 according to the first embodiment.
  • the organic EL display panel 100 is a so-called top emission type in which the upper side in the drawing is a display surface.
  • a TFT layer 2 As shown in FIG. 1, on a substrate (EL substrate) 1, a TFT layer 2, a feed electrode 3, a flattening film 4, a pixel electrode 6, and a hole injection layer 9 are sequentially stacked.
  • a partition wall layer 7 in which a plurality of openings 17 to be a formation region of the organic light emitting layer 11 is formed is provided. Inside the opening 17, the hole transport layer 10, the organic light emitting layer 11, the electron transport layer 12, the electron injection layer 13, and the counter electrode 14 are sequentially stacked.
  • the substrate 1 is a back substrate in the organic EL display panel 100, and on the surface thereof, a TFT layer 2 including a TFT (thin film transistor) for driving the organic EL display panel 100 by an active matrix method is formed. On the top surface of the TFT layer 2, a feed electrode 3 for supplying power from the outside to each TFT is formed.
  • planarizing film 4 is provided to adjust the surface step caused by the provision of the TFT layer 2 and the feeding electrode 3 flat, and is made of an organic material having excellent insulation.
  • the contact hole 5 is provided to electrically connect the feeding electrode 3 and the pixel electrode 6, and is formed from the front surface to the back surface of the planarization film 4.
  • the contact holes 5 are formed to be located between the openings 17 arranged in the column direction, and are covered with the partition layer 7.
  • the organic light emitting layer 11 does not become a flat layer due to the presence of the contact hole 5, which causes uneven light emission and the like. In order to avoid this, the configuration is as described above.
  • the pixel electrode 6 is an anode and is formed for each organic light emitting layer 11 formed in the opening 17. Since the organic EL display panel 100 is of a top emission type, a highly reflective material is selected as the material of the pixel electrode 6.
  • the hole injection layer 9 is provided for the purpose of promoting the injection of holes from the pixel electrode 6 to the organic light emitting layer 11.
  • Partition wall layer 7 prevents the mixing of the ink containing the solvent and the organic light emitting layer material corresponding to each color of red (R), green (G) and blue (B) when forming the organic light emitting layer 11. Perform a function.
  • Partition layer 7 provided to cover the upper side of contact hole 5 has a trapezoidal cross section along the XY plane or YZ plane as a whole, but the position corresponding to contact hole 5 Then, the partition layer material is in a depressed shape.
  • this depressed portion is referred to as a depression 8.
  • FIG. 2 is a view schematically showing the shape of the partition layer 7 when the organic EL display panel 100 is viewed from the display surface side.
  • the hole transport layer 10 the organic light emitting layer 11, the electron transport layer 12, The state which removed the electron injection layer 13 and the counter electrode 14 is shown.
  • the partial cross-sectional view of FIG. 1 corresponds to a cross-sectional view taken along the line A-A 'in FIG. 2, and hereinafter, the X direction is a row direction and the Y direction is a column direction.
  • the openings 17 provided in the partition wall layer 7 are arranged in a matrix (in the X and Y directions) in pixel units.
  • the opening 17 is a region where the organic light emitting layer 11 is formed, and the arrangement and the shape of the organic light emitting layer 11 are defined by the arrangement and the shape of the opening 17.
  • the opening 17 is a long shape having long sides in the column (Y) direction.
  • the side along the row (X) direction is about 30 to 130 ⁇ m
  • the side along the column (Y) direction is It is formed to have a dimension of about 150 to 600 ⁇ m.
  • the openings 17 have openings 17R, 17G, 17B corresponding to the respective colors R, G, B.
  • the organic light emitting layer 11 corresponding to R in the opening 17R, G in the opening 17G, and B in the opening 17B is formed.
  • the openings 17R, 17G, and 17B are sub-pixels, respectively, and a combination of three sub-pixels of the openings 17R, 17G, and 17B corresponds to one pixel (one pixel).
  • the openings 17 are arranged for each column in R, G, B color units, and the openings 17 belonging to the same column are openings corresponding to the same color.
  • the contact holes 5 are located between the openings 17 arranged in the column direction, that is, under the partition wall 7. Although it has been described above that the pixel electrode 6 is formed for each of the one organic light emitting layer 11 formed in the opening 17, this means that the pixel electrode 6 is provided for each sub-pixel. Means
  • the hole transport layer 10 has a function of transporting holes injected from the pixel electrode 6 to the organic light emitting layer 11.
  • the organic light emitting layer 11 is a portion that emits light by recombination of carriers (holes and electrons), and is configured to include an organic material corresponding to any color of R, G, and B.
  • An organic light emitting layer 11 containing an organic material corresponding to R in the opening 17R, an organic material corresponding to G in the opening 17G, and an organic material corresponding to B in the opening 17B is formed.
  • an organic layer 16 including a material that constitutes the organic light emitting layer 11 is formed.
  • the organic layer 16 is formed at the same time as the organic light emitting layer 11 by applying the ink to the depressions 8 as well as the openings 17 in the application step.
  • the electron transport layer 12 has a function of transporting the electrons injected from the counter electrode 14 to the organic light emitting layer 11.
  • the electron injection layer 13 has a function of promoting the injection of electrons from the counter electrode 14 to the organic light emitting layer 11.
  • the counter electrode 14 is a cathode. Since the organic EL display panel 100 is of the top emission type, a light transmissive material is selected as the material of the counter electrode 14.
  • a sealing layer is provided on the counter electrode 14 for the purpose of suppressing the deterioration of the organic light emitting layer 11 by contact with moisture, air or the like. Since the organic EL display panel 100 is a top emission type, a light transmissive material such as SiN (silicon nitride) or SiON (silicon oxynitride) is selected as the material of the sealing layer.
  • SiN silicon nitride
  • SiON silicon oxynitride
  • the organic light emitting layer 11 formed in each opening part 17 can also be made into the organic light emitting layer of the same color altogether.
  • Substrate 1 Non-alkali glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin, alumina, etc.
  • Insulating materials Flattening film 4 Polyimide resin, acrylic resin Pixel electrode 6: Ag (silver), Al (aluminum), alloy of silver, palladium and copper, alloy of silver, rubidium and gold, MoCr Molybdenum and chromium alloy), NiCr (nickel and chromium alloy)
  • Partition layer 7 Acrylic resin, polyimide resin, novolac type phenol resin
  • Organic light emitting layer 11 Oxinoid compound, perylene compound, coumarin compound, azacumarin compound, oxazole compound, oxadiazole compound, perinone compound, pyrrolopyrrole compound, naphthalene compound Anthracene compounds, fluorene compounds, fluoranthene compounds, tetracene compounds, pyrene compounds, coronene compounds, quinolone compounds and azaquinolone compounds, pyrazoline derivatives and pyrazolone derivatives, rhodamine compounds, chrysene compounds, phenant
  • Hole injection layer 9 metal oxide such as MoOx (molybdenum oxide), WOx (tungsten oxide) or MoxWyOz (molybdenum-tungsten oxide), metal nitride or metal oxynitride hole transport layer 10: triazole derivative, oxa Diazole derivative, imidazole derivative, polyarylalkane derivative, pyrazoline derivative and pyrazolone derivative, phenylenediamine derivative, arylamine derivative, amino-substituted chalcone derivative, oxazole derivative, styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilbene derivative, porphyrin compound, Aromatic tertiary amine compounds, styrylamine compounds, butadiene compounds, polystyrene derivatives, hydrazone derivatives, triphenylmethane derivatives, tetraphenylbenzene derivatives ( All are
  • the substrate 1 on which the TFT layer 2 and the feeding electrode 3 are formed is prepared (FIG. 3A).
  • a planarizing film 4 having a thickness of about 4 [ ⁇ m] is formed on the TFT layer 2 and the feeding electrode 3 using an organic material having excellent insulating properties based on a photoresist method.
  • the contact holes 5 are formed in alignment with the positions between the openings 17 adjacent in the column direction (FIG. 3B).
  • the planarizing film 4 and the contact hole 5 can be simultaneously formed.
  • the method of forming the contact hole 5 is not limited to this. For example, after the planarizing film 4 is uniformly formed, the planarizing film 4 at a predetermined position may be removed to form the contact hole 5.
  • the pixel electrode 6 made of a metal material having a thickness of about 150 nm is formed for each sub-pixel while being electrically connected to the feed electrode 3 based on a vacuum evaporation method or a sputtering method.
  • the hole injection layer 9 is formed based on reactive sputtering (FIG. 3 (c)).
  • partition layer 7 is formed based on the photolithography method.
  • a paste-like partition layer material containing a photosensitive resist is prepared as a partition layer material.
  • This partition layer material is uniformly applied on the hole injection layer 9.
  • a mask formed in the pattern of the openings 17 shown in FIG. 2 is superimposed on this.
  • the mask is exposed to light to form a partition layer pattern.
  • excess partition wall layer material is washed out with a water-based or non-water-based etching solution (developing solution). Thereby, patterning of partition wall layer material is completed.
  • the openings 17 to be the organic light emitting layer formation region are defined, and the depressions 8 are formed on the upper surfaces between the openings 17 adjacent in the column direction, and the partition layer 7 having at least a water-repellent surface is completed. (FIG. 3 (d)).
  • the recess layer 8 is naturally formed because the partition wall layer material usually enters the inside of the contact hole 5. For this reason, the process for separately forming the recess 8 is unnecessary, which is advantageous in terms of production cost and production efficiency.
  • the surface of partition wall layer 7 is further adjusted to have a predetermined contact angle with ink applied to opening 17, or to impart water repellency to the surface.
  • Surface treatment may be performed with an alkaline solution, water, an organic solvent, or the like, or plasma treatment may be performed.
  • the organic material and the solvent constituting the hole transport layer 10 are mixed at a predetermined ratio to prepare an ink for a hole transport layer.
  • the ink is supplied to the head unit 301, and droplets 19 made of the ink for a hole transport layer are ejected from the nozzles 3030 corresponding to the openings 17 based on the coating process (FIG. 3E).
  • the solvent contained in the ink is evaporated and dried, and if necessary, the hole transport layer 10 is formed by heating and baking (FIG. 4A).
  • the organic material forming the organic light emitting layer 11 and the solvent are mixed at a predetermined ratio to prepare an ink for an organic light emitting layer.
  • the ink is supplied to the head unit 301, and the droplets 18 made of the ink for the organic light emitting layer are discharged from the nozzles 3030 corresponding to the opening 17 and the recess 8 based on the application process (FIG. 4B).
  • the solvent contained in the ink is evaporated and dried, and if necessary, the organic light emitting layer 11 and the organic light emitting layer 11 are formed of the same material as the organic light emitting layer 11 (FIG. 4C).
  • the reason why the droplets of the ink for the organic light emitting layer are discharged not only to the opening 17 but also to the recess 8 is to prevent clogging of the nozzles.
  • the ink used for forming the organic light emitting layer and the hole transport layer has a high viscosity as compared to the printing ink used in the ink jet printer. Therefore, if it is set so as not to discharge the ink, the ink coagulates inside the nozzle and causes clogging. Once the nozzle is clogged, the set amount of ink can not be ejected within the set time, and a predetermined amount of ink can not be ejected to the opening 17.
  • the plurality of nozzles 3030 are arranged in the openings 17 and 1 so that a predetermined number of nozzles can be allocated to the openings 17. Division into corresponding nozzle groups. Then, droplets are discharged from the respective nozzle groups to the corresponding openings 17. At this time, in the present embodiment, the total number of volumes of droplets ejected to the respective openings 17 is set as a reference range by adjusting the number of times of ejection of droplets performed by each nozzle belonging to the nozzle group for each nozzle. I am trying to be As a result, since the total volume of the discharged droplets can be made uniform among the openings, it is possible to suppress the variation in light emission luminance among the pixels. The details will be described later in the section of ⁇ application step>.
  • a material forming the electron transport layer 12 is formed on the surface of the organic light emitting layer 11 based on a vacuum evaporation method. Thereby, the electron transport layer 12 is formed.
  • the material forming the electron injection layer 13 is formed into a film by a method such as a vapor deposition method, a spin coating method, a cast method or the like to form the electron injection layer 13.
  • a material such as ITO or IZO is used to form a film by vacuum evaporation, sputtering or the like.
  • the counter electrode 14 is formed (FIG. 4 (d)).
  • a sealing layer is formed on the surface of the counter electrode 14 by forming a light transmitting material such as SiN or SiON by a sputtering method, a CVD method, or the like.
  • the organic EL display panel 100 is completed through the above steps.
  • FIG. 5 is a view showing the main configuration of an inkjet apparatus 1000 used in the present embodiment.
  • FIG. 6 is a functional block diagram of the inkjet apparatus 1000.
  • the inkjet device 1000 includes an inkjet table 20, an inkjet head 30, a droplet volume detection unit 50, and a control device (PC) 15.
  • PC control device
  • the control device 15 includes a CPU 150, storage means 151 (including a large capacity storage means such as an HDD), display means (display) 153, and input means 152.
  • a personal computer PC
  • the storage unit 151 stores an inkjet table 20 connected to the control device 15, an inkjet head 30, a control program for driving the droplet volume detection unit 50, and the like.
  • the CPU 150 performs predetermined control based on an instruction input by the operator through the input unit 152 and each control program stored in the storage unit 151.
  • the ink jet table 20 is a so-called gantry type work table, and two gantry units (moving racks) are disposed movably along a pair of guide shafts on the base table. There is.
  • pillar-shaped stands 201A, 201B, 202A, 202B are disposed at the four corners of the upper surface thereof.
  • a fixing stage ST for mounting a substrate to be coated and an ink pan (dish for use in stabilizing discharge of ink immediately before coating) Container) IP is disposed respectively.
  • guide shafts 203A and 203B are axially supported by the stands 201A, 201B, 202A and 202B in parallel along a pair of side portions along the longitudinal direction (Y direction).
  • Two linear motor portions 204A, 204B (205A, 205B) are inserted through the respective guide shafts 203A (203B), and the base 200 is mounted on the linear motor portions 204A, 205A (204B, 205B) forming a pair among them.
  • the gantry unit 210A (210B) is mounted to cross.
  • the two gantry units 210A and 210B are independently driven by driving the pair of linear motor units 204A and 205A (204B and 205B) independently of the guide shafts 203A and 203B. It reciprocates slidably along the longitudinal direction.
  • movable bodies (carriages) 220A and 220B formed of L-shaped pedestals are disposed.
  • Servo motors (moving body motors) 221A and 221B are disposed on the moving bodies 220A and 220B, and gears (not shown) are disposed at the tip of the shafts of the respective motors.
  • the gears are fitted in guide grooves 211A and 211B formed along the longitudinal direction (X direction) of the gantry portions 210A and 210B.
  • the so-called pinion rack mechanism precisely reciprocates along the X direction.
  • the moving bodies 220A and 220B are equipped with the inkjet head 30 and the droplet volume detection unit 50, respectively, and are driven independently of each other.
  • a head scanning unit is configured by the control unit 213 and the gantry unit 210A. Since the inkjet head 30 is mounted on the movable body 220A, the inkjet head 30 can scan the application target substrate by the head scanning unit. Further, as described above, since the moving body 220A moves along the X direction, the scanning direction of the inkjet head 30 is the row (X) direction.
  • the linear motor units 204A, 205A, 204B, and 205B, and the servomotor units 221A and 221B are each connected to the control unit 213 for controlling the direct drive, and the control unit 213 is connected to the CPU 150 in the control device 15. There is. At the time of driving the inkjet apparatus 1000, driving of the linear motor units 204A, 205A, 204B, and 205B and servomotor units 221A and 221B is controlled by the CPU 150 which has read the control program (FIG. 6).
  • the inkjet head 30 adopts a known piezo method, and is configured of a head portion 301 and a main portion 302.
  • the head unit 301 is fixed to the movable body 220 via the main body unit 302.
  • the main body portion 302 incorporates a servomotor portion 304 (FIG. 6), and by rotating the servomotor portion 304, the angle between the longitudinal direction of the head portion 301 and the X axis of the fixed stage ST is adjusted. In the present embodiment, adjustment is made so that the longitudinal direction of the head portion 301 coincides with the Y axis.
  • the head unit 301 has a plurality of nozzles on the surface opposed to the fixed stage ST, and these nozzles are arranged in a row along the longitudinal direction of the head unit 301.
  • the ink supplied to the head unit 301 is discharged from the nozzles as droplets onto the application target substrate.
  • the droplet discharge operation at each nozzle is controlled by a drive voltage applied to a piezoelectric element (piezoelectric element) 3010 (FIG. 6) included in each nozzle.
  • the ejection number control unit 300 controls the drive signal given to each of the piezoelectric elements 3010 to determine the ejection number of droplets which the nozzle 3030 performs for each nozzle. Furthermore, droplets are ejected from the nozzle 3030 the number of times of ejection determined.
  • the CPU 150 reads a predetermined control program from the storage unit 151, and instructs the ejection number control unit 300 to apply a predetermined voltage to the target piezo element 3010. .
  • the droplet volume detection unit 50 is a unit that detects the volume of droplets discharged from each nozzle for each nozzle. As shown in FIGS. 5 and 6, the droplet volume detection unit 50 includes a droplet volume detection camera 501 and a control unit 500.
  • the droplet volume detection camera 501 uses a well-known eutectic point laser microscope.
  • the objective lens of the droplet volume detection camera 501 is oriented such that the surface of the fixed stage ST in the inkjet apparatus 1000 can be photographed from the vertical direction.
  • the calculation of the droplet volume of the ink is performed by the control unit 500 connected to the droplet volume detection camera 501 based on the images continuously captured by the droplet volume detection camera 501 at different focal distances.
  • the control unit 500 is also connected to the CPU 150, and the photographed image can also be confirmed by the CPU 150. Therefore, the CPU 150 can also perform the calculation.
  • the coating process by the inkjet method is performed using the inkjet device 1000 having the above configuration.
  • the case where the long sides of the elongated openings 17 are orthogonal to the scanning direction (the row (X) direction) of the inkjet head 30 (a case where so-called horizontal striking is performed) will be described.
  • FIG. 7 is a view showing the positional relationship (at the time of horizontal striking) of the substrate to be coated and the head portion in the manufacturing process of the organic EL display panel.
  • a substrate 600 to be coated shown in FIG. 7 is a substrate in a state prior to the coating process, that is, a substrate in a state in which a partition layer 7 in which a plurality of openings 17 are formed in a matrix in pixel units is provided.
  • a plurality of nozzles 3030 from which ink is discharged are arranged in a row direction.
  • the plurality of nozzles 3030 have nozzle groups a 1 , a 2 , a 3 corresponding to the respective openings 17 so that a predetermined number of nozzles (six in FIG. 7) are assigned to the respective openings 17. , it is divided into a 4.
  • the application pitch of the nozzles 3030 can be adjusted by slightly inclining the longitudinal direction of the head portion 301 with respect to the column direction.
  • the nozzles b 1 , b 2 , b 3 are arranged in the column direction so that the nozzle groups a 1 , a 2 , a 3 , a 4 correspond to the openings 17 without tilting the head part 301.
  • the head portion 301 is used to correspond to the space between the openings 17 (on the contact holes 5) arranged in the above.
  • each opening 17 is made of the desired ink from each nozzle belonging to the corresponding nozzle group a 1 , a 2 , a 3 , a 4 . Eject droplets. Then, the hole transport layer 10 and the organic light emitting layer 11 are formed through the above steps. At this time, the total volume of the ejected droplets needs to be uniform among the openings 17.
  • droplets are discharged from the nozzles 3030 of the nozzle groups a 1 , a 2 , a 3 and a 4 corresponding to the respective openings 17 to the corresponding openings 17. Then, based on the variation of the volume of the droplets detected for each nozzle 3030 by the droplet volume detection unit 50, the total volume of the droplets ejected to the respective openings 17 becomes the reference range. The number of discharges of droplets performed by the nozzles 3030 belonging to the groups a 1 , a 2 , a 3 and a 4 is adjusted for each nozzle.
  • the number of discharges of the nozzle 3030 is adjusted so that the total amount of droplets discharged to the opening 17 approaches a predetermined target value. Adjust each time. The adjustment of the number of times of discharging the droplets is performed by the discharge number control unit 300. Next, a control flow in the coating process including the operation of the ejection number control unit 300 will be described.
  • FIG. 8 is a diagram showing a control flow in the coating process.
  • FIG. 8 is a diagram showing a control flow in the coating process.
  • the control flow for the predetermined one row of openings 17 will be described, but the same applies to the openings 17 of the other rows.
  • a coating target substrate provided with the partition wall layer 7 in which a plurality of openings 17 are formed in a matrix in pixel units, and a row of nozzles 3030 that discharge droplets of ink containing an organic material and a solvent
  • the process of preparing the inkjet head 30 (head part 301) multiply arranged to direction is included.
  • the droplet volume detection unit 50 detects the volume of droplets for each nozzle 3030 (step S101).
  • the ejection number control unit 300 ranks all the nozzles 3030 of the head unit 301 based on the detection result of the droplet volume detection unit 50 (step S102).
  • a nozzle having an error within ⁇ a [%] with respect to a set value V set previously set as the volume of droplets ejected per unit number of times from one nozzle is A rank, B rank (if it is a ⁇ b and nozzle of A rank is not included) nozzles with error within ⁇ b [%], C rank with nozzles within ⁇ c [%] error (where b ⁇ c) (No nozzles of A and B ranks are included) and nozzles that can not be used due to clogging or the like (non-ejection nozzles) are classified into F ranks and ranks.
  • Steps S101 and S102 do not have to be performed every application process, and may be performed once for each of a plurality of application processes, for example, every 10 times. In addition, each lot may be activated each time the inkjet device 1000 is started.
  • the number of times of discharge of each nozzle is adjusted so that the total amount of the volume of droplets discharged to each opening 17 falls within the reference range. Can be determined as appropriate depending on how much the reference range is to be. Specifically, a target value of the total amount of droplet volumes ejected to each opening 17 is set, and it is determined what percentage [%] or less of this target value is to be used as a reference range. Furthermore, the allowable error with respect to the target value depends on how uniform the light emission luminance among the pixels is made.
  • each opening has the dimensions (30 to 130 ⁇ m ⁇ 150 to 600 ⁇ m) as described above, when the light emission luminance difference between the openings 17 is within 1%, each opening The reference range is within ⁇ 2 [%] with respect to the target value of the total amount of droplet volumes ejected at 17.
  • the numerical values of a, b and c can be determined by considering this reference range and the number of droplet discharges for one opening 17. In the above case, for example, a can be 1 to 2%, b can be 6%, and c can be ⁇ 6%. In a commercially available ink jet head, the error is about ⁇ 6% with respect to the set value V set .
  • the film thickness of the organic light emitting layer 11 is as thin as about 50 to 100 [nm]
  • volume variations of minute droplets appear as a difference in light emission luminance, and the influence on the display quality growing. Since higher display quality is required along with higher definition of the display panel, it is necessary to further suppress the volume variation of the droplets between the openings.
  • the ejection number control unit 300 selects one arbitrary opening 17 (step S103), and for the nozzles corresponding to the openings 17 in the selected row, the number N A of nozzles in the A rank and the number N of nozzles in the B rank The numbers N C of nozzles of B and C ranks are stored respectively (step S104). Thereafter, the number-of-discharges control unit 300 selects a nozzle that performs droplet discharge for the opening 17 of the selected row (step S105), and determines the droplet discharge position (step S106).
  • the ejection number control unit 300 determines whether the openings 17 of all the rows have been selected (step S107), and when it is determined that the openings 17 of all the rows have not been selected (in step S107) (NO), repeat the steps S103 to S106 until the process is performed for the openings 17 of all the rows. After steps S103 to S106 are performed for the openings 17 in all the rows (YES in step S107), droplets are discharged to the openings 17 in all the rows (step S108), and the application process is completed.
  • step S105 details of the step of selecting a nozzle that performs droplet discharge to the opening 17 of the selected row
  • step S106 the step of determining the droplet discharge position at the opening 17 of the selected row
  • FIG. 9 is a diagram showing a control flow of the ejection number control unit 300 in the step of selecting a nozzle for performing droplet ejection (step S105 in FIG. 8).
  • the control flow of the ejection number control unit 300 generally uses the A rank nozzle preferentially for droplet ejection, and when the A rank nozzle alone can not eject the droplets above the target value, the A and B rank nozzles are used. Droplet discharge is performed to each opening. When it is not possible to eject droplets exceeding the target value using the A and B rank nozzles, droplet discharge is performed to each opening using the A, B and C rank nozzles.
  • a target value of the total amount of droplet volumes to be discharged to each opening 17 is set in advance, and the number N of times of discharge of droplets required for one opening 17 from the target value. (Required number of times of discharge N) is determined (step S201).
  • the target value differs depending on the type of ink to be applied, and may differ for each luminescent color, for example, in the case of the ink for an organic light emitting layer.
  • the required number of times of discharge N can be obtained by dividing the target value of the total amount of droplet volumes discharged to each of the openings 17 by the set value V set .
  • the required number of times of discharge N is equal to or less than a value obtained by multiplying the number of nozzles corresponding to one opening 17 (the number of nozzles belonging to one nozzle group, 6 in FIG. 7) by the maximum number of times of discharge T described later.
  • the set value V set must be set .
  • step S202 it is determined whether it is possible to discharge a droplet having a volume equal to or greater than the target value using only the A rank nozzle.
  • the maximum number of times T that each nozzle can discharge per opening (maximum number of times of discharge T) is set in advance, and the number of nozzles of A rank N A is determined as the maximum number of times of discharge T. It is determined whether or not the value (N A ⁇ T) multiplied by N is equal to or more than the required number of times of discharge N.
  • the maximum ejection number T is 3.
  • the solid circle shown in the lowermost row of openings 17 means that the droplet is ejected to that position, and the dotted circle means that the droplet is not ejected to that position.
  • step S202 If it is determined that N A ⁇ T is the required number of times of discharge N or more (YES in step S202), since it is the case that droplets of a volume above the target value can be discharged only by the A rank nozzle, discharge by the A rank nozzle The number of times is set to N (step S203). Thereafter, the step of selecting a nozzle for droplet discharge (step S105 in FIG. 8) is ended.
  • N A ⁇ T is less than the required number of times of discharge N (NO in step S202)
  • N B ⁇ T the numerical values obtained by multiplying the number of nozzles N B of B rank maximum ejection number T (N B ⁇ T) and the sum combined ones ((N A ⁇ T) + ( It is determined whether N B ⁇ T)) is equal to or more than the required number of times of discharge N.
  • ejection number M B stored in step S205 it is determined whether there are 2 or more (step S206). If ejection number M B is not 2 or more, that (NO in step S206) when the discharge count M B is 1, the number of times of ejecting the A rank nozzle (N A ⁇ T) times, the number of times of ejecting at B rank nozzle the M B times (when the process proceeds from step S206 to step S207 1 times) is set to (step S207). Then, the process of selecting a nozzle for performing droplet discharge ends.
  • step S206 If ejection number M B is 2 or more (YES in step S206), among the nozzles of rank B, the nozzle discharge volume is larger than the set value V set (B +), the discharge volume than the set value V set small nozzle (B -) determines whether there is a set of (step S208).
  • a set of nozzles will be referred to as a B + , B ⁇ nozzle set.
  • B +, B - if the nozzle set is present in the in the reference range on the total amount of the droplet volume of the by using these, it becomes possible to more approximate the step S208 in this embodiment It is provided.
  • Step S207 the process of selecting a nozzle for droplet discharge ends.
  • step S208 If the nozzle set is present (YES in step S208), B + and B - - B + and B stores the number P B nozzle set in (step S209). Next, ejection number M B determines whether it is even or odd (step S210).
  • Figure 10 is a diagram showing a case where the discharge number M B is determined to be an even number in step S210 of FIG. 9 (even in step S210), the control flow of the discharge count control unit 300.
  • step S301 it is determined whether X ev1 ⁇ (P B ⁇ T) (step S302). Then, (P B ⁇ T) is the X ev1 above, i.e., B +, B - when it is determined that the set of nozzles capable of discharging all discharge count M B times using the (YES in step S302), step Transfer to S303.
  • step S303 the number of times of discharge with the A rank nozzle is set to (N A ⁇ T) times, and the number of times of discharge with the B + nozzles and B - nozzles is set to 1 time, respectively, to select the nozzles that perform droplet discharge. Finish.
  • step S304 the number of times of discharge with the A rank nozzle is (N A ⁇ T) times, and the number of times of discharge with the B + nozzle and B - nozzle is (P B ⁇ T) times, and other than the B + nozzle and B - nozzle
  • the number of times of discharging with the B rank nozzle is set to ⁇ M B ⁇ 2 (P B ⁇ T) ⁇ times, and the process of selecting a nozzle for performing droplet discharge ends.
  • FIG. 11 is a diagram showing a case where the discharge number M B is determined to be an odd number in the step S210 of FIG. 9 (odd in step S210), the control flow of the discharge count control unit 300.
  • a nozzle pair in which the numerical value (average value of the ejection volume) obtained by dividing the ejection volume by adding them together is within the set value V set ⁇ a [%]. It is determined whether or not (step S401).
  • Such a nozzle set can be regarded as a substantially A-ranked nozzle by being used in a set.
  • B +, B - of the set of nozzles the nozzle sets which can be regarded as the real A rank nozzle B A +, B A - called the set of nozzles and the ejection volume is larger than the set value V set nozzle the B a +, fewer nozzles than the discharge volume setting value V set B a - called.
  • B A +, B A - if the sets of nozzles is present, since the reference range of the total amount of the droplet volume of the by using these, it becomes possible to more approximate, B +, B - the Step S401 is provided as in the case of the nozzle set.
  • B A +, B A - if the set of nozzles is determined that there (YES in step S401), B A +, B A - stores the number P A1 nozzle set in (step S402).
  • step S403 After storing the minimum value X od1 of X (where X is an integer) satisfying 2 ⁇ ⁇ M B (step S403), it is determined whether or not X od1 ⁇ (P A1 ⁇ T). (Step S404). Then, (P A1 ⁇ T) is the X od1 above, i.e., B A +, B A - if it is determined that using the nozzle assembly can be ejected every ejection number M B times (YES in step S404) , And move on to step S405.
  • step S405 the number of times of discharging with the A rank nozzle is set to ⁇ (N A ⁇ T) -1 ⁇ times, and the number of times of discharging with B A + nozzles and B A - nozzles is set to 1 time each, and droplet discharge is performed. The process of selecting the nozzle to be performed is completed.
  • step S405 as a result of step S403, the number of times of using the A rank nozzle is reduced by one.
  • all B rank nozzles used are nozzles corresponding to substantially A rank nozzles. Therefore, in this case, it is possible to regard all the required number of times of discharge N times as what is substantially performed using the A rank nozzle, and as a result, it becomes possible to bring the total amount of droplet volume close to the target value accurately. .
  • step S404 if it is determined that (P A1 ⁇ T) is less than X od 1 , that is, even if the B A + and B A ⁇ nozzle pairs are used, it is not possible to discharge all the discharge times M B times (NO in step S404 ), And proceeds to step S406.
  • step S406 the number of times of discharge with the A rank nozzle is (N A ⁇ T) times, and the number of times of discharge with the B A + nozzle and B A - nozzle is (P A1 ⁇ T) times, B A + nozzle and B A - the number of times of ejecting at B rank nozzle other than the nozzle is set to ⁇ M B -2 (P A1 ⁇ T) ⁇ times, and ends the process of selecting a nozzle that performs droplet ejection.
  • Step S401 If the nozzle set is determined not exist (NO in step S401), among the ejection number M B, B +, B - the number of nozzle sets can be discharged using the decide. Specifically, after storing the maximum value X od2 of X (where X is an integer) satisfying 2 ⁇ ⁇ M B (step S 407), it is determined whether or not X od 2 ⁇ (P B ⁇ T). (Step S408).
  • step S409 the number of times of ejecting the A rank nozzle (N A ⁇ T) times, B + nozzles, B - respectively the number of times of ejecting the nozzle X od2 times, B + nozzles, B - a B rank nozzle other than the nozzle
  • the setting is made once, and the process of selecting a nozzle for droplet discharge ends.
  • step S410 the number of times of discharging with the A rank nozzle is (N A ⁇ T) times, and the number of times of discharging with the B + nozzle and B - nozzle is (P B ⁇ T) times, and other than the B + nozzle and B - nozzle
  • the number of times of discharging with the B rank nozzle is set to ⁇ M B ⁇ 2 (P B ⁇ T) ⁇ times, and the process of selecting a nozzle for performing droplet discharge ends.
  • the “B rank nozzles other than B A + nozzles and B A ⁇ nozzles” in step S 406 includes B + and B ⁇ nozzle pairs.
  • - performed by "B A + nozzles, B A B rank nozzle other than the nozzle” " ⁇ M B -2 (P A1 ⁇ T) ⁇ times" for discharge is possible to apply the control flow of steps S407 ⁇ S410 it can. By doing this, it is possible to more closely approximate the total amount of droplet volume to the target value.
  • step S409 S410, - the "B + nozzles, B B rank nozzle other than the nozzle" is, B A + or B A - which may contain a nozzle.
  • B A + or B A - It is desirable to eject droplets by priority from the nozzle.
  • FIG. 12 is a diagram showing a control flow of the discharge number control unit 300 when using the C rank nozzle.
  • control flow in the case of using the C rank nozzle can be described in substantially the same manner as the control flow in the case of using the B rank nozzle as shown in steps S206 to S210 of FIG. 9, and FIGS.
  • control flow of the ejection number control unit 300 when using the C rank nozzle will be briefly described.
  • discharge count M C stored in step S211 it is determined whether there are 2 or more (step S501). If ejection number M B is 2 or more (YES in step S501), among the nozzles of C rank, and the nozzle discharge volume is larger than the set value V set (VC +), the discharge volume than the set value V set small nozzle (VC -) determines whether there is a set of (step S503).
  • Step S501 If ejection number M B is not 2 or more (NO in step S501), and, VC +, VC - if the nozzle set is determined not exist (NO in step S503), the number of times of ejecting the A rank nozzle (N Set the number of times of discharging with A rank T nozzle to A ⁇ T times (N B ⁇ T) times, and set the number of times of discharging with C rank nozzle M C times (1 time when the process moves from step S501 to step S207) (Step S502). Thereafter, the process of selecting a nozzle for droplet discharge ends.
  • step S503 If the nozzle set is present (YES in step S503), VC + and VC - - VC + and VC number nozzle set of P C stores (step S504), or discharge count M C is even or odd Is determined (step S505).
  • step S508 the number of times of discharging with the A rank nozzle is (N A ⁇ T) times, the number of times of discharging with the B rank nozzle is (N B ⁇ T) times, and the number of times of discharging with VC + nozzles and VC - nozzles is X
  • the setting is made as ev2 times, and the process of selecting a nozzle for droplet discharge is completed.
  • step S509 the number of times of discharge with the A rank nozzle is (N A ⁇ T) times, the number of times of discharge with the B rank nozzle is (N B ⁇ T) times, and the number of times of discharge with the VC + nozzles and VC ⁇ nozzles is Set the number of times to discharge with P C ⁇ T times, C rank nozzles other than VC + nozzles and VC ⁇ nozzles as ⁇ M C ⁇ 2 (P C ⁇ T) ⁇ times, and select the nozzles that perform droplet discharge Finish the process.
  • Figure 13 is a diagram showing a case where the discharge number M C is determined to be an odd number in the step S505 of FIG. 12 (odd in step S505), the control flow of the discharge count control unit 300.
  • VC A +, VC A - If the set of nozzles is determined that there the (YES in step S601), VC A +, VC A - stores the number P A2 nozzle set in (step S602).
  • step S603 After storing the minimum value X od3 of X (where X is an integer) satisfying 2 ⁇ ⁇ M C (step S603), it is determined whether or not X od3 ⁇ (P A2 ⁇ T) (step S603) S604). If (P A2 ⁇ T) is equal to or greater than X od 3 (YES in step S604), the process proceeds to step S605.
  • step S605 the number of times of discharging with the A rank nozzle is ⁇ (N A ⁇ T) -1 ⁇ times, the number of times of discharging with the B rank nozzle is (N B ⁇ T) times, and the numbers of V C + nozzles and V C A - nozzles
  • the number of times of discharge is set to Xod 3 times, respectively, and the process of selecting a nozzle for performing droplet discharge is completed.
  • step S606 the number of times of discharging with the A rank nozzle is (N A ⁇ T) times, the number of times of discharging with the B rank nozzle is (N B ⁇ T) times, and the number of times of discharging with V C A + nozzles and V C A - nozzles is each (P A2 ⁇ T) times, VC a + nozzles, VC a - set to ⁇ M C -2 (P A2 ⁇ T) ⁇ the number of times of ejecting the C rank nozzle other than the nozzle times, performs droplet ejection End the process of selecting the nozzle.
  • step S601 If the nozzle set is determined not exist (NO in step S601), satisfies the 2X ⁇ M C X (where, X is an integer) for storing a maximum value X OD4 of After that (step S607), it is determined whether or not X od4 ⁇ (P C ⁇ T) (step S608). Then, if (P C ⁇ T) is equal to or greater than X od 4 (YES in step S 608), the process proceeds to step S 609.
  • step S609 the number of times of discharging with the A rank nozzle is (N A ⁇ T) times, the number of times of discharging with the B rank nozzle is (N B ⁇ T) times, and the number of times of discharging with VC + nozzles and VC - nozzles is X
  • the C rank nozzles other than VC + nozzles and VC ⁇ nozzles are set to one time od four times, and the process of selecting the nozzles for performing droplet discharge ends.
  • step S610 the number of times of discharging with the A rank nozzle is (N A ⁇ T) times, the number of times of discharging with the B rank nozzle is (N B ⁇ T) times, and the number of times of discharging with the VC + nozzle and VC ⁇ nozzle is Set the number of times to discharge with P C ⁇ T times, C rank nozzles other than VC + nozzles and VC ⁇ nozzles as ⁇ M C ⁇ 2 (P C ⁇ T) ⁇ times, and select the nozzles that perform droplet discharge Finish the process.
  • the “C rank nozzle other than VC A + nozzle and VC A ⁇ nozzle” in step S 606 includes a set of VC + and VC ⁇ nozzles. Therefore, as in the case of the control flow of the B rank nozzle, the control flow of steps S 607 to S 610 can be applied to the “C rank nozzles other than the VC A + nozzles and the VC A ⁇ nozzles”.
  • step S609, S610, - the "C + nozzles, C C rank nozzle other than the nozzle" is, C A + or C A - which may contain a nozzle.
  • C A + or C A - It is desirable to eject droplets by priority from the nozzle.
  • the number of times of discharge from each of the first to sixth nozzles belonging to one nozzle group is determined together.
  • the landing positions of the droplets ejected from the nozzles 3030 in the openings 17 be adjusted so as to be dispersed in the openings 17.
  • the landing position in one opening 17 is adjusted to be a target with respect to the axis along the scanning direction. For example, in the case of discharging droplets 14 times to one opening 17, discharge is performed 7 times to the upper half area along the column direction of the opening 17 and 7 to the lower half area. Make it eject several times.
  • step S207 When the nozzles of A rank and B rank are used together as in step S207 (FIG. 9), steps S303 and S304 (FIG. 10), and steps S405, S406, S409 and S410 (FIG. 11),
  • the number of times the ink is discharged to the A rank nozzle and the number of times the ink is discharged to the B rank nozzle is set to be approximately the same in the upper half and the lower half of the opening 17 along the row direction.
  • steps S502, S508, and S509 FIG. 12
  • steps S605, S606, S609, and S610 FIG. 13
  • Step of determining the droplet discharge position 14 and 15 are diagrams showing a control flow of the ejection number control unit 300 in the process of determining the droplet ejection position.
  • the ejection number control unit 300 stores a control program for adjusting the landing positions of droplets ejected from the nozzles within the openings to be symmetrical with respect to an axis orthogonal to the scanning direction. .
  • the ejection number control unit 300 controls the droplet ejection position for each ejection number in accordance with the control program. For example, a control program for performing the following control flow is stored in the ejection number control unit 300.
  • FIG. 14 is a diagram showing a control flow of the discharge number control unit 300 when the maximum discharge number T is three.
  • Step S701 it is determined how many times the number of discharges of the first nozzle is (step S701).
  • the “No. 1 nozzle” refers to the No. 1 nozzle belonging to the nozzle group corresponding to the openings 17 in the selected row. More specifically, in step S103 of FIG. 8, if the selected openings 17 of the inner top row of openings 17 shown in FIG. 7, No. 1 nozzles of the nozzle group a 1 is here "1 It corresponds to “No.
  • step S701 1 If the discharge frequency of nozzle # 1 is one (in step S701 1), for ejecting droplets on line L 2. If ejection number of nozzle # 1 is twice on (2 in step S701) the line L 1, L 3, if the number of discharges nozzle # 1 is 3 times (2 in step S701) the line L 1 , L 2 and L 3 are discharged respectively.
  • step S702 the same control flow is performed for the second nozzle (step S702) to the sixth nozzle (step S706) belonging to the nozzle group, the step of determining the droplet discharge position is ended.
  • the landing position with respect to the axis orthogonal to the scanning direction for each nozzle In the case where the maximum number of times of discharge T is 3, for every nozzle, regardless of the number of times of discharge one to three times, the landing position with respect to the axis orthogonal to the scanning direction for each nozzle. It can be controlled to be symmetrical. However, depending on the value of the maximum ejection number T, such control may not be possible for each nozzle. In such a case, a control flow for adjusting the landing positions in the openings as much as possible with respect to an axis orthogonal to the scanning direction as much as possible will be described with reference to FIG.
  • FIG. 15 is a diagram showing a control flow of the discharge number control unit 300 when the maximum discharge number T is four.
  • step S801 it is determined how many times the number of discharges of the first nozzle is (step S801). If the discharge count is one (in step S801 1), discharges on a line L 1 (a), and discharges on the line L 2 (b), and discharges on line L 3 (c), the line L 4. One of the four (d) to be discharged onto 4 is selected. When the number of times of discharge is two (2 in step S801), one of the two of (b) discharged onto lines L 1 and L 4 (a) and discharged onto lines L 2 and L 3 Choose one.
  • step S801 3 If the discharge count is 3 times (in step S801 3), the line L 1, L 2, and discharges on to L 4 (a), and discharges on line L 1, L 2, L 3 (b), One of four selected from (c) discharged onto the lines L 1 , L 3 and L 4 and (d) discharged onto the lines L 2 , L 3 and L 4 is selected. If the number of times of discharge is four (4 in step S801), discharge is performed onto the lines L 1 , L 2 , L 3 , and L 4 (a).
  • step S802 it is determined how many times the number of discharges of the second nozzle is (step S802). If the number of times of ejection is one (1 in step S802), it is determined what position the droplet has been ejected in the first nozzle (step S802A). Is a right side, or when it is determined that the symmetrical ( "right” or “symmetric” in step S802a), and discharges on line L 1 (a), among discharges on line L 2 of the two (b) , Choose one. If it is determined that the left side ( "left” in step S802a), and discharges on line L 3 (a), and discharges on the line L 4 (b) of the two, selecting one.
  • step S802 If the number of times of discharge is two (2 in step S802), one of the two of (b) discharged onto lines L 1 and L 4 (a) and discharged onto lines L 2 and L 3 Choose one. If the number of times of discharge is three (3 in step S802), it is determined what position the droplet was discharged at the second nozzle (step S802B). If it is determined that the right side (the "right” in step S802b), the line L 1, L 2, and discharges onto L 4 (a), the line L 1, L 2, and discharges on to L 3 (b) Select one of the two.
  • step S802b the line L 1, L 3, and discharges on to L 4 (a), the line L 2, L 3, L 4.
  • One of the two (b) to be discharged onto 4 is selected. If the number of times of discharge is four (4 in step S802), discharge is performed onto the lines L 1 , L 2 , L 3 , and L 4 (a).
  • step S806, S806A, and S806B the process of determining the droplet discharge position ends.
  • step S103 to S106 in FIG. 8 When the step of determining the droplet discharge position is completed, a series of control flow (steps S103 to S106 in FIG. 8) in the selected row is completed. After a series of control flows have been performed for all the rows (YES in step S107 in FIG. 8), droplets are discharged to the openings 17 of all the rows (step S108), and the application process is completed.
  • FIG. 16 is a view showing the positional relationship between the substrate to be coated 600 and the head unit 301 in step S108 shown in FIG. 16 (a) to 16 (h) respectively show step S203 (FIG. 9), step S207 (FIG. 9, the case where the process proceeds from step S208), step S303 (FIG. 10), step S304 (FIG. 10), step S405 (FIG. 10). 11), step S406 (FIG. 11), step S409 (FIG. 11), and step S410 (FIG. 11) show the case where the process proceeds to step S108.
  • circles indicating the nozzles 3030 of the head unit 301 are shown in a size based on the result of ranking in step S102 shown in FIG. 8.
  • the target value of the total amount of droplet volume discharged to the opening 17 is 140 [pL]
  • the set value V set is 10 [pL]
  • the required number of discharges N is 14, and the maximum number of discharges T is three.
  • FIG. 16 (a) the droplet volume detected for each nozzle in step S101 (FIG. 8) is not dispersed within one opening, whereas in FIG. 16 (b) to (h), the inside of one opening is It is fluctuating.
  • FIGS. 16B to 16H among the predetermined number of nozzles corresponding to one opening, nozzles having a somewhat different ejection volume are included, while in FIG. 16A. Absent.
  • FIG. 16A shows the case where the volume equal to or larger than the target value of the total amount of droplet volumes discharged to the opening 17 can be discharged only with the A rank.
  • FIG. 16 (b) shows the case where although a B rank nozzle can be used to eject a volume equal to or greater than the target value, a combination of B + and B ⁇ nozzles does not exist.
  • FIGS. 16C and 16D show the case where the number of times of discharge to be discharged by the B rank nozzle is even.
  • FIG. 16C if a B rank nozzle is used, it is possible to eject a volume equal to or greater than a target value, and only a combination of B + and B ⁇ nozzles can eject droplets of a volume to be ejected by the B rank nozzle That's the case.
  • FIG. 16D although it is possible to eject a volume equal to or greater than the target value by using the B rank nozzle, it is impossible to eject a droplet having a volume equal to or greater than the volume to be ejected by the B rank nozzle only with the B + and B ⁇ nozzle pairs. It is.
  • FIGS. 16E to 16H show cases where the number of discharges to be discharged by the B rank nozzle is odd.
  • FIG. 16E using the B rank nozzle, it is possible to eject a volume equal to or greater than the target value, and droplets of the volume to be ejected by the B rank nozzle only with the B A + and B A ⁇ nozzle pairs are ejected. It is a case where discharge is possible. Note that although the number of times of discharge of the A rank nozzle is reduced by one in step S405 of FIG. 11, this reduced one time of droplet discharge is indicated by a dotted circle in FIG.
  • Figure 16 (f) although can be ejected target value or more volume With B rank nozzle, B A +, B A - than nozzle set only eject more droplets volume to be ejected in B rank nozzle It is not possible.
  • B rank nozzle using the B rank nozzle, it is possible to eject a volume equal to or greater than the target value, and only the B + and B ⁇ nozzle pairs can eject droplets of the volume to be ejected by the B rank nozzle. That's the case.
  • FIG. 16 (h) although a volume higher than the target value can be discharged by using the B rank nozzle, it is not possible to discharge droplets larger than the volume to be discharged by the B rank nozzle only with the B + and B ⁇ nozzle pairs. It is.
  • the number of nozzles corresponding to each opening 17 is not particularly limited and may be one, regardless of whether it is horizontal or vertical. However, if the number of nozzles is one, if one of the nozzles is an F rank nozzle, the problem arises that the F rank nozzle does not discharge droplets to the opening 17 responsible for droplet discharge. . Therefore, it is desirable that the number of nozzles 3030 corresponding to each opening 17 be two or more, and it is more desirable that the number be as large as possible. Furthermore, when the number of nozzles corresponding to each opening 17 is large, the effect of making the total droplet volume amount close to the target value in the coating process is high. In this respect, it can be said that the case of side-by-side striking where the number of nozzles corresponding to each opening 17 can be increased is a more preferable embodiment.
  • FIG. 18 is a diagram showing a control flow of a discharge number control unit in the step of selecting a nozzle for performing droplet discharge according to the second embodiment.
  • Steps S901, S902, S904 to S906, and S908 to 911 in FIG. 18 correspond to S201, S202, S204 to S206, and S208 to S211 in FIG. 9, respectively.
  • a point different from FIG. 9 is that S912A and S913A are provided.
  • the maximum number of times of ejection T it is determined whether it is possible to further increase (step S912A).
  • the maximum number of times of ejection T can be increased by changing the waveform of the drive voltage applied to the piezoelectric element to increase the ejection frequency or decreasing the scanning speed of the inkjet head.
  • step S912A If it is determined that the maximum number of times of discharge T can be further increased (YES in step S912A), the number of nozzles of rank A N after increasing the number of times of discharge T N, the number of nozzles of rank B N, the number of nozzles of rank C the number N C stores respectively (step S913A). Then, the process proceeds to step S902. When it is determined that the maximum ejection number T can not be increased (NO in step S912A), the process proceeds to step S904.
  • the discharge volume hardly changes with time. Therefore, by performing droplet discharge only from such a nozzle, the step of detecting the volume of the droplet for each nozzle (step S101 of FIG. 8), and the step of ranking the nozzles (step S102 of FIG. 8) The frequency of doing can be reduced. As a result, the time required for the coating process can be shortened. In order to realize this, in the present embodiment, the maximum number of times of discharge T is increased, so that it is possible to discharge droplets equal to or larger than the target value with only the A rank nozzle as much as possible.
  • FIG. 19 is a diagram showing a control flow of a discharge number control unit in the step of selecting a nozzle for performing droplet discharge according to a modification of the second embodiment.
  • a different point from FIG. 18 is the positions of steps S912B and S913B respectively corresponding to steps S912A and S913A (FIG. 18).
  • Step S912B it is determined whether or not the maximum number of times of discharge T can be increased when it is determined that it is not possible to discharge droplets of a target value or more using only the A rank nozzle. In this modification, it is determined whether or not the maximum number of times of discharge T can be increased when it is determined that the droplet exceeding the target value can not be discharged even if the B rank nozzle is used (NO in step S904). (Step S912B).
  • step S912B If it is determined that the maximum ejection number T can be further increased (YES in step S912B), N A , N B , and N C after increasing the maximum ejection number T are stored (step S913B), and the process proceeds to step S902. Transition. If it is determined that the maximum ejection number T can not be increased (NO in step S912B), the process proceeds to step S911.
  • the shape of the opening is long indicates that the opening has a long side and a short side, and it does not have to be rectangular.
  • the shape may be a square, a circle, an oval, or the like.
  • FIG. 1 shows a configuration in which the respective layers of the TFT layer 2 to the counter electrode 14 are laminated on the substrate 1.
  • any of the layers may be omitted, or other layers such as a transparent conductive layer may be further included.
  • FIG. 3E shows a configuration in which the droplet 19 made of the ink for the hole transport layer is not discharged to the recess 8.
  • the droplets 19 made of the ink for a hole transport layer may be further discharged to the depressions 8 to form an organic layer made of the same material as the hole transport layer.
  • the vapor concentration of the solvent that evaporates from the ink for the hole transport layer can be made uniform, and the hole transport layer 10 can be formed with a uniform film thickness.
  • the droplets 18 made of the ink for the organic light emitting layer may not be discharged to the depressions 8.
  • the recess formed following the contact hole is not an essential component.
  • the portion corresponding to the recess on the partition layer is the same material as the material forming the partition layer.
  • the configuration may be filled with
  • a eutectic point laser microscope is used as the droplet volume detection camera 501, but a CCD camera can also be used.
  • the shape of the ink droplet is regarded as, for example, a hemispherical shape, and the CPU 150 can calculate the droplet volume of the ink from the droplet diameter in the image captured by the camera.
  • the linear motor units 204A, 205A, 204B and 205B and the servomotor units 221A and 221B are merely examples of means for moving the gantry units 210A and 210B and the moving bodies 220A and 220B, respectively.
  • the use of is not essential.
  • at least one of the gantry unit and the moving body may be moved by using a timing belt mechanism or a ball screw mechanism.
  • the branches at steps S802A and S806A are two, “right or symmetrical” and “left,” but the branches are three, “right,” “symmetrical,” and “left”. It may be At this time, when it is determined that the "symmetrical” discharges on line L 1 (a), and discharges on the line L 2 (b), and discharges on line L 3 (c), the line L It is possible to select any one of the four (d) discharged onto four . The same control can be applied to steps S802B and S806B.
  • the above-described inkjet device is merely an example, and it may be an in-jet device capable of performing at least the above-described control.
  • the position of the nozzle with respect to the application target substrate can be appropriately changed by adjusting the angle of the head portion with respect to the fixed stage in accordance with the standard and size of the substrate.
  • the number of times the first to sixth nozzles belonging to each nozzle group discharge is not fixed in each nozzle group but fluctuates among the nozzle groups according to the detection result in the droplet volume detection unit. This will be described with reference to FIG.
  • FIG. 20 is a view showing the positional relationship between the substrate to be coated and the head portion in step S108 shown in FIG.
  • the detection results of the droplet volume in the droplet volume detection unit are shown on the upper right of the first to sixth nozzles.
  • the detection results of the nozzles indicated by “B 2 + ”, “B 1 + ”, “A”, “B 1 ⁇ ”, and “B 2 ⁇ ” in each drawing are 10.5 [pL] and 10.
  • it is 3 [pL], 10 [pL], 9.7 [pL], 9.5 [pL].
  • (a1) to (d1) correspond to the present invention
  • (a1) ′ to (d1) ′ are comparative examples corresponding to each of (a1) to (d1).
  • the nozzles 1, 2, 5, 6 are discharged twice respectively in any of the openings arranged in the column direction. It is assumed that the nozzle number is set to be discharged three times each. That is, in the comparative example shown in (a1) 'to (d1)', the number of times of the first to sixth nozzles belonging to each nozzle group discharges is fixed between the nozzle groups.
  • the total amount [pL] of droplet volume is 140 to 141.9 [pL] (0 to +1.36 [%] with respect to the target value 140 [pL])
  • 140 to 143.6 [pL] (0 to +2.57 [%] with respect to the target value 140 [pL]) is there. Therefore, it is understood that the error with respect to the target value is smaller when the number of times the nozzles No. 1 to No. 6 belonging to each nozzle group discharge is not fixed between the nozzle groups as in the configuration of the present invention. This difference is more pronounced when a non-ejection nozzle occurs.
  • FIG. 21 is a view showing the positional relationship between the substrate to be coated and the head portion in step S108 shown in FIG. 8 when a non-ejection nozzle is generated.
  • FIGS. 21 (a1) to (d1) and (a1) ′ to (d1) ′ corresponds to each of FIGS. 20 (a1) to (d1) and (a1) ′ to (d1) ′. It is.
  • the nozzles 3030 shown in FIG. 21 the nozzles that are in the non-ejection state are shown by being filled in.
  • the total amount [pL] of droplet volume is 140 to 141.9 [pL] (target value 140 [pL] even when a non-ejection nozzle occurs. It does not change with 0 to +1.36 [%]). This is because it is possible to change the number of times the first to sixth nozzles discharge between the nozzle groups. Therefore, according to the present invention, it is possible to minimize the influence of the occurrence of the non-ejection nozzle.
  • the total number [pL] of droplet volumes is 112 because the number of times the first to sixth nozzles discharge can not be changed between the nozzle groups. .1 to 120 [pL] (-19.93 to -14.29 [%] with respect to the target value 140 [pL]) and a large deviation from the target value of 140 [pL].
  • the present invention is more effective when a non-ejection nozzle occurs.
  • the method of scanning the head unit side with respect to the substrate to be coated is shown, but the present invention is not limited to this.
  • the application target substrate side may be moved with respect to the head unit in which a plurality of nozzles are arranged.
  • the total volume of the droplets ejected to each opening 17 may be different for each luminescent color, but it is necessary to be different. Absent. Also, as in the step of applying the ink for the hole transport layer, the total volume of the volume may be made uniform for each color, even for an ink that does not inherently need to make the total volume different for each luminescent color. It may be different.
  • FIG. 16 (h) shows an example in which the process proceeds to step S108 after step S410 of FIG.
  • the first nozzle is A rank
  • the second to fourth nozzles are B A + ranks, fifth, besides those shown in FIG.
  • the nozzle is B - rank
  • the sixth nozzle is B + rank.
  • three times from nozzle # 1 is A rank
  • B A + 5 times from rank nozzle the sum of the discharging frequencies 2-4 No. nozzle
  • B - rank Droplets are ejected three times each from a certain fifth nozzle and a sixth nozzle which is B + rank.
  • the total amount of droplet volume discharged to the opening is 141.5 [pL].
  • the ejection amount sets a part of the number of times of ejection by the B + rank nozzle (No. 6 nozzle) Control is performed so as to discharge from the B A + rank nozzle (No. 2 to 4 nozzles) close to the value V set instead.
  • this control in the case of this example, No. 1 nozzle (A rank) three times, B A + rank nozzle seven times (total of the number of times of discharge of No. 2 to No. 4 nozzles) No.
  • the method of manufacturing the organic EL display panel according to the present invention includes, for example, a method of manufacturing an organic EL display panel used as various displays for home or public facilities, or for business use, televisions, displays for portable electronic devices, etc. And the like.
  • Reference Signs List 1 substrate 2 TFT layer 3 feeding electrode 4 planarization film 5 contact hole 6 pixel electrode 7 partition wall layer 8 hollow portion 9 hole injection layer 10 hole transport layer 11 organic light emitting layer 12 electron transport layer 13 electron injection layer 14 counter electrode 16 Organic layer containing organic light emitting layer material 17 Opening 18 Droplet consisting of ink for organic light emitting layer 19 Droplet consisting of ink for hole transport layer 20 Inkjet table 30 Inkjet head 50 Droplet volume detection unit 100 Organic EL display panel 150 CPU 151 storage means 152 input means 200 base 201A, 201B, 202A, 202B stand 203A, 203B guide shaft 204A, 205A, 204B, 205B linear motor part 210A, 210B gantry part 211A, 211B, 212A, 212B guide groove 213, 500 control Part 220A, 220B Mobile body 221A, 221B Servo motor 300 Discharge number control part 301 Head part 302 Body part 304 Servo motor 501 Droplet volume detection camera 600

Abstract

 開口部に吐出される液滴の体積の総量を、簡易な制御で均一化することが可能な有機EL表示パネルの製造方法等を提供する。 開口部17を形成したEL基板と、ノズル3030を複数配置したヘッド部301とを準備する第1工程と、各ノズル3030から単位回数当たりに吐出される液滴体積をノズル毎に検出する第2工程と、ノズル3030を開口部17と1対1対応するノズル群a,a,a,aに分け、ノズル群a,a,a,a毎に、開口部17に吐出される液滴体積総量が基準範囲となるように、第2工程にてノズル毎に検出された液滴体積のバラツキに基づき、ノズル3030が行う液滴の吐出回数をノズル毎に決定する第3工程と、ヘッド部301を行方向に走査させながら、開口部17に対し対応するノズル群に属するノズル3030から、前記第3工程でノズル毎に決定された吐出回数だけ液滴を吐出させる第4工程と、を含む。

Description

有機EL表示パネルの製造方法、および有機EL表示パネルの製造装置
 本発明は、有機EL素子を備える有機EL表示パネルの製造方法、および有機EL表示パネルの製造装置に関する。
 近年、表示装置として基板上に有機EL素子を配設した有機EL表示パネルが普及しつつある。有機EL表示パネルは、自己発光を行う有機EL素子を利用するため視認性が高く、さらに完全固体素子であるため耐衝撃性に優れるなどの特徴を有する。
 有機EL素子は電流駆動型の発光素子であり、陽極及び陰極の電極対の間に、キャリアの再結合による電界発光現象を行う有機発光層等を積層して構成される。また、有機EL表示パネルでは、赤色(R),緑色(G),青色(B)の各色に対応する有機EL素子をそれぞれサブピクセルとし、R,G,Bの3つのサブピクセルの組み合わせが1ピクセル(1画素)に相当する。
 このような有機EL表示パネルとして、有機EL素子の有機発光層をインクジェット方式等のウエットプロセス(塗布工程)で形成したものが知られている(例えば、特許文献1)。インクジェット方式では、基板上の隔壁層に行列状に設けられた開口部(有機発光層形成領域に対応する。)に対してインクジェットヘッドを走査させる。そして、インクジェットヘッドが備える複数のノズルから、各開口部に対し有機発光層を構成する有機材料および溶媒を含有したインクの液滴を吐出させる。このとき、通常、一の開口部に対しては、液滴が複数回にわたって吐出される。また、ピエゾ方式のインクジェット装置にあっては、各ノズルが備えるピエゾ素子に与える駆動電圧の波形を変化させることにより、各ノズルから吐出される液滴の体積が調整される。
 有機EL表示パネルにおいては、各画素間の発光輝度が均一である必要がある。発光輝度は有機発光層の膜厚に依存するため、上記方法により有機発光層を形成する場合には、各開口部に吐出される液滴の体積の総量を均一にする必要がある。しかしながら、各ピエゾ素子に同一波形の駆動信号を与えた場合であっても、ノズル毎に吐出特性が異なるために、各ノズルから吐出される液滴の体積にバラツキが生じることがある。その結果、吐出される液滴の体積の総量が各開口部間で異なってしまい、各画素間で発光輝度にバラツキが生じる。
 これに対し、特許文献1では、予めノズル毎に吐出される液滴の体積を検出しておき、このノズル毎の検出結果に基づき、各ノズルのピエゾ素子毎に与える駆動電圧の波形を変化させる技術が開示されている。これにより、各ノズルから吐出される液滴の体積を均一化することが可能となり、その結果、吐出される液滴の体積の総量が各開口部間で均一化される。
特開2009-117140号公報 特開2001-219558号公報
 特許文献1に開示されている技術においては、ノズル毎に所望の波形の駆動電圧を生成する必要がある。しかしながら、インクジェットヘッドが備えるノズル全てについてこれを行おうとすると、インクジェット装置は非常に複雑な制御を強いられるという問題がある。さらに、有機EL表示パネルの大判化に伴って、インクジェットヘッドが備えるノズルの数も増大することが予想されるため、特許文献1に記載の技術を適用することは現実的には難しい。
 本発明は上記の問題点に鑑みてなされたもので、各開口部に吐出される液滴の体積の総量を、簡易な制御で均一化することが可能な有機EL表示パネルの製造方法等を提供することを目的とする。
 本発明の一態様である有機EL表示パネルの製造方法は、複数の開口部をピクセル単位に行列状に形成した隔壁層を設けたEL基板と、有機材料および溶媒を含有したインクの液滴を吐出するノズルを列方向に複数配置したインクジェットヘッドとを準備する第1工程と、前記各ノズルから単位回数当たりに吐出される液滴の体積をノズル毎に検出する第2工程と、前記各開口部に対して所定数のノズルが割り当てられるように、前記複数のノズルを、前記各開口部と1対1対応するノズル群に分け、ノズル群毎に、前記各開口部に吐出される液滴の体積の総量が基準範囲となるように、前記第2工程においてノズル毎に検出された液滴の体積のバラツキに基づき、ノズル群に属する各ノズルが行う液滴の吐出回数をノズル毎に決定する第3工程と、前記EL基板に対し前記インクジェットヘッドを行方向に走査させながら、前記各開口部に対し、対応するノズル群に属する各ノズルから、前記第3工程でノズル毎に決定された吐出回数だけ液滴を吐出させる第4工程と、を含む構成とした。
 本発明の一態様に係る有機EL表示パネルの製造方法では、第3工程において、各開口部に対して所定数のノズルが割り当てられるように、複数のノズルを、前記各開口部と1対1対応するノズル群に分け、ノズル群毎に、ノズル群に属する各ノズルが行う液滴の吐出回数がノズル毎に決定される。そして、各開口部に吐出される液滴の体積の総量が基準範囲となるように、各ノズルが行う当該吐出回数を、第2工程においてノズル毎に検出された液滴の体積のバラツキに基づいてノズル毎に決定する。すなわち、本発明の一態様においてノズル毎に個々に変化させるのは液滴の吐出回数であるため、特許文献1のように、ノズル毎に異なる波形の駆動電圧を生成するといった複雑な制御を行う必要がない。
 したがって、本発明の一態様に係る有機EL表示パネルの製造方法によれば、各開口部に吐出される液滴の体積の総量を、簡易な制御で均一化することが可能である。
実施の形態1に係る有機EL表示パネルの構成を示す部分断面図である。 実施の形態1に係る有機EL表示パネルの隔壁層の形状を示す模式図である。 実施の形態1に係る有機EL表示パネルの製造工程例を示す図である。 実施の形態1に係る有機EL表示パネルの製造工程例を示す図である。 インクジェット装置の主要構成を示す図である。 インクジェット装置の機能ブロック図である。 実施の形態1に係る塗布対象基板とヘッド部の位置関係(横打ち時)を示す図である。 実施の形態1に係る塗布工程における制御フローを示す図である。 液滴吐出を行うノズルを選択する工程における吐出回数制御部の制御フローを示す図である。 図9のステップS210で吐出回数Mが偶数であると判定した場合の、吐出回数制御部の制御フローを示す図である。 図9のステップS210で吐出回数Mが奇数であると判定した場合の、吐出回数制御部300の制御フローを示す図である。 Cランクノズルを使用する場合の吐出回数制御部の制御フローを示す図である。 図12のステップS505で吐出回数Mが奇数であると判定した場合の、吐出回数制御部300の制御フローを示す図である。 液滴吐出位置を決定する工程における、吐出回数制御部の制御フロー(最大吐出回数T=3)を示す図である。 液滴吐出位置を決定する工程における、吐出回数制御部の制御フロー(最大吐出回数T=4)を示す図である。 図8に示すステップS108における塗布対象基板とヘッド部の位置関係を示す図である。 実施の形態1に係る塗布対象基板とヘッド部の位置関係(縦打ち時)を示す図である。 実施の形態2に係る、液滴吐出を行うノズルを選択する工程における吐出回数制御部の制御フローを示す図である。 実施の形態2の変形例に係る、液滴吐出を行うノズルを選択する工程における吐出回数制御部の制御フローを示す図である。 図8に示すステップS108における塗布対象基板とヘッド部の位置関係を示す図である。 不吐出ノズルが発生した場合の図8に示すステップS108における塗布対象基板とヘッド部の位置関係を示す図である。
 ≪本発明の一態様の概要≫
 本発明の一態様に係る有機EL表示パネルの製造方法は、複数の開口部をピクセル単位に行列状に形成した隔壁層を設けたEL基板と、有機材料および溶媒を含有したインクの液滴を吐出するノズルを列方向に複数配置したインクジェットヘッドとを準備する第1工程と、前記各ノズルから単位回数当たりに吐出される液滴の体積をノズル毎に検出する第2工程と、前記各開口部に対して所定数のノズルが割り当てられるように、前記複数のノズルを、前記各開口部と1対1対応するノズル群に分け、ノズル群毎に、前記各開口部に吐出される液滴の体積の総量が基準範囲となるように、前記第2工程においてノズル毎に検出された液滴の体積のバラツキに基づき、ノズル群に属する各ノズルが行う液滴の吐出回数をノズル毎に決定する第3工程と、前記EL基板に対し前記インクジェットヘッドを行方向に走査させながら、前記各開口部に対し、対応するノズル群に属する各ノズルから、前記第3工程でノズル毎に決定された吐出回数だけ液滴を吐出させる第4工程と、を含む。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、同一発光色の前記有機材料を含有したインクの液滴が吐出される開口部間において、前記基準範囲は前記目標値に対して±2%以内である。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、前記第3工程において、ノズル群に属する各ノズルのうち、前記第2工程における検出値が、前記各ノズルから単位回数当たりに吐出される液滴の体積として予め設定された設定値に対し、第1の範囲内であるノズルの各々に液滴吐出を行わせた場合を想定して、前記目標値以上の体積の液滴を吐出できるか否かを判定し、前記目標値以上の体積の液滴を吐出できると判定した場合には、前記第1の範囲内であるノズルを液滴吐出に用いるノズルとして選択し、前記目標値以上の体積の液滴を吐出できないと判定した場合には、前記第1の範囲内であるノズルと、当該第1の範囲よりも前記設定値からのバラツキが大きい第2の範囲内であるノズルを液滴吐出に用いるノズルとして選択する。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記第3工程において、前記目標値以上の体積の液滴を吐出できないと判定した場合には、さらに、前記第2の範囲内であるノズルのうち、前記第2工程における検出値が前記設定値よりも高いノズルと前記設定値よりも低いノズルの組が存在するか否かを判定し、前記ノズルの組が存在すると判定した場合には、当該ノズルの組を液滴吐出に用いるノズルとして選択する。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記第3工程において、前記目標値以上の体積の液滴を吐出できないと判定した場合には、さらに、前記第2の範囲内であるノズルのうち、前記第2工程における検出値が前記設定値よりも高いノズルと前記設定値よりも低いノズルの組が存在するか否かを判定し、前記ノズルの組が存在すると判定した場合には、当該ノズルの組のうち、前記第2工程における検出値の平均値が前記設定値に対し前記第1の範囲内であるノズルの組が存在するか否かを判定し、前記第1の範囲内であるノズルの組が存在すると判定した場合には、当該第1の範囲内であるノズルの組を液滴吐出に用いるノズルとして選択する。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記第3工程において、ノズル群に属する各ノズルから吐出される液滴の前記各開口部内での着弾位置が、前記各開口部内で分散されるように調整される。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記第3工程において、ノズル群に属する各ノズルから吐出される液滴の前記各開口部内での着弾位置が、列方向に配列された開口部の中心を結ぶ仮想線に対して対称となるように調整される。
 また、本発明の一態様に係る有機EL表示パネルの製造方法の特定の局面では、前記各開口部の形状は、列方向に長辺を有する長尺状である。
 本発明の一態様に係る有機EL表示パネルの製造装置は、有機材料および溶媒を含有したインクの液滴を吐出するノズルを列方向に複数配置したインクジェットヘッドと、前記各ノズルから単位回数当たりに吐出される液滴の体積をノズル毎に検出する液滴体積検出部と、複数の開口部をピクセル単位に行列状に形成した隔壁層が設けられたEL基板に対し、前記インクジェットヘッドを行方向に走査させるヘッド走査部と、前記各ノズルが行う液滴の吐出回数をノズル毎に決定するとともに、決定された吐出回数だけ前記各ノズルから液滴を吐出させる吐出回数制御部と、を備え、前記各開口部に対して所定数のノズルが割り当てられるように、前記複数のノズルは、前記各開口部と1対1対応するノズル群に分けられており、前記吐出回数制御部は、前記各開口部に吐出される液滴の体積の総量が基準範囲となるように、前記液滴体積検出部でノズル毎に検出された液滴の体積のバラツキに基づき、各ノズルの吐出回数をノズル毎に決定する。
 また、本発明の一態様に係る有機EL表示パネルの製造装置の特定の局面では、前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、同一発光色の前記有機材料を含有したインクの液滴が吐出される開口部間において、前記基準範囲は前記目標値に対して±2%以内である。
 ≪実施の形態1≫
 [全体構成]
 図1は実施の形態1に係る有機EL表示パネル100の構成を示す部分断面図である。有機EL表示パネル100は、同図上側を表示面とする、いわゆるトップエミッション型である。
 図1に示すように、基板(EL基板)1上には、TFT層2、給電電極3、平坦化膜4、画素電極6、正孔注入層9が順次積層されている。正孔注入層9の上には、有機発光層11の形成領域となる複数の開口部17が形成された隔壁層7が設けられている。開口部17の内部では、正孔輸送層10、有機発光層11、電子輸送層12、電子注入層13、対向電極14が順次積層されている。
 <基板、TFT層、給電電極>
 基板1は有機EL表示パネル100における背面基板であり、その表面には、有機EL表示パネル100をアクティブマトリクス方式で駆動するためのTFT(薄膜トランジスタ)を含むTFT層2が形成されている。TFT層2の上面には、各TFTに対して外部から電力を供給するための給電電極3が形成されている。
 <平坦化膜>
 平坦化膜4は、TFT層2および給電電極3が配設されていることにより生じる表面段差を平坦に調整するために設けられており、絶縁性に優れる有機材料で構成されている。
 <コンタクトホール>
 コンタクトホール5は、給電電極3と画素電極6とを電気的に接続するために設けられ、平坦化膜4の表面から裏面にわたって形成されている。コンタクトホール5は、列方向に配列されている開口部17の間に位置するように形成されており、隔壁層7により覆われた構成となっている。コンタクトホール5が隔壁層7により覆われていない場合には、コンタクトホール5の存在により、有機発光層11が平坦な層とはならず、発光ムラ等の原因となる。これを避けるため、上記のような構成としている。
 <画素電極>
 画素電極6は陽極であり、開口部17に形成される一の有機発光層11毎に形成されている。有機EL表示パネル100はトップエミッション型であるため、画素電極6の材料としては高反射性材料が選択されている。
 <正孔注入層>
 正孔注入層9は、画素電極6から有機発光層11への正孔の注入を促進させる目的で設けられている。
 <隔壁層>
 隔壁層7は、有機発光層11を形成する際、赤色(R)、緑色(G)、青色(B)の各色に対応する有機発光層材料と溶媒を含むインクが互いに混入することを防止する機能を果たす。
 コンタクトホール5の上方を覆うように設けられている隔壁層7は、全体的にはXY平面またはYZ平面に沿った断面が台形の断面形状を有しているが、コンタクトホール5に対応する位置では、隔壁層材料が落ち込んだ形状となっている。以下、この落ち込んだ部分を窪み部8と称する。
 図2は有機EL表示パネル100を表示面側から見た隔壁層7の形状を模式的に示す図であり、説明の都合上、正孔輸送層10、有機発光層11、電子輸送層12、電子注入層13、対向電極14を取り除いた状態を示している。また、図1の部分断面図は、図2におけるA-A’断面図に相当し、以下、X方向を行方向、Y方向を列方向とする。
 図2に示すように、隔壁層7に設けられた開口部17は、ピクセル単位に行列状に(XY方向に)配列されている。開口部17は有機発光層11が形成される領域であり、有機発光層11の配置および形状は、開口部17の配置および形状により規定される。開口部17は列(Y)方向に長辺を有する長尺状であり、例えば、行(X)方向に沿った辺が約30~130[μm]、列(Y)方向に沿った辺が約150~600[μm]の寸法で形成されている。
 開口部17には、R,G,Bの各色に対応する開口部17R,17G,17Bがある。開口部17RにはR、開口部17GにはG、開口部17BにはBにそれぞれ対応する有機発光層11が形成される。開口部17R,17G,17Bがそれぞれサブピクセルであり、当該開口部17R,17G,17Bの3つのサブピクセルの組み合わせが1ピクセル(1画素)に相当する。また、開口部17はR,G,Bの色単位に列毎に配列されており、同一列に属する開口部17は同色に対応する開口部である。
 コンタクトホール5は、列方向に配列された開口部17の間、すなわち隔壁層7の下部に位置している。なお、上記で画素電極6は開口部17に形成される一の有機発光層11毎に形成されていることを述べたが、これはすなわち、画素電極6がサブピクセル毎に設けられていることを意味する。
 <正孔輸送層>
 図1の部分断面図に戻り、正孔輸送層10は、画素電極6から注入された正孔を有機発光層11へ輸送する機能を有する。
 <有機発光層>
 有機発光層11は、キャリア(正孔と電子)の再結合による発光を行う部位であり、R,G,Bのいずれかの色に対応する有機材料を含むように構成されている。開口部17RにはRに対応する有機材料、開口部17GにはGに対応する有機材料、開口部17BにはBに対応する有機材料をそれぞれ含む有機発光層11が形成される。
 窪み部8には有機発光層11を構成する材料を含む有機層16が形成されている。この有機層16は、塗布工程において、開口部17とともに窪み部8にもインクを塗布することで、有機発光層11と同時に形成されたものである。
 <電子輸送層>
 電子輸送層12は、対向電極14から注入された電子を有機発光層11へ輸送する機能を有する。
 <電子注入層>
 電子注入層13は、対向電極14から有機発光層11への電子の注入を促進させる機能を有する。
 <対向電極>
 対向電極14は陰極である。有機EL表示パネル100はトップエミッション型であるため、対向電極14の材料としては光透過性材料が選択されている。
 <その他>
 なお、図1には図示しないが、対向電極14の上には、有機発光層11が水分や空気等に触れて劣化することを抑制する目的で封止層が設けられる。有機EL表示パネル100はトップエミッション型であるため、封止層の材料としては、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の光透過性材料を選択する。
 なお、各開口部17に形成される有機発光層11を、すべて同色の有機発光層とすることもできる。
 <各層の材料>
 次に、上記で説明した各層の材料を例示する。言うまでもなく、以下に記載した材料以外の材料を用いて各層を形成することも可能である。
 基板1:無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、アルミナ等の絶縁性材料
 平坦化膜4:ポリイミド系樹脂、アクリル系樹脂
 画素電極6:Ag(銀)、Al(アルミニウム)、銀とパラジウムと銅との合金、銀とルビジウムと金との合金、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)
 隔壁層7:アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂
 有機発光層11:オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質(いずれも特開平5-163488号公報に記載)
 正孔注入層9:MoOx(酸化モリブデン)、WOx(酸化タングステン)又はMoxWyOz(モリブデン-タングステン酸化物)等の金属酸化物、金属窒化物又は金属酸窒化物
 正孔輸送層10:トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物、スチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体(いずれも特開平5-163488号公報に記載)
 電子輸送層12:バリウム、フタロシアニン、フッ化リチウム
 電子注入層13:ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体(いずれも特開平5-163488号公報に記載)
 対向電極14:ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)
 以上、有機EL表示パネル100の構成等について説明した。次に、有機EL表示パネル100の製造方法を例示する。
 [製造方法]
 ここでは、先に有機EL表示パネル100の全体的な製造方法を例示する。その後、製造方法中の塗布工程について詳細を説明する。
 <概略>
 まず、TFT層2及び給電電極3が形成された基板1を準備する(図3(a))。
 その後、フォトレジスト法に基づき、TFT層2及び給電電極3の上に絶縁性に優れる有機材料を用いて、厚み約4[μm]の平坦化膜4を形成する。このとき、コンタクトホール5を列方向に隣接する各開口部17の間の位置に合わせて形成する(図3(b))。所望のパターンマスクを用いたフォトレジスト法を行うことで、平坦化膜4とコンタクトホール5を同時に形成することができる。なお、当然ながらコンタクトホール5の形成方法はこれに限定されない。例えば、一様に平坦化膜4を形成した後、所定の位置の平坦化膜4を除去して、コンタクトホール5を形成することもできる。
 続いて、真空蒸着法またはスパッタ法に基づき、厚み150[nm]程度の金属材料からなる画素電極6を、給電電極3と電気接続させながら、サブピクセル毎に形成する。つづいて、反応性スパッタ法に基づき、正孔注入層9を形成する(図3(c))。
 次に、隔壁層7をフォトリソグラフィー法に基づいて形成する。まず隔壁層材料として、感光性レジストを含むペースト状の隔壁層材料を用意する。この隔壁層材料を正孔注入層9上に一様に塗布する。この上に、図2に示した開口部17のパターンに形成されたマスクを重ねる。続いてマスクの上から感光させ、隔壁層パターンを形成する。その後は、余分な隔壁層材料を水系もしくは非水系エッチング液(現像液)で洗い出す。これにより、隔壁層材料のパターニングが完了する。以上で有機発光層形成領域となる開口部17が規定されるとともに、列方向で隣接する開口部17の間の上面に窪み部8が形成された、表面が少なくとも撥水性の隔壁層7が完成する(図3(d))。本実施の形態のようにコンタクトホール5が形成されている場合、通常は隔壁層材料がコンタクトホール5の内部に入り込むため、窪み部8が自然に形成される。このため、別途窪み部8を形成するための工程が不要であり、生産コスト及び製造効率上において有利である。
 なお、隔壁層7の形成工程においては、さらに、開口部17に塗布するインクに対する隔壁層7の接触角を調節する、もしくは、表面に撥水性を付与するために隔壁層7の表面を所定のアルカリ性溶液や水、有機溶媒等によって表面処理するか、プラズマ処理を施すこととしてもよい。
 次に、正孔輸送層10を構成する有機材料と溶媒を所定比率で混合し、正孔輸送層用インクを調製する。このインクをヘッド部301に供給し、塗布工程に基づき、各開口部17に対応するノズル3030から、正孔輸送層用インクよりなる液滴19を吐出する(図3(e))。その後、インクに含まれる溶媒を蒸発乾燥させ、必要に応じて加熱焼成すると正孔輸送層10が形成される(図4(a))。
 次に、有機発光層11を構成する有機材料と溶媒を所定比率で混合し、有機発光層用インクを調製する。このインクをヘッド部301に供給し、塗布工程に基づき、開口部17及び窪み部8に対応するノズル3030から、有機発光層用インクよりなる液滴18を吐出する(図4(b))。その後、インクに含まれる溶媒を蒸発乾燥させ、必要に応じて加熱焼成すると有機発光層11及び有機発光層11と同一材料から成る有機層16が形成される(図4(c))。
 また、図4(b)において、開口部17だけでなく窪み部8に対しても有機発光層用インクの液滴を吐出させているのは、ノズルの目詰まりを防止するためである。一般的に、有機発光層および正孔輸送層形成のために使用されるインクは、インクジェットプリンタで用いられる印字用インクに比べて高粘度である。このため、仮にインクを吐出しないように設定したとすると、当該ノズルの内部でインクが凝固してしまい目詰まりの原因となる。いったん目詰まりが生じたノズルからは設定時間内に設定量のインクを吐出できなくなり、開口部17に所定量のインクを吐出できないために基板のロスが生じたり、ヘッド部301の交換が必要となることがある。このような場合には、ヘッド部301の取り外し、洗浄、再度高精度にアライメントして装着する作業が必要であり、生産効率を低下させる原因となる。しかしながら、上記の構成によれば、このような問題を防止することができる。
 さらに、開口部17におけるコンタクトホール5に近接する領域においては、溶媒の蒸気濃度が低いために他の部分よりも溶媒の蒸発が促進される。不均一な蒸気濃度下で乾燥が進むと、溶媒の蒸気濃度が低い領域における膜厚が厚くなり、全体として膜厚が均一な層を得ることができない恐れがある。しかしながら、図4(b)に示すように、開口部17及び窪み部8の両方に対しインクを塗布することで、開口部17におけるコンタクトホール5に近接する領域における蒸気濃度が高められる。その結果、開口部17における溶媒の蒸気濃度の均一化が図られ、開口部17全域にわたって均一な膜厚で有機発光層11を形成することができる。よって、筋ムラや面ムラ等、各種発光ムラの発生が抑制され、従来に比べて良好な画像表示性能を発揮させることが可能である。
 ここで、図3(e),図4(b)に示す塗布工程においては、各開口部17に対して所定数のノズルが割り当てられるように、複数のノズル3030を、各開口部17と1対1対応するノズル群に分ける。そして、各ノズル群からそれに対応する開口部17に対し、それぞれ液滴が吐出される。このとき、本実施の形態においては、ノズル群に属する各ノズルが行う液滴の吐出回数をノズル毎に調整することにより、各開口部17に吐出される液滴の体積の総量が基準範囲となるようにしている。この結果、吐出される液滴の体積の総量を各開口部間で均一にすることができるので、各画素間での発光輝度のバラツキを抑制することが可能である。この詳細については、後の<塗布工程>の項で説明する。
 次に、有機発光層11の表面に、電子輸送層12を構成する材料を真空蒸着法に基づいて成膜する。これにより、電子輸送層12が形成される。つづいて、電子注入層13を構成する材料を蒸着法、スピンコート法、キャスト法などの方法により成膜し、電子注入層13が形成される。そして、ITO、IZO等の材料を用い、真空蒸着法、スパッタ法等で成膜する。これにより対向電極14が形成される(図4(d))。
 なお、図示しないが、対向電極14の表面には、SiN、SiON等の光透過性材料をスパッタ法、CVD法等で成膜することで、封止層を形成する。
 以上の工程を経ることにより有機EL表示パネル100が完成する。
 <塗布工程>
 以下、特に、正孔輸送層10および有機発光層11を形成する際の塗布工程について詳細に説明する。まず、塗布工程に使用されるインクジェット装置(製造装置)について説明する。
 (インクジェット装置)
 図5は、本実施の形態で使用するインクジェット装置1000の主要構成を示す図である。図6は、インクジェット装置1000の機能ブロック図である。
 図5,6に示すように、インクジェット装置1000は、インクジェットテーブル20、インクジェットヘッド30、液滴体積検出部50、制御装置(PC)15で構成される。
 図6に示すように、制御装置15は、CPU150、記憶手段151(HDD等の大容量記憶手段を含む)、表示手段(ディスプレイ)153、入力手段152で構成される。当該制御装置15は具体的にはパーソナルコンピューター(PC)を用いることができる。記憶手段151には、制御装置15に接続されたインクジェットテーブル20、インクジェットヘッド30、液滴体積検出部50を駆動するための制御プログラム等が格納されている。インクジェット装置1000の駆動時には、CPU150が入力手段152を通じてオペレータにより入力された指示と、前記記憶手段151に格納された各制御プログラムに基づいて所定の制御を行う。
 (インクジェットテーブル)
 図5に示すように、インクジェットテーブル20はいわゆるガントリー式の作業テーブルであり、基台のテーブルの上を2基のガントリー部(移動架台)が一対のガイドシャフトに沿って移動可能に配されている。
 具体的構成として、板状の基台200には、その上面の四隅に柱状のスタンド201A、201B、202A、202Bが配設されている。これらのスタンド201A、201B、202A、202Bに囲まれた内側領域には、塗布対象基板を載置するための固定ステージSTと、塗布直前のインクの吐出を安定化させるために用いるインクパン(皿状容器)IPがそれぞれ配設されている。
 また、基台200には、その長手方向(Y方向)に沿った一対の両側部に沿って、ガイドシャフト203A、203Bが前記スタンド201A、201B、202A、202Bにより平行に軸支されている。各々のガイドシャフト203A(203B)には2つのリニアモーター部204A、204B(205A、205B)が挿通されており、このうち対をなすリニアモーター部204A、205A(204B、205B)に基台200を横断するようにガントリー部210A(210B)が搭載されている。この構成により、インクジェット装置1000の駆動時には、一対のリニアモーター部204A、205A(204B、205B)が駆動されることで、2基のガントリー部210A、210Bがそれぞれ独立に、ガイドシャフト203A、203Bの長手方向に沿って、スライド自在に往復運動する。
 各々のガントリー部210A、210Bには、L字型の台座からなる移動体(キャリッジ)220A、220Bが配設されている。移動体220A、220Bにはサーボモーター部(移動体モーター)221A、221Bが配設され、各モーターの軸の先端に不図示のギヤが配されている。ギヤはガントリー部210A、210Bの長手方向(X方向)に沿って形成されたガイド溝211A、211Bに嵌合されている。ガイド溝211A、211Bの内部にはそれぞれ長手方向に沿って微細なラックが形成され、前記ギヤは当該ラックと噛合しているので、サーボモーター部221A、221Bが駆動すると、移動体220A、220Bはいわゆるピニオンラック機構によって、X方向に沿って往復自在に精密に移動する。移動体220A、220Bには、それぞれインクジェットヘッド30、液滴体積検出部50が装備されており、互いに独立して駆動される。
 ここで、上記の制御部213、ガントリー部210Aとでヘッド走査部を構成している。移動体220Aにはインクジェットヘッド30が装備されるので、ヘッド走査部により、塗布対象基板に対してインクジェットヘッド30を走査させることができる。また、上述したように、移動体220AはX方向に沿って移動するので、インクジェットヘッド30の走査方向は行(X)方向である。
 なお、リニアモーター部204A、205A、204B、205B、サーボモーター部221A、221Bはそれぞれ直接駆動を制御するための制御部213に接続され、当該制御部213は制御装置15内のCPU150に接続されている。インクジェット装置1000の駆動時には、制御プログラムを読み込んだCPU150により、制御部213を介してリニアモーター部204A、205A、204B、205B、サーボモーター部221A、221Bの各駆動が制御される(図6)。
 (インクジェットヘッド)
 インクジェットヘッド30は公知のピエゾ方式を採用し、ヘッド部301及び本体部302で構成されている。ヘッド部301は本体部302を介して移動体220に固定されている。本体部302はサーボモーター部304(図6)を内蔵しており、サーボモーター部304を回転させることにより、ヘッド部301の長手方向と固定ステージSTのX軸とのなす角度が調節される。なお、本実施の形態においては、ヘッド部301の長手方向とY軸とが一致するように調整している。
 ヘッド部301は固定ステージSTに対抗する面に複数のノズルを備えており、これらのノズルはヘッド部301の長手方向に沿って列状に配置されている。ヘッド部301に供給されたインクは、各ノズルから液滴として塗布対象基板に対して吐出される。
 各ノズルにおける液滴の吐出動作は、各ノズルが備えるピエゾ素子(圧電素子)3010(図6)に与えられる駆動電圧によって制御される。吐出回数制御部300は、各ピエゾ素子3010に与える駆動信号を制御することにより、ノズル3030が行う液滴の吐出回数をノズル毎に決定する。さらに、決定された吐出回数だけノズル3030から液滴を吐出させる。具体的には、図6に示すように、CPU150が所定の制御プログラムを記憶手段151から読み出し、吐出回数制御部300に対して、所定の電圧を対象のピエゾ素子3010に印加するように指示する。
 (液滴体積検出部)
 液滴体積検出部50は、各ノズルから吐出される液滴の体積をノズル毎に検出する手段である。図5,6に示すように、液滴体積検出部50は液滴体積検出カメラ501と制御部500で構成される。液滴体積検出カメラ501には公知の共晶点レーザー顕微鏡を用いている。液滴体積検出カメラ501の対物レンズは、インクジェット装置1000における固定ステージSTの表面を垂直方向から撮影できるように向けられている。
 インクの液滴体積の演算は、液滴体積検出カメラ501が異なる焦点距離で連続的に撮影した画像に基づき、液滴体積検出カメラ501に接続された制御部500によって行われる。なお、制御部500はCPU150にも接続されており、撮影した画像はCPU150でも確認できるので、CPU150が前記演算を行うこともできる。
 以上の構成を有するインクジェット装置1000を用い、インクジェット方式による塗布工程を行う。ここでは、長尺状の各開口部17の長辺が、インクジェットヘッド30の走査方向(行(X)方向)に対して直交している場合(いわゆる横打ちを行う場合)について説明する。
 (ヘッド部と塗布対象基板の開口部との位置関係〈横打ち〉)
 図7は有機EL表示パネルに係る製造工程における、塗布対象基板とヘッド部の位置関係(横打ち時)を示す図である。
 図7に示す600は塗布対象基板であり、塗布工程を経る前段階の状態の基板、すなわち、複数の開口部17がピクセル単位に行列状に形成された隔壁層7が設けられた状態の基板を示すものである。ヘッド部301には、インクが吐出されるノズル3030が複数個、列方向に並ぶように配置されている。複数のノズル3030は、各開口部17に対して所定数のノズル(図7では6個)が割り当てられるように、各開口部17と1対1対応するノズル群a,a,a,aに分けられている。
 ここで、ヘッド部301の長手方向を列方向に対して若干傾斜させることでノズル3030の塗布ピッチを調節することができる。図7の例では、ヘッド部301を傾斜させなくとも、ノズル群a,a,a,aが開口部17に対応するように、ノズルb,b,bが列方向に配列された開口部17間(コンタクトホール5上)に対応するようなヘッド部301を使用している。
 塗布工程においては、ヘッド部301を行(X)方向に走査させながら各開口部17に対し、対応するノズル群a,a,a,aに属する各ノズルからそれぞれ所望のインクの液滴を吐出させる。そして、上記の工程を経ることにより、正孔輸送層10および有機発光層11が形成される。このとき、吐出される液滴の体積の総量は、各開口部17間で均一にされる必要がある。
 そこで、本実施の形態においては、各開口部17に対応するノズル群a,a,a,aの各ノズル3030から、対応する開口部17に対して液滴吐出を行う。その上で、各開口部17に吐出される液滴の体積の総量が基準範囲となるように、液滴体積検出部50によってノズル3030毎に検出された液滴の体積のバラツキに基づき、ノズル群a,a,a,aに属する各ノズル3030が行う液滴の吐出回数をノズル毎に調整する。換言すると、ノズル3030毎の液滴の吐出回数が固定的である場合と比較して、開口部17に吐出される液滴の総量が所定の目標値に近づくようにノズル3030の吐出回数をノズル毎に調整する。この液滴を吐出させる回数の調整は、吐出回数制御部300によって行われる。次に、この吐出回数制御部300の動作を含めた、塗布工程における制御フローについて説明する。
 (インクジェット装置における制御フロー)
 図8は、塗布工程における制御フローを示す図である。以下、簡略化のため、所定の一列分の開口部17に対する制御フローについてのみ説明するが、他の列の開口部17についても同様である。
 塗布工程の前段階として、複数の開口部17をピクセル単位に行列状に形成した隔壁層7を設けた塗布対象基板と、有機材料および溶媒を含有したインクの液滴を吐出するノズル3030を列方向に複数配置したインクジェットヘッド30(ヘッド部301)とを準備する工程が含まれる。
 塗布工程開始後、液滴体積検出部50により各ノズル3030毎の液滴の体積を検出する(ステップS101)。次いで、吐出回数制御部300は、液滴体積検出部50での検出結果に基づき、ヘッド部301の全てのノズル3030をランク分けする(ステップS102)。本実施の形態では、一例として、1つのノズルから単位回数当たりに吐出される液滴の体積として予め設定された設定値Vsetに対し、誤差が±a[%]以内のノズルをAランク、誤差が±b[%]以内のノズルをBランク(但し、a<bであり、Aランクのノズルは含まない)、誤差が±c[%]以内のノズルをCランク(但し、b<cであり、A,Bランクのノズルは含まない)、目詰まり等により使用できないノズル(不吐出ノズル)をFランクとランク分けすることとする。
 なお、ステップS101,S102は塗布工程毎に毎回行う必要はなく、例えば、10回毎のように複数回の塗布工程につき1回行うこととしてもよい。また、ロット毎、インクジェット装置1000の起動毎であってもよい。
 ここで、本実施の形態では、各開口部17に吐出される液滴の体積の総量が基準範囲となるように各ノズルの吐出回数を調整するのであるが、上記a,b,cの数値は、この基準範囲をどの程度とするかによって、適宜決定することができる。具体的には、各開口部17に吐出される液滴体積の総量の目標値を設定し、この目標値に対して何[%]以内を基準範囲とするのかを決定する。さらに、この目標値に対して許容される誤差は、各画素間の発光輝度をどの程度均一化するかに依存する。
 例えば、上述したような寸法(30~130[μm]×150~600[μm])の開口部17において、各開口部17間の発光輝度差を1[%]以内とする場合、各開口部17に吐出される液滴体積の総量の目標値に対して±2[%]以内が基準範囲である。この基準範囲と、一の開口部17についての液滴吐出の回数とを考慮することで、a,b,cの数値を決定することができる。上記の場合、例えば、aを1~2[%]、bを6[%]、cを<6[%]とすることができる。なお、市販のインクジェットヘッドにおいては、上記設定値Vsetに対して、誤差は±6[%]程度である。
 有機EL表示パネルの場合、有機発光層11の膜厚は50~100[nm]程度と非常に薄いため、微小な液滴の体積バラツキが発光輝度差となって表れ、表示品質に与える影響は大きくなる。表示パネルの高精細化に伴ってより高い表示品質が求められるので、各開口部間の液滴の体積バラツキはより一層抑制される必要がある。
 続いて、吐出回数制御部300は任意の開口部17を1行選択し(ステップS103)、選択行の開口部17に対応するノズルについて、Aランクのノズル数N,Bランクのノズル数N,Cランクのノズル数Nをそれぞれ記憶する(ステップS104)。その後、吐出回数制御部300は、選択行の開口部17に対して液滴吐出を行うノズルを選択するとともに(ステップS105)、液滴吐出位置を決定する(ステップS106)。
 次に、吐出回数制御部300は、全行の開口部17を選択したか否かを判定し(ステップS107)、全行の開口部17を選択していないと判定した場合は(ステップS107においてNO)、ステップS103~S106を全行の開口部17について実行するまで繰り返す。ステップS103~S106を全行の開口部17について行った後(ステップS107においてYES)、全行の開口部17に対し液滴を吐出し(ステップS108)、塗布工程が終了する。
 次に、選択行の開口部17に対して液滴吐出を行うノズルを選択する工程(ステップS105)、ならびに、選択行の開口部17における液滴吐出位置を決定する工程(ステップS106)の詳細について説明する。
 (液滴吐出を行うノズルを選択する工程)
 図9は、液滴吐出を行うノズルを選択する工程(図8のステップS105)における吐出回数制御部300の制御フローを示す図である。
 吐出回数制御部300の制御フローは概ね、Aランクノズルを液滴吐出に優先的に使用させ、Aランクノズルのみでは目標値以上の液滴を吐出できない場合には、AおよびBランクノズルを用いて各開口部に対し液滴吐出を行う。AおよびBランクノズルを用いても目標値以上の液滴を吐出できない場合には、A,BおよびCランクノズルを用いて各開口部に対し液滴吐出を行う。
 図9において、先ず、予め各開口部17に吐出される液滴体積の総量の目標値を設定しておき、その目標値より、一の開口部17に対して必要な液滴の吐出回数N(必要吐出回数N)を決定する(ステップS201)。この目標値は、塗布するインクの種類によって異なり、例えば、有機発光層用インクの場合は発光色毎に異なることもありうる。必要吐出回数Nは、各開口部17に吐出される液滴体積の総量の目標値を設定値Vsetで除算することにより求まる。また、必要吐出回数Nが、後述の最大吐出回数Tに、一の開口部17に対応するノズル数(一のノズル群に属するノズル数、図7では6)を乗じた数値以下となるように、設定値Vsetが設定されていなければならない。
 次に、Aランクノズルのみで上記目標値以上の体積の液滴を吐出できるか否かを判定する(ステップS202)。具体的には、予め、各ノズルが1開口部あたりに吐出することが可能な回数の最大T(最大吐出回数T)を設定しておき、この最大吐出回数TにAランクのノズル数Nを乗じた数値(N×T)が必要吐出回数N以上であるか否かを判定する。なお、図7におけるノズル群aに属する6番ノズルにおいては、最大吐出回数Tは3である。また、最下行の開口部17中に示した実線の丸はその位置に液滴が吐出されることを意味し、点線の丸はその位置に液滴が吐出されないことを意味する。
 N×Tが必要吐出回数N以上であると判定した場合は(ステップS202においてYES)、Aランクノズルのみで目標値以上の体積の液滴を吐出できる場合であるので、Aランクノズルで吐出する回数をN回と設定する(ステップS203)。その後、液滴吐出を行うノズルを選択する工程(図8のステップS105)を終了する。
 N×Tが必要吐出回数N未満であると判定した場合は(ステップS202においてNO)、Aランクノズルのみでは目標値以上の体積の液滴を吐出することができない。よって、次に、AランクおよびBランクノズルを使用することにより上記目標値以上の体積の液滴を吐出できるか否かを判定する(ステップS204)。具体的には、(N×T)と、最大吐出回数TにBランクのノズル数Nを乗じた数値(N×T)とを足し合わせたもの((N×T)+(N×T))が必要吐出回数N以上であるか否かを判定する。
 ((N×T)+(N×T))が必要吐出回数N以上であると判定した場合は(ステップS204においてYES)、AランクおよびBランクノズルで上記目標値以上の体積の液滴を吐出できる場合である。次いで、Bランクノズルで行う吐出回数M(=N-(N×T))を記憶する(ステップS205)。
 次に、ステップS205で記憶した吐出回数Mが2以上であるかを判定する(ステップS206)。吐出回数Mが2以上でない場合、すなわち吐出回数Mが1である場合(ステップS206においてNO)、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数をM回(ステップS206からステップS207へ移行した場合は1回)と設定する(ステップS207)。そして、液滴吐出を行うノズルを選択する工程を終了する。
 吐出回数Mが2以上である場合(ステップS206においてYES)、Bランクのノズルのうち、吐出体積が設定値Vsetよりも多いノズル(B)と、吐出体積が設定値Vsetよりも少ないノズル(B)の組があるかどうかを判定する(ステップS208)。以下、このようなノズルの組をB,Bのノズル組と称する。B,Bのノズル組が存在する場合には、これらを使用することで液滴体積の総量を上記の基準範囲に、より近づけることが可能となるため、本実施の形態ではステップS208を設けている。
 BとBのノズル組が存在しない場合(ステップS208においてNO)、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数をM回と設定する(ステップS207)。その後、液滴吐出を行うノズルを選択する工程を終了する。
 BとBのノズル組が存在する場合(ステップS208においてYES)、BとBのノズル組の数Pを記憶する(ステップS209)。次に、吐出回数Mが偶数か奇数であるかを判定する(ステップS210)。
 図10は、図9のステップS210で吐出回数Mが偶数であると判定した場合(ステップS210において偶数)の、吐出回数制御部300の制御フローを示す図である。
 先ず、吐出回数Mのうち、B,Bのノズル組を使って吐出できる回数を決定する。具体的には、2Xev1=Mを満たすXev1を記憶したのち(ステップS301)、Xev1≦(P×T)であるか否かを判定する(ステップS302)。そして、(P×T)がXev1以上である、すなわち、B,Bのノズル組を使って吐出回数M回全てを吐出できると判定した場合は(ステップS302においてYES)、ステップS303へ移行する。ステップS303で、Aランクノズルで吐出する回数を(N×T)回、Bノズル,Bノズルで吐出する回数をそれぞれXev1回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 一方、(P×T)がXev1未満である、すなわち、B,Bのノズル組を使っても吐出回数M回全てを吐出できないと判定した場合は(ステップS302においてNO)、ステップS304へ移行する。ステップS304で、Aランクノズルで吐出する回数を(N×T)回、Bノズル,Bノズルで吐出する回数をそれぞれ(P×T)回、Bノズル,Bノズル以外のBランクノズルで吐出する回数を{M-2(P×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 図11は、図9のステップS210で吐出回数Mが奇数であると判定した場合(ステップS210において奇数)の、吐出回数制御部300の制御フローを示す図である。
 先ず、B,Bのノズル組のうち、吐出体積を足し合わせて2で割った数値(吐出体積の平均値)が、設定値Vset±a[%]以内となるノズル組が存在するか否かを判定する(ステップS401)。このようなノズル組は、組で使用することにより実質Aランクのノズルとみなすことができる。以下、B,Bのノズル組のうち、実質Aランクのノズルとみなすことができるノズル組をB ,B のノズル組と称し、吐出体積が設定値Vsetよりも多いノズルをB 、吐出体積が設定値Vsetよりも少ないノズルをB と称する。B ,B のノズル組が存在する場合には、これらを使用することで液滴体積の総量を上記の基準範囲に、より近づけることが可能となるため、B,Bのノズル組の場合と同様にステップS401を設けている。
 B ,B のノズル組が存在すると判定した場合は(ステップS401においてYES)、B ,B のノズル組の数PA1を記憶する(ステップS402)。
 次に、吐出回数Mのうち、B ,B のノズル組を使って吐出できる回数を決定する。具体的には、2X≧Mを満たすX(但し、Xは整数)の最小値Xod1を記憶したのち(ステップS403)、Xod1≦(PA1×T)であるか否かを判定する(ステップS404)。そして、(PA1×T)がXod1以上である、すなわち、B ,B のノズル組を使って吐出回数M回全てを吐出できると判定した場合は(ステップS404においてYES)、ステップS405へ移行する。ステップS405で、Aランクノズルで吐出する回数を{(N×T)-1}回、B ノズル,B ノズルで吐出する回数をそれぞれXod1回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 ステップS405においては、ステップS403を経る結果として、Aランクノズルを使用する回数が一回減らされる。しかしながら、使用されるBランクノズルは全て、実質Aランクノズルに相当するノズルである。したがって、この場合、必要吐出回数N回全てを、実質的にAランクノズルを用いて行っているものと同視でき、その結果、液滴体積の総量を目標値に精度良く近づけることが可能となる。
 一方、(PA1×T)がXod1未満である、すなわち、B ,B のノズル組を使っても吐出回数M回全てを吐出できないと判定した場合は(ステップS404においてNO)、ステップS406へ移行する。ステップS406で、Aランクノズルで吐出する回数を(N×T)回、B ノズル,B ノズルで吐出する回数をそれぞれ(PA1×T)回、B ノズル,B ノズル以外のBランクノズルで吐出する回数を{M-2(PA1×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 続いて、B ,B のノズル組が存在しないと判定した場合は(ステップS401においてNO)、吐出回数Mのうち、B,Bのノズル組を使って吐出できる回数を決定する。具体的には、2X≦Mを満たすX(但し、Xは整数)の最大値Xod2を記憶したのち(ステップS407)、Xod2≦(P×T)であるか否かを判定する(ステップS408)。そして、(P×T)がXod2以上である、すなわち、B,Bのノズル組を使って吐出回数M回全てを吐出できると判定した場合は(ステップS408においてYES)、ステップS409へ移行する。ステップS409で、Aランクノズルで吐出する回数を(N×T)回、Bノズル,Bノズルで吐出する回数をそれぞれXod2回、Bノズル,Bノズル以外のBランクノズルを1回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 これに対し、(P×T)がXod2未満である、すなわち、B,Bのノズル組を使っても吐出回数M回全てを吐出できないと判定した場合は(ステップS408においてNO)、ステップS410へ移行する。ステップS410で、Aランクノズルで吐出する回数を(N×T)回、Bノズル,Bノズルで吐出する回数をそれぞれ(P×T)回、Bノズル,Bノズル以外のBランクノズルで吐出する回数を{M-2(P×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 なお、ステップS406における「B ノズル,B ノズル以外のBランクノズル」には、B,Bのノズル組が含まれている。よって、「B ノズル,B ノズル以外のBランクノズル」で行う「{M-2(PA1×T)}回」吐出について、ステップS407~S410の制御フローを適用することができる。このようにすることで、液滴体積の総量を目標値に、より精度良く近づけることが可能である。
 また、ステップS409,S410において、「Bノズル,Bノズル以外のBランクノズル」には、B またはB ノズルが含まれている可能性がある。この場合は、B またはB ノズルから優先して液滴を吐出させることが望ましい。
 図9に戻って、((N×T)+(N×T))が必要吐出回数N未満であると判定した場合は(ステップS204においてNO)、AランクおよびBランクノズルのみでは目標値以上の体積の液滴を吐出することができない。よって、次に、Cランクノズルで行う吐出回数M(=N-{(N×T)+(N×T)})を記憶する(ステップS211)。
 図12は、Cランクノズルを使用する場合の吐出回数制御部300の制御フローを示す図である。
 Cランクノズルを使用する場合の制御フローは、図9のステップS206~S210,図11,図12に示したような、Bランクノズルを使用する場合の制御フローと略同様に説明できる。以下、Cランクノズルを使用する場合の吐出回数制御部300の制御フロー簡単に説明する。
 先ず、ステップS211で記憶した吐出回数Mが2以上であるかを判定する(ステップS501)。吐出回数Mが2以上である場合(ステップS501においてYES)、Cランクのノズルのうち、吐出体積が設定値Vsetよりも多いノズル(VC)と、吐出体積が設定値Vsetよりも少ないノズル(VC)の組があるかどうかを判定する(ステップS503)。吐出回数Mが2以上でない場合(ステップS501においてNO)、および、VC,VCのノズル組が存在しないと判定した場合(ステップS503においてNO)、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、Cランクノズルで吐出する回数をM回(ステップS501からステップS207へ移行した場合は1回)と設定する(ステップS502)。その後、液滴吐出を行うノズルを選択する工程を終了する。
 VCとVCのノズル組が存在する場合(ステップS503においてYES)、VCとVCのノズル組の数Pを記憶し(ステップS504)、吐出回数Mが偶数か奇数であるかを判定する(ステップS505)。
 吐出回数Mが偶数であると判定した場合(ステップS505において偶数)、2Xev2=Mを満たすXev2を記憶したのち(ステップS506)、Xev2≦(P×T)であるか否かを判定する(ステップS507)。そして、(P×T)がXev2以上である場合は(ステップS507においてYES)、ステップS508へ移行する。ステップS508で、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、VCノズル,VCノズルで吐出する回数をそれぞれXev2回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 一方、(P×T)がXev2未満である場合は(ステップS507においてNO)、ステップS509へ移行する。ステップS509で、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、VCノズル,VCノズルで吐出する回数をそれぞれ(P×T)回、VCノズル,VCノズル以外のCランクノズルで吐出する回数を{M-2(P×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 図13は、図12のステップS505で吐出回数Mが奇数であると判定した場合(ステップS505において奇数)の、吐出回数制御部300の制御フローを示す図である。
 先ず、VC,VCのノズル組のうち、吐出体積を足し合わせて2で割った数値(吐出体積の平均値)が、設定値Vset±a[%]以内となるノズル組(VC ,VC のノズル組と称する。)が存在するか否かを判定する(ステップS601)。VC ,VC のノズル組が存在すると判定した場合は(ステップS601においてYES)、VC ,VC のノズル組の数PA2を記憶する(ステップS602)。
 次に、2X≧Mを満たすX(但し、Xは整数)の最小値Xod3を記憶したのち(ステップS603)、Xod3≦(PA2×T)であるか否かを判定する(ステップS604)。そして、(PA2×T)がXod3以上である場合は(ステップS604においてYES)、ステップS605へ移行する。ステップS605で、Aランクノズルで吐出する回数を{(N×T)-1}回、Bランクノズルで吐出する回数を(N×T)回、VC ノズル,VC ノズルで吐出する回数をそれぞれXod3回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 (PA2×T)がXod3未満である場合は(ステップS604においてNO)、ステップS606へ移行する。ステップS606で、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、VC ノズル,VC ノズルで吐出する回数をそれぞれ(PA2×T)回、VC ノズル,VC ノズル以外のCランクノズルで吐出する回数を{M-2(PA2×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 続いて、VC ,VC のノズル組が存在しないと判定した場合は(ステップS601においてNO)、2X≦Mを満たすX(但し、Xは整数)の最大値Xod4を記憶したのち(ステップS607)、Xod4≦(P×T)であるか否かを判定する(ステップS608)。そして、(P×T)がXod4以上である場合は(ステップS608においてYES)、ステップS609へ移行する。ステップS609で、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、VCノズル,VCノズルで吐出する回数をそれぞれXod4回、VCノズル,VCノズル以外のCランクノズルを1回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 (P×T)がXod4未満である場合は(ステップS608においてNO)、ステップS610へ移行する。ステップS610で、Aランクノズルで吐出する回数を(N×T)回、Bランクノズルで吐出する回数を(N×T)回、VCノズル,VCノズルで吐出する回数をそれぞれ(P×T)回、VCノズル,VCノズル以外のCランクノズルで吐出する回数を{M-2(P×T)}回と設定し、液滴吐出を行うノズルを選択する工程を終了する。
 なお、ステップS606における「VC ノズル,VC ノズル以外のCランクノズル」には、VC,VCのノズル組が含まれている。よって、Bランクノズルの制御フローの場合と同様に、「VC ノズル,VC ノズル以外のCランクノズル」について、ステップS607~S610の制御フローを適用することができる。
 また、ステップS609,S610において、「Cノズル,Cノズル以外のCランクノズル」には、C またはC ノズルが含まれている可能性がある。この場合は、C またはC ノズルから優先して液滴を吐出させることが望ましい。
 ステップS203(図9)においてAランクノズルで吐出する回数を設定する際、一のノズル群に属する1~6番の各ノズルからそれぞれ吐出させる回数を併せて決定する。このとき、ノズル3030から吐出される液滴の各開口部17内での着弾位置が、各開口部17内で分散されるように調整されることが望ましい。具体的には、一の開口部17における着弾位置が走査方向に沿った軸に対して対象となるように調整する。例えば、一の開口部17に対して14回液滴を吐出させる場合には、開口部17の列方向に沿った上半分の領域に対して7回吐出し、下半分の領域に対して7回吐出するようにする。
 また、ステップS207(図9)、ステップS303,S304(図10)、ステップS405,S406,S409,S410(図11)のように、AランクとBランクのノズルを混在させて使用する場合は、Aランクノズルに吐出させる回数およびBランクノズルに吐出させる回数が、開口部17の列方向に沿った上半分、下半分の領域において同程度となるようにする。A,B,Cランクのノズルを混在させて使用するステップS502,S508,S509(図12)、ステップS605,S606,S609,S610(図13)においても同様である。
 (液滴吐出位置を決定する工程)
 図14,15は、液滴吐出位置を決定する工程における、吐出回数制御部300の制御フローを示す図である。
 吐出回数制御部300には、各ノズルから吐出される液滴の各開口部内での着弾位置を、走査方向に対し直交する軸に対して対称となるように調整する制御プログラムが格納されている。吐出回数制御部300はこの制御プログラムに従い、吐出回数毎の液滴吐出位置を制御する。例えば、吐出回数制御部300には以下のような制御フローを行う制御プログラムが格納されている。
 図14は、最大吐出回数Tが3である場合の吐出回数制御部300の制御フローを示す図である。
 先ず、1番ノズルの吐出回数が何回であるかを判定する(ステップS701)。ここで、「1番ノズル」とは、選択行における開口部17に対応するノズル群に属する1番ノズルのことを指す。具体的に説明すると、図8のステップS103において、図7に示す開口部17のうち最上行の開口部17を選択している場合、ノズル群aに属する1番ノズルがここでの「1番ノズル」に相当する。
 1番ノズルの吐出回数が1回である場合(ステップS701において1)、ラインL上に液滴を吐出する。1番ノズルの吐出回数が2回である場合は(ステップS701において2)ラインL,L上に、1番ノズルの吐出回数が3回である場合(ステップS701において2)はラインL,L,L上にそれぞれ液滴を吐出する。同様の制御フローをノズル群に属する2番ノズル(ステップS702)~6番ノズル(ステップS706)に対して行うと、液滴吐出位置を決定する工程は終了する。
 図14に示したように、最大吐出回数Tが3である場合は、吐出回数が1~3回のいずれであっても、各ノズル毎に、着弾位置を走査方向に対し直交する軸に対して対称となるように制御することができる。しかしながら、最大吐出回数Tの数値によっては、各ノズル毎にこのような制御ができない場合がある。かかる場合に、可能な限り各開口部内における着弾位置を、走査方向に対し直交する軸に対して対称となるように調整する制御フローについて、図15を用いて説明する。
 図15は、最大吐出回数Tが4である場合の吐出回数制御部300の制御フローを示す図である。
 先ず、1番ノズルの吐出回数が何回であるかを判定する(ステップS801)。吐出回数が1回である場合(ステップS801において1)、ラインL上に吐出する(a)、ラインL上に吐出する(b)、ラインL上に吐出する(c)、ラインL上に吐出する(d)の4つのうち、いずれか一つを選択する。吐出回数が2回である場合は(ステップS801において2)、ラインL,L上に吐出する(a)、ラインL,L上に吐出する(b)の2つのうち、いずれか一つを選択する。吐出回数が3回である場合(ステップS801において3)は、ラインL,L,L上に吐出する(a)、ラインL,L,L上に吐出する(b)、ラインL,L,L上に吐出する(c)、ラインL,L,L上に吐出する(d)の4つのうち、いずれか一つを選択する。吐出回数が4回である場合(ステップS801において4)は、ラインL,L,L,L上に吐出する(a)。
 次に、2番ノズルの吐出回数が何回であるかを判定する(ステップS802)。吐出回数が1回である場合(ステップS802において1)、1番ノズルにおいて液滴を吐出した位置がどうであったかを判定する(ステップS802A)。右寄りである、または対称であると判定した場合(ステップS802Aにおいて「右」または「対称」)、ラインL上に吐出する(a)、ラインL上に吐出する(b)の2つのうち、いずれか一つを選択する。左寄りであると判定した場合(ステップS802Aにおいて「左」)、ラインL上に吐出する(a)、ラインL上に吐出する(b)の2つのうち、いずれか一つを選択する。吐出回数が2回である場合は(ステップS802において2)、ラインL,L上に吐出する(a)、ラインL,L上に吐出する(b)の2つのうち、いずれか一つを選択する。吐出回数が3回である場合(ステップS802において3)、2番ノズルにおいて液滴を吐出した位置がどうであったかを判定する(ステップS802B)。右寄りであると判定した場合(ステップS802Bにおいて「右」)、ラインL,L,L上に吐出する(a)、ラインL,L,L上に吐出する(b)の2つのうち、いずれか一つを選択する。左寄りである、または対称であると判定した場合(ステップS802Bにおいて「左」または「対称」)、ラインL,L,L上に吐出する(a)、ラインL,L,L上に吐出する(b)の2つのうち、いずれか一つを選択する。吐出回数が4回である場合(ステップS802において4)は、ラインL,L,L,L上に吐出する(a)。
 2番ノズルにおける制御フローと同様の制御フローを、3番ノズル~6番ノズル(ステップS806,S806A,S806B)に対して行うと、液滴吐出位置を決定する工程は終了する。
 液滴吐出位置を決定する工程が終了すると、選択行における一連の制御フロー(図8のステップS103~S106)が終了する。一連の制御フローを全ての行に対して行った後(図8のステップS107においてYES)、全行の開口部17に対し液滴を吐出し(ステップS108)、塗布工程が終了する。
 (具体例)
 図16は、図8に示すステップS108における塗布対象基板600とヘッド部301の位置関係を示す図である。図16(a)~(h)はそれぞれ、ステップS203(図9),ステップS207(図9、ステップS208から移行した場合),ステップS303(図10),ステップS304(図10),ステップS405(図11),ステップS406(図11),ステップS409(図11),ステップS410(図11)を経てステップS108に移行した場合を示している。図16中、ヘッド部301のノズル3030を示す丸は、図8に示すステップS102でのランク分けの結果に基づいた大きさで示している。
 図16に示す1~6番の各ノズルの右上には、各ノズルがどのランクに属しているのかを表記している。また、B ノズル,B ノズル,Bノズル,Bノズルのいずれにも属さないBランクノズル、すなわち、図11のステップS406,S409,S410における「B ,B 以外のBランク」,「B,B以外のBランク」に相当するノズルには、単に「B」と表記している。
 また、図16に示す例では、開口部17に吐出される液滴体積の総量の目標値を140[pL]、設定値Vsetを10[pL]、必要吐出回数Nを14、最大吐出回数Tを3としている。
 図16(a)では、ステップS101(図8)でノズル毎に検出した液滴体積が一の開口部内でばらついていないのに対し、図16(b)~(h)では、一の開口部内でばらついている。言い換えると、図16(b)~(h)では、一の開口部に対応する所定数のノズルの中に、吐出体積のある程度異なるノズルが含まれるのに対し、図16(a)では含まれない。
 図16(a)は、開口部17に吐出される液滴体積の総量の目標値以上の体積を、Aランクのみで吐出できる場合である。図16(b)は、Bランクノズルを使用すれば目標値以上の体積を吐出できるものの、B,Bのノズル組が存在しない場合である。
 図16(c),(d)は、Bランクノズルで吐出すべき吐出回数が偶数の場合である。図16(c)は、Bランクノズルを使用すれば目標値以上の体積を吐出でき、かつ、B,Bのノズル組のみでBランクノズルで吐出すべき体積以上の液滴を吐出できる場合である。図16(d)は、Bランクノズルを使用すれば目標値以上の体積を吐出できるものの、B,Bのノズル組のみではBランクノズルで吐出すべき体積以上の液滴を吐出できない場合である。
 図16(e)~(h)は、Bランクノズルで吐出すべき吐出回数が奇数の場合である。図16(e)は、Bランクノズルを使用すれば目標値以上の体積を吐出でき、かつ、B ,B のノズル組のみでBランクノズルで吐出すべき体積以上の液滴を吐出できる場合である。なお、図11のステップS405にてAランクノズルの吐出回数が1回減らされているが、この減らされた1回分の液滴吐出は図16(e)において点線の丸で示している。
 図16(f)は、Bランクノズルを使用すれば目標値以上の体積を吐出できるものの、B ,B のノズル組のみではBランクノズルで吐出すべき体積以上の液滴を吐出できない場合である。図16(g)は、Bランクノズルを使用すれば目標値以上の体積を吐出でき、かつ、B,Bのノズル組のみでBランクノズルで吐出すべき体積以上の液滴を吐出できる場合である。図16(h)は、Bランクノズルを使用すれば目標値以上の体積を吐出できるものの、B,Bのノズル組のみではBランクノズルで吐出すべき体積以上の液滴を吐出できない場合である。
 (ヘッド部と塗布対象基板の開口部との位置関係〈縦打ち〉)
 上記塗布工程の制御フローは、図17に示すように、長尺状の各開口部17の長辺が、ヘッド部301の走査方向(行(X)方向)と一致している場合(いわゆる縦打ちを行う場合)についても適用することができる。図17の場合、各開口部17に対応するノズル3030の数は2個である。
 横打ち,縦打ちを問わず、各開口部17に対応するノズルの個数は特に限定されず、1個であってもよい。しかしながら、1個であると、万が一、その1個のノズルがFランクノズルである場合には、そのFランクノズルが液滴吐出を担当する開口部17には液滴が吐出されないという問題が生じる。よって、各開口部17に対応するノズル3030の数は2個以上である方が望ましく、可能な限り数が多い方がより望ましい。さらに、各開口部17に対応するノズル数が多い方が、塗布工程において液滴体積総量を目標値に近づける効果は高い。この点、各開口部17に対応するノズルの数を多くすることができる横打ちの場合が、より好ましい実施の形態であると言える。
 [まとめ]
 以上説明したように、本実施の形態によれば、ノズル毎に液滴の吐出回数を変化させるという簡易な制御で、各開口部に吐出される液滴体積の総量を均一にすることができる。したがって、特許文献1のようなノズル毎に異なる波形の駆動電圧を生成するといった複雑な制御を行う必要がなく、有機EL表示パネルの大判化に伴うインクジェットヘッドのノズル数増大にも対応し得る。また、本実施の形態によれば簡易な制御で済むので、特許文献1のような制御を行うための回路基板は小規模のもので足り、その分、製造装置の簡素化および低コスト化を図ることが可能である。
 ≪実施の形態2≫
 図18は、実施の形態2に係る、液滴吐出を行うノズルを選択する工程における吐出回数制御部の制御フローを示す図である。
 図18におけるステップS901,S902,S904~S906,S908~911は、それぞれ、図9におけるS201,S202,S204~S206,S208~S211に対応する。図9と異なる点は、S912AおよびS913Aを設けた点である。
 本実施の形態では、N×Tが必要吐出回数N未満である(Aランクノズルのみで目標値以上の液滴を吐出できない)と判定した場合は(ステップS902においてNO)、最大吐出回数Tをさらに増やすことができるか否かを判定する(ステップS912A)。最大吐出回数Tは、ピエゾ素子に与える駆動電圧の波形を変えて吐出周波数を上げる、または、インクジェットヘッドの走査速度を下げることにより増加させることができる。
 最大吐出回数Tをさらに増やすことができると判定した場合(ステップS912AにおいてYES)、最大吐出回数Tを増やした後のAランクのノズル数N,Bランクのノズル数N,Cランクのノズル数Nをそれぞれ記憶する(ステップS913A)。そして、ステップS902に移行する。最大吐出回数Tを増やすことができないと判定した場合は(ステップS912AにおいてNO)、ステップS904に移行する。
 ほぼ設定値Vset通りの体積の液滴を吐出することができるノズルは、吐出体積が経時変化しにくい。よって、このようなノズルのみから液滴吐出を行わせることで、ノズル毎の液滴の体積を検出するステップ(図8のステップS101)、およびノズルをランク分けするステップ(図8のステップS102)を行う頻度を少なくすることができる。その結果、塗布工程に要する時間を短縮することができる。これを実現するため、本実施の形態では、最大吐出回数Tを増やして、出来る限りAランクノズルのみで目標値以上の液滴を吐出できるようにしている。
 図19は、実施の形態2の変形例に係る、液滴吐出を行うノズルを選択する工程における吐出回数制御部の制御フローを示す図である。図18と異なる点は、ステップS912A,S913A(図18)にそれぞれ相当するステップS912B,S913Bの位置である。
 図18では、Aランクノズルのみで目標値以上の液滴を吐出できないと判定した段階で、最大吐出回数Tを増やすことができるか否かを判定していた。本変形例では、Bランクノズルを使用してもなお目標値以上の液滴を吐出できないと判定した段階で(ステップS904においてNO)、最大吐出回数Tを増やすことができるか否かを判定する(ステップS912B)。
 最大吐出回数Tをさらに増やすことができると判定した場合(ステップS912BにおいてYES)、最大吐出回数Tを増やした後のN,N,Nをそれぞれ記憶し(ステップS913B)、ステップS902に移行する。最大吐出回数Tを増やすことができないと判定した場合は(ステップS912BにおいてNO)、ステップS911に移行する。
 以上、実施の形態1および2について説明したが、本発明は上記の実施の形態に限られない。例えば、以下のような変形例が考えられる。
 ≪変形例≫
 (1)「開口部の形状が長尺状である」とは、開口部が長辺と短辺を有する形状であることを指し、必ずしも矩形状である必要はない。例えば、正方形、円形、楕円形等の形状とすることとしてもよい。
 (2)図1において、基板1上にTFT層2~対向電極14の各層が積層形成されてなる構成を示した。本発明においては、各層のうちの何れかの層を欠いている、もしくは、例えば透明導電層などの他の層をさらに含む構成とすることもできる。
 (3)図3(e)において、正孔輸送層用インクからなる液滴19を窪み部8に対しては吐出しない構成を示した。本発明では、正孔輸送層用インクからなる液滴19をさらに窪み部8にも吐出し、正孔輸送層と同一材料から成る有機層を形成することとしてもよい。このようにすることで、正孔輸送層用インクから蒸発する溶媒の蒸気濃度の均一化が図られ、均一な膜厚で正孔輸送層10形成することができる。一方、図4(b)において、有機発光層用インクからなる液滴18を窪み部8に吐出しないこととしてもよい。
 (4)本発明において、コンタクトホールに追従して形成される窪み部は必須の構成要件ではなく、例えば、隔壁層上の窪み部に相当する部分を、隔壁層を構成する材料と同一の材料で埋めた構成であってもよい。
 (5)上記実施の形態では、液滴体積検出カメラ501として共晶点レーザー顕微鏡を用いたが、CCDカメラを用いることもできる。この場合、インク液滴の形状をたとえば半球状とみなし、当該カメラで撮影した画像中の液滴径から、CPU150がインクの液滴体積を算出することができる。
 (6)上記実施の形態において、リニアモーター部204A,205A,204B,205B、サーボモーター部221A,221Bは、それぞれガントリー部210A,210B、移動体220A,220Bの移動手段の例示にすぎず、これらの利用は必須ではない。例えば、タイミングベルト機構やボールネジ機構を利用することにより、ガントリー部または移動体の少なくともいずれかを移動させることしてもよい。
 (7)図14,15に示す液滴吐出位置を決定する工程では、各開口部内での着弾位置が、走査方向に対し直交する軸に対して対称となるように調整する制御フローについて説明した。各開口部内での着弾位置をより均一にするには、走査方向に沿った軸においても着弾位置が対称となるようにするのが望ましい。
 (8)図15においては、ステップS802A,S806Aでの分岐を「右または対称」,「左」の2つとしていたが、分岐を「右」,「対称」,「左」の3つとすることとしてもよい。このとき、「対称」であると判定した場合には、ラインL上に吐出する(a)、ラインL上に吐出する(b)、ラインL上に吐出する(c)、ラインL上に吐出する(d)の4つのうち、いずれか一つを選択することとすることができる。ステップS802B,S806Bについても同様の制御とすることができる。
 (9)上記のインクジェット装置は単なる一例であり、少なくとも上述の制御を行うことが可能なインジェット装置であればよい。塗布対象基板に対するノズルの位置は、基板の規格やサイズに合わせて、固定ステージに対するヘッド部の角度調節を行うことにより適宜変更することができる。
 (10)本発明においては、各ノズル群に属する1~6番ノズルが吐出する回数は、各ノズル群で固定ではなく、液滴体積検出部における検出結果によって各ノズル群間で変動する。このことについて、図20を用いて説明する。
 図20は、図8に示すステップS108における塗布対象基板とヘッド部の位置関係を示す図である。(a1)~(d1)において、1~6番の各ノズルの右上に、液滴体積検出部における液滴体積の検出結果を示した。各図中、「B 」,「B 」,「A」,「B 」,「B 」で示すノズルの検出結果は、それぞれ、10.5[pL],10.3[pL],10[pL],9.7[pL],9.5[pL]であったとする。また、(a1)~(d1)は本発明に対応するものであり、(a1)’~(d1)’は、(a1)~(d1)の各々に対応する比較例である。
 本発明においては、(a1)~(d1)に示すように、体積検出部における液滴体積の検出結果に応じて、各ノズル群に属する1~6番ノズルが吐出する回数は、各ノズル群間で変動する。一方、(a1)’~(d1)’に示す比較例においては、列方向に配列されたどの開口部においても、1,2,5,6番ノズルにそれぞれ2回ずつ吐出させ、3,4番ノズルにそれぞれ3回ずつ吐出させるように設定されているとする。すなわち、(a1)’~(d1)’に示す比較例においては、各ノズル群に属する1~6番ノズルが吐出する回数が、各ノズル群間で固定である。
 上記のような場面を想定した場合の、(a1)~(d1),(a1)’~(d1)’における各開口部に吐出される液滴体積の総量[pL]を、対応する図番の下部に示した。
 本発明に係る(a1)~(d1)の場合、液滴体積の総量[pL]は140~141.9[pL](目標値140[pL]に対して0~+1.36[%])であるのに対し、比較例に係る(a1)’~(d1)’の場合は140~143.6[pL](目標値140[pL]に対して0~+2.57[%])である。したがって、本発明の構成のように、各ノズル群に属する1~6番ノズルが吐出する回数が各ノズル群間で固定でない場合の方が、目標値に対する誤差は小さくなることが分かる。この差は、不吐出ノズルが発生した場合により顕著となる。
 図21は、不吐出ノズルが発生した場合の図8に示すステップS108における塗布対象基板とヘッド部の位置関係を示す図である。図21(a1)~(d1),(a1)’~(d1)’の各図は、図20(a1)~(d1),(a1)’~(d1)’の各図に対応するものである。なお、図21に示す各ノズル3030において、不吐出となっているノズルを塗りつぶして示している。
 本発明に係る(a1)~(d1)においては、不吐出ノズルが発生した場合であっても、液滴体積の総量[pL]は140~141.9[pL](目標値140[pL]に対して0~+1.36[%])と変化しない。これは、各ノズル群間で1~6番ノズルが吐出する回数を変えることが可能であるからである。したがって、本発明によれば不吐出ノズルが発生することによる影響を最低限に抑えることが可能である。
 一方、比較例に係る(a1)’~(d1)’の場合は、各ノズル群間で1~6番ノズルが吐出する回数を変えることができないため、液滴体積の総量[pL]は112.1~120[pL](目標値140[pL]に対して-19.93~-14.29[%])と、目標値である140[pL]から大きくずれてしまうことになる。
 以上説明したように、本発明は、不吐出ノズルが発生した場合により効果を奏すると言える。
 (11)上記の実施形態においては、塗布対象基板に対してヘッド部側を走査させる方法を示したが、本発明はこれに限定されない。ノズルが複数配列されたヘッド部に対して塗布対象基板側を動かすこととしてもよい。
 (12)上述したように、有機発光層用インクを塗布する工程においては、各開口部17に吐出する液滴の体積の総量が発光色毎に異なることもありうるが、必ずしも異ならせる必要はない。また、正孔輸送層用インクを塗布する工程のように、本来的には体積の総量を発光色毎に異ならせる必要のないインクについても、色毎に体積の総量をそろえることとしてもよいし、異ならせることとしてもよい。
 (13)図16(h)において、図11のステップS410を経てステップS108に移行した場合の例を示した。ステップS410を経てステップS108に移行した場合の例としては、図16(h)に示したもの以外にも、例えば、1番ノズルがAランク、2~4番ノズルがB ランク、5番ノズルがBランク、6番ノズルがBランクである場合が挙げられる。この場合、図9~11に示すフローチャートに従えば、Aランクである1番ノズルから3回、B ランクノズルから5回(2~4番ノズルの吐出回数の合算)、Bランクである5番ノズル,Bランクである6番ノズルからそれぞれ3回ずつ液滴が吐出されることになる。その結果、開口部に吐出される液滴体積の総量は141.5[pL]である。
 この場合、上記のフローチャートに対し以下の制御を加えることにより、開口部に吐出される液滴体積の総量をより目標値に近づけることが可能である。具体的には、本例にように、液滴体積の総量が目標値より多い場合には、Bランクノズル(6番ノズル)で吐出する回数のうちの一部を、吐出量がより設定値Vsetに近いB ランクノズル(2~4番ノズル)から代わりに吐出するように制御する。この制御に従えば、本例の場合、1番ノズル(Aランク)から3回、B ランクノズルから7回(2~4番ノズルの吐出回数の合算)、5番ノズル(Bランク)から3回、6番ノズル(Bランク)から1回、液滴を吐出させるように設定することができる。この結果、開口部に吐出される液滴体積の総量は141.1[pL]となり、より目標値に近づけることができる。なお、液滴体積の総量が目標値より少ない場合にも同様の制御を行うことが可能である。
 本発明の有機EL表示パネルの製造方等は、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等として用いられる有機EL表示パネルの製造方等に好適に利用可能である。
  1 基板
  2 TFT層
  3 給電電極
  4 平坦化膜
  5 コンタクトホール
  6 画素電極
  7 隔壁層
  8 窪み部
  9 正孔注入層
  10 正孔輸送層
  11 有機発光層
  12 電子輸送層
  13 電子注入層
  14 対向電極
  16 有機発光層材料を含む有機層
  17 開口部
  18 有機発光層用インクからなる液滴
  19 正孔輸送層用インクからなる液滴
  20 インクジェットテーブル
  30 インクジェットヘッド
  50 液滴体積検出部
  100 有機EL表示パネル
  150 CPU
  151 記憶手段
  152 入力手段
  200 基台
  201A、201B、202A、202B スタンド
  203A,203B ガイドシャフト
  204A、205A、204B、205B リニアモーター部
  210A、210B ガントリー部
  211A、211B、212A、212B ガイド溝
  213、500 制御部
  220A、220B 移動体
  221A、221B サーボモーター部
  300 吐出回数制御部
  301 ヘッド部
  302 本体部
  304 サーボモーター部
  501 液滴体積検出カメラ
  600 塗布対象基板
  1000 インクジェット装置
  3010 ピエゾ素子
  3030 ノズル
  IP インクパン
  ST 固定ステージ

Claims (10)

  1.  複数の開口部をピクセル単位に行列状に形成した隔壁層を設けたEL基板と、有機材料および溶媒を含有したインクの液滴を吐出するノズルを列方向に複数配置したインクジェットヘッドとを準備する第1工程と、
     前記各ノズルから単位回数当たりに吐出される液滴の体積をノズル毎に検出する第2工程と、
     前記各開口部に対して所定数のノズルが割り当てられるように、前記複数のノズルを、前記各開口部と1対1対応するノズル群に分け、ノズル群毎に、前記各開口部に吐出される液滴の体積の総量が基準範囲となるように、前記第2工程においてノズル毎に検出された液滴の体積のバラツキに基づき、ノズル群に属する各ノズルが行う液滴の吐出回数をノズル毎に決定する第3工程と、
     前記EL基板に対し前記インクジェットヘッドを行方向に走査させながら、前記各開口部に対し、対応するノズル群に属する各ノズルから、前記第3工程でノズル毎に決定された吐出回数だけ液滴を吐出させる第4工程と、を含む、
     有機EL表示パネルの製造方法。
  2.  前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、
     同一発光色の前記有機材料を含有したインクの液滴が吐出される開口部間において、前記基準範囲は前記目標値に対して±2%以内である、
     請求項1に記載の有機EL表示パネルの製造方法。
  3.  前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、
     前記第3工程において、
     ノズル群に属する各ノズルのうち、前記第2工程における検出値が、前記各ノズルから単位回数当たりに吐出される液滴の体積として予め設定された設定値に対し、第1の範囲内であるノズルの各々に液滴吐出を行わせた場合を想定して、前記目標値以上の体積の液滴を吐出できるか否かを判定し、
     前記目標値以上の体積の液滴を吐出できると判定した場合には、前記第1の範囲内であるノズルを液滴吐出に用いるノズルとして選択し、
     前記目標値以上の体積の液滴を吐出できないと判定した場合には、前記第1の範囲内であるノズルと、当該第1の範囲よりも前記設定値からのバラツキが大きい第2の範囲内であるノズルを液滴吐出に用いるノズルとして選択する、
     請求項1に記載の有機EL表示パネルの製造方法。
  4.  前記第3工程において、前記目標値以上の体積の液滴を吐出できないと判定した場合には、さらに、
     前記第2の範囲内であるノズルのうち、前記第2工程における検出値が前記設定値よりも高いノズルと前記設定値よりも低いノズルの組が存在するか否かを判定し、
     前記ノズルの組が存在すると判定した場合には、当該ノズルの組を液滴吐出に用いるノズルとして選択する、
     請求項3に記載の有機EL表示パネルの製造方法。
  5.  前記第3工程において、前記目標値以上の体積の液滴を吐出できないと判定した場合には、さらに、
     前記第2の範囲内であるノズルのうち、前記第2工程における検出値が前記設定値よりも高いノズルと前記設定値よりも低いノズルの組が存在するか否かを判定し、
     前記ノズルの組が存在すると判定した場合には、当該ノズルの組のうち、前記第2工程における検出値の平均値が前記設定値に対し前記第1の範囲内であるノズルの組が存在するか否かを判定し、
     前記第1の範囲内であるノズルの組が存在すると判定した場合には、当該第1の範囲内であるノズルの組を液滴吐出に用いるノズルとして選択する、
     請求項3に記載の有機EL表示パネルの製造方法。
  6.  前記第3工程において、
     ノズル群に属する各ノズルから吐出される液滴の前記各開口部内での着弾位置が、前記各開口部内で分散されるように調整される、
     請求項1に記載の有機EL表示パネルの製造方法。
  7.  前記第3工程において、
     ノズル群に属する各ノズルから吐出される液滴の前記各開口部内での着弾位置が、列方向に配列された開口部の中心を結ぶ仮想線に対して対称となるように調整される、
     請求項1に記載の有機EL表示パネルの製造方法。
  8.  前記各開口部の形状は、列方向に長辺を有する長尺状である、
     請求項1に記載の有機EL表示パネルの製造方法。
  9.  有機材料および溶媒を含有したインクの液滴を吐出するノズルを列方向に複数配置したインクジェットヘッドと、
     前記各ノズルから単位回数当たりに吐出される液滴の体積をノズル毎に検出する液滴体積検出部と、
     複数の開口部をピクセル単位に行列状に形成した隔壁層が設けられたEL基板に対し、前記インクジェットヘッドを行方向に走査させるヘッド走査部と、
     前記各ノズルが行う液滴の吐出回数をノズル毎に決定するとともに、決定された吐出回数だけ前記各ノズルから液滴を吐出させる吐出回数制御部と、を備え、
     前記各開口部に対して所定数のノズルが割り当てられるように、前記複数のノズルは、前記各開口部と1対1対応するノズル群に分けられており、
     前記吐出回数制御部は、
     前記各開口部に吐出される液滴の体積の総量が基準範囲となるように、前記液滴体積検出部でノズル毎に検出された液滴の体積のバラツキに基づき、各ノズルの吐出回数をノズル毎に決定する、
     有機EL表示パネルの製造装置。
  10.  前記各開口部は1サブピクセルとして1の発光色が定められているとともに、前記各開口部に吐出される液滴の体積の総量には、発光色毎に目標値が設定されており、
     同一発光色の前記有機材料を含有したインクの液滴が吐出される開口部間において、前記基準範囲は前記目標値に対して±2%以内である、
     請求項9に記載の有機EL表示パネルの製造装置。
PCT/JP2011/003136 2011-06-03 2011-06-03 有機el表示パネルの製造方法、および有機el表示パネルの製造装置 WO2012164628A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/003136 WO2012164628A1 (ja) 2011-06-03 2011-06-03 有機el表示パネルの製造方法、および有機el表示パネルの製造装置
JP2012509791A JP5785935B2 (ja) 2011-06-03 2011-06-03 有機el表示パネルの製造方法、および有機el表示パネルの製造装置
CN201180003548.6A CN103026789B (zh) 2011-06-03 2011-06-03 有机el显示面板的制造方法以及有机el显示面板的制造装置
KR1020127001058A KR101751552B1 (ko) 2011-06-03 2011-06-03 유기 el 표시 패널의 제조 방법, 및 유기 el 표시 패널의 제조 장치
US13/356,111 US8435093B2 (en) 2011-06-03 2012-01-23 Method of manufacturing organic EL display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003136 WO2012164628A1 (ja) 2011-06-03 2011-06-03 有機el表示パネルの製造方法、および有機el表示パネルの製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/356,111 Continuation US8435093B2 (en) 2011-06-03 2012-01-23 Method of manufacturing organic EL display panel

Publications (1)

Publication Number Publication Date
WO2012164628A1 true WO2012164628A1 (ja) 2012-12-06

Family

ID=47258519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003136 WO2012164628A1 (ja) 2011-06-03 2011-06-03 有機el表示パネルの製造方法、および有機el表示パネルの製造装置

Country Status (5)

Country Link
US (1) US8435093B2 (ja)
JP (1) JP5785935B2 (ja)
KR (1) KR101751552B1 (ja)
CN (1) CN103026789B (ja)
WO (1) WO2012164628A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524782A (ja) * 2013-04-26 2016-08-18 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
KR20170053731A (ko) * 2012-12-27 2017-05-16 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법
JP2017529676A (ja) * 2014-06-30 2017-10-05 カティーバ, インコーポレイテッド 改良された速度および正確さをともなう永久層の整列印刷のための技術
JP2018120874A (ja) * 2013-04-26 2018-08-02 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
US10522425B2 (en) 2013-12-12 2019-12-31 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012098577A1 (ja) 2011-01-19 2014-06-09 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
WO2012098580A1 (ja) 2011-01-19 2012-07-26 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
WO2012098578A1 (ja) 2011-01-19 2012-07-26 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
JPWO2012098576A1 (ja) 2011-01-19 2014-06-09 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
JP6142324B2 (ja) 2011-12-28 2017-06-07 株式会社Joled 有機el表示パネルとその製造方法
US9352561B2 (en) 2012-12-27 2016-05-31 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
CN108099408B (zh) * 2012-12-27 2020-07-14 科迪华公司 用于打印油墨体积控制以在精确公差内沉积流体的技术
EP3129233B1 (en) * 2014-04-11 2020-02-19 OCE-Technologies B.V. Flatbed printer assembly
US10335995B2 (en) 2015-12-16 2019-07-02 Xerox Corporation System and method for compensating for dissimilar shrinkage rates in different materials used to form a three-dimensional printed object during additive manufacturing
CN107068909B (zh) * 2016-04-25 2019-08-06 中节能万润股份有限公司 一种含10,10-二芳基蒽酮类化合物的有机电致发光器件及其应用
CN108511634B (zh) * 2018-03-05 2020-01-14 深圳市华星光电半导体显示技术有限公司 喷墨打印机及其打印方法
TW202028721A (zh) 2018-12-21 2020-08-01 美商凱特伊夫公司 液滴特性量測
CN109910437B (zh) * 2019-01-22 2020-10-13 深圳市华星光电半导体显示技术有限公司 一种喷涂装置及显示面板的制备方法
KR20220016671A (ko) * 2020-08-03 2022-02-10 세메스 주식회사 약액 토출 장치 및 약액 토출 방법
CN117643201A (zh) * 2022-06-21 2024-03-01 京东方科技集团股份有限公司 发光基板、显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101910A (ja) * 1997-07-28 1999-04-13 Canon Inc カラーフィルタの製造方法及びカラーフィルタ及び表示装置及びこの表示装置を備えた装置
JP2008111902A (ja) * 2006-10-30 2008-05-15 Seiko Epson Corp 表示装置の製造方法
JP2010204186A (ja) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd カラーフィルタの製造装置およびカラーフィルタの製造方法、並びに、塗布装置および塗布方法
JP2010204189A (ja) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd カラーフィルタの製造方法、表示装置の製造方法、および、塗布方法
JP2011044340A (ja) * 2009-08-21 2011-03-03 Panasonic Corp 有機el素子の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
JP2001219558A (ja) 2000-02-08 2001-08-14 Seiko Epson Corp インクジェット式記録装置
JP2002347224A (ja) 2001-05-23 2002-12-04 Matsushita Electric Ind Co Ltd インクジェットヘッドの吐出量調整装置及び吐出量調整方法
JP4149161B2 (ja) 2001-12-06 2008-09-10 大日本印刷株式会社 パターン形成体の製造方法およびパターン製造装置
JP2004230660A (ja) 2002-01-30 2004-08-19 Seiko Epson Corp 液滴吐出ヘッド、吐出方法およびその装置、電気光学装置、その製造方法およびその製造装置、カラーフィルタ、その製造方法およびその製造装置、ならびに基材を有するデバイス、その製造方法およびその製造装置
JP2004311958A (ja) * 2003-03-26 2004-11-04 Seiko Epson Corp 表面処理方法、表面処理装置、表面処理基板及び電気光学装置並びに電子機器
KR101124999B1 (ko) * 2003-12-02 2012-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제조 방법
JP4725114B2 (ja) 2005-01-25 2011-07-13 大日本印刷株式会社 パターン形成装置及び方法
JP4983059B2 (ja) 2006-03-16 2012-07-25 セイコーエプソン株式会社 機能液配置方法
JP5211649B2 (ja) 2007-11-06 2013-06-12 セイコーエプソン株式会社 吐出ヘッドの駆動方法、液状体の吐出方法、有機el素子の製造方法
JP2009226312A (ja) 2008-03-24 2009-10-08 Ulvac Japan Ltd インクの吐出方法およびインクジェット塗布装置
JP4931858B2 (ja) 2008-05-13 2012-05-16 パナソニック株式会社 有機エレクトロルミネッセント素子の製造方法
JP5138542B2 (ja) 2008-10-24 2013-02-06 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
KR101643018B1 (ko) * 2009-02-10 2016-07-27 가부시키가이샤 제이올레드 발광 소자, 표시 장치, 및 발광 소자의 제조 방법
CN102077689B (zh) * 2009-08-31 2013-05-15 松下电器产业株式会社 发光元件及其制造方法以及发光装置
WO2011138817A1 (ja) 2010-05-07 2011-11-10 パナソニック株式会社 有機el表示パネル及びその製造方法
JP5624047B2 (ja) 2010-06-30 2014-11-12 パナソニック株式会社 有機el表示パネルとその製造方法
JP5330545B2 (ja) 2010-07-05 2013-10-30 パナソニック株式会社 発光素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101910A (ja) * 1997-07-28 1999-04-13 Canon Inc カラーフィルタの製造方法及びカラーフィルタ及び表示装置及びこの表示装置を備えた装置
JP2008111902A (ja) * 2006-10-30 2008-05-15 Seiko Epson Corp 表示装置の製造方法
JP2010204186A (ja) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd カラーフィルタの製造装置およびカラーフィルタの製造方法、並びに、塗布装置および塗布方法
JP2010204189A (ja) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd カラーフィルタの製造方法、表示装置の製造方法、および、塗布方法
JP2011044340A (ja) * 2009-08-21 2011-03-03 Panasonic Corp 有機el素子の製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11167303B2 (en) 2012-12-27 2021-11-09 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US10950826B2 (en) 2012-12-27 2021-03-16 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
JP2021169082A (ja) * 2012-12-27 2021-10-28 カティーバ, インコーポレイテッド 精密な公差内で流体を堆積させる印刷インク量制御のための技法
US11678561B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
KR102039808B1 (ko) * 2012-12-27 2019-11-01 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법
KR20170053731A (ko) * 2012-12-27 2017-05-16 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11489146B2 (en) 2012-12-27 2022-11-01 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US10784470B2 (en) 2012-12-27 2020-09-22 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US10784472B2 (en) 2012-12-27 2020-09-22 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
US11233226B2 (en) 2012-12-27 2022-01-25 Kateeva, Inc. Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
JP2016524782A (ja) * 2013-04-26 2016-08-18 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
JP2020024943A (ja) * 2013-04-26 2020-02-13 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
JP2018120874A (ja) * 2013-04-26 2018-08-02 カティーバ, インコーポレイテッド 印刷インク液滴測定および精密な公差内で流体を堆積する制御のための技法
US10522425B2 (en) 2013-12-12 2019-12-31 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
US11456220B2 (en) 2013-12-12 2022-09-27 Kateeva, Inc. Techniques for layer fencing to improve edge linearity
US11088035B2 (en) 2013-12-12 2021-08-10 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
US11551982B2 (en) 2013-12-12 2023-01-10 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light-emitting device
US10811324B2 (en) 2013-12-12 2020-10-20 Kateeva, Inc. Fabrication of thin-film encapsulation layer for light emitting device
JP2017529676A (ja) * 2014-06-30 2017-10-05 カティーバ, インコーポレイテッド 改良された速度および正確さをともなう永久層の整列印刷のための技術
JP2018137241A (ja) * 2014-06-30 2018-08-30 カティーバ, インコーポレイテッド 改良された速度および正確さをともなう永久層の整列印刷のための技術

Also Published As

Publication number Publication date
KR101751552B1 (ko) 2017-06-27
US20120309252A1 (en) 2012-12-06
CN103026789B (zh) 2016-01-13
KR20140016132A (ko) 2014-02-07
JP5785935B2 (ja) 2015-09-30
US8435093B2 (en) 2013-05-07
CN103026789A (zh) 2013-04-03
JPWO2012164628A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2012164628A1 (ja) 有機el表示パネルの製造方法、および有機el表示パネルの製造装置
JP6142324B2 (ja) 有機el表示パネルとその製造方法
JP5624047B2 (ja) 有機el表示パネルとその製造方法
JP5543597B2 (ja) 有機el表示パネルの製造方法
US9299959B2 (en) Inkjet device and manufacturing method for organic el device
JP6387580B2 (ja) 有機el表示パネルの製造方法
JP6336044B2 (ja) 有機el表示パネルの製造方法
JP6108241B2 (ja) インクジェット装置および有機elデバイスの製造方法
JP2011044340A (ja) 有機el素子の製造方法
JP2012252983A (ja) 有機el表示パネルの製造方法、カラーフィルターの製造方法、有機el表示パネルの製造装置および有機el表示パネル
US9555628B2 (en) Inkjet device, and method for manufacturing organic EL device
JP6083589B2 (ja) インクジェット装置および有機el表示パネルの製造方法
JP2016006746A (ja) インクジェット装置、および、インクジェット装置を用いて電子デバイスを製造する方法
JP2013008563A (ja) 有機el装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003548.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127001058

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012509791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866854

Country of ref document: EP

Kind code of ref document: A1