WO2012161423A1 - 안전성이 향상된 전지팩 - Google Patents

안전성이 향상된 전지팩 Download PDF

Info

Publication number
WO2012161423A1
WO2012161423A1 PCT/KR2012/003156 KR2012003156W WO2012161423A1 WO 2012161423 A1 WO2012161423 A1 WO 2012161423A1 KR 2012003156 W KR2012003156 W KR 2012003156W WO 2012161423 A1 WO2012161423 A1 WO 2012161423A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
battery module
support member
members
Prior art date
Application number
PCT/KR2012/003156
Other languages
English (en)
French (fr)
Inventor
이범현
이진규
강달모
윤종문
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014508287A priority Critical patent/JP5748380B2/ja
Priority to EP12790320.1A priority patent/EP2685527B1/en
Priority to CN201280021350.5A priority patent/CN103636029B/zh
Publication of WO2012161423A1 publication Critical patent/WO2012161423A1/ko
Priority to US14/015,508 priority patent/US9012051B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery pack having improved safety, and more particularly, a battery module arrangement in which two or more battery modules are arranged; A pair of side support members (front support member and rear support member) for supporting the front and rear surfaces of the battery module assembly, respectively; A lower support member for supporting a lower end of the battery module assembly; First upper mounting members to which the upper ends of the side support members are coupled and the lower ends of the inverted battery modules are coupled; A second upper mounting member coupled to the upper ends of the first upper mounting members in a structure perpendicular to the first upper mounting members; And a rear mounting member positioned at the rear of the battery module assembly, wherein at least one of the pair of side supporting members includes a volume expansion to induce local deformation of the battery module when swelling occurs to achieve a short circuit. It relates to a battery pack in which a weak part is a part which is vulnerable to.
  • Secondary batteries are energy sources for mobile devices such as mobile phones, digital cameras, PDAs, PMPs, laptops, and wireless devices, as well as power devices such as electric bicycles (EVs), electric vehicles (EVs), and hybrid electric vehicles (HEVs). Also attracts a lot of attention.
  • mobile devices such as mobile phones, digital cameras, PDAs, PMPs, laptops, and wireless devices
  • power devices such as electric bicycles (EVs), electric vehicles (EVs), and hybrid electric vehicles (HEVs). Also attracts a lot of attention.
  • EVs electric bicycles
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • multi-cells In contrast small battery packs in which one battery cell is packed in small devices such as mobile phones and cameras, two or more battery cells (hereinafter, sometimes referred to as "multi-cells") in medium and large devices such as notebooks and electric vehicles are used. Medium or large battery packs in which battery packs, which are connected in parallel and / or in series, are also used.
  • the lithium secondary battery has a problem of low safety while having excellent electrochemical characteristics.
  • lithium secondary batteries cause decomposition reactions of battery components, such as active materials and electrolytes, under abnormal operating conditions such as overcharge, overdischarge, exposure to high temperatures, and electrical short circuits to generate heat and gas, resulting in high temperature and high pressure.
  • the condition of may further accelerate the decomposition reaction, resulting in an air ignition or explosion.
  • the lithium secondary battery includes a protection circuit that blocks current during overcharge, over discharge, and overcurrent, a PTC element (Positive Temperature Coefficient Element) that blocks current by increasing resistance when temperature rises, and a current when pressure rises due to gas generation.
  • Safety systems are provided, such as safety vents to shut off or vent the gases.
  • a PTC element and a safety vent are usually installed on an electrode assembly (power generation element) of a cathode / separator / cathode, which is built in a cylindrical can, and a rectangular or pouch type small secondary battery.
  • a protection circuit module and a PTC element are generally mounted on the top of a rectangular can or pouch case in which the generator is sealed.
  • the safety problem of the lithium secondary battery is more serious in the battery pack of the multi-cell structure.
  • the battery pack of the multi-cell structure due to the use of a large number of battery cells, a malfunction in some battery cells may cause a chain reaction to other battery cells, and the resulting ignition and explosion may cause large accidents.
  • the battery pack is provided with safety systems such as fuses, bimetals, and battery management systems (BMSs) for protecting the battery cells from over discharge, over charge, over current, and the like.
  • BMSs battery management systems
  • the lithium secondary battery is gradually deteriorated in the continuous use, that is, the continuous charging and discharging process, the generator, the electrical connection member, etc.
  • the deterioration of the generator is generated by the decomposition of the electrode material, electrolyte, etc. This causes the battery cells (cans, pouch cases) to gradually expand.
  • the safety system BMS detects overdischarge, overcharge, overcurrent, and the like, and controls / protects the battery pack.
  • the BMS is not operated in an abnormal situation, the risk increases and it becomes difficult to control the battery pack for safety.
  • the battery pack is generally structured in which a plurality of battery cells are fixedly mounted in a predetermined case, each of the expanded battery cells is further pressurized in a limited case, and is capable of ignition and explosion under abnormal operating conditions. The risk is greatly increased.
  • FIG. 1 shows a circuit schematic of a conventional battery pack.
  • a conventional battery pack 900 includes a battery module assembly in which a plurality of battery cells or unit modules are connected in series and arranged in a state in which a plurality of battery modules are electrically connected to each other.
  • It is composed of a power switch unit (relay: 930) for opening and closing the connection.
  • the BMS 920 maintains the power switch 930 in an on state under normal operating conditions of the battery module assembly 910, and when the abnormality is detected, the BMS 920 is switched off to switch off the battery module assembly 910. Stops charging and discharging. On the other hand, when a malfunction or non-operation of the BMS 920, since no control is made from the BMS 920, the power switching unit 930 is continuously kept on (on), the battery module assembly even in abnormal operation state 910 has a problem that the charging and discharging operation is continuously performed.
  • the battery pack is configured by arranging two or more battery modules, it is difficult to predict in which column the battery modules are overcharged.
  • a battery pack having a specific structure that can be configured in a battery pack including a battery module arranged in two or more rows to ensure high output and high capacity to ensure durability and compactness from vibration and impact.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application after repeated in-depth studies and various experiments, when the battery modules are partially formed on at least one of the side support members, which is a weak spot for volume expansion in the battery pack arranged in two or more rows,
  • the battery cell expands due to abnormal operation of the battery pack such as overcharge, over discharge, over current, or deterioration due to prolonged charge and discharge
  • the stress due to expansion is concentrated to the weak part so as to induce local deformation of the battery module during swelling. It was confirmed that by allowing the power to be cut off, the safety of the battery pack can be secured to a desired level.
  • Still another object of the present invention is that the first upper mounting members, the second upper mounting member, and the rear mounting member have the shape of a square tube in a vertical cross section, so that deformations against vibration and impact in the vertical direction can be minimized. It is to provide a battery pack.
  • Another object of the present invention is to maintain the mass of the battery pack in the tube structure by assembling the battery module to the first upper mounting member and the second upper mounting member consisting of a square tube structure in the upper direction, and to provide a battery pack having a compact structure To provide.
  • At least one of the pair of side support members may be partially formed at a portion that is vulnerable to volume expansion so as to induce local deformation of the battery module when a swelling occurs, thereby achieving a power failure.
  • a battery pack including battery modules arranged in two or more rows includes a swelling phenomenon in which battery cells expand due to abnormal operation of the battery pack such as overcharge, overdischarge, overcurrent, or deterioration due to prolonged charge and discharge.
  • the battery module is expanded, such expansion ultimately causes the battery pack to ignite and explode.
  • the battery pack according to the present invention partially forms a weak portion which is a weak spot for volume expansion during swelling on at least one of the pair of side support members in close contact with the outermost battery modules, thereby limiting the swelling volume.
  • a predetermined value is reached, the expansion stress is concentrated to the weak portion of the side support member to induce the weak portion to rupture while being physically deformed. Due to this rupture of the weak part, the electrical connection of the outermost battery module is cut off and the charging and discharging process is stopped, thereby preventing the swelling volume from further increasing, thereby preventing the battery pack from igniting or exploding, It can greatly improve.
  • the structure of the side support member formed with the weakened portion can ensure the safety of the battery pack when swelling occurs without the addition of electrical devices such as sensors, relays, and the like, rather than using an electrical signal as in the conventional method of increasing the pressure As a method of achieving a short circuit by using the advantage that the operation reliability is very high.
  • the side support members may improve the binding force between the battery modules, thereby maintaining a solid structure of the battery pack in an environment such as shock or vibration.
  • the battery pack according to the present invention since a pair of side support members respectively support the front and rear surfaces of the battery module arrangement, the bending rigidity of the bottom support members coupled to the lower ends of the side support members is reliably reinforced. It is possible to secure sufficient structural reliability of the entire battery pack against vertical vibration.
  • the battery pack is located below the fastening position with the external device.
  • the battery pack can be easily and reliably mounted on an external device.
  • the side support member may be referred to as a 'front support member' for supporting the front surface of the battery module assembly and a 'back support member' for supporting the rear surface of the battery module assembly, as necessary herein.
  • a 'front support member' for supporting the front surface of the battery module assembly
  • a 'back support member' for supporting the rear surface of the battery module assembly
  • the battery cell is preferably a plate-shaped battery cell in order to provide a high lamination rate in a limited space, for example, it may be made of a structure in which the electrode assembly is built in the battery case of the laminate sheet.
  • the battery cell is a pouch type secondary battery in which an electrode assembly having a cathode / separation membrane / cathode structure is sealed inside the battery case together with an electrolyte, and has a plate-shaped shape having a substantially rectangular parallelepiped structure with a thin thickness to width.
  • a pouch-type secondary battery is generally made of a pouch-type battery case, the battery case is an outer coating layer made of a polymer resin having excellent durability; A barrier layer made of a metal material that exhibits barrier properties against moisture, air, and the like; And a laminate sheet structure in which an inner sealant layer made of a polymer resin that can be heat-sealed is sequentially stacked.
  • the weak part is preferably formed on at least one of the pair of side support members for each unit row of the battery module, for example, formed on the front support member and the rear support member in a symmetrical structure, Alternatively, all of the battery modules may be formed on the front support member for each row, or may be formed on the rear support member for each of the battery modules.
  • the swelled battery modules protrude outwards in opposite directions to ensure desired safety when overcharged.
  • the weak parts are all formed on the front support member by unit rows of the battery modules, or are formed on the rear support member by unit rows of the battery modules, the swelled battery modules during overcharge are in the same direction. Protruding to the outside can secure desired safety.
  • the front support member or the rear support member is formed integrally to support both the front or the rear of the battery modules arranged in two or more rows, the weak parts of the front support member and / or the rear support member are all of the battery module array when overcharge occurs. It is possible to prevent overcharging of the unit heat.
  • the weak part may be formed in a structure formed at a position corresponding to the series connection part of the outermost battery module or an adjacent part thereof. Therefore, when the battery cell or the like is swelled, its internal pressure is concentrated on the series connection portion of the outermost battery module, so that the desired disconnection process can be more easily performed.
  • the fragile portion is not particularly limited as long as it is a structure that can be easily deformed with respect to volume expansion of swelling, and may be, for example, a cutout in which a series connection portion of the battery module is open.
  • the cutout portion is provided on the side support member so that the series connection portions of the battery modules, the series connection portions of the battery cells in the battery module, the series connection portions of the unit modules in the battery module, or the series connection portions of the battery cells are opened. Is formed.
  • the series connection portion is a portion in which the electrode terminals are connected in series, and may be a connection member such as an electrode terminal itself connected to each other, a wire connecting the electrode terminals, and a bus bar.
  • the size of the series connection portion corresponding to the series connection portion exposed through the cutout may be large enough to cause an intended short circuit during swelling.
  • the size occupied by the cutout portion in the side support member may also be determined based on the size, for example, based on the surface area of the side support member, for example, 10 to 80% of the size.
  • the size of the cutout is too small based on the surface area of the side support member, it may not be easy to cause deformation of the series connection part due to the volume expansion of the battery module.
  • the cutout is too large, the battery module assembly may be protected from external force. It may be difficult to maintain a certain strength for it.
  • the size of the cut portion is formed in the size of 20 to 70% based on the surface area of the side support member.
  • the battery module constituting the battery pack of the present invention is fixed so that the stacking state of the battery cells or unit modules can be maintained even when the volume change during charge and discharge, expansion by swelling of the battery cells
  • the stress is concentrated on the electrode terminal connection part of the battery cell or unit module, so that when the swelling is more than a predetermined value, the electrode terminal connection part is ruptured and short-circuit occurs, so that a part of the electrode terminal connection part is weak against volume expansion It may be made of.
  • the battery module is formed in a structure that is vulnerable to the volume expansion of the battery cell or unit module when swelling the electrode terminal connecting portion of the battery cell or unit module, when the swelling volume reaches a predetermined value or more than the limit value, the electrode By expanding the expansion stress to the terminal connection portion can be easily induced to rupture while the electrode terminal connection portion is physically deformed.
  • the structure is a double safety structure in which a weak structure is formed on the electrode terminal connection portion of the battery module together with the weak portion formed in the side support member, the safety of the battery pack can be further improved.
  • the battery cells or unit modules are wrapped in a high-strength case, the electrode terminal connection portion which is ruptured when excessive swelling of the battery cell is open or a notch is formed in the case correspondingly Can be done.
  • the unit module, the battery cells in which the electrode terminals are interconnected in series and the connecting portion of the electrode terminals are bent to form a stacked structure, and the outer surface of the battery cells except for the electrode terminal portion
  • a pair of cell covers which are coupled to each other to surround the cell cover, and a portion of the cell cover adjacent to the electrode terminal connection part has a cutout or notch shaped to induce local deformation of the battery cell during swelling. It may be a structure formed.
  • the battery cells can be configured as a unit module in a structure wrapped in a high-strength cell cover made of synthetic resin or metal material, the high-strength cell cover is repeated during charging and discharging while protecting the battery cells of low mechanical rigidity It prevents the sealing part of the battery cell from being separated by suppressing the change in phosphorus expansion and contraction.
  • a cutout or notch may be formed in a desired shape in a portion adjacent to the electrode terminal connection part so as to easily induce the expansion stress of the battery cell to the cutout or notch of the cell cover during swelling.
  • the battery module may include, for example, a plurality of unit modules including plate-shaped battery cells in which electrode terminals are formed at front and rear facing portions of the battery case.
  • the unit module may be mounted to the case in a form standing in the lateral direction while being spaced at a predetermined interval for the flow of the refrigerant for cooling.
  • the cutout or notch is formed in the cell cover of the outermost unit module, so that the expansion stress of the battery cells due to the abnormal operation of the battery cell toward the cutout or notch formed in the cell cover of the outermost unit module.
  • the size of the cutout or notch may vary depending on the conditions for setting the tear at the electrode terminal connection part. Preferably, when the battery cell swelling causes a volume increase of 1.5 to 5 times based on the thickness of the battery cell, the electrode terminal The connection can be set to rupture. This setting range may vary depending on the safety test specification of the desired battery module. However, if the size of the cutout or notch is made too large, it may be difficult to achieve the essential function of supplementing the mechanical rigidity of the battery cell by the cell cover and suppressing the expansion of the battery cell under normal operating conditions. It is necessary to set the size of the cutout or notch.
  • the notch is not particularly limited in shape as long as it is formed at a portion of the cell cover adjacent to the electrode terminal connection portion.
  • the notch portion may have a straight shape.
  • the first upper mounting members, the second upper mounting member, and the rear mounting member may have a structure having a shape of a tube on a vertical cross section.
  • the first upper mounting members and the second upper mounting member have the shape of a square tube in a vertical cross section, deformation of the vibration and impact of the battery pack is achieved by the square tube having a high inertia moment value. It can be minimized.
  • the square tube may have a hollow rectangular bar shape and a sealed rectangular bar shape, and preferably, may have a hollow rectangular bar shape. These shapes may be improved in the vibration resistance of the battery pack because the moment of inertia is greater than that of a conventional frame having a predetermined shape or bending of a plate or an I shape.
  • the term "square bar shape" is interpreted as a concept including not only a rectangular shape, but also an angular shape of a corner, a rounded corner, a straight shape on one or more sides, or a gently curved shape.
  • the side support member is preferably a main body portion in contact with the outermost battery module of the battery module assembly, so as to disperse the pressure (bending load) from the battery modules and the lower support member, the outer peripheral surface of the main body portion
  • the upper wall, the lower wall, and a pair of side walls of the shape which protruded outward from the structure are comprised.
  • the "outward direction” means a direction opposite to the pressure, that is, a direction opposite to the direction in which the battery modules and the lower support member are positioned around the main body of the side support member.
  • the battery pack according to the present invention closely adheres the battery modules inverted in a state where the lower end is coupled to the first upper mounting members to the side support members, and fixes the side support members back to the lower support members.
  • the battery pack according to the present invention closely adheres the battery modules inverted in a state where the lower end is coupled to the first upper mounting members to the side support members, and fixes the side support members back to the lower support members.
  • the top wall of the side support member may be a structure joined by welding or bolting to the first upper mounting member.
  • the side support member is not particularly limited as long as it is a shape that can easily support the front and rear of the battery module array, it may be made of a planar rectangle, for example.
  • the lower plate of the lower support member is further provided with a lower plate, which is coupled to both side ends of the side support members, respectively, so that when the external force is applied to the battery pack, the battery module assembly moves downwards with the lower support parts. It can prevent double together.
  • the lower support members may be formed of four members to support both lower ends of each battery module, respectively.
  • the first upper mounting members are not particularly limited as long as they can easily mount the lower end of the inverted battery module.
  • two end members and two battery modules coupled to both upper ends of the battery module assembly respectively. It is composed of one central member coupled to the center of the array, it is possible to maintain the mass of the battery module assembly as a whole.
  • the end for fastening to the external device of the first upper mounting member is preferably bent upward by the height of the second upper mounting member coupled to the upper end of the first upper mounting member, so that the end of the first upper mounting member is
  • the upper surface of the second upper mounting member may be configured to maintain the same height.
  • the upper plate may be further mounted between the battery module assembly and the first upper mounting members to reinforce the top surface of the battery module assembly.
  • the battery module arrangement is coupled to an upper plate fixed to the lower ends of the first upper mounting members so that the first upper mounting members can maintain the mass of the battery module assembly.
  • the upper plate has a structure in which portions corresponding to the first upper mounting members are indented, so that the overall height of the battery pack can be kept low.
  • the lower plate may be a structure extending to the rear of the rear mounting member in order to secure a space through which the wire, which is a kind of wire, passes.
  • the other end of the first upper mounting member may be coupled to the upper end of the rear mounting member so as to improve the coupling force between the first upper mounting member and the rear mounting member.
  • a reinforcing bracket coupled to an upper end of the first upper mounting members in a structure parallel to the second upper mounting member is further mounted, so that the first upper mounting members and the second upper mounting member are coupled to each other. Can be further reinforced.
  • a U-shaped bracket for fixing a safety plug may be additionally mounted on an upper end of at least one of the first upper mounting members.
  • the rear mounting member is not particularly limited as long as it can easily wrap both sides and the lower surface of the cooling fan mounted on the rear surface of the battery module assembly, but preferably may be made of a U-shaped frame structure.
  • both ends of the rear mounting member may be bent in parallel with the second upper mounting member to facilitate coupling to an external device, and the bent portion may have a structure in which a fastener is formed.
  • the present invention also provides an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle that uses the battery pack as a power source and has a limited mounting space and is exposed to frequent vibrations and strong shocks.
  • the battery pack used as the power source of the vehicle can of course be manufactured in combination according to the desired output and capacity.
  • the vehicle may be an electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle in which the battery pack is mounted between the trunk bottom of the vehicle or the rear seat and the trunk of the vehicle.
  • Electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles using the battery pack as a power source is known in the art, so a detailed description thereof will be omitted.
  • 1 is a circuit schematic diagram of a conventional battery pack
  • FIG. 2 is a perspective view of a battery pack according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of the battery pack of FIG. 2 viewed from the rear;
  • FIG. 4 is a plan view of the battery pack of FIG.
  • FIGS. 5 and 6 are perspective views of the battery module used in the battery pack of Figure 2;
  • FIG. 7 and 8 are perspective views of a pair of battery cells and a cell cover constituting a unit module in the battery module of Figure 5;
  • FIG. 9 is a perspective view of a unit module stack
  • FIG. 10 is an experimental photograph of a battery module showing a structure in which an electrode terminal is ruptured by swelling
  • FIG. 11 is a schematic cross-sectional view of a portion D of the battery module of FIG. 6.
  • FIG. 2 is a perspective view schematically showing a battery pack according to an embodiment of the present invention
  • Figure 3 is a perspective view of the battery pack of FIG.
  • FIG. 4 illustrates a plan view of the battery pack of FIG. 2 as viewed from an upper surface thereof.
  • the battery pack 800 is a battery module array 600, a pair of side support members, the front support member 400 and the rear support member 410, the lower support member 740, three The first upper mounting members 610, the second upper mounting members 620, and the rear mounting members 500 are configured.
  • the front support member 400 and the rear support member have a structure in which the vulnerable parts 401 and 402, which are vulnerable to volume expansion, are symmetrical with each other so as to induce local deformation of the battery module when swelling occurs. It is formed on the 410, respectively.
  • the weak parts 401 and 402 are all formed on the front support member 400 by the unit rows of the battery modules 602 and 604, or the rear support members by the unit rows of the battery modules 602 and 604. Of course, all can be formed on the 410.
  • Vulnerable parts are each formed of a cutout in which the series connection portion of the outermost battery module is open, the size of the cut portion is formed based on the surface area of the front support member 400 or the rear support member 410 It is formed to a size of approximately 20%.
  • the battery module arrangement 600 includes battery modules 602 and 604 having a stacked structure in which the unit modules are inverted and arranged in two rows, and the front support member 400 and the rear support member 410 are battery modules.
  • the front and rear surfaces of the battery module assembly 600 are respectively supported in close contact with the outermost battery modules of the array 600.
  • the lower support member 740 is coupled to the lower ends of the front support member 400 and the rear support member 410 to support the lower end of the battery module assembly 600.
  • first upper mounting members 610 are coupled to the lower ends of the battery modules 602 and 604 inverted from the upper ends of the front support member 400 and the rear support member 410, and one end 616. It is fastened to an external device through a fastener 618 formed in.
  • the second upper mounting member 620 is coupled to an upper end of the first upper mounting members 610 in a structure perpendicular to the first upper mounting members 610 and formed at both end portions 622 and 624. It consists of a structure that is fastened to an external device (for example, a vehicle) through a fastener.
  • the rear mounting member 500 is located at the rear of the battery module assembly 600 and is fastened to an external device (eg, a vehicle) through fasteners 506 formed at both end portions 502 and 504.
  • an external device eg, a vehicle
  • first upper mounting members 610, the second upper mounting member 620, and the rear mounting member 500 is formed of a hollow rectangular bar in the form of a square tube on the vertical cross section.
  • the front support member 400 and the rear support member 410 are planar rectangles and have a main body contacting the outermost battery module of the battery module assembly 600, and an upper wall protruding outward from an outer circumferential surface of the main body part. And a bottom wall, and a pair of side walls.
  • top wall of the front support member 400 is coupled to the first upper mounting members 610 by bolting.
  • the lower plate 710 is mounted on the lower portion of the lower support members 740 with both ends coupled to the front support member 400 and the rear support member 410, respectively, and wires (not shown) It extends to the rear of the rear mounting member 500 to secure the passing space.
  • the lower support member 740 is composed of four members respectively supporting the lower ends of both sides of the battery modules 602 and 604.
  • the first upper mounting members 610 are two end members 612 and 614 coupled to upper ends of both sides of the battery module assembly 600, and one center coupled to the center of the battery module assembly 600, respectively. It is composed of a member 615, the end 616 of the first upper mounting members 610 for fastening to the external device is bent upward by the height of the second upper mounting member 620.
  • an upper plate 700 is mounted between the battery module assembly 600 and the first upper mounting members 610, and the battery module assembly 600 removes the mass of the battery module assembly 600.
  • the first upper mounting members 610 are coupled with the upper plate 700 fixed to the lower ends of the first upper mounting members 610.
  • the upper plate 700 has a portion corresponding to the first upper mounting members 610 indented.
  • the reinforcing bracket 720 is mounted in parallel with the second upper mounting member 620 while being coupled to the upper ends of the first upper mounting members 610, and for securing a safety plug (not shown).
  • a U-shaped bracket 730 is mounted on the top of the center member 615.
  • the rear mounting member 500 has a U-shaped frame structure, and surrounds both side surfaces and the bottom surface of a cooling fan (not shown) mounted on the rear surface of the battery module assembly 600.
  • both end portions 502 and 504 of the rear mounting member 500 are bent in parallel with the second upper mounting member 620, and a fastener 506 is formed at the bent portion to provide an external device. Bonding is easily achieved.
  • 5 and 6 are perspective views of the battery module used in the battery pack of FIG.
  • the battery module 100 has a structure in which the unit module stack 200 is mounted to the upper case 120 and the lower case 130 of the up and down assembly type in a state in which the unit module stack 200 is upright.
  • the input / output terminal 140 is formed on the front surface of the case 120.
  • a bus bar 150 for electrical connection with the input / output terminal 140 is formed on the front surface of the lower case 130, and a connector 160 for connection of a sensor for detecting voltage and temperature is mounted on the rear surface.
  • a cutout portion 212 is formed in the cell cover of the outermost unit module 210 in the unit module stack 200, so that when the battery cell is swelled by the internally generated gas due to a short circuit or overcharging, Deformation may be directed to cutout 212.
  • the battery module 102 of FIG. 6 is described in FIG. 5 except that the notch part 214 is formed at a portion adjacent to the electrode terminal connection part of the cell cover of the outermost unit module 211. Since it is the same as the detailed description thereof will be omitted.
  • FIG. 7 and 8 are perspective views of a pair of battery cells and a cell cover constituting the unit module in the battery module of FIG. 5.
  • a unit module (not shown) has a structure in which a high strength cell cover 310 is wrapped in a state in which two battery cells 302 and 304 are connected in series to bend the electrode terminals 305 and 306. Is made of.
  • the cell cover 310 has a structure in which the cell covers 310 are coupled to each other to surround the outer surfaces of the battery cells 302 and 304 except for the electrode terminals 305 and 306.
  • a cutout portion 312 in which the cell cover 310 itself is partially cut is formed at a portion of the cell cover 310 adjacent to the electrode terminal 305 and 306 connection portion, so that the battery cells during swelling ( The electrode terminal connecting portion 314 of the 302 and 304 is induced to protrude and deform out of the cutout 312.
  • FIG. 9 is a perspective view schematically showing a unit module stack.
  • the unit module stack 200 connects four unit modules 202, 203, 204, and 205 manufactured in a structure in which battery cells are covered with a cell cover, and is stacked in a zigzag manner.
  • a cutout portion having a predetermined shape is formed in a portion of the cell cover surrounding the unit module 202 located at the outermost of the unit modules 202, 203, 204, and 205 and adjacent to the electrode terminal connection portion. 316 is formed.
  • FIG. 10 is an experimental photograph of a battery module showing a structure in which an electrode terminal is ruptured by swelling.
  • the inventors of the present invention have manufactured a battery module based on the structure of FIG. 6, and have performed an overcharge test on such a battery module to actually check the effect of the configuration of the present invention. The results are shown in FIG.
  • the battery module 104 of FIG. 10 applies the cell cover structure of the outermost unit module 211 in the battery module 102 of FIG. 6 to the cell cover of the outermost unit module located on the right side. It was made with the same structure.
  • FIG. 11 illustrates a vertical cross-sectional view of a portion D of the battery module of FIG. 6.
  • the notch is a structure 214 in which a part of the outermost unit module 211 is partially cut in the form of a slit, or is formed of an elongated groove structure 216 having a relatively thin thickness. .
  • the battery pack according to the present invention is partially formed in the vulnerable portion that is vulnerable to the volume expansion in the side support members, over-charge, over-discharge, overcurrent, such as abnormal operation of the battery module or long-term charge and discharge
  • the vulnerable portion may be ruptured and disconnected, thereby greatly improving the safety of the battery pack.
  • the medium-large battery pack according to the present invention has a structure in which the battery module is capable of shorting the electrical connection with the power switch unit independently of the BMS, thereby ensuring safety even when the BMS malfunctions or does not work. Reliability can also be greatly improved.
  • the battery modules are arranged in two or more rows, it is possible to provide a high output large capacity compared to the conventional battery pack structure consisting of one battery module, the first upper mounting members and the second upper mounting member is vertical Since the shape of the tube in the cross-section, it is possible to minimize the deformation of the vibration and impact in the vertical direction.
  • the battery pack may be stably mounted in the vehicle by minimizing a portion of the battery pack by forming a partial structure of the battery pack using some forms of the vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은, 전지모듈들이 2열 이상 배열되어 있는 전지모듈 배열체; 전지모듈 배열체의 전면 및 후면을 각각 지지하는 한 쌍의 측면 지지부재들(전면 지지부재 및 후면 지지부재); 전지모듈 배열체의 하단을 지지하는 하단 지지부재; 상기 측면 지지부재들의 상단이 결합되어 있고, 도립된 전지모듈들의 하단이 결합되어 있는 2개 이상의 제 1 상부 장착부재들; 상기 제 1 상부 장착부재들과 수직으로 교차하는 구조로 제 1 상부 장착부재들의 상단에 결합되어 있는 제 2 상부 장착부재; 및 전지모듈 배열체의 후면에 위치하는 후면 장착부재;를 포함하고, 상기 한 쌍의 측면 지지부재들에는, 스웰링 발생시 전지모듈의 국부적인 변형을 유도하여 단전을 이룰 수 있도록, 부피 팽창에 대해 취약한 부위인 취약부가 부분적으로 형성되어 있는 전지팩을 제공한다.

Description

안전성이 향상된 전지팩
본 발명은 안전성이 향상된 전지팩에 관한 것으로, 더욱 상세하게는, 전지모듈들이 2열 이상 배열되어 있는 전지모듈 배열체; 전지모듈 배열체의 전면 및 후면을 각각 지지하는 한 쌍의 측면 지지부재들(전면 지지부재 및 후면 지지부재); 전지모듈 배열체의 하단을 지지하는 하단 지지부재; 측면 지지부재들의 상단이 결합되어 있고, 도립된 전지모듈들의 하단이 결합되어 있는 제 1 상부 장착부재들; 제 1 상부 장착부재들과 수직으로 교차하는 구조로 제 1 상부 장착부재들의 상단에 결합되어 있는 제 2 상부 장착부재; 및 전지모듈 배열체의 후면에 위치하는 후면 장착부재;를 포함하고, 한 쌍의 측면 지지부재들 중 적어도 하나에는, 스웰링 발생시 전지모듈의 국부적인 변형을 유도하여 단전을 이룰 수 있도록, 부피 팽창에 대해 취약한 부위인 취약부가 부분적으로 형성되어 있는 전지팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.
이차전지는 휴대폰, 디지털 카메라, PDA, PMP, 노트북 등의 모바일, 와이어리스 전자기기뿐만 아니라 전기자전거(E-bike), 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력장치에 대한 에너지원으로도 많은 관심을 모으고 있다.
휴대폰, 카메라 등의 소형 디바이스에는 하나의 전지셀이 팩킹되어 있는 소형 전지팩이 사용되는 것과는 달리, 노트북, 전기자동차 등의 중대형 디바이스에는 둘 또는 그 이상의 전지셀들(이하에서는, 때때로 "멀티-셀"으로 칭하기도 함)을 병렬 및/또는 직렬로 연결한 전지팩이 팩킹되어 있는 중형 또는 대형 전지팩이 사용되고 있다.
앞서 설명한 바와 같이, 리튬 이차전지는 우수한 전기화학적 특성을 가지고 있음에 반해 안전성이 낮다는 문제점을 가지고 있다. 예를 들어, 리튬 이차전지는 과충전, 과방전, 고온에의 노출, 전기적 단락 등 비정상적인 작동 상태에서 전지 구성요소들인 활물질, 전해질 등의 분해반응이 유발되어 열과 가스가 발생하고 이로 인해 초래된 고온 고압의 조건은 상기 분해반응을 더욱 촉진하여 급기야 발화 또는 폭발을 초래하기도 한다.
따라서, 리튬 이차전지에는 과충전, 과방전, 과전류시 전류를 차단하는 보호회로, 온도 상승시 저항이 크게 증가하여 전류를 차단하는 PTC 소자(Positive Temperature Coefficient Element), 가스 발생에 따른 압력 상승시 전류를 차단하거나 가스를 배기하는 안전벤트 등의 안전 시스템이 구비되어 있다. 예를 들어, 원통형의 소형 이차전지에서는 원통형 캔에 내장되어 있는 양극/분리막/음극의 전극조립체(발전소자) 상부에 PTC 소자 및 안전벤트가 통상적으로 설치되어 있고, 각형 또는 파우치형의 소형 이차전지에서는 발전소자가 밀봉된 상태로 내장되어 있는 각형 캔 또는 파우치형 케이스의 상단에 보호회로 모듈, PTC 소자 등이 일반적으로 탑재되어 있다.
리튬 이차전지의 안전성 문제는 멀티-셀 구조의 전지팩에서 더욱 심각하다. 멀티-셀 구조의 전지팩에서는 다수의 전지셀들이 사용됨으로 인해 일부 전지셀에서의 작동 이상은 다른 전지셀들로 연쇄반응을 유발할 수 있고 그로 인한 발화 및 폭발은 자칫 대형 사고를 초래할 수 있기 때문이다. 따라서, 전지팩에는 과방전, 과충전, 과전류 등으로부터 전지 셀을 보호하기 위한 퓨즈, 바이메탈, BMS (Battery Management System) 등의 안전 시스템이 구비되어 있다.
그러나, 리튬 이차전지는 계속적인 사용, 즉, 계속적인 충방전 과정에서 발전소자, 전기적 연결부재 등이 서서히 열화되는 바, 예를 들어, 발전소자의 열화는 전극재료, 전해질 등의 분해에 의해 가스 발생을 유발하며, 그로 인해 전지셀(캔, 파우치형 케이스)은 서서히 팽창하게 된다. 또한, 정상적인 상태에서는 안전 시스템인 BMS가 과방전, 과충전, 과전류 등을 탐지하고 전지팩을 제어/보호하고 있으나, 비정상적인 상황에서 BMS가 작동되지 않으면 위험성이 커지고 안전을 위한 전지팩 제어가 어려워진다. 또한, 전지팩은 일반적으로 다수의 전지셀들이 일정한 케이스 내에 고정된 상태로 장착되어 있는 구조로 되어 있으므로, 각각의 팽창된 전지셀들은 한정된 케이스 내에서 더욱 가압되고, 비정상적인 작동 조건 하에서 발화 및 폭발의 위험성이 크게 높아진다.
이와 관련하여, 도 1에는 종래 전지팩의 회로 모식도가 도시되어 있다. 도 1을 참조하면, 종래의 전지팩(900)은 다수의 전지셀 또는 단위모듈들이 직렬로 연결되어 모듈 케이스에 내장되어 있는 구조의 전지모듈 다수 개가 전기적으로 연결된 상태로 배열되어 있는 전지모듈 어셈블리(910), 전지모듈 어셈블리(910)의 작동 상태에 대한 정보를 검출하여 이를 제어하는 BMS(920), BMS(920)의 작동 명령에 의해 전지모듈 어셈블리(910)와 외부 입출력 회로(인버터: 940)의 연결을 개폐하는 전원 개폐부(릴레이: 930) 등으로 구성되어 있다.
BMS(920)는 전지모듈 어셈블리(910)의 정상적인 작동 조건에서 전원 개폐부(930)를 온(on) 상태로 유지하고, 이상이 감지되었을 때 오프(off) 상태로 전환시켜 전지모듈 어셈블리(910)의 충방전 작동을 중지시킨다. 반면에, BMS(920)의 오작동 또는 미작동시, BMS(920)로부터 어떠한 제어도 이루어지지 않으므로, 전원 개폐부(930)는 계속적으로 온(on) 상태로 유지되어, 비정상적인 작동 상태에서도 전지모듈 어셈블리(910)는 계속적으로 충방전 작동이 이루어지는 문제점이 있다.
더욱이, 전지모듈들을 2열 이상 배열하여 전지팩을 구성하는 경우 어느 열의 전지모듈에서 과충전이 발생할 지 예측하기 어려운 문제점이 있다.
따라서, 상기와 같은 문제점들을 해결하면서 전지팩의 안전성을 근본적으로 담보할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.
또한, 고출력 및 대용량을 확보하기 위해 2열 이상 배열되는 전지모듈을 포함하는 전지팩을 진동 및 충격으로부터 내구성을 확보하고 콤팩트 하게 구성할 수 있는 특정 구조의 전지팩에 대한 필요성도 요구되고 있다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 전지모듈들이 2열 이상 배열된 전지팩에서 부피 팽창에 대해 취약한 부위인 취약부를 측면 지지부재들 중 적어도 하나에 부분적으로 형성하는 경우, 과충전, 과방전, 과전류 등 전지팩의 비정상적인 작동 또는 장기간의 충방전에 따른 열화로 전지셀이 팽창할 때, 상기 취약부로 팽창에 따른 응력이 집중되도록 하여 스웰링 발생시 전지모듈의 국부적인 변형을 유도하고 단전되도록 함으로써, 전지팩의 안전성을 소망하는 수준으로 담보할 수 있음을 확인하였다.
따라서, 본 발명의 목적은 안전성을 향상시킬 수 있는 특정 구조의 전지팩을 제공하는 것이다.
본 발명의 또 다른 목적은, 제 1 상부 장착부재들, 제 2 상부 장착부재, 및 후면 장착부재가 수직단면상으로 각관의 형태를 가지고 있어서, 상하 방향으로의 진동 및 충격에 대한 변형을 최소화할 수 있는 전지팩을 제공하는 것이다.
본 발명의 기타 목적은, 전지모듈을 상부 방향으로 각관 구조물로 이루어진 제 1 상부 장착부재들과 제 2 상부 장착부재에 조립함으로써 전지팩의 질량을 각관 구조물에서 유지하고, 콤팩트한 구조의 전지팩을 제공하는 것이다.
이러한 목적들을 달성하기 위한 본 발명에 따른 전지팩은,
(a) 전지셀들 자체 또는 둘 또는 그 이상의 전지셀들이 내장된 단위모듈들을 도립 형태로 세워 적층한 구조의 전지모듈들이 2열 이상 배열되어 있는 전지모듈 배열체;
(b) 상기 전지모듈 배열체의 최외곽 전지모듈들에 밀착된 상태로 전지모듈 배열체의 전면 및 후면을 각각 지지하는 한 쌍의 측면 지지부재들(전면 지지부재 및 후면 지지부재);
(c) 상기 측면 지지부재들의 하단에 결합되어 전지모듈 배열체의 하단을 지지하는 하단 지지부재;
(d) 상기 측면 지지부재들의 상단이 결합되어 있고, 도립된 전지모듈들의 하단이 결합되어 있으며, 일측 단부가 외부 디바이스에 체결되는 구조로 이루어진 2개 이상의 제 1 상부 장착부재들;
(e) 상기 제 1 상부 장착부재들과 수직으로 교차하는 구조로 제 1 상부 장착부재들의 상단에 결합되어 있고, 양측 단부가 외부 디바이스에 체결되는 구조로 이루어진 제 2 상부 장착부재; 및
(f) 전지모듈 배열체의 후면에 위치하고, 양 단부가 외부 디바이스에 체결되는 구조로 이루어진 후면 장착부재;
를 포함하고 있고,
상기 한 쌍의 측면 지지부재들 중 적어도 하나에는, 스웰링 발생시 전지모듈의 국부적인 변형을 유도하여 단전을 이룰 수 있도록, 부피 팽창에 대해 취약한 부위인 취약부가 부분적으로 형성되어 있다.
앞서 설명한 바와 같이, 2열 이상 배열된 전지모듈들을 포함하고 있는 전지팩은, 과충전, 과방전, 과전류 등 전지팩의 비정상적인 작동 또는 장기간의 충방전에 따른 열화로 인해 전지셀이 팽창하는 스웰링 현상에 의해 전지모듈이 팽창하게 되고, 이러한 팽창은 궁극적으로 전지팩의 발화 및 폭발을 유발하게 된다.
따라서, 본 발명에 따른 전지팩은 최외곽 전지모듈들에 밀착된 한 쌍의 측면 지지부재들 중 적어도 하나에 스웰링시 부피 팽창에 대한 취약한 부위인 취약부를 부분적으로 형성함으로써, 스웰링 부피가 한계치인 소정 값 이상에 도달하면, 측면 지지부재의 취약부로 팽창 응력이 집중되어 취약부가 물리적으로 변형되면서 파열되도록 유도한다. 취약부의 이러한 파열에 의해, 최외곽 전지모듈의 전기적 연결이 끊어져 충방전 과정이 중지됨으로써, 스웰링 부피가 더 이상 증가하는 것을 억제하여, 전지팩의 발화 또는 폭발을 방지하고 이는 전지팩의 안전성을 크게 향상시킬 수 있다.
또한, 상기 취약부가 형성된 측면 지지부재의 구조는 센서, 릴레이 등과 같은 전기적 장치의 추가 없이 스웰링 발생시 전지팩의 안전성을 확보할 수 있고, 종래와 같이 전기적 신호를 사용하는 방법이 아니라 증가하는 압력을 이용하여 단전을 이루는 방식으로서 작동 신뢰성이 매우 높은 장점이 있다. 더욱이, 스웰링 현상이 발생하지 않은 상황에서는 측면 지지부재들이 전지모듈들 간의 결속력을 향상시켜, 충격 또는 진동과 같은 환경에서 전지팩의 견고한 구조를 유지하도록 할 수 있다.
더 나아가, 본 발명에 따른 전지팩은 한 쌍의 측면 지지부재들이 전지모듈 배열체의 전면 및 후면을 각각 지지하고 있으므로, 측면 지지부재들의 하단에 결합되어 있는 하단 지지부재의 굽힘 강성을 확실하게 보강할 수 있고, 상하 방향 진동에 대한 전지팩 전체의 구조적 신뢰성을 충분히 확보할 수 있다.
또한, 후면 장착부재와 제 2 상부 장착부재의 양측 단부, 및 제 1 상부 장착부재들의 일측 단부가 각각 외부 디바이스에 체결되는 구조로 이루어져 있으므로, 전지팩이 외부 디바이스와의 체결 위치보다 아래에 위치하더라도 전지팩을 외부 디바이스에 용이하고 안정적으로 장착할 수 있다.
게다가, 단위모듈들을 도립 형태로 세워 적층한 구조의 전지모듈이 2열 이상 배열되어 있으므로, 1개의 전지모듈로 구성된 종래의 전지팩 구조와 비교하여 고출력 대용량의 전기용량을 제공할 수 있다.
참고로, 측면 지지부재는, 본 명세서에서 필요에 따라, 전지모듈 배열체의 전면을 지지하는 '전면 지지부재'과 전지모듈 배열체의 후면을 지지하는 '후면 지지부재'으로 표현하기도 하며, 본 명세서에서 방향들은, 전지모듈 배열체의 전면에 밀착되어 있는 전면 지지부재의 방향으로 전지모듈을 투시한 상태를 기준으로, '전', '후', '좌', '우', '상', '하' 등으로 설정하여 표현한다.
상기 전지셀은 한정된 공간에서 높은 적층률을 제공할 수 있도록 바람직하게는 판상형 전지셀이며, 예를 들어, 라미네이트 시트의 전지케이스에 전극조립체가 내장되어 있는 구조로 이루어질 수 있다.
구체적으로는, 전지셀은 양극/분리막/음극 구조의 전극조립체가 전해액과 함께 전지케이스의 내부에 밀봉되어 있는 파우치형 이차전지로서, 전체적으로 폭 대비 두께가 얇은 대략 직육면체 구조인 판상형으로 이루어져 있다. 이러한 파우치형 이차전지는 일반적으로 파우치형의 전지케이스로 이루어져 있으며, 상기 전지케이스는 내구성이 우수한 고분자 수지로 이루어진 외부 피복층; 수분, 공기 등에 대해 차단성을 발휘하는 금속 소재로 이루어진 차단층; 및 열융착될 수 있는 고분자 수지로 이루어진 내부 실란트층이 순차적으로 적층되어 있는 라미네이트 시트 구조로 구성되어 있다.
전지모듈들이 2열 이상 배치되는 경우 어느 열의 전지모듈에서 과충전 현상이 발생할 지 모르는 문제점이 있다. 따라서, 상기 취약부는 전지모듈의 단위 열별로 한 쌍의 측면 지지부재들 중 적어도 하나에 형성되는 것이 바람직하며, 예를 들어, 서로 대칭되는 구조로 전면 지지부재와 후면 지지부재 상에 각각 형성되거나, 또는 전지모듈들의 단위 열별로 전면 지지부재 상에 모두 형성되거나, 또는 전지모듈들의 단위 열별로 후면 지지부재 상에 모두 형성될 수 있다.
구체적으로는, 전지모듈들이 2열로 배치되어 있는 전지모듈 배열체의 경우, 스웰링 발생시 전면 지지부재 및/또는 후면 지지부재 상에 형성된 취약부에 의해 단위 열별로 최외곽 전지모듈의 국부적인 변형을 유도하여 단전을 이루도록 할 수 있다.
즉, 상기 취약부가 서로 대칭되는 구조로 전면 지지부재와 후면 지지부재 상에 각각 형성되어 있는 경우, 과충전시 스웰링된 전지모듈들은 서로 반대 방향으로 외부로 돌출됨으로써 소망하는 안전성을 확보할 수 있다.
이와는 달리, 상기 취약부가 전지모듈들의 단위 열별로 전면 지지부재 상에 모두 형성되거나, 전지모듈들의 단위 열별로 후면 지지부재 상에 모두 형성되어 있는 경우, 과충전시 스웰링된 전지모듈들은 서로 동일한 방향으로 외부로 돌출됨으로써 소망하는 안전성을 확보할 수 있다.
또한, 전면 지지부재 또는 후면 지지부재가 2열 이상 배열된 전지모듈들의 전면 또는 후면을 모두 지지하는 일체형으로 이루어져 있으므로, 전면 지지부재 및/또는 후면 지지부재의 취약부는 과충전 발생시 전지모듈 배열체의 모든 단위 열에 대한 과충전을 방지할 수 있다.
상기 취약부는 단전 효과를 극대화할 수 있도록, 바람직하게는, 최외곽 전지모듈의 직렬 연결부위에 대응하는 위치 또는 그 인접 부위에 형성되어 있는 구조로 이루어질 수 있다. 따라서, 전지셀 등이 스웰링되는 경우, 그것의 내부 압력이 최외곽 전지모듈의 직렬 연결부위에 집중됨으로써, 더욱 용이하게 소망하는 단전 과정이 진행되도록 할 수 있다.
상기 취약부는 스웰링 발생의 부피 팽창에 대해 용이하게 변형될 수 있는 구조이면 특별한 제한은 없으며, 예를 들어, 전지모듈의 직렬 연결부위가 개방되어 있는 절취부로 이루어질 수 있다.
상기 절취부는 전지모듈 상호 간의 직렬 연결부위, 전지모듈 내 전지셀들 상호간의 직렬 연결부위, 전지모듈 내 단위모듈 상호간의 직렬 연결부위, 또는 전지셀들 상호간의 직렬 연결부위가 개방되도록 측면 지지부재 상에 형성된다.
상기 직렬 연결부위는 전극단자들을 직렬로 연결한 부위로서, 상호 간에 연결된 전극단자 자체, 전극단자들을 연결하는 와이어, 버스 바 등의 접속부재일 수도 있다.
따라서, 스웰링 현상이 발생하였을 때, 직렬 연결부위는 측면 지지부재의 개방된 절취부를 통해 돌출되며, 이러한 변형 과정에서 상기 직렬 연결부위가 파열되면서 단전이 이루어진다.
상기 절취부를 통해 노출되는 직렬 연결부위에 대응하여 위치하는 직렬 연결부위의 크기는 스웰링시 의도된 단락을 유발할 정도의 크기이면 족하다.
따라서, 측면 지지부재에서 절취부가 차지하는 크기 역시 상기 크기에 준하여 결정되며, 예를 들어, 측면 지지부재의 표면적을 기준으로 예를 들어 10 내지 80%의 크기로 이루어질 수 있다. 다만, 절취부의 크기가 측면 지지부재의 표면적을 기준으로 너무 작으면 전지모듈의 부피 팽창에 따른 직렬 연결부위의 변형을 유발하기가 용이하지 않을 수 있고, 반대로 너무 크면 전지모듈 어셈블리를 외력으로부터 보호하기 위한 소정의 강도를 유지하기 어려울 수 있다. 더욱 바람직하게는, 절취부가 형성된 부위의 크기는 측면 지지부재의 표면적을 기준으로 20 내지 70%의 크기로 형성할 수 있다.
하나의 바람직한 예에서, 본 발명의 전지팩을 구성하는 상기 전지모듈은 충방전시의 부피 변화에도 전지셀 또는 단위모듈들의 적층 상태가 유지될 수 있도록 고정되어 있고, 전지셀의 스웰링에 의한 팽창 응력이 전지셀 또는 단위모듈의 전극단자 연결부위로 집중되어, 스웰링이 소정 값 이상일 때, 상기 전극단자 연결부위가 파열되면서 단전이 이루어지도록, 전극단자 연결부위의 일부는 부피 팽창에 대해 취약한 구조로 이루어질 수 있다.
따라서, 상기 전지모듈은 전지셀 또는 단위모듈의 전극단자 연결 부위를 스웰링시 전지셀 또는 단위모듈의 부피 팽창에 대해 취약한 구조로 형성함으로써, 스웰링 부피가 한계치인 소정 값 이상에 도달하면, 전극단자 연결부위로 팽창 응력이 집중되도록 하여 전극단자 연결부위가 물리적으로 변형되면서 파열되도록 용이하게 유도할 수 있다.
또한, 이러한 구조는 측면 지지부재에 형성된 취약부와 함께 전지모듈의 전극단자 연결부위에도 취약한 구조가 형성되어 있는 이중 안전 구조이므로, 전지팩의 안전성을 더욱 향상시킬 수 있다.
이러한 구조에서, 상기 전지셀 또는 단위모듈들은 고강도 케이스로 감싸여 있고, 전지셀의 과도한 스웰링시 파열되는 상기 전극단자 연결부위가 개방되어 있거나 또는 그에 대응하여 상기 케이스에 노치가 형성되어 있는 구조로 이루어질 수 있다.
즉, 단위모듈에서 전극단자 연결부위의 일부 부위를 팽창 응력에 대해 취약한 구조인 개방 구조 또는 노치가 형성된 구조로 제작함으로써, 스웰링시 전지셀의 과도한 팽창 응력을 전극단자 연결부위의 개방 부위 또는 노치 부위로 집중되도록 유도할 수 있다.
상기 구조의 구체적인 예로서, 단위모듈은, 전극단자들이 직렬로 상호 연결되어 있고 상기 전극단자들의 연결부가 절곡되어 적층 구조를 이루고 있는 전지셀들, 및 상기 전극단자 부위를 제외하고 상기 전지셀들의 외면을 감싸도록 상호 결합되는 한 쌍의 셀 커버를 포함하고 있고, 상기 전극단자 연결부위와 인접해 있는 셀 커버의 부위에는 스웰링시 전지셀의 국부적인 변형을 유도하기 위한 형상의 절취부 또는 노치부가 형성되어 있는 구조일 수 있다.
예를 들어, 전지셀들은 합성수지 또는 금속 소재의 고강도 셀 커버에 감싸인 구조로 하나의 단위모듈을 구성할 수 있는 바, 상기 고강도 셀 커버는 기계적 강성이 낮은 전지셀을 보호하면서 충방전시의 반복적인 팽창 및 수축의 변화를 억제하여 전지셀의 실링부위가 분리되는 것을 방지하여 준다. 이러한 셀 커버에서 전극단자 연결부위와 인접한 일부 부위에 소망하는 형상으로 절취부 또는 노치부를 형성하여 스웰링시 전지셀의 팽창 응력이 셀 커버의 절취부 또는 노치부로 집중하도록 용이하게 유도할 수 있다.
상기 전지모듈은, 예를 들어, 전극단자들이 전지케이스의 전후 대향 부위에 각각 형성되어 있는 판상형 전지셀들을 포함하고 있는 단위모듈 다수 개로 이루어져 있다. 이러한 단위모듈은 냉각을 위한 냉매의 유동을 위해 소정의 간격으로 이격되면서 측면 방향으로 세워져 있는 형태로 케이스에 장착될 수 있다.
상기 구조에서, 절취부 또는 노치부는 최외곽 단위모듈의 셀 커버에 형성되어 있어서, 전지셀의 비정상적인 작동에 의한 전지셀들의 팽창 응력을 최외곽 단위모듈의 셀 커버에 형성된 절취부 또는 노치부 방향으로 집중시켜, 최외곽 단위모듈의 전극단자 연결부위를 파열시킴으로써, 충방전을 위한 전기적 연결을 용이하게 단전시킬 수 있다.
상기 절취부 또는 노치부의 크기는 전극단자 연결부위의 파열 설정 조건에 따라 달라질 수 있으며, 바람직하게는 전지셀 스웰링이 전지셀의 두께를 기준으로 1.5 내지 5배의 부피 증가를 초래할 때, 전극단자 연결부위가 파열되도록 설정할 수 있다. 이러한 설정 범위는 소망하는 전지모듈의 안전성 시험 규격에 따라 달라질 수 있다. 다만, 절취부 또는 노치부의 크기를 너무 크게 만들면, 셀 커버에 의한 전지셀의 기계적 강성 보완과 정상적인 작동 조건에서 전지셀의 팽창 억제라는 본질적인 기능을 발휘하기 어려울 수 있으므로, 이러한 점을 고려하여 적정한 범위에서 절취부 또는 노치부의 크기를 설정할 필요가 있다.
상기 노치부는 전극단자 연결부위와 인접해 있는 셀 커버의 부위에 형성되어 있으면 형상에 있어서 특별한 제한은 없으며, 예를 들어 일자(一字)형으로 형성되어 있을 수 있다.
하나의 바람직한 예에서, 상기 제 1 상부 장착부재들, 제 2 상부 장착부재, 및 후면 장착부재는 수직단면상으로 각관의 형태를 가진 구조로 이루어질 수 있다.
따라서, 본 발명에 따른 전지팩은 제 1 상부 장착부재들과 제 2 상부 장착부재가 수직단면상으로 각관의 형태를 가지고 있어서, 전지팩의 진동 및 충격에 대한 변형을 관성 모멘트 값이 높은 각관에 의해 최소화할 수 있다.
상기 각관은 중공형의 사각 바(bar) 형상과 밀폐형의 사각 바 형상일 수 있으며, 바람직하게는 중공형의 사각 바 형상일 수 있다. 이러한 형상들은, 판재를 소정의 형태로 절곡하거나 I형 형태 등을 가진 종래의 프레임과 비교하여 관성 모멘트 값이 커 전지팩의 진동에 대한 내진성을 향상시킬 수 있다. 상기에서 사용된 용어 "사각 바 형상"은 사각형 형상 뿐만 아니라, 모서리가 각진 형상, 모서리가 둥근 형상, 일면 또는 이면 이상이 직선인 형상 또는 완만히 굴곡진 형상 등을 모두 포함하는 개념으로 해석된다.
상기 측면 지지부재는, 전지모듈들과 하단 지지부재로부터의 압력(굽힘 하중)을 분산시킬 수 있도록, 바람직하게는, 상기 전지모듈 배열체의 최외곽 전지모듈에 접하는 본체부와, 상기 본체부의 외주면으로부터 외측 방향으로 돌출된 형상의 상단벽, 하단벽, 및 한 쌍의 측벽을 포함하고 있는 구조로 구성되어 있다. 여기서, "외측 방향"이란 상기 압력에 대향하는 방향, 즉, 측면 지지부재의 본체부를 중심으로 전지모듈들과 하단 지지부재가 위치하는 방향에 대해 반대인 방향을 의미한다.
따라서, 본 발명에 따른 전지팩은 제 1 상부 장착부재들에 하단이 결합된 상태로 도립된 전지모듈들을 측면 지지부재들로 밀착시켜 주고, 상기 측면 지지부재들을 하단 지지부재로 다시 고정시켜 주므로, 전지모듈을 구성하는 단위모듈의 두께 방향으로의 이동 및 스웰링 현상을 방지하여 전지모듈의 안전성을 향상시키고 성능 저하를 효과적으로 방지할 수 있다.
상기 구조의 하나의 바람직한 예로서, 측면 지지부재의 상단벽은 제 1 상부 장착부재에 대해 용접 또는 볼팅에 의해 결합되어 있는 구조일 수 있다.
한편, 상기 측면 지지부재는 전지모듈 배열체의 전면 및 후면을 용이하게 지지할 수 있는 형상이면 특별한 제한은 없으나, 예를 들어 평면상 직사각형으로 이루어질 수 있다.
상기 하단 지지부재들의 하부에는 양측 단부가 측면 지지부재들에 각각 결합되어 있는 하부 플레이트가 추가로 장착되어 있어서, 전지팩에 대한 외력의 인가시 전지모듈 배열체가 하부 방향으로 이동하는 것을 하단 지지부들과 함께 이중으로 방지할 수 있다.
하나의 바람직한 예로서, 전지모듈이 2열로 배열되어 전지모듈 배열체를 구성하는 경우, 상기 하단 지지부재는 각 전지모듈의 양측 하단부를 각각 지지하기 위해 4개의 부재들로 이루어질 수 있다.
상기 제 1 상부 장착부재들은 도립된 전지모듈의 하단을 용이하게 장착할 수 있는 구조이면 특별한 제한은 없으나, 예를 들어, 전지모듈 배열체의 양측 상단부에 각각 결합되는 2개의 양단 부재들과 전지모듈 배열체의 중앙에 결합되는 1개의 중앙 부재로 구성되어 있어서 전체적으로 전지모듈 배열체의 질량을 균등하게 유지할 수 있다.
상기 제 1 상부 장착부재 중 외부 디바이스에 대한 체결을 위한 단부는 바람직하게는 제 1 상부 장착부재의 상단에 결합되는 제 2 상부 장착부재의 높이만큼 상향 절곡되어 있어서, 제 1 상부 장착부재의 단부와 제 2 상부 장착부재의 상단면이 동일한 높이를 유지하도록 구성할 수 있다.
경우에 따라서는, 전지모듈 배열체의 상단면을 보강하기 위하여 상기 전지모듈 배열체와 제 1 상부 장착부재들 사이에 상부 플레이트가 추가로 장착되어 있는 구조일 수 있다.
상기 구조의 하나의 예로서, 전지모듈 배열체는 전지모듈 배열체의 질량을 제 1 상부 장착부재들이 유지할 수 있도록 제 1 상부 장착부재들의 하단에 고정된 상부 플레이트와 결합되어 있다.
또 다른 예로서, 상기 상부 플레이트는 제 1 상부 장착부재들에 대응하는 부위가 만입되어 있는 구조로 이루어져 있어서, 전체적으로 전지팩의 높이를 낮게 유지할 수 있다.
한편, 일반적으로 전지팩은 전기적 배선구조를 포함하고 있으므로, 상기 하부 플레이트는 전선의 일종인 와이어가 지나가는 공간을 확보하기 위해 후면 장착부재의 후방으로 연장되어 있는 구조일 수 있다.
경우에 따라서는, 상기 제 1 상부 장착부재와 후면 장착부재의 결합력을 향상시킬 수 있도록, 제 1 상부 장착부재의 타측 단부는 후면 장착부재의 상단에 결합될 수 있다.
또 다른 예로서, 상기 제 2 상부 장착부재와 평행한 구조로 제 1 상부 장착부재들의 상단에 결합된 보강 브라켓이 추가로 장착되어 있어서, 제 1 상부 장착부재들과 제 2 상부 장착부재의 결합 구조를 더욱 보강할 수 있다.
한편, 상기 제 1 상부 장착부재들 중 적어도 하나 이상의 제 1 상부 장착부재의 상단에는 안전 플러그를 고정하기 위한 U자형의 브라켓이 추가로 장착되어 있는 구조일 수 있다.
하나의 예로서, 상기 후면 장착부재는 전지모듈 배열체의 후면에 장착되는 냉각 팬의 양측면과 하면을 용이하게 감쌀 수 있는 구조이면 특별한 제한은 없으나, 바람직하게는 U자형 프레임 구조로 이루어질 수 있다.
또 다른 예로서, 상기 후면 장착부재의 양측 단부들은 외부 디바이스에 대한 결합이 용이할 수 있도록 제 2 상부 장착부재와 평행하게 절곡되어 있고, 절곡된 부위에는 체결구가 형성되어 있는 구조일 수 있다.
본 발명은 또한, 상기 전지팩을 전원으로 사용하며 한정된 장착공간을 가지며 잦은 진동과 강한 충격 등에 노출되는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차를 제공한다.
자동차의 전원으로 사용되는 전지팩은 소망하는 출력 및 용량에 따라 조합하여 제조될 수 있음은 물론이다.
이 경우, 상기 자동차는 전지팩이 차량의 트렁크 하단부 또는 차량의 리어 시트와 트렁크 사이에 장착되는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차일 수 있다.
전지팩을 전원으로 사용하는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 등은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 생략한다.
도 1은 종래의 전지팩의 회로 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지팩의 사시도이다;
도 3은 도 2의 전지팩을 후면에서 바라본 사시도이다;
도 4는 도 2의 전지팩을 상면에서 바라본 평면도이다;
도 5 및 도 6은 도 2의 전지팩에 사용되는 전지모듈의 사시도들이다;
도 7 및 도 8은 도 5의 전지모듈에서 단위모듈을 구성하는 한 쌍의 전지셀과 셀 커버의 사시도들이다;
도 9는 단위모듈 적층체의 사시도이다;
도 10은 스웰링에 의해 전극단자가 파열된 구조를 나타내는 전지모듈의 실험 사진이다;
도 11은 도 6의 전지모듈에서 D 부위의 수직 단면 모식도이다.
이하, 도면을 참조하여 본 발명을 더욱 자세히 설명하지만, 본 발명의 범주가 그것으로 한정되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 전지팩의 사시도가 모식적으로 도시되어 있고, 도 3에는 도 2의 전지팩을 후면에서 바라본 사시도가 모식적으로 도시되어 있다.
또한, 도 4에는 도 2의 전지팩을 상면에서 바라본 평면도가 모식적으로 도시되어 있다.
이들 도면을 참조하면, 전지팩(800)은 전지모듈 배열체(600), 한 쌍의 측면 지지부재들인 전면 지지부재(400)와 후면 지지부재(410), 하단 지지부재(740), 3개의 제 1 상부 장착부재들(610), 제 2 상부 장착부재(620), 및 후면 장착부재(500)로 구성되어 있다.
또한, 스웰링 발생시 전지모듈의 국부적인 변형을 유도하여 단전을 이룰 수 있도록, 부피 팽창에 대해 취약한 부위인 취약부들(401, 402)이 서로 대칭되는 구조로 전면 지지부재(400)와 후면 지지부재(410) 상에 각각 형성되어 있다.
이와는 달리, 취약부들(401, 402)이 전지모듈들(602, 604)의 단위 열별로 전면 지지부재(400) 상에 모두 형성되거나, 전지모듈들(602, 604)의 단위 열별로 후면 지지부재(410) 상에 모두 형성될 수 있음은 물론이다.
취약부들(401, 402)은 각각 최외곽 전지모듈의 직렬 연결부위가 개방되어 있는 절취부로 이루어져 있고, 절취부가 형성된 부위의 크기는 전면 지지부재(400) 또는 후면 지지부재(410)의 표면적을 기준으로 대략 20%의 크기로 형성되어 있다.
전지모듈 배열체(600)는 단위모듈들을 도립 형태로 세워 적층한 구조의 전지모듈들(602, 604)이 2열로 배열되어 있고, 전면 지지부재(400)와 후면 지지부재(410)는 전지모듈 배열체(600)의 최외곽 전지모듈들에 밀착된 상태로 전지모듈 배열체(600)의 전면 및 후면을 각각 지지하고 있다.
하단 지지부재(740)는 전면 지지부재(400)와 후면 지지부재(410)의 하단에 결합되어 전지모듈 배열체(600)의 하단을 지지하고 있다.
또한, 제 1 상부 장착부재들(610)은 전면 지지부재(400)와 후면 지지부재(410)의 상단과 도립된 전지모듈들(602, 604)의 하단에 결합되어 있고, 일측 단부(616)에 형성된 체결구(618)를 통해 외부 디바이스에 체결된다.
제 2 상부 장착부재(620)는 제 1 상부 장착부재들(610)과 수직으로 교차하는 구조로 제 1 상부 장착부재들(610)의 상단에 결합되어 있고, 양측 단부(622, 624)에 형성된 체결구를 통해 외부 디바이스(예를 들어, 차량)에 체결되는 구조로 이루어져 있다.
후면 장착부재(500)는 전지모듈 배열체(600)의 후면에 위치하고, 양측 단부(502, 504)에 형성된 체결구(506)를 통해 외부 디바이스(예를 들어, 차량)에 체결된다.
또한, 제 1 상부 장착부재들(610), 제 2 상부 장착부재(620), 및 후면 장착부재(500)는 수직단면상 각관의 형태를 가진 중공형의 사각 바로 이루어져 있다.
전면 지지부재(400)와 후면 지지부재(410)는, 평면상 직사각형으로서, 전지모듈 배열체(600)의 최외곽 전지모듈에 접하는 본체부, 본체부의 외주면으로부터 외측 방향으로 돌출된 형상의 상단벽 및 하단벽, 및 한 쌍의 측벽을 포함하고 있다.
또한, 전면 지지부재(400)의 상단벽은 제 1 상부 장착부재(610)들과 볼팅에 의해 결합되어 있다.
하부 플레이트(710)는 양측 단부가 전면 지지부재(400)와 후면 지지부재(410)에 각각 결합되어 있는 상태로 하단 지지부재들(740)의 하부에 장착되어 있고, 와이어(도시하지 않음)가 지나가는 공간을 확보하기 위해 후면 장착부재(500)의 후방으로 연장되어 있다.
또한, 하단 지지부재(740)는 전지모듈들(602, 604)의 양측 하단부를 각각 지지하는 4개의 부재들로 이루어져 있다.
제 1 상부 장착부재들(610)은 전지모듈 배열체(600)의 양측 상단부에 각각 결합되는 2개의 양단 부재들(612, 614)과 전지모듈 배열체(600)의 중앙에 결합되는 1개의 중앙 부재(615)로 구성되어 있고, 제 1 상부 장착부재들(610) 중 외부 디바이스에 대한 체결을 위한 단부(616)는 제 2 상부 장착부재(620)의 높이만큼 상향 절곡되어 있다.
또한, 전지모듈 배열체(600)와 제 1 상부 장착부재들(610) 사이에 상부 플레이트(700)가 장착되어 있고, 전지모듈 배열체(600)는 전지모듈 배열체(600)의 질량을 제 1 상부 장착부재들(610)이 유지할 수 있도록 제 1 상부 장착부재들(610)의 하단에 고정된 상부 플레이트(700)와 결합되어 있다.
상부 플레이트(700)는 제 1 상부 장착부재들(610)에 대응하는 부위가 만입되어 있다.
보강 브라켓(720)이 제 1 상부 장착부재들(610)의 상단에 결합된 상태로 제 2 상부 장착부재(620)와 평행한 구조로 장착되어 있고, 안전 플러그(도시하지 않음)를 고정하기 위한 U자형의 브라켓(730)이 중앙 부재(615)의 상단에 장착되어 있다.
후면 장착부재(500)는 U자형 프레임 구조로 이루어져 있어서, 전지모듈 배열체(600)의 후면에 장착되는 냉각 팬(도시하지 않음)의 양측면과 하면을 감싸게 된다.
또한, 후면 장착부재(500)의 양측 단부들(502, 504)은 제 2 상부 장착부재(620)와 평행하게 절곡되어 있고, 절곡된 부위에는 체결구(506)가 형성되어 있어서, 외부 디바이스에 대한 결합이 용이하게 달성된다.
도 5 및 도 6에는 도 2의 전지팩에 사용되는 전지모듈의 사시도들이 모식적으로 도시되어 있다.
도 5를 참조하면, 전지모듈(100)은 단위모듈 적층체(200)를 측면으로 직립시킨 상태로 상하 조립형의 상부 케이스(120)와 하부 케이스(130)에 장착한 구조로 이루어져 있고, 상부 케이스(120)의 전면에는 입출력 단자(140)가 형성되어 있다. 하부 케이스(130)의 전면에는 입출력 단자(140)와의 전기적 연결을 위한 버스 바(150)가 형성되어 있고, 후면에는 전압 및 온도 검출용 센서의 접속을 위한 커넥터(160)가 장착되어 있다.
단위모듈 적층체(200)에서 최외곽 단위모듈(210)의 셀 커버에는 절취부(212)가 형성되어 있어서, 전지셀의 단락 또는 과충전에 의한 내부 발생 가스에 의해 스웰링시 전지셀의 국부적인 변형을 절취부(212)로 유도할 수 있다.
도 6의 전지모듈(102)은 최외곽 단위모듈(211)의 셀 커버에서 노치부(214)가 전극단자 연결부위와 인접해 있는 부위에 일자형으로 형성되어 있는 점을 제외하고는 도 5의 설명과 동일하므로 자세한 설명은 생략하기로 한다.
도 7 및 도 8에는 도 5의 전지모듈에서 단위모듈을 구성하는 한 쌍의 전지셀과 셀 커버의 사시도들이 모식적으로 도시되어 있다.
이들 도면을 참조하면, 단위모듈(도시하지 않음)은 2 개의 전지셀들(302, 304)을 직렬로 연결하여 전극단자(305, 306)를 절곡한 상태로 고강도 셀 커버(310)를 감싼 구조로 이루어진다. 셀 커버(310)는 전극단자(305, 306) 부위를 제외하고 전지셀들(302, 304)의 외면을 감싸도록 상호 결합하는 구조로 이루어져 있다. 전극단자(305, 306) 연결부위와 인접해 있는 셀 커버(310)의 부위에는 셀 커버(310) 자체가 일부 절취된 형태의 절취부(312)가 형성되어 있어서, 스웰링시 전지셀들(302, 304)의 전극단자 연결부위(314)가 절취부(312)의 외부로 돌출 및 변형되도록 유도하게 된다.
도 9에는 단위모듈 적층체의 사시도가 모식적으로 도시되어 있다.
도 9를 참조하면, 단위모듈 적층체(200)는 전지셀들을 셀 커버로 감싼 구조로 제작된 4 개의 단위모듈들(202, 203, 204, 205)을 서로 직렬로 연결한 후 지그재그로 적층한 구조로 이루어져 있고, 단위모듈들(202, 203, 204, 205) 중 최외곽에 위치한 단위모듈(202)을 감싸고 있는 셀 커버에서 전극단자 연결부위와 인접한 부위(318)에는 소정 형상의 절취부(316)가 형성되어 있다.
도 10에는 스웰링에 의해 전극단자가 파열된 구조를 나타내는 전지모듈의 실험 사진이 도시되어 있다.
본 발명자들은 도 6의 구조를 기반으로 한 전지모듈을 제조하였고, 이러한 전지모듈에 대해 과충전 시험을 수행하여 본 발명의 구성에 따른 효과를 실제적으로 확인하여 보았다. 그 결과가 도 10에 개시되어 있다.
도 10을 도 6과 함께 참조하면, 전지모듈(104)에 대한 과충전 조건에서 전지셀들(302, 304)의 스웰링 현상이 관찰되었고, 이러한 스웰링에 의한 팽창은 최외곽 단위모듈(211)의 셀 커버에 부분적으로 형성되어 있는 노치부(214) 쪽으로 집중되었다. 따라서, 노치부(214)에서의 전지셀들(302, 304)의 팽창은 정상적인 전지셀 두께를 기준으로 대략 3배 정도에 이르렀으며, 이러한 증가로 인해, 전지셀들(302, 304)의 전극단자 연결부위가 파열되면서 직렬 연결이 끊어져 단전이 이루어졌다. 결과적으로, 더 이상의 충전 현상은 발생하지 않았다.
참고로, 도 10의 전지모듈(104)은 도 6의 전지모듈(102)에서 최외곽 단위모듈(211)의 셀 커버 구조를 우측면에 위치한 최외곽 단위모듈의 셀 커버에 적용한 점을 제외하고는 동일한 구조로 제조되었다.
도 11에는 도 6의 전지모듈에서 D 부위의 수직 단면 모식도가 도시되어 있다.
도 11을 도 6과 함께 참조하면, 노치는 최외곽 단위모듈(211)의 일부가 슬릿의 형태로 부분 절단된 구조(214)이거나, 상대적으로 얇은 두께의 가늘고 긴 홈 구조(216)로 이루어져 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지팩은 측면 지지부재들에 부피 팽창에 대해 취약한 부위인 취약부가 부분적으로 형성되어 있어서, 과충전, 과방전, 과전류 등 전지모듈의 비정상적인 작동 또는 장기간의 충방전에 따른 열화로 전지모듈이 팽창하는 경우, 상기 취약한 부위가 파열 및 단전되도록 함으로써 전지팩의 안전성을 크게 향상시킬 수 있다.
또한, 본 발명에 따른 중대형 전지팩은 전지모듈이 BMS와 독립적으로 전원 개폐부와의 전기적 연결을 단전시킬 수 있는 구조로 구성되어 있으므로, BMS가 오작동하거나 또는 작동되지 않는 경우에도 안전성을 담보할 수 있으며 신뢰성 또한 크게 향상시킬 수 있다.
더욱이, 전지모듈이 2열 이상 배열되어 있으므로 1개의 전지모듈로 구성된 종래의 전지팩구조와 비교하여 고출력 대용량의 전기용량을 제공할 수 있고, 제 1 상부 장착부재들과 제 2 상부 장착부재가 수직단면상으로 각관의 형태를 가지고 있어서, 상하 방향으로의 진동 및 충격에 대한 변형을 최소화할 수 있다.
이러한 전지팩은 차량의 일부 형태를 이용하여 전지팩의 일부 구조를 형성함으로써 차량에 안정적으로 장착되고, 차량 내부에서 차지하는 부피를 최소화할 수 있다.

Claims (23)

  1. (a) 전지셀들 자체 또는 둘 또는 그 이상의 전지셀들이 내장된 단위모듈들을 도립 형태로 세워 적층한 구조의 전지모듈들이 2열 이상 배열되어 있는 전지모듈 배열체;
    (b) 상기 전지모듈 배열체의 최외곽 전지모듈들에 밀착된 상태로 전지모듈 배열체의 전면 및 후면을 각각 지지하는 한 쌍의 측면 지지부재들(전면 지지부재 및 후면 지지부재);
    (c) 상기 측면 지지부재들의 하단에 결합되어 전지모듈 배열체의 하단을 지지하는 하단 지지부재;
    (d) 상기 측면 지지부재들의 상단이 결합되어 있고, 도립된 전지모듈들의 하단이 결합되어 있으며, 일측 단부가 외부 디바이스에 체결되는 구조로 이루어진 2개 이상의 제 1 상부 장착부재들;
    (e) 상기 제 1 상부 장착부재들과 수직으로 교차하는 구조로 제 1 상부 장착부재들의 상단에 결합되어 있고, 양측 단부가 외부 디바이스에 체결되는 구조로 이루어진 제 2 상부 장착부재; 및
    (f) 전지모듈 배열체의 후면에 위치하고, 양 단부가 외부 디바이스에 체결되는 구조로 이루어진 후면 장착부재;
    를 포함하고,
    상기 한 쌍의 측면 지지부재들 중 적어도 하나에는, 스웰링 발생시 전지모듈의 국부적인 변형을 유도하여 단전을 이룰 수 있도록, 부피 팽창에 대해 취약한 부위인 취약부가 부분적으로 형성되어 있는 것을 특징으로 하는 전지팩.
  2. 제 1 항에 있어서, 상기 취약부는 전지모듈들의 단위 열별로 한 쌍의 측면 지지부재들 중 적어도 하나에 형성된 것을 특징으로 하는 전지팩.
  3. 제 2 항에 있어서, 상기 취약부는 서로 대칭되는 구조로 전면 지지부재와 후면 지지부재 상에 각각 형성되거나, 또는 전지모듈들의 단위 열별로 전면 지지부재 상에 모두 형성되거나, 또는 전지모듈들의 단위 열별로 후면 지지부재 상에 모두 형성된 것을 특징으로 하는 전지팩.
  4. 제 1 항에 있어서, 상기 취약부는 최외곽 전지모듈의 직렬 연결부위에 대응하는 위치 또는 그 인접 부위에 형성되어 있는 것을 특징으로 하는 전지팩.
  5. 제 1 항에 있어서, 상기 취약부는 전지모듈의 직렬 연결부위가 개방되어 있는 절취부로 이루어진 것을 특징으로 하는 전지팩.
  6. 제 5 항에 있어서, 상기 절취부가 형성된 부위의 크기는 측면 지지부재의 표면적을 기준으로 10 내지 80%의 크기인 것을 특징으로 하는 전지팩.
  7. 제 1 항에 있어서, 상기 전지모듈은 충방전시의 부피 변화에도 전지셀 또는 단위모듈들의 적층 상태가 유지될 수 있도록 고정되어 있고, 전지셀의 스웰링에 의한 팽창 응력이 전지셀 또는 단위모듈의 전극단자 연결부위로 집중되어, 스웰링이 소정 값 이상일 때, 상기 전극단자 연결부위가 파열되면서 단전이 이루어지도록, 상기 전극단자 연결부위가 부피 팽창에 대해 취약한 구조로 이루어진 것을 특징으로 하는 전지팩.
  8. 제 7 항에 있어서, 상기 전지셀 또는 단위모듈들은 고강도 케이스로 감싸여 있고, 전지셀의 과도한 스웰링시 파열되는 상기 전극단자 연결부위는 부분적으로 개방되어 있거나 또는 노치가 형성되어 있는 것을 특징으로 하는 전지팩.
  9. 제 8 항에 있어서,
    상기 단위모듈은 전극단자들이 직렬로 상호 연결되어 있고 상기 전극단자들의 연결부가 절곡되어 적층 구조를 이루고 있는 전지셀들, 및 상기 전극단자 부위를 제외하고 상기 전지셀들의 외면을 감싸도록 상호 결합되는 한 쌍의 고강도 셀 커버를 포함하고 있고,
    상기 전극단자 연결부위와 인접해 있는 셀 커버의 부위에는 스웰링시 전지셀의 국부적인 변형을 유도하기 위한 형상의 절취부 또는 노치부가 형성되어 있는 것을 특징으로 하는 전지팩.
  10. 제 9 항에 있어서, 상기 절취부 또는 노치부는 최외곽 단위모듈의 셀 커버에 형성되어 있는 것을 특징으로 하는 전지팩.
  11. 제 10 항에 있어서, 상기 절취부 또는 노치부의 크기는, 전지셀 스웰링이 전지셀의 두께를 기준으로 1.5 내지 5배의 부피 증가를 초래할 때, 전극단자 연결부위가 파열되도록 설정되어 있는 것을 특징으로 하는 전지팩.
  12. 제 11 항에 있어서, 상기 노치부는 전극단자 연결부위와 인접해 있는 셀 커버의 부위에 일자(一字)형으로 형성되어 있는 것을 특징으로 하는 중대형 전지팩.
  13. 제 1 항에 있어서, 상기 제 1 상부 장착부재들, 제 2 상부 장착부재, 및 후면 장착부재는 수직단면상으로 각관의 형태를 가진 것을 특징으로 하는 전지팩.
  14. 제 1 항에 있어서, 상기 측면 지지부재는, 전지모듈 배열체의 최외곽 전지모듈에 접하는 본체부; 상기 본체부의 외주면으로부터 외측 방향으로 돌출된 형상의 상단벽 및 하단벽; 및 한 쌍의 측벽을 포함하고 있는 것을 특징으로 하는 전지팩.
  15. 제 1 항에 있어서, 상기 측면 지지부재는 평면상 직사각형으로 이루어진 것을 특징으로 하는 전지팩.
  16. 제 1 항에 있어서, 상기 하단 지지부재들의 하부에는 양측 단부가 측면 지지부재들에 각각 결합되어 있는 하부 플레이트가 추가로 장착되어 있는 것을 특징으로 하는 전지팩.
  17. 제 1 항에 있어서, 상기 제 1 상부 장착부재들은 전지모듈 배열체의 양측 단부에 각각 결합되는 2개의 양단 부재들과 전지모듈 배열체의 중앙에 결합되는 1개의 중앙 부재로 구성되어 있는 것을 특징으로 하는 전지팩.
  18. 제 1 항에 있어서, 상기 제 1 상부 장착부재 중 외부 디바이스에 대한 체결을 위한 단부는 제 2 상부 장착부재의 높이만큼 상향 절곡되어 있는 것을 특징으로 하는 전지팩.
  19. 제 1 항에 있어서, 상기 전지모듈 배열체와 제 1 상부 장착부재들 사이에 상부 플레이트가 추가로 장착되어 있는 것을 특징으로 하는 전지팩.
  20. 제 1 항에 있어서, 상기 후면 장착부재는 전지모듈의 후면에 장착되는 냉각 팬의 양측면과 하면을 감쌀 수 있도록 U자형 프레임 구조로 이루어진 것을 특징으로 하는 전지팩.
  21. 제 1 항에 있어서, 상기 후면 장착부재의 양측 단부들은 외부 디바이스에 대한 결합이 용이할 수 있도록 제 2 상부 장착부재와 평행하게 절곡되어 있고, 절곡된 부위에는 체결구가 형성되어 있는 것을 특징으로 하는 전지팩.
  22. 제 1 항에 따른 전지팩을 전원으로 사용하는 것을 특징으로 하는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차.
  23. 제 22 항에 있어서, 상기 전지팩은 차량의 트렁크 하단부 또는 차량의 리어 시트와 트렁크 사이에 장착되는 것을 특징으로 하는 전기자동차, 하이브리드 전기자동차, 또는 플러그-인 하이브리드 전기자동차.
PCT/KR2012/003156 2011-05-23 2012-04-25 안전성이 향상된 전지팩 WO2012161423A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014508287A JP5748380B2 (ja) 2011-05-23 2012-04-25 安全性の向上した電池パック
EP12790320.1A EP2685527B1 (en) 2011-05-23 2012-04-25 Battery pack having improved safety
CN201280021350.5A CN103636029B (zh) 2011-05-23 2012-04-25 具有改进的安全性的电池组
US14/015,508 US9012051B2 (en) 2011-05-23 2013-08-30 Battery pack of improved safety

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0048238 2011-05-23
KR1020110048238A KR101307369B1 (ko) 2011-05-23 2011-05-23 안전성이 향상된 전지팩

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/015,508 Continuation US9012051B2 (en) 2011-05-23 2013-08-30 Battery pack of improved safety

Publications (1)

Publication Number Publication Date
WO2012161423A1 true WO2012161423A1 (ko) 2012-11-29

Family

ID=47217455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003156 WO2012161423A1 (ko) 2011-05-23 2012-04-25 안전성이 향상된 전지팩

Country Status (6)

Country Link
US (1) US9012051B2 (ko)
EP (1) EP2685527B1 (ko)
JP (1) JP5748380B2 (ko)
KR (1) KR101307369B1 (ko)
CN (2) CN105576169B (ko)
WO (1) WO2012161423A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913866B1 (ko) * 2012-12-27 2018-12-28 에스케이이노베이션 주식회사 이차전지 모듈
KR101709567B1 (ko) * 2014-01-10 2017-02-23 주식회사 엘지화학 가스 배출 방향 제어 수단을 구비한 전지모듈
US9973937B2 (en) * 2014-01-15 2018-05-15 Sony Corporation Communications device
AT515312B1 (de) * 2014-01-28 2015-08-15 Avl List Gmbh Batteriemodul
US10020475B2 (en) 2014-06-04 2018-07-10 Ford Global Technologies, Llc Battery assembly reinforcement member
JP6176632B2 (ja) * 2014-06-30 2017-08-09 東洋ゴム工業株式会社 組電池の異常判定方法及び組電池の異常判定装置
EP3193548B1 (en) * 2014-09-12 2021-07-21 Nec Corporation Wireless terminal and method thereof
US9911951B2 (en) * 2014-09-30 2018-03-06 Johnson Controls Technology Company Battery module compressed cell assembly
KR101797689B1 (ko) * 2014-10-29 2017-11-14 주식회사 엘지화학 안전성이 향상된 전지모듈 어셈블리
CN107251264B (zh) 2014-11-26 2020-10-13 创科实业有限公司 电池组
JP6295943B2 (ja) * 2014-12-17 2018-03-20 トヨタ自動車株式会社 蓄電モジュールの車載構造
KR101799565B1 (ko) * 2015-01-13 2017-11-20 주식회사 엘지화학 안전성이 향상된 전지팩
JP2018092699A (ja) * 2015-04-09 2018-06-14 オリンパス株式会社 医療機器用バッテリアッセンブリ及び医療機器ユニット
KR102072220B1 (ko) 2016-01-12 2020-01-31 주식회사 엘지화학 디바이스에 대한 탑재 공간이 최소화된 전지팩
WO2018033880A2 (en) 2016-08-17 2018-02-22 Shape Corp. Battery support and protection structure for a vehicle
EP3566253B1 (en) 2017-01-04 2022-12-28 Shape Corp. Battery support structure for a vehicle
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
KR102096983B1 (ko) 2017-09-08 2020-04-03 주식회사 엘지화학 벤팅 가스를 이용하여 커넥터를 파단시키는 구조를 갖는 배터리 모듈
CN111108015A (zh) 2017-09-13 2020-05-05 形状集团 具有管状外围壁的车辆电池托盘
DE112018005556T5 (de) 2017-10-04 2020-06-25 Shape Corp. Batterieträger-bodenbaugruppe für elektrofahrzeuge
KR102490610B1 (ko) * 2017-12-15 2023-01-19 현대모비스 주식회사 고전압 배터리 모듈
WO2019169080A1 (en) 2018-03-01 2019-09-06 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component
KR102311075B1 (ko) * 2018-04-09 2021-10-07 주식회사 엘지에너지솔루션 팩 하우징을 포함하는 배터리 팩
KR20210017169A (ko) * 2019-08-07 2021-02-17 주식회사 엘지화학 표면 요철 구조를 갖는 전지팩 커버 및 이를 포함하는 전지팩
US11745573B2 (en) 2020-10-22 2023-09-05 Ford Global Technologies, Llc Integrated frame and battery pack structure for electric vehicles
WO2023049507A2 (en) 2021-09-27 2023-03-30 Quantumscape Battery, Inc. Electrochemical stack and method of assembly thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028171A1 (en) * 2004-07-23 2006-02-09 Andew Marraffa Modular rack assemblies for sealed lead acid batteries
KR20080027504A (ko) * 2006-09-25 2008-03-28 주식회사 엘지화학 전지모듈 어셈블리
KR20090131573A (ko) * 2008-06-18 2009-12-29 현대자동차주식회사 배터리 과충전시 전원차단장치
KR20100000764A (ko) * 2008-06-25 2010-01-06 주식회사 엘지화학 안전성이 향상된 중대형 전지팩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078998B2 (ja) * 2003-02-04 2008-04-23 トヨタ自動車株式会社 車両用バッテリ搭載構造
KR100551885B1 (ko) * 2003-10-20 2006-02-10 삼성에스디아이 주식회사 리튬 이온 2차 전지
KR101029838B1 (ko) * 2007-06-28 2011-04-15 주식회사 엘지화학 냉각 효율이 향상된 중대형 전지팩
JP5192049B2 (ja) * 2007-11-21 2013-05-08 エルジー・ケム・リミテッド 安全性を改良したバッテリーモジュール及びそれを含む中または大型バッテリーパック
JP2009238643A (ja) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd 車両用の電池ブロック
JP2011523168A (ja) * 2008-05-10 2011-08-04 エナーデル、インク 電池組立品
JP4868048B2 (ja) * 2009-09-15 2012-02-01 三菱自動車工業株式会社 電気自動車のバッテリ搭載構造
JP5639835B2 (ja) * 2010-09-30 2014-12-10 株式会社リチウムエナジージャパン 電池パック及びこれを備えた電動車
KR101231111B1 (ko) * 2010-10-27 2013-02-07 주식회사 엘지화학 내구성이 향상된 전지팩
EP2682999B1 (en) * 2011-05-19 2017-01-11 Lg Chem, Ltd. Battery pack having excellent structural reliability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028171A1 (en) * 2004-07-23 2006-02-09 Andew Marraffa Modular rack assemblies for sealed lead acid batteries
KR20080027504A (ko) * 2006-09-25 2008-03-28 주식회사 엘지화학 전지모듈 어셈블리
KR20090131573A (ko) * 2008-06-18 2009-12-29 현대자동차주식회사 배터리 과충전시 전원차단장치
KR20100000764A (ko) * 2008-06-25 2010-01-06 주식회사 엘지화학 안전성이 향상된 중대형 전지팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685527A4 *

Also Published As

Publication number Publication date
CN105576169A (zh) 2016-05-11
EP2685527A1 (en) 2014-01-15
EP2685527B1 (en) 2016-04-06
CN105576169B (zh) 2018-04-17
JP5748380B2 (ja) 2015-07-15
US20140004397A1 (en) 2014-01-02
CN103636029B (zh) 2016-05-18
JP2014517448A (ja) 2014-07-17
KR101307369B1 (ko) 2013-09-11
US9012051B2 (en) 2015-04-21
KR20120130361A (ko) 2012-12-03
CN103636029A (zh) 2014-03-12
EP2685527A4 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2012161423A1 (ko) 안전성이 향상된 전지팩
WO2009157676A9 (ko) 안전성이 향상된 중대형 전지팩
WO2013111960A1 (ko) 안전성이 향상된 전지모듈 및 이를 포함하는 전지팩
KR100914839B1 (ko) 안전성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
WO2013015524A1 (ko) 안전성이 향상된 전지팩
WO2013111978A1 (ko) 안전성이 향상된 전지팩
KR101029837B1 (ko) 신규한 구조의 전지모듈 및 이를 포함하는 중대형 전지팩
WO2012018200A2 (ko) 안전성이 향상된 이차전지용 파우치 및 이를 이용한 파우치형 이차전지, 중대형 전지팩
KR101130050B1 (ko) 안전성이 향상된 중대형 전지팩
WO2019009625A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2013129844A1 (ko) 안전성이 향상된 전지셀 어셈블리 및 이를 포함하는 전지모듈
WO2018230907A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2020145530A1 (ko) 내부 플레이트를 포함한 배터리 모듈
WO2022225168A1 (ko) 전지팩 및 이를 포함하는 디바이스
KR20120056812A (ko) 안전성이 향상된 중대형 전지팩
WO2022225172A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021107317A1 (ko) 전지 팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012790320

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014508287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE