WO2012161196A1 - チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途 - Google Patents

チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途 Download PDF

Info

Publication number
WO2012161196A1
WO2012161196A1 PCT/JP2012/063082 JP2012063082W WO2012161196A1 WO 2012161196 A1 WO2012161196 A1 WO 2012161196A1 JP 2012063082 W JP2012063082 W JP 2012063082W WO 2012161196 A1 WO2012161196 A1 WO 2012161196A1
Authority
WO
WIPO (PCT)
Prior art keywords
antitumor agent
shrna
peg
tumor
antitumor
Prior art date
Application number
PCT/JP2012/063082
Other languages
English (en)
French (fr)
Inventor
竜弘 石田
政龍 黄
和田 洋巳
Original Assignee
Delta-Fly Pharma株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta-Fly Pharma株式会社 filed Critical Delta-Fly Pharma株式会社
Priority to NO12790050A priority Critical patent/NO2716304T3/no
Priority to ES12790050.4T priority patent/ES2653923T3/es
Priority to CN201280025004.4A priority patent/CN103561775B/zh
Priority to EP12790050.4A priority patent/EP2716304B1/en
Priority to JP2013516384A priority patent/JP5941460B2/ja
Priority to PL12790050T priority patent/PL2716304T3/pl
Priority to DK12790050.4T priority patent/DK2716304T3/da
Priority to US13/592,002 priority patent/US8592572B2/en
Publication of WO2012161196A1 publication Critical patent/WO2012161196A1/ja
Priority to HK14103539.6A priority patent/HK1190325A1/zh
Priority to HRP20171919TT priority patent/HRP20171919T1/hr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/31Combination therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to an antitumor agent comprising a liposome containing a shRNA molecule for thymidylate synthase as an active ingredient, and its use, particularly its use in combination with a chemotherapeutic agent.
  • RNAi molecules that cause RNA interference have attracted attention as useful tools for treating tumors and the like, and various RNAi molecules capable of suppressing tumor growth have been developed.
  • the present inventors have previously reported an RNAi molecule targeting thymidylate synthase (hereinafter, TS) involved in DNA synthesis, and the RNAi molecule significantly suppresses the expression of TS, thereby preventing It has been reported that it has a tumor effect and enhances the antitumor effect of a 5-FU antitumor agent (particularly a combination drug of tegafur, gimeracil, and oteracil potassium) (Patent Document 1).
  • TS thymidylate synthase
  • RNAi molecules are rapidly degraded by in vivo administration. Therefore, it has been extremely difficult to deliver a sufficient amount of RNAi molecules to the tumor.
  • RNAi molecules DNA encoding an RNAi molecule (particularly, an RNAi molecule (shRNA) having a short hairpin structure) is incorporated into an appropriate vector, and the vector is administered (Patent Document 1).
  • the vector must be directly injected into a tumor and administered, and in view of clinical application, an easier administration method (for example, intravenous administration) has been desired.
  • a method for delivering RNAi molecules to tumor cells using a complex (lipoplex) comprising RNAi molecules and liposomes has been developed (Non-patent Documents 1-3).
  • lipoplexes are quickly eliminated by the action of the immune system in the administered organism, so that sufficient effects cannot be obtained, and serious side effects occur. Was produced.
  • An object of the present invention is to provide a simple and efficient in vivo delivery method of shRNA targeting TS.
  • the present inventors have easily conducted cancer by electrostatically binding shRNA capable of suppressing the expression of TS to the surface of a PEG-modified cationic liposome. It was found that it can be delivered to cells.
  • PEG-modified cationic liposomes conjugated with shRNA can be used in combination with chemotherapeutic agents, particularly 5-FU antitumor agents, to increase the directivity to cancer cells and to significantly increase the effects on cancer cells. I found it.
  • a PEG-modified cationic liposome conjugated with shRNA together with a chemotherapeutic agent having a TS inhibitory action for example, 5-FU antitumor agent or pemetrexed sodium hydrate
  • a chemotherapeutic agent having a TS inhibitory action for example, 5-FU antitumor agent or pemetrexed sodium hydrate
  • the present invention is as follows.
  • An antitumor agent comprising a short hairpin RNA (shRNA) capable of suppressing the expression of thymidylate synthase by RNAi action and a PEG-modified cationic liposome, wherein the shRNA is the PEG-modified cationic liposome
  • shRNA short hairpin RNA
  • the antitumor agent described above has an overhang consisting of at least 2 bases at the 3 ′ end.
  • shRNA includes a sense strand consisting of the base sequence represented by SEQ ID NO: 1 and an antisense strand that hybridizes with the sense strand under stringent conditions.
  • PEG-modified cationic liposomes are dioleoylphosphatidylethanolamine (DOPE), palmitoyl oleoylglycerophosphocholine (POPC), cholesterol (CHOL) and O, O′-ditetradecanoyl-N- ( ⁇ - Trimethylammonioacetyl)
  • DOPE dioleoylphosphatidylethanolamine
  • POPC palmitoyl oleoylglycerophosphocholine
  • cholesterol CHOL
  • O O′-ditetradecanoyl-N- ( ⁇ - Trimethylammonioacetyl)
  • DC-6-14 diethanolamine chloride
  • siRNA or shRNA capable of suppressing the expression of a gene selected from the group consisting of genes involved in tumor cell growth is bound to the surface of a PEG-modified cationic liposome, [1] to [7] The antitumor agent according to any one of [7].
  • a combination comprising the antitumor agent according to any one of [1] to [10] and a chemotherapeutic agent for treating a tumor.
  • antitumor agent or combination according to [12], wherein the antitumor agent having a TS inhibitory action is a 5-FU antitumor agent or pemetrexed sodium hydrate.
  • the antitumor agent comprising a liposome containing an shRNA molecule for thymidylate synthase according to the present invention as an active ingredient can suppress the growth of a tumor expressing TS by in vivo administration.
  • FIG. 1 is a characteristic diagram showing the TS expression-suppressing effect of siRNA and shRNA targeting TS in human colorectal cancer strains DLD-1 (A) and DLD-1 / FU (B). Each lane shows a sample treated with the following siRNA or shRNA. 1: untreated; 2: siCont 10 nM; 3: siTS 1 nM; 4: siTS 5 nM; 5: siTS 10 nM; 6: shTS 1 nM; 7: shTS 5 nM; 8: shTS 10 nM.
  • FIG. 1 untreated
  • 2 siCont 10 nM
  • 3 siTS 1 nM
  • 4 siTS 5 nM
  • 5 siTS 10 nM
  • 6 shTS 1 nM
  • 7 shTS 5 nM
  • 8 shTS 10 nM.
  • FIG. 2 is a characteristic diagram showing the TS expression-inhibiting effect of siRNA (A) and shRNA (B) targeting TS in the presence or absence of 5-FU in human colorectal cancer strain DLD-1.
  • C Cell growth inhibition rate (%) in each sample 96 hours after addition of a new medium is shown.
  • FIG. 3 is a characteristic diagram showing the TS expression suppression effect of human colorectal cancer strain DLD-1 / FU with and without 5-FU of siRNA (A) and shRNA (B) targeting TS.
  • C Cell growth inhibition rate (%) in each sample 96 hours after addition of a new medium is shown.
  • FIG. 4 is a characteristic diagram showing tumor growth inhibitory effect (A) and increase / decrease in body weight (B) by the presence or absence of S-1 of shRNA targeting TS in human colorectal cancer strain DLD-1 tumor-bearing mice.
  • FIG. 5 is a photographic diagram showing the tumor growth-inhibiting effect of shRNA targeting TS in the presence or absence of TS-1 in human colorectal cancer strain DLD-1 tumor-bearing mice.
  • 1 control (sucrose administration); 2: S-1; 3: TS-shRNA liposome; 4: S-1 + TS-shRNA liposome.
  • FIG. 6 shows the cell growth inhibition rate (%) of pemetrexed sodium hydrate, shRNA targeting TS, or shRNA targeting pemetrexed sodium hydrate and TS in human malignant pleural mesothelioma strain MSTO 211H. ) Shows changes over time.
  • FIG. 7 is a characteristic diagram showing the tumor growth inhibitory effect of shRNA targeting pemetrexed sodium hydrate in TS in human malignant pleural mesothelioma strain MSTO 211 H-bearing mice.
  • the short hairpin RNA (hereinafter referred to as “shRNA”) capable of suppressing the expression of thymidylate synthase (hereinafter referred to as “TS”) in the present invention targets the mRNA portion of thymidylate synthase.
  • TS thymidylate synthase
  • an RNAi action can be produced specifically for TS, and the expression of TS can be remarkably suppressed.
  • the RNAi molecule of the present invention “targets the mRNA part” means that the antisense strand of shRNA described in detail below can hybridize with the target mRNA part under stringent conditions.
  • the stringent condition can be determined based on the melting temperature (Tm) of the nucleic acid that forms a hybrid according to a conventional method. For example, as washing conditions that can maintain the hybridized state, it is usually about “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, more strictly “0.5 ⁇ SSC, 0.1% SDS, 42 ° C.” More specifically, a condition of “0.1 ⁇ SSC, 0.1% SDS, 65 ° C.” can be mentioned.
  • ShRNA in the present invention includes a sense strand having the same base sequence as the ORF base sequence encoding TS or a part thereof, and an antisense strand that hybridizes with the sense strand under stringent conditions.
  • the “base sequence identical to the ORF base sequence or a part thereof” means a base sequence represented by substituting uracil for thymine in the base sequence of the ORF or a base sequence identical to a part thereof. To do.
  • the sense strand consists of 15 to 25 bases, preferably 19 bases.
  • the base sequence of the sense strand is preferably the same as the base sequence of the ORF encoding TS, but it may be substantially the same, that is, a homologous sequence. That is, the base sequence of the sense strand is one or more, ie, 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base substitution, deletion, insertion and / or addition in the ORF base sequence. There may be.
  • the antisense strand has a base sequence that can hybridize with the sense strand under stringent conditions.
  • the antisense strand has a mismatch including substitution, deletion, insertion and / or addition of 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base as long as it can hybridize under stringent conditions It may be a thing.
  • the antisense strand consists of a base sequence that is completely complementary to the sense strand.
  • the base sequence of the sense strand and antisense can be selected based on a known base sequence (GenBank: CR601528.1) encoding TS. Various methods are known as a method for selecting these base sequences. For example, siRNA Design Support System (Takara Bio Inc.) can be used.
  • the sense strand includes, but is not limited to, those consisting of the following base sequences: 5′-GUAACACCCAUCGAUCAUGA-3 ′ (SEQ ID NO: 1); 5′-GAAUACAGAGAUAUUGGAAU-3 ′ (SEQ ID NO: 3); '-CGGAUCAUGAUGUAGUGUGU-3' (SEQ ID NO: 5); 5'-GGGUGUUUGUGAGGAGUUGTT-3 '(SEQ ID NO: 11).
  • the shRNA in the present invention comprises sense strand 5′-GUAACACCCAUCGAUCAUGA-3 ′ (SEQ ID NO: 1) and antisense strand 5′-UCAUGAUCGAUGGUGUUAC-3 ′ (SEQ ID NO: 2); sense strand 5′-GAAUACAGAGAUAUGAGAAU-3 ′ (sequence No.
  • the shRNA in the present invention comprises a sense strand consisting of the base sequence represented by SEQ ID NO: 1 and an antisense strand consisting of the base sequence represented by SEQ ID NO: 2.
  • the sense strand and the antisense strand are connected via a linker portion, the linker portion is folded by forming a loop, and the antisense strand and the sense strand are hybridized to form a double-stranded portion.
  • the linker part contained in the shRNA molecule may be a polynucleotide linker or a non-polynucleotide linker as long as it can link the sense strand and the antisense strand to form a stem loop structure, and is not particularly limited. Polynucleotide linkers of 2 to 22 bases known to those skilled in the art are preferred.
  • UAGUGCUCCUGGUUG SEQ ID NO: 7
  • UUCAAGGAGA CCACC
  • CUCGAG CUCGAG
  • CCACACC UUCAGAGAGA
  • AUG, CCC and UUCG can be exemplified
  • UAGUGCUCCUGGUUG SEQ ID NO: 7
  • ShRNA in the present invention has an overhang consisting of at least 2 bases at the 3 'end.
  • the overhang refers to a base added to the 3 'end of the antisense strand and having no base capable of complementary binding at the corresponding position of the sense strand.
  • transfection with PEG-modified cationic liposomes which will be described in detail below
  • TS by shRNA The degree of suppression of the expression is reduced by approximately 40 to 60%.
  • the type and number of bases of the overhang are not limited, and examples include sequences consisting of 1 to 5, preferably 1 to 3, more preferably 1 or 2 bases, such as TTT, UU, and TT. . Preferably, it is UU.
  • a preferred shRNA is a single-stranded RNA consisting of the base sequence represented by SEQ ID NO: 8.
  • sense strand or the antisense strand may be phosphorylated at the 5 'end as necessary, or triphosphate (ppp) may be bound to the 5' end.
  • ppp triphosphate
  • one or more polyethylene glycol molecules are covalently bonded to the surface of the cationic liposome, thereby increasing the in vivo blood retention of the cationic liposome. be able to.
  • Cationic liposomes can be prepared based on a known method, for example, a thin-film shaking method (Bangham method) (AD Bangham et al., J. Mol. Biol., 13, 238-252 (1965). AD Bangham and RW Horne, J. Mol. Biol., 8, 660-668 (1964)). That is, after dissolving at least one phospholipid in an organic solvent such as chloroform in a container such as a flask and volatilizing the organic solvent to form a lipid film on the bottom of the container, an aqueous solution such as a buffer solution is formed therein. A suspension containing liposomes can be obtained by stirring the mixture.
  • the cationic liposome in the present invention has one or more membranes composed of one or more phospholipids selected from the following: dioleoylphosphatidylethanolamine (hereinafter referred to as “DOPE”), palmitoyl oleoylglycerophospho Choline (hereinafter referred to as “POPC”), cholesterol (hereinafter referred to as “CHOL”), O, O′-ditetradecanoyl-N- ( ⁇ -trimethylammonioacetyl) diethanolamine chloride (hereinafter referred to as “DC-”) 6-14 ”), hydrogenated purified egg yolk phosphatidylcholine, hydrogenated purified soy phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoyl phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine.
  • DOPE dioleoylphosphatidylethanolamine
  • POPC palmi
  • the cationic liposome in the present invention comprises DOPE, POPC, CHO and DC-6-14.
  • the PEG bonded to the surface of the cationic liposome is selected from those having a molecular weight in the range of 500 to 5000, and preferably has a molecular weight of about 2000.
  • the binding of PEG to the cationic liposome can be performed by a known method, and is not particularly limited, but can be performed using a post-insertion method. That is, after the formation of the cationic liposome, the complex molecule composed of phospholipid and PEG is incubated with the cationic liposome under appropriate conditions (for example, 30 to 60 ° C., 30 minutes to 3 hours) to thereby yield the complex molecule.
  • the amount of the complex molecule used is 3 to 10% (molar ratio), preferably 5%, based on the total lipid of the cationic liposome.
  • the complex molecule composed of phospholipid and PEG that can be used in the present invention include, but are not limited to, mPEG 2000 -DSPE.
  • the PEG-modified cationic liposome in the present invention has a particle size of 80 to 200 nm, preferably about 100 nm.
  • the PEG-modified cationic liposome in the present invention has a zeta potential of 10 to 40 mV, preferably about 25 mV.
  • the shRNA is bound to the membrane surface of the PEG-modified cationic liposome by a covalent bond or a non-covalent bond.
  • the particle size of the PEG-modified cationic liposome provided with the shRNA can be adjusted to a size of several hundred nm (Barrichello, JM, et al., Int. J. Pharm. (2011) , Doi: 10.016 / j.ijpharm.2011.03.001).
  • the shRNA can be uniformly dispersed and bound on the PEG-modified cationic liposome, and the heterogeneity of PEG-modified cationic liposome incorporation by the tissue caused by the heterogeneous binding of shRNA can be reduced. Can be prevented.
  • the PEG-modified cationic liposome provided with shRNA has a particle size of 120 to 600 nm, preferably 200 to 300 nm.
  • the PEG-modified cationic liposome provided with shRNA has a zeta potential of 5 to 30 mV, preferably about 10 to 25 mV.
  • the surface charge of PEG-modified cationic liposomes with shRNA is more neutral, and because it is less bound to serum proteins due to the presence of steric hindrance by PEG, it can be prevented from being trapped in the alveoli. The retention in blood can be increased.
  • the PEG-modified cationic liposome provided with shRNA in the present invention may contain siRNA or shRNA targeting another gene expressed in tumor cells in addition to the above-mentioned shRNA.
  • “Another gene expressed in tumor cells” refers to factors involved in the growth of tumor cells, for example, growth regulators such as VEGF, EGFR, PDGF, HGF, Wint, Bcl-2, survivin, ribonucleotide reductase, DNA Examples include, but are not limited to, genes encoding nucleic acid synthesis-related enzymes such as polymerase.
  • the siRNA or shRNA targeting the shRNA and another gene expressed in tumor cells may be bound to the same PEG-modified cationic liposome, or may be bound to separate PEG-modified cationic liposomes. good.
  • PEG-modified lipoplex a PEG-modified cationic liposome equipped with shRNA may be referred to as “PEG-modified lipoplex”.
  • PEG-modified cationic liposomes equipped with the above-mentioned shRNA by in vivo administration can suppress the growth of tumor cells, and as an antitumor agent for treating cancer Can be used.
  • cancers that can be treated using the antitumor agent of the present invention include cancers that highly express TS, and are not particularly limited. Examples thereof include colon and rectal cancers, liver cancers, kidney cancers, head and neck cancers. Cancer, esophageal cancer, stomach cancer, biliary tract cancer, gallbladder / bile duct cancer, pancreatic cancer, lung cancer, breast cancer, ovarian cancer, cervical cancer, endometrial cancer, bladder cancer, prostate cancer, testicular tumor, bone / soft tissue sarcoma, leukemia, Examples include malignant lymphoma, multiple myeloma, skin cancer, brain tumor, and malignant pleural mesothelioma.
  • colorectal cancer stomach cancer, head and neck cancer, lung cancer, breast cancer, pancreatic cancer, biliary tract cancer, liver cancer, and malignant pleural mesothelioma
  • colorectal cancer and malignant pleural mesothelioma are particularly preferred.
  • the antitumor agent of the present invention is also a PEG-modified cationic liposome provided with shRNA, and is commonly used in the manufacture of pharmaceuticals, such as excipients, binders, disintegrants, lubricants, diluents, and solubilizing agents. , Suspending agents, tonicity agents, pH adjusting agents, buffering agents, stabilizers, coloring agents, flavoring agents, flavoring agents, histidine and the like.
  • excipients include lactose, sucrose, sodium chloride, glucose, maltose, mannitol, erythritol, xylitol, maltitol, inositol, dextran, sorbitol, albumin, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silica
  • examples include acid, methylcellulose, glycerin, sodium alginate, gum arabic, and mixtures thereof.
  • the lubricant include purified talc, stearate, borax, polyethylene glycol, and a mixture thereof.
  • binder examples include simple syrup, glucose solution, starch solution, gelatin solution, polyvinyl alcohol, polyvinyl ether, polyvinyl pyrrolidone, carboxymethyl cellulose, shellac, methyl cellulose, ethyl cellulose, water, ethanol, potassium phosphate, and a mixture thereof.
  • disintegrant examples include dry starch, sodium alginate, agar powder, laminaran powder, sodium hydrogen carbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid esters, sodium lauryl sulfate, stearic acid monoglyceride, starch, lactose and mixtures thereof. Is mentioned.
  • Examples of the diluent include water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, and mixtures thereof.
  • Examples of the stabilizer include sodium pyrosulfite, ethylenediaminetetraacetic acid, thioglycolic acid, thiolactic acid, and a mixture thereof.
  • Examples of the isotonic agent include sodium chloride, boric acid, glucose, glycerin and a mixture thereof.
  • Examples of the pH adjuster and buffer include sodium citrate, citric acid, sodium acetate, sodium phosphate, and mixtures thereof.
  • the antitumor agent of the present invention is administered orally or parenterally (for example, intravenous administration, intraarterial administration, local administration by injection, administration to the abdominal cavity or thoracic cavity, subcutaneous administration, intramuscular administration, sublingual administration, transdermal For example, by absorption or rectal administration).
  • parenterally for example, intravenous administration, intraarterial administration, local administration by injection, administration to the abdominal cavity or thoracic cavity, subcutaneous administration, intramuscular administration, sublingual administration, transdermal
  • the antitumor agent of the present invention is intravenous administration, intraperitoneal administration, or intrathoracic administration.
  • the antitumor agent of the present invention can be made into a suitable dosage form according to the administration route. Specifically, injections, suspensions, emulsifiers, ointments, cream tablets, capsules, granules, powders, pills, fine granules, troches, rectal administration, oily suppositories, water-soluble suppositories It can be prepared in various pharmaceutical forms such as an agent.
  • the effect of the antitumor agent of the present invention is that the antitumor agent is administered to cells and tissues derived from the cancer and the individual suffering from the cancer, and the tumor size is not administered to the antitumor agent ( Alternatively, it can be evaluated by using as an index that the tumor is shrinking or disappearing as compared with the size of the tumor in the cells and tissues and the individual before administration.
  • the cancer type and the like are not particularly limited as long as TS is expressed.
  • human colorectal cancer cell lines DLD-1, DLD-1 / 5FU (5-FU resistant DLD-1 strain), KM12C / 5FU (5-FU resistant KM12C strain), HT29 / 5FU (5-FU resistant HT29 strain), human gastric cancer cell line NUGC-3 / 5FU ( 5-FU resistant NUGC-3 strain), human malignant pleural mesothelioma cell line (MSTO 211H), and the like.
  • the effect of the antitumor agent of the present invention is 2 times, 3 times, 4 times, 5 times, and 10 times that of an antitumor agent containing an RNAi molecule known to those skilled in the art that targets TS mRNA as an active ingredient. , 20 times, 30 times, 40 times, 50 times, 100 times, or more anti-tumor effects.
  • shRNA-encoding DNA Conventionally, viral vectors containing shRNA-encoding DNA have been used for in vivo delivery of shRNA to target cells (WO2010 / 113844), and the shRNA is encoded by water pressure or viral infection at the time of injection of the viral vector. DNA moves into the cell and shRNA is expressed in the nucleus. Like the endogenous shRNA, the expressed shRNA comes into contact with an enzyme called Dicer to cut out the stem-loop structure, and it becomes siRNA consisting of complementary double-stranded RNA to produce RNAi action.
  • Dicer an enzyme
  • the antitumor agent of the present invention delivers shRNA carried on PEG-modified cationic liposomes to tumor cells by oral or parenteral administration.
  • the shRNA delivered to the tumor cell moves into the cell by endocytosis. That is, unlike the above-described prior art, the shRNA in the present invention is not expressed in the target cell.
  • the present inventors have shown for the first time that in vivo shRNA introduced from the outside of a cell exhibits RNAi action without being degraded and can suppress the expression of an endogenous gene expressed in a target cell. It has been issued.
  • siRNA when siRNA is supported on a PEG-modified cationic liposome, there is a possibility that only a sense strand or an antisense strand that does not form a complementary double strand in the production process is supported.
  • a PEG-modified cationic liposome carrying only a sense strand or an antisense strand is an impurity and is not desirable from the viewpoint of a pharmaceutical product.
  • shRNA by supporting shRNA on PEG-modified cationic liposomes, the possibility of the occurrence of impurities as described above is low, which is desirable from the viewpoint of pharmaceuticals.
  • the antitumor agent of the present invention can be used together with existing chemotherapeutic agents.
  • existing chemotherapeutic agents include antitumor agents having a TS inhibitory action.
  • the “antitumor agent having a TS inhibitory action” is not particularly limited as long as it can inhibit the function of TS.
  • 5-FU antitumor agent pemetrexed sodium hydrate, raltitrexed (Tomdex), methotrexate (MTX) And OSI-7904L (OSI).
  • the PEG-modified cationic liposome is selectively accumulated in a tumor when used in combination with a 5-FU antitumor agent (Yusuke Doi et al., Cancer Sci, November, 2010, vol. 101, No. 11, 2470-2475).
  • the antitumor agent of the present invention containing the PEG-modified cationic liposome can efficiently deliver the shRNA to a tumor. Compared with the case where the 5-FU antitumor agent or the antitumor agent of the present invention is used alone, a significantly high antitumor effect of 2 times, 3 times, 4 times, 5 times or more can be obtained. .
  • Examples of the “5-FU antitumor agent” include 5-FU and 5-FU derivatives whose active metabolite is 5-FU.
  • Examples of 5-FU derivatives include those containing tegafur.
  • the 5-FU derivative is preferably a tegafur-containing compounding agent, specifically, a tegafur-uracil compounding agent (for example, UFT (registered trademark) (Takuma Pharmaceutical Co., Ltd.)), tegafur gimeracil oteracil A potassium compounding agent etc. can be illustrated.
  • a tegafur, gimeracil, and oteracil potassium compounding agent described in detail below for example, TS-1 (registered trademark) (Takuma Pharmaceutical Co., Ltd.) is particularly preferable.
  • 5-FU antitumor agents are sometimes referred to as “S-1” and “TS-1”, but these terms are used interchangeably.
  • Pemetrexed sodium hydrate As pemetrexed sodium hydrate, Alimta (registered trademark) (Japan Eli Lilly Co., Ltd.) can be mentioned. Pemetrexed sodium hydrate can also efficiently deliver the shRNA to the tumor in combination with the antitumor agent of the present invention in the same manner as the 5-FU antitumor agent, and / or Compared to the case where pemetrexed sodium hydrate or the antitumor agent of the present invention is used alone, a significantly high antitumor effect of 2 times, 3 times, 4 times, 5 times or more can be obtained.
  • the antitumor agent of the present invention can be used together with other existing chemotherapeutic agents in addition to or in place of the antitumor agent having a TS inhibitory action.
  • chemotherapeutic agents include cyclophosphamide, nitrogen mustard N-oxide, ifosfasamide, melphalan, busulfan, mitobronitol, carbocon, thiotepa, ranimustine, nimustine, temozolomide, carmustine, pemetrex dosodymium, methotrexate, 6 -Mercaptopurine riboside, mercaptopurine, doxyfluridine, carmofur, cytarabine, cytarabine ocphosphate, enositabine, gemcitabine, fludarabine, pemetrexed, cisplatin, carboplatin, oxaliplatin, paclitaxel, docetaxel, irinotecan hydrochlor
  • chemotherapeutic agents can be used. These chemotherapeutic agents can also deliver the shRNA efficiently to the tumor in combination with the antitumor agent of the present invention, similarly to the antitumor agent having a TS inhibitory action, and / or Compared to the case where the chemotherapeutic agent or the antitumor agent of the present invention is used alone, a significantly high antitumor effect of 2 times, 3 times, 4 times, 5 times or more can be obtained.
  • the antitumor agent of the present invention and the existing chemotherapeutic agent are administered in combination, they can be provided as a combination.
  • the “combination product” may be a combination drug containing the antitumor agent of the present invention and the above-described existing chemotherapeutic agent as active ingredients, and the antitumor agent of the present invention and the above-described existing chemotherapeutic agent are used in combination. It may be manufactured, packaged and distributed as a single package (kit formulation) suitable for administration.
  • the dose and frequency of administration of the antitumor agent of the present invention may vary depending on factors such as the patient's age, weight, disease severity, etc., but the amount of shRNA is 0.0001 mg to 100 mg per kg body weight at a time. An amount appropriately selected from these ranges can be administered 1 to 3 times a day, every day, or every 1 to 21 days. Since the PEG-modified cationic liposome provided with the shRNA contained in the antitumor agent of the present invention has a higher blood retention than a conventionally known complex (lipoplex) composed of RNAi molecule and liposome, Multiple doses can be avoided. This makes it difficult to receive foreign body recognition of the immune system in the administered living body.
  • the dose of the above existing chemotherapeutic agent may vary depending on factors such as the type of chemical substance that is the active ingredient, the age, weight of the patient, and the severity of the disease, but from 0.0001 mg to 1 kg of body weight per dose
  • An amount appropriately selected from the range of 1000 mg can be administered 1 to 3 times a day, every day or every 1 to 14 days.
  • the existing chemotherapeutic agent is a 5-FU antitumor agent
  • 60 to 160 mg of tegafur can be administered daily or every 1 to 7 days.
  • the existing chemotherapeutic agent can be administered at a lower dose and more frequently than when used alone.
  • the present invention also relates to a method for treating cancer using the antitumor agent of the present invention.
  • Cancers that can be treated by the method include cancers as defined above.
  • the usage and dosage of the antitumor agent of the present invention and the existing chemotherapeutic agent are as described above.
  • Example 1 Preparation of RNAi molecule The following siRNA and shRNA were synthesized based on a known general procedure.
  • siRNA targeting TS is synthesized based on the siRNA (WO2010 / 113844) against TS that has already been confirmed to have an antitumor effect, and consists of the following sense strand and antisense strand.
  • siRNA targeting TS is referred to as “siTS”.
  • siRNA targeting luciferase As a control siRNA, siRNA targeting luciferase was synthesized. The siRNA is composed of the following sense strand and antisense strand.
  • siRNA targeting luciferase is referred to as “siCont”.
  • shRNA targeting TS is synthesized based on the shRNA against the TS whose antitumor effect has already been confirmed (WO2010 / 113844), and has the following sequence.
  • TS-shRNA 5'-GUAACACCAUCGAUCAUGAUAUGUGCUCCUGGUUGUCAUGAUCGAUGGUGUUACUU-3 '(SEQ ID NO: 8) It differs from the known shRNA against TS in that it has two uracils (overhangs) at the 3 ′ end.
  • shRNA targeting TS is referred to as “shTS”.
  • Lipofectamine TM RNAi MAX (hereinafter referred to as “Lf RNAi MAX”), which is a kind of cationic liposome, was used as the transfection reagent.
  • ShRNA or siRNA and Lf RNAi MAX prepared in Example 1 were each diluted with OptiMEM and mixed so that the ratio of shRNA or siRNA to Lf RNAi MAX was 100 (pmol): 5 ( ⁇ L). At this time, the amounts of the shRNA or siRNA solution and the Lf RNAi MAX solution were equal. The mixed solution was allowed to stand at room temperature for 10 to 20 minutes to form a complex (lipoplex).
  • Each lipoplex was directly added to a 10 cm dish containing OptiMEM in advance, and the total volume was adjusted to 5 ml.
  • 10 ml of DLD-1 or DLD-1 / FU cell suspension was seeded on the dish so as to give 500,000 cells / dish, and the final total volume was 15 ml, and transfection was performed.
  • the final concentration of shRNA or siRNA was adjusted to 1, 5, 10 nM.
  • the cells were cultured in a medium at 37 ° C. and 5% CO 2 for 72 hours, and then a cell extract was prepared by the following method.
  • cold Lysis buffer 50 mM Tris-HCl (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate, 150 mM
  • ⁇ Preparation of sample for SDS-PAGE> The cell extract and 2 ⁇ sample buffer were mixed in equal amounts and heated for 3 minutes using a microplate hotplate set at 95 ° C. Thereafter, the sample was centrifuged for 30 seconds and cooled at room temperature to obtain a sample for SDS-PAGE.
  • Hybond-ECL Filter paper and Hybond-ECL cut to an appropriate size were immersed in a blotting buffer as a pretreatment. After SDS-PAGE, the protein was transferred to Hybond-ECL using a transfer device. The transferred Hybond-ECL was soaked in blocking buffer (5% skim milk), blocked at room temperature for 1 hour, and washed 3 times for 5 minutes with Tween buffer.
  • blocking buffer 5% skim milk
  • each primary antibody diluted with Tween buffer (Mouse monoclonal anti-human TS antibody (1: 1000) (ANASPEC, Inc. CA, USA), Mouse monoclonal anti-human ⁇ - actin antibody (1: 500) (BioVision, Inc., CA, USA) was reacted at 4 ° C. overnight.
  • the secondary antibody diluted with Tween buffer HRP-conjugated goat anti-mouse secondary antibody (1: 2000) (MP Biomedicals, LLC, Japan) was allowed to react at room temperature for 1 hour. It was. After washing 3 times with Tween buffer for 5 minutes, it was reacted with ECL Chemiluminescence Reagent for about 1 minute.
  • the target protein band was detected by X-ray film.
  • Example 3 Inhibitory effect on growth of cancer cells (human colon adenocarcinoma cells) by siRNA and shRNA
  • siRNA and shRNA Inhibitory effect on growth of cancer cells (human colon adenocarcinoma cells) by siRNA and shRNA
  • an experiment was conducted on a 96-well plate scale.
  • the lipoplex prepared in the same manner as in Example 2 was added directly to the wells previously filled with OptiMEM so that the total volume was 50 ⁇ l.
  • the human colon adenocarcinoma cell DLD-1 or DLD-1 / FU cell suspension (2,000 cells / 100 ⁇ l) is then added to the wells containing lipoplexes (final total volume 150 ⁇ l) for transfection. went.
  • the final concentration of shRNA or siRNA in the well is 5 nM.
  • the medium was removed and fresh medium (200 ⁇ l) with or without the existing chemotherapeutic agent 5-FU (fluorouracil) was added.
  • 5-FU fluorouracil
  • 5-FU was added at a concentration of 0.1 ⁇ g / mL for DLD-1
  • 5-FU was added at a concentration of 10 ⁇ g / mL for DLD-1 / FU.
  • 0.5% MTT 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium 50 ⁇ L of bromide
  • siTS and shTS significantly inhibited the proliferation of DLD-1 cells and DLD-1 / FU cells in the presence of 5-FU.
  • Example 4 Preparation of PEG-modified cationic liposomes Cationic liposomes were prepared by the Bangham method.
  • DOPE DOPE
  • a 9% sucrose solution (30 mL, pH 7.4) was added to the lipid thin film as an inner aqueous phase, and the lipid thin film was completely hydrated by vigorous stirring at 37 ° C. to obtain MLV (multilamellar vesicle) (final lipid). Concentration is 50 mM). While this solution was heated to 37 ° C., LUV (large unilamellar vesicle) having a particle diameter of about 100 nm was prepared by an extrusion method using a polycarbonate film (Nucleopore, CA, USA) of 200, 100, 50 nm. .
  • the liposome particle size (dynamic light scattering method) and zeta potential (electrophoretic light scattering method) were measured by NICOMP 370 (Particle Sizing System, CA, USA).
  • the prepared liposomes had an average particle size of 119.9 nm and a zeta potential of 25.56 mV.
  • the PEG modification to the liposome was performed by a post-insertion method. After preparing the basic liposome, mPEG 2000 -DSPE completely dissolved in 9% sucrose solution is 5% in molar ratio to the total amount of lipid (DOPE, POPC, CHO, DC-6-14) The solution was added to the liposome solution and shaken gently at 37 ° C. for 1 hour in an incubator equipped with a shaker.
  • the average particle size and zeta potential of the prepared PEG-modified lipoplex were 286.8 nm and 15.81 mV.
  • Example 6 Antitumor effect of systemic administration of PEG-modified lipoplex to DLD-1 tumor-bearing mice
  • Production of DLD-1 tumor-bearing mice BALD / c nu / nu male mice under DLD-1 cell suspension subcutaneously
  • the solution (2 ⁇ 10 6 cells / 100 ⁇ L) was inoculated.
  • Mice whose tumor volume reached 50-100 mm 3 8 days after cell transplantation were used for in vivo experiments.
  • PEG-modified lipoplex was added in a total of 8 times at a daily interval of 80 ⁇ g / 300 ⁇ L of shRNA. More administered.
  • Tumor volume was calculated based on the following formula.
  • Tumor volume (mm 3 ) (long side of tumor) ⁇ (short side of tumor) 2 ⁇ 0.5 The results are shown in FIG. 4 and FIG.
  • the group treated with TS-1 or PEG-modified lipoplex alone showed a tumor growth inhibitory effect of about 34%.
  • the combined treatment group of TS-1 and PEG-modified lipoplex showed a tumor growth inhibitory effect of about 66%. None of the treatment groups showed serious toxicity including suppression of weight gain. Further, as shown in FIG. 5, it was confirmed that the tumor growth was remarkably suppressed by using PEG-modified lipoplex and TS-1 in combination.
  • Example 7 Cancer Cell (Human Malignant Pleural Mesothelioma Cell) Growth Inhibitory Effect by shRNA
  • This experiment was performed by replacing human colon adenocarcinoma cell DLD-1 or DLD-1 / FU with human malignant pleural mesothelioma cell MSTO. Similar to Example 3 except that 211H was used as a cancer cell, and instead of 5-FU, pemetrexed sodium hydrate (Alimta (Eli Lilly Japan)) was used as an existing chemotherapeutic agent. The method was used. The final concentration of shRNA in the well during transfection was adjusted to 5 nM and 10 nM, and pemetrexed sodium hydrate was added to the medium at a concentration of 10 ng / mL.
  • the cell growth rate was measured by the same method as in Example 3 above. The results are shown in FIG.
  • shTS markedly inhibited the growth of MSTO 211H cells in the presence of pemetrexed sodium hydrate.
  • Example 8 Antitumor effect of systemic administration of PEG-modified lipoplex to MSTO 211H tumor-bearing mice
  • TGI tumor growth inhibition rate
  • the group treated with pemetrexed sodium hydrate or PEG-modified lipoplex containing shRNA against TS (TS shRNA) alone showed tumor growth inhibitory effects of about 28% and about 19%, respectively.
  • TS shRNA PEG-modified lipoplex containing shRNA against TS
  • NS shRNA PEG-modified lipoplex containing shRNA
  • the antitumor agent comprising a liposome containing an shRNA molecule for thymidylate synthase according to the present invention as an active ingredient can suppress the growth of a tumor expressing TS by in vivo administration. Furthermore, by using the antitumor agent in combination with a chemotherapeutic agent, the directivity to cancer tissue can be increased and the antitumor effect can be remarkably improved.
  • the present invention is expected to contribute to the field of cancer treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 TSを標的とするshRNAのin vivo送達方法を提供。 RNAi作用によりチミジル酸合成酵素の発現を抑制することができるショートヘアピンRNA(shRNA)と、PEG修飾カチオン性リポソームを含む、抗腫瘍剤であって、該shRNAは該PEG修飾カチオン性リポソームの表面に結合されており、かつ3'末端に少なくとも2塩基からなるオーバーハングを有する、上記抗腫瘍剤。

Description

チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途
 本発明は、チミジル酸合成酵素に対するshRNA分子を含むリポソームを有効成分とする抗腫瘍剤ならびにその用途、特に化学療法剤と併用するその用途に関する。
 近年、RNA干渉(以下、RNAi)を引き起こすRNAi分子は、腫瘍などを治療するための有用なツールとして注目されており、腫瘍の増殖を抑制することが可能な様々なRNAi分子が開発されている。本発明者らは以前に、DNA合成に関与しているチミジル酸合成酵素(以下、TS)を標的とするRNAi分子を報告し、当該RNAi分子がTSの発現を顕著に抑制することにより、抗腫瘍効果を有すること、また5-FU系抗腫瘍剤(特にテガフール・ギメラシル・オテラシルカリウム配合剤)の抗腫瘍効果を増強することを報告した(特許文献1)。
 しかしながら、一般的にRNAi分子はin vivo投与によって迅速に分解されてしまう。そのため、腫瘍に対して十分な量のRNAi分子を送達することは極めて困難であった。
 当該課題を解決すべく、今日、様々なRNAi分子の送達方法が開発されている。例えば、RNAi分子(特にショートヘアピン構造を有するRNAi分子(shRNA))をコードするDNAを適当なベクターに組み込んで、当該ベクターを投与する方法が挙げられる(特許文献1)。しかし、この方法では当該ベクターを腫瘍内に直接注入して投与しなければならず、臨床応用を考慮すると、より容易な投与方法(例えば、静脈内投与など)が望まれていた。また、RNAi分子とリポソームからなる複合体(リポプレックス)を用いて、RNAi分子を腫瘍細胞へ送達する方法が開発されている(非特許文献1-3)。しかし、これらリポプレックスの繰り返し投与に際しては、投与された生体における免疫系の働きによりリポプレックスは、速やかに排除されてしまい十分な効果を得ることができない、また重篤な副作用が生じるなどの問題を生じていた。
 したがって、当該分野においては依然として、in vivo投与によってRNAi分子を効率的に腫瘍に送達する方法が切望されている。
WO2010/113844
Qixin Leng et al.,Drug Future.2009 September;34(9):721. Sherry Y.Wu et al.,The AAPS Journal,Vol.11,No.4,Decmber 2009 B.Ozpolat et al.,Journal of Internal Medicine 267;44-53 2009
 本発明は、TSを標的とするshRNAの簡易かつ効率的なin vivo送達方法を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、TSの発現を抑制することが可能なshRNAをPEG修飾したカチオン性リポソーム表面に静電的に結合させることによって簡易に癌細胞へ送達できることを見出した。また、shRNAを結合したPEG修飾したカチオン性リポソームを化学療法剤、特に5-FU系抗腫瘍剤と併用することによって、癌細胞への指向性を高め、癌細胞における効果を顕著に増大できることを見出した。さらに、shRNAを結合したPEG修飾したカチオン性リポソームを、TS阻害作用を有する化学療法剤(例えば5-FU系抗腫瘍剤やペメトレキセドナトリウム水和物)と併用することによって、癌細胞における当該化学療法剤に対する感受性を高め、抗腫瘍効果を増強できることを見出した。本発明はこれらの知見に基づく。
 すなわち本発明は、以下のとおりである。
[1] RNAi作用によりチミジル酸合成酵素の発現を抑制することができるショートヘアピンRNA(shRNA)と、PEG修飾カチオン性リポソームを含む、抗腫瘍剤であって、該shRNAは該PEG修飾カチオン性リポソームの表面に結合されており、かつ3’末端に少なくとも2塩基からなるオーバーハングを有する、上記抗腫瘍剤。
[2] shRNAが配列番号1で表される塩基配列からなるセンス鎖および該センス鎖とストリンジェントな条件下でハイブリダイズするアンチセンス鎖を含む、[1]の抗腫瘍剤。
[3] shRNAが配列番号1で表される塩基配列からなるセンス鎖と配列番号2で表される塩基配列からなるアンチセンス鎖を含む、[1]または[2]の抗腫瘍剤。
[4] shRNAが配列番号8で表される塩基配列からなる、[1]~[3]のいずれかの抗腫瘍剤。
[5] PEG修飾カチオン性リポソームが、ジオレオイルホスファチジルエタノールアミン(DOPE)、パルミトイルオレオイルグリセロホスホコリン(POPC)、コレステロール(CHOL)およびO,O’-ジテトラデカノイル-N-(α-トリメチルアンモニオアセチル) ジエタノールアミンクロリド(DC-6-14)より構成されるカチオン性リポソームを含む、[1]~[4]のいずれかの抗腫瘍剤。
[6] DOPE、POPC、CHOLおよびDC-6-14が、3:2:3:2のモル比で含まれる、[5]の抗腫瘍剤。
[7] 抗腫瘍剤の粒径が200~300nmである、[1]~[6]のいずれかの抗腫瘍剤。
[8] さらに、腫瘍細胞の増殖に関与する遺伝子からなる群より選択される遺伝子の発現を抑制することができるsiRNAまたはshRNAがPEG修飾カチオン性リポソームの表面に結合されている、[1]~[7]のいずれかの抗腫瘍剤。
[9] 腫瘍細胞の増殖に関与する遺伝子が、VEGF、EGFR、PDGF、HGF、Wint、Bcl-2、サバイビン、リボヌクレオチドレダクターゼ、DNAポリメラーゼをコードする遺伝子からなる群から選択される一または複数の遺伝子である、[8]の抗腫瘍剤。
[10] 腫瘍を処置するための化学療法剤と併用される、[1]~[9]のいずれかの抗腫瘍剤。
[11] [1]~[10]のいずれかの抗腫瘍剤と腫瘍を処置するための化学療法剤とを含む、組み合わせ物。
[12] 腫瘍を処置するための化学療法剤が、TS阻害作用を有する抗腫瘍剤である、[10]の抗腫瘍剤および[11]の組み合わせ物。
[13] TS阻害作用を有する抗腫瘍剤が、5-FU系抗腫瘍剤またはペメトレキセドナトリウム水和物である、[12]の抗腫瘍剤または組み合わせ物。
[14] 5-FU系抗腫瘍剤が、テガフール・ギメラシル・オテラシルカリウム配合剤である、[13]の抗腫瘍剤または組み合わせ物。
 本明細書は本願の優先権の基礎である日本国特許出願2011-114946号の明細書および/または図面に記載される内容を包含する。
 本発明に係るチミジル酸合成酵素に対するshRNA分子を含むリポソームを有効成分とする抗腫瘍剤は、in vivo投与により、TSを発現する腫瘍の増殖を抑制することが可能である。
図1は、ヒト結腸直腸癌株DLD-1(A)およびDLD-1/FU(B)における、TSを標的としたsiRNAおよびshRNAのTS発現抑制効果を示す特性図である。各レーンはそれぞれ以下のsiRNAまたはshRNAで処理したサンプルを示す。1:未処理;2:siCont 10nM;3:siTS 1nM;4:siTS 5nM;5:siTS 10nM;6:shTS 1nM;7:shTS 5nM;8:shTS 10nM。 図2は、ヒト結腸直腸癌株DLD-1における、TSを標的としたsiRNA(A)およびshRNA(B)の5-FUの有無によるTS発現抑制効果を示す特性図である。(C)新しい培地を添加して96時間後の各サンプルにおける細胞成長阻害率(%)を示す。 図3は、ヒト結腸直腸癌株DLD-1/FUにおける、TSを標的としたsiRNA(A)およびshRNA(B)の5-FUの有無によるTS発現抑制効果を示す特性図である。(C)新しい培地を添加して96時間後の各サンプルにおける細胞成長阻害率(%)を示す。 図4は、ヒト結腸直腸癌株DLD-1担癌マウスにおける、TSを標的としたshRNAのS-1の有無による腫瘍成長抑制効果(A)および体重の増減(B)を示す特性図である。 図5は、ヒト結腸直腸癌株DLD-1担癌マウスにおける、TSを標的としたshRNAのTS-1の有無による腫瘍成長抑制効果を示す写真図である。1:対照(スクロース投与);2:S-1;3:TS-shRNAリポソーム;4:S-1+TS-shRNAリポソーム。 図6は、ヒト悪性胸膜中皮腫株MSTO 211 Hにおける、ペメトレキセドナトリウム水和物、TSを標的としたshRNA、あるいはペメトレキセドナトリウム水和物およびTSを標的としたshRNAによる、細胞成長阻害率(%)の経時的変化を示す。 図7は、ヒト悪性胸膜中皮腫株MSTO 211 H担癌マウスにおける、TSを標的としたshRNAのペメトレキセドナトリウム水和物の有無による腫瘍成長抑制効果を示す特性図である。
 本発明におけるチミジル酸合成酵素(以下、「TS」と記載)の発現を抑制することができるショートヘアピンRNA(以下、「shRNA」と記載)は、チミジル酸合成酵素のmRNA部分を標的とすることにより、TS特異的にRNAi作用を奏し、TSの発現を顕著に抑制することができる。ここで本発明のRNAi分子が、「mRNA部分を標的とする」とは、下記に詳述するshRNAのアンチセンス鎖が、標的mRNA部分とストリンジェントな条件下でハイブリダイズできることをいう。
 ストリンジェントな条件下とは、常法に従ってハイブリッドを形成する核酸の融解温度(Tm)に基づいて求めることができる。例えば、ハイブリダイズ状態を維持できる洗浄条件として通常「1×SSC、0.1%SDS、37℃」程度の条件、より厳格には「0.5×SSC、0.1%SDS、42℃」程度の条件、さらに厳格には「0.1×SSC、0.1%SDS、65℃」程度の条件が挙げられる。
 本発明におけるshRNAは、TSをコードするORFの塩基配列またはその一部に同一な塩基配列を有するセンス鎖と、当該センス鎖とストリンジェントな条件下でハイブリダイズするアンチセンス鎖を含む。ここで「ORFの塩基配列またはその一部に同一な塩基配列」とは、ORFの塩基配列中のチミンをウラシルに置換して表される塩基配列またはその一部に同一である塩基配列を意味する。
 当該センス鎖は15~25塩基、好ましくは19塩基からなる。センス鎖の塩基配列は、TSをコードするORFの塩基配列と同一であることが望ましいが、実質的に同一、すなわち相同な配列であってもよい。すなわち、センス鎖の塩基配列は、ORFの塩基配列において1または複数、すなわち、1~3の塩基、好ましくは1~2塩基、より好ましくは1塩基の置換、欠失、挿入および/または付加があってもよい。
 当該アンチセンス鎖は、センス鎖とストリンジェントな条件下でハイブリダイズ可能な塩基配列を有する。アンチセンス鎖は、ストリンジェントな条件下でハイブリダイズできる限り、1~3の塩基、好ましくは1~2塩基、より好ましくは1塩基の置換、欠失、挿入および/または付加を含むミスマッチを有するものであってもよい。好ましくは、アンチセンス鎖は、センス鎖と完全に相補的な塩基配列からなる。
 センス鎖およびアンチセンスの塩基配列は、TSをコードする公知の塩基配列(GenBank:CR601528.1)に基づいて選択することができる。これらの塩基配列を選択する方法として種々の方法が知られており、例えば、siRNA Design Support System(タカラバイオ株式会社)などを用いることが可能である。
 本発明において、センス鎖として以下の塩基配列からなるものが挙げられるがこれらに限定されない:5’-GUAACACCAUCGAUCAUGA-3’(配列番号1);5’-GAAUACAGAGAUAUGGAAU-3’(配列番号3);5’-CGAUCAUGAUGUAGAGUGU-3’(配列番号5);5’-GGGUGUUUUGGAGGAGUUGTT-3’(配列番号11)。
 好ましくは本発明におけるshRNAは、センス鎖5’-GUAACACCAUCGAUCAUGA-3’(配列番号1)とアンチセンス鎖5’-UCAUGAUCGAUGGUGUUAC-3’(配列番号2);センス鎖5’-GAAUACAGAGAUAUGGAAU-3’(配列番号3)とアンチセンス鎖5’-AUUCCAUAUCUCUGUAUUC(配列番号4);またはセンス鎖5’-CGAUCAUGAUGUAGAGUGU-3’(配列番号5)とアンチセンス鎖5’-ACACUCUACAUCAUGAUCG-3’(配列番号6);センス鎖5’-GGGUGUUUUGGAGGAGUUGTT-3’(配列番号11)とアンチセンス鎖5’-AACAACUCCUCCAAAACACCC-3’(配列番号12)を含む。
 さらに好ましくは、本発明におけるshRNAは、配列番号1で表される塩基配列からなるセンス鎖と配列番号2で表される塩基配列からなるアンチセンス鎖を含む。
 センス鎖とアンチセンス鎖は、リンカー部分を介して連結され、当該リンカー部分がループを形成することにより折りたたまれ、当該アンチセンス鎖と当該センス鎖がハイブリダイズして、二本鎖部分を形成する。shRNA分子に含まれるリンカー部分は、センス鎖とアンチセンス鎖を連結しステムループ構造を形成し得る限り、ポリヌクレオチドリンカーであっても、非ポリヌクレオチドリンカーであってもよく、特に限定しないが、当業者に公知である2~22塩基のポリヌクレオチドリンカーが好ましい。具体的には、UAGUGCUCCUGGUUG(配列番号7)、UUCAAGAGA、CCACC、CUCGAG、CCACACC、UUCAAGAGA、AUG、CCCおよびUUCGが例示でき、UAGUGCUCCUGGUUG(配列番号7)が好ましい。
 本発明におけるshRNAは3’末端に少なくとも2塩基からなるオーバーハングを有する。
 本発明において、オーバーハングとは、アンチセンス鎖の3’末端に付加された塩基であって、センス鎖の対応する位置に相補的に結合し得る塩基が存在しない塩基をいう。アンチセンス鎖の3’末端にオーバーハングを有していない場合、オーバーハングを有している場合と比べて、下記にて詳述するPEG修飾カチオン性リポソームを用いたトランスフェクションにおいて、shRNAによるTSの発現抑制の程度がおよそ40~60%低下する。当該オーバーハングの塩基の種類、数は限定されず、例えば、1~5、好ましくは1~3、さらに好ましくは1もしくは2塩基からなる配列が挙げられ、例えば、TTT、UUやTTが挙げられる。好ましくは、UUである。
 本発明において、好ましいshRNAとしては、配列番号8で表される塩基配列からなる一本鎖RNAである。
 また、センス鎖またはアンチセンス鎖は必要に応じて、5’末端がリン酸化されていてもよく、5’末端に三リン酸(ppp)が結合していても良い。
 本発明におけるPEG修飾カチオン性リポソームは、カチオン性リポソームの表面に一または複数のポリエチレングリコール分子(PEG)が共有結合されてなり、これによってカチオン性リポソームのin vivoでの血中滞留性を増加させることができる。
 カチオン性リポソームは公知の手法、例えば薄膜振とう法(Bangham法)に基づいて作製することができる(A.D.Bangham et al.,J.Mol.Biol.,13,238-252(1965);A.D.Bangham and R.W.Horne,J.Mol.Biol.,8,660-668(1964))。すなわち、フラスコ等の容器内において少なくとも1種のリン脂質をクロロホルム等の有機溶媒に溶解し、当該有機溶媒を揮発させて容器の底部に脂質膜を形成させた後、そこに緩衝液等の水溶液を入れて攪拌することによって、リポソームを含む懸濁液を得ることができる。
 本発明におけるカチオン性リポソームは、以下より選択される一以上のリン脂質からなる1つまたは複数の膜を有する:ジオレオイルホスファチジルエタノールアミン(以下、「DOPE」と記載)、パルミトイルオレオイルグリセロホスホコリン(以下、「POPC」と記載)、コレステロール(以下、「CHOL」と記載)、O,O’-ジテトラデカノイル-N-(α-トリメチルアンモニオアセチル) ジエタノールアミンクロリド(以下、「DC-6-14」と記載)、水素添加精製卵黄ホスファチジルコリン、水素添加精製大豆ホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリンおよび1-パルミトイル-2-オレオイルホスファチジルコリン。
 好ましくは本発明におけるカチオン性リポソームは、DOPE、POPC、CHOLおよびDC-6-14からなる。カチオン性リポソームにおけるDOPE、POPCおよびDC-6-14の含有比(モル比)は、DOPE:POPC:CHOL:DC-6-14=2~4:4~1:3~1:1~4であり、好ましくは3:2:3:2である。
 カチオン性リポソームの表面に結合されるPEGは、分子量500~5000の範囲にあるものから選択され、好ましくは分子量2000程度である。カチオン性リポソームへのPEGの結合は、公知の手法によって行うことができ、特に限定されないがポストインサーション法を用いて行うことができる。すなわち、上記カチオン性リポソームの形成後、リン脂質とPEGからなる複合分子を当該カチオン性リポソームと適当な条件下(例えば、30~60℃、30分間~3時間)でインキュベートすることによって、複合分子の脂質部分をカチオン性リポソームの外側のリン脂質膜中に、PEGをカチオン性リポソームの表面に曝露する形態で組み込むことができる。この際、用いる複合分子の量は、上記カチオン性リポソームの総脂質に対して3~10%(モル比)好ましくは5%である。本発明において利用し得るリン脂質とPEGからなる複合分子としては、mPEG2000-DSPEが挙げられるがこれに限定されない。
 本発明におけるPEG修飾カチオン性リポソームは、粒径が80~200nm、好ましくはおよそ100nmである。本発明におけるPEG修飾カチオン性リポソームは、ゼータ電位が10~40mV、好ましくはおよそ25mVである。
 上記shRNAは、上記PEG修飾カチオン性リポソームの膜表面に共有結合または非共有結合によって結合している。上記shRNAと上記PEG修飾カチオン性リポソームの結合に際しては、上記shRNAと上記PEG修飾カチオン性リポソームを含む混合液を1~15分間、好ましくは10分間程度激しく攪拌することが好ましい。攪拌を加えることによって、得られるshRNAを備えたPEG修飾カチオン性リポソームの粒径を数百nmのサイズに調製できる(Barichello,J.M.,et al.,Int.J.Pharm.(2011),doi:10.1016/j.ijpharm.2011.03.001)。また、攪拌を加えることによって、PEG修飾カチオン性リポソーム上に上記shRNAを均一に分散させ結合させることができ、shRNAの不均一な結合によってもたらされる組織によるPEG修飾カチオン性リポソーム取り込みの不均一性を防ぐことができる。
 本発明において、shRNAを備えたPEG修飾カチオン性リポソームは粒径が120~600nm、好ましくは200~300nmである。また、本発明において、shRNAを備えたPEG修飾カチオン性リポソームはゼータ電位が、5~30mV、好ましくはおよそ10~25mVである。shRNAを備えたPEG修飾カチオン性リポソームの表面電荷はより中性に近く、またPEGによる立体障害の存在から血清タンパク質と結合することが少ないために、肺胞にトラップされることを防ぐことができ、血中滞留性を増加させることができる。
 本発明におけるshRNAを備えたPEG修飾カチオン性リポソームは、上記shRNAに加えて、腫瘍細胞において発現する別の遺伝子を標的とするsiRNAまたはshRNAを含んでも良い。「腫瘍細胞において発現する別の遺伝子」とは、腫瘍細胞の増殖に関与する因子、例えばVEGF、EGFR、PDGF、HGF、Wint、Bcl-2、サバイビンなどの増殖調節因子群、リボヌクレオチドレダクターゼ、DNAポリメラーゼなどの核酸合成関連酵素群などをコードする遺伝子が挙げられるがこれらに限定されない。上記shRNAと腫瘍細胞において発現する別の遺伝子を標的とするsiRNAまたはshRNAは、同一のPEG修飾カチオン性リポソームに結合していても良いし、それぞれ別個のPEG修飾カチオン性リポソームに結合していても良い。
 なお、本明細書において、shRNAを備えたPEG修飾カチオン性リポソームを、「PEG修飾リポプレックス」と呼ぶ場合がある。
 下記実施例にて詳述されるように、in vivo投与により上記shRNAを備えたPEG修飾カチオン性リポソームは腫瘍細胞の増殖を抑制することが可能であり、癌を治療するための抗腫瘍剤として使用できる。
 本発明の抗腫瘍剤を用いて治療できる癌としては、TSを高発現している癌が挙げられ、特に制限されるものではないが、例えば、結腸・直腸癌、肝臓癌、腎臓癌、頭頸部癌、食道癌、胃癌、胆道癌、胆のう・胆管癌、膵臓癌、肺癌、乳癌、卵巣癌、子宮頚癌、子宮体癌、膀胱癌、前立腺癌、精巣腫瘍、骨・軟部肉腫、白血病、悪性リンパ腫、多発性骨髄腫、皮膚癌、脳腫瘍、悪性胸膜中皮腫等が挙げられる。好ましくは結腸・直腸癌、胃癌、頭頸部癌、肺癌、乳癌、膵臓癌、胆道癌、肝臓癌、悪性胸膜中皮腫であり、特に好ましくは結腸・直腸癌、悪性胸膜中皮腫である。
 本発明の抗腫瘍剤はまた、shRNAを備えたPEG修飾カチオン性リポソームと共に、医薬の製造において通常用いられている、賦形剤、結合剤、崩壊剤、滑沢剤、希釈剤、溶解補助剤、懸濁化剤、等張化剤、pH調整剤、緩衝剤、安定化剤、着色剤、矯味剤、矯臭剤、ヒスチジン等を含んでも良い。
 賦形剤としては、例えば、乳糖、ショ糖、塩化ナトリウム、ブドウ糖、マルトース、マンニトール、エリスリトール、キシリトール、マルチトール、イノシトール、デキストラン、ソルビトール、アルブミン、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸、メチルセルロース、グリセリン、アルギン酸ナトリウム、アラビアゴムおよびこれらの混合物等が挙げられる。滑沢剤としては、例えば、精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコールおよびこれらの混合物等が挙げられる。結合剤としては、例えば、単シロップ、ブドウ糖液、デンプン液、ゼラチン溶液、ポリビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、カルボキシメチルセルロース、セラック、メチルセルロース、エチルセルロース、水、エタノール、リン酸カリウムおよびこれらの混合物等が挙げられる。崩壊剤としては、例えば、乾燥デンプン、アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル類、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖およびこれらの混合物等が挙げられる。希釈剤としては、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類およびこれらの混合物等が挙げられる。安定化剤としては、例えば、ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸、チオ乳酸およびこれらの混合物等が挙げられる。等張化剤としては、例えば、塩化ナトリウム、ホウ酸、ブドウ糖、グリセリンおよびこれらの混合物等が挙げられる。pH調整剤および緩衝剤としては、例えば、クエン酸ナトリウム、クエン酸、酢酸ナトリウム、リン酸ナトリウムおよびこれらの混合物等が挙げられる。
 本発明の抗腫瘍剤は、経口投与または非経口投与(例えば、静脈内投与、動脈内投与、注射による局所投与、腹腔または胸腔への投与、皮下投与、筋肉内投与、舌下投与、経皮吸収または直腸内投与など)によって、投与することができる。好ましくは、本発明の抗腫瘍剤は、静脈内投与、腹腔内投与または胸腔内投与である。
 また、本発明の抗腫瘍剤は、投与経路に応じて適当な剤形とすることができる。具体的には注射剤、懸濁剤、乳化剤、軟膏剤、クリーム剤錠剤、カプセル剤、顆粒剤、散剤、丸剤、細粒剤、トローチ錠、直腸投与剤、油脂性坐剤、水溶性坐剤等の各種製剤形態に調製することができる。
 本発明の抗腫瘍剤の効果は、上記癌に由来する細胞や組織、および上記癌に罹患する個体に当該抗腫瘍剤を投与し、腫瘍の大きさが当該抗腫瘍剤を投与していない(または投与前の)細胞や組織、および個体における腫瘍の大きさと比較して、腫瘍が縮小または消滅していることを指標にして評価することが可能である。本発明の抗腫瘍剤の効果を評価するのに利用できる癌細胞として、TSが発現していれば癌種等は特に制限されず、例えば、ヒト結腸直腸癌細胞株DLD-1、DLD-1/5FU(5-FU耐性のDLD-1株)、KM12C/5FU(5-FU耐性のKM12C株)、HT29/5FU(5-FU耐性のHT29株)、ヒト胃癌細胞株NUGC-3/5FU(5-FU耐性のNUGC-3株)、ヒト悪性胸膜中皮腫細胞株(MSTO 211H)等が挙げられる。
 本発明の抗腫瘍剤の効果は、TSのmRNAを標的とする当業者に公知のRNAi分子を有効成分とする抗腫瘍剤と比べて、2倍、3倍、4倍、5倍、10倍、20倍、30倍、40倍、50倍、100倍、またはそれ以上の抗腫瘍効果を有し得る。
 従来的にshRNAの標的細胞へのin vivo送達は、shRNAをコードするDNAを含むウイルスベクターが利用されており(WO2010/113844)、当該ウイルスベクター注入時の水圧またはウイルス感染により当該shRNAをコードするDNAは細胞内に移行し、核内でshRNAは発現する。発現されたshRNAは、内在性のshRNAと同様に、ダイサーと呼ばれる酵素と接触してステムループ構造が切り出され、相補的な二本鎖RNAからなるsiRNAとなりRNAi作用を生じる。一方、本発明の抗腫瘍剤は経口または非経口投与により、PEG修飾カチオン性リポソームに担持されるshRNAを腫瘍細胞に送達する。腫瘍細胞に送達されたshRNAはエンドサイトーシスにより細胞内へ移行する。すなわち、上記従来技術と異なり、本発明におけるshRNAは標的細胞にて発現されたものではない。このようにin vivoにおいて細胞外から導入されたshRNAが分解されることなくRNAi作用を発揮し、標的細胞にて発現される内在性の遺伝子の発現を抑制できることは、本発明者らによって初めて見出されたことである。
 また、PEG修飾カチオン性リポソームにsiRNAを担持させる場合、その製造過程において相補的な二本鎖を形成していない、センス鎖またはアンチセンス鎖のみが担持される可能性がある。このようなセンス鎖またはアンチセンス鎖のみが担持されたPEG修飾カチオン性リポソームは不純物であるといえ、医薬品という観点から望ましくない。一方、shRNAをPEG修飾カチオン性リポソームに担持させることによって、上記のような不純物が生じる可能性は低く、医薬品という観点から望ましいといえる。
 本発明の抗腫瘍剤は、既存の化学療法剤と共に使用することができる。既存の化学療法剤としては、TS阻害作用を有する抗腫瘍剤が挙げられる。
 「TS阻害作用を有する抗腫瘍剤」としては、TSの機能を阻害しうる限り特に限定されず、例えば、5-FU系抗腫瘍剤、ペメトレキセドナトリウム水和物、ラルチトレキセド(Tomudex)、メトトレキサート(MTX)、OSI-7904L(OSI社)などが挙げられる。
 TSの発現量と5-FU系抗腫瘍剤の感受性の関係が報告されている(Patrick G.Johnston et al.,Cancer Res 1995;55:1407-12.およびKun-Huei Yeh et al.,Cancer 1998;82:1626-31)。癌患者の中でもTSの発現が比較的低い癌患者は、5-FU系抗腫瘍剤が顕著に奏効する一方で、癌患者の中でもTSの発現が比較的亢進している癌患者の多くは、5-FU系抗腫瘍剤に対して耐性を有する。本発明の抗腫瘍剤を投与することによって、腫瘍組織内のTSの産生を抑えることができ、当該腫瘍組織の5-FU系抗腫瘍剤の感受性を高めることができる。また、上記PEG修飾カチオン性リポソームは、5-FU系抗腫瘍剤と併用した場合に、選択的に腫瘍内に蓄積される(Yusuke Doi et al.,Cancer Sci,November,2010,vol.101,no.11,2470-2475)。
 これらの効果によって、5-FU系抗腫瘍剤と併用した場合に、当該PEG修飾カチオン性リポソームを含む本発明の抗腫瘍剤は、上記shRNAを腫瘍に効率的に送達することが可能であり、5-FU系抗腫瘍剤または本発明の抗腫瘍剤を単独で用いた場合と比べて、2倍、3倍、4倍、5倍またはそれ以上の顕著に高い抗腫瘍効果を得ることができる。
 「5-FU系抗腫瘍剤」としては、5-FUおよび活性代謝物質が5-FUである5-FU誘導体が挙げられる。5-FU誘導体としては例えば、テガフールを含有するものを挙げることができる。5-FU誘導体としては好ましくは、テガフール含有配合剤であり、具体的には、テガフール・ウラシル配合剤(例えば、ユーエフティ(登録商標)(大鵬薬品工業株式会社))、テガフール・ギメラシル・オテラシルカリウム配合剤などが例示できる。この中でも、下記に詳述されるテガフール・ギメラシル・オテラシルカリウム配合剤、例えばティーエスワン(登録商標)(大鵬薬品工業株式会社)が特に好ましい。なお、本明細書において、5-FU系抗腫瘍剤を「S-1」、「TS-1」と記載する場合があるが、これらの用語は相互に互換的に用いられる。
 また、ペメトレキセドナトリウム水和物としては、アリムタ(登録商標)(日本イーライリリー株式会社)が挙げられる。ペメトレキセドナトリウム水和物も、上記5-FU系抗腫瘍剤と同様に、本発明の抗腫瘍剤との併用により、上記shRNAを腫瘍に効率的に送達することが可能である、および/または当該ペメトレキセドナトリウム水和物または本発明の抗腫瘍剤を単独で用いた場合と比べて、2倍、3倍、4倍、5倍またはそれ以上の顕著に高い抗腫瘍効果を得ることができる。
 本発明の抗腫瘍剤は、上記TS阻害作用を有する抗腫瘍剤に加えて、または変えて、他の既存の化学療法剤と共に使用することができる。このような化学療法剤としては、シクロホスファミド、ナイトロジェンマスタード N-オキシド、イホスファサミド、メルファラン、ブスルファン、ミトブロニトール、カルボコン、チオテパ、ラニムスチン、ニムスチン、テモゾロミド、カルムスチン、ペメトレクスドジソディウム、メトトレキサート、6-メルカプトプリンリボシド、メルカプトプリン、ドキシフルリジン、カルモフール、シタラビン、シタラビンオクホスファート、エノシタビン、ゲムシタビン、フルダラビン、ペメトレキセド、シスプラチン、カルボプラチン、オキザリプラチン、パクリタキセル、ドセタキセル、塩酸イリノテカン、カペシタビンなどが挙げられ、これらから選択される一または複数の化学療法剤を用いることができる。これらの化学療法剤も、上記TS阻害作用を有する抗腫瘍剤と同様に、本発明の抗腫瘍剤との併用により、上記shRNAを腫瘍に効率的に送達することが可能である、および/または当該化学療法剤または本発明の抗腫瘍剤を単独で用いた場合と比べて、2倍、3倍、4倍、5倍またはそれ以上の顕著に高い抗腫瘍効果を得ることができる。
 本発明の抗腫瘍剤と、上記既存の化学療法剤とは併用投与される限り、組み合わせ物として提供することができる。
 「組み合わせ物」は、本発明の抗腫瘍剤と上記既存の化学療法剤とを有効成分として含む配合剤であっても良いし、ならびに本発明の抗腫瘍剤と上記既存の化学療法剤を併用投与に適した単一のパッケージ(キット製剤)として製造・包装・流通されるものでもあっても良い。
 「併用投与」には、本発明の抗腫瘍剤と上記既存の化学療法剤とを同時に投与する場合だけではなく、本発明の抗腫瘍剤および上記既存の化学療法剤を間隔をあけて投与する場合も含まれる。
 本発明の抗腫瘍剤の投与量および投与回数は、患者の年齢、体重、疾患の重篤度などの要因によって変化し得るが、shRNAの量にして1回につき体重1kgあたり0.0001mg~100mgの範囲から適宜選択される量を、1日に1~3回、毎日または1~21日毎に投与することができる。本発明の抗腫瘍剤に含まれる上記shRNAを備えたPEG修飾カチオン性リポソームは、従来公知のRNAi分子とリポソームからなる複合体(リポプレックス)と比べて高い血中滞留性を有するために、頻回投与を回避することができる。これによって、投与された生体内における免疫系の異物認識を受け難くすることができる。
 上記既存の化学療法剤の投与量は、有効成分である化学物質の種類、患者の年齢、体重、疾患の重篤度などの要因によって変化し得るが、1回につき体重1kgあたり0.0001mg~1000mgの範囲から適宜選択される量を、1日に1~3回、毎日または1~14日毎に投与することができる。例えば、既存の化学療法剤が5-FU系抗腫瘍剤である場合、1日にテガフールにして60~160mgを毎日または1~7日毎に投与することができる。上記既存の化学療法剤は単独で用いる場合と比べて、低用量かつ頻回投与することができる。これによって、上記既存の化学療法剤の投与により引き起こされ得る副作用(例えば、骨髄抑制、溶血性貧血、播種性血管内凝固症候群、劇症肝炎、脱水症状、腸炎、間質性肺炎、口内炎、消化管潰瘍、消化管出血、消化管穿孔、急性腎不全、皮膚粘膜眼症候群、中毒性表皮壊死症、精神神経障害、急性膵炎、横紋筋融解症、嗅覚脱失など、これらに限定されない)の発症を抑制または遅延することができる。
 本発明はまた、上記本発明の抗腫瘍剤を用いた癌の治療方法に関する。当該方法により治療し得る癌としては、上に定義したような癌が含まれる。また、当該方法において上記本発明の抗腫瘍剤および既存の化学療法剤の用法および用量は上記したとおりである。
 以下に実施例を示し、本発明をさらに詳しく説明する。しかしながら、本発明はこれら実施例に制限されるものではない。
実施例1:RNAi分子の調製
 以下のsiRNAおよびshRNAを、公知の一般的な手法に基づいて合成した。
(I)TSを標的とするsiRNA
 TSを標的とするsiRNAは、抗腫瘍効果が既に確認されているTSに対するsiRNA(WO2010/113844)に基づいて合成されており、以下のセンス鎖およびアンチセンス鎖からなる。
センス鎖:
5’-GUAACACCAUCGAUCAUGA-3’(配列番号1)
アンチセンス鎖:
5’-UCAUGAUCGAUGGUGUUAC-3’(配列番号2)
 なお、以下、TSを標的とするsiRNAを「siTS」と記載する。
(II)ルシフェラーゼを標的とするsiRNA
 対照のsiRNAとして、ルシフェラーゼを標的とするsiRNAを合成した。当該siRNAは以下のセンス鎖およびアンチセンス鎖からなる。
センス鎖:
5’-CUUACGCUGAGUACUUCGATT-3’(配列番号9)
アンチセンス鎖:
5’-UCGAAGUACUCAGCGUAAGTT-3’(配列番号10)
 なお、以下、ルシフェラーゼを標的とするsiRNAを「siCont」と記載する。
(III)TSを標的とするshRNA
 TSを標的とするshRNAは、抗腫瘍効果が既に確認されているTSに対するshRNA(WO2010/113844)に基づいて合成されており、以下の配列を有する。
TS-shRNA:
5’-GUAACACCAUCGAUCAUGAUAGUGCUCCUGGUUGUCAUGAUCGAUGGUGUUACUU-3’(配列番号8)
 3’末端の2つのウラシル(オーバーハング)を有する点で、前記公知のTSに対するshRNAと異なる。なお、以下、TSを標的とするshRNAを「shTS」と記載する。
実施例2:siRNAおよびshRNAによるTS発現抑制
<トランスフェクション>
 トランスフェクション試薬には、カチオニックリポソームの一種であるLipofectamineTM RNAi MAX(以下、「Lf RNAi MAX」と記載)を使用した。
 実施例1で調製したshRNAまたはsiRNAならびにLf RNAi MAXをそれぞれ、OptiMEMで希釈し、shRNAまたはsiRNAとLf RNAi MAXの比率が100(pmol):5(μL)になるように混合した。このとき、shRNAまたはsiRNA溶液とLf RNAi MAX溶液の量は等量とした。この混合液を10~20分間室温で放置することで複合体(リポプレックス)を形成した。
 各リポプレックスを、あらかじめOptiMEMの入っている10cmディッシュにそれぞれ直接添加し、合計容積が5mlとなるように調整した。次にDLD-1もしくはDLD-1/FU細胞懸濁液10mlを当該ディッシュに500,000細胞/ディッシュとなるように播種し、最終合計容積を15mlとし、トランスフェクションを行った。このとき、shRNAまたはsiRNAの最終濃度が1,5,10nMとなるように調整した。トランスフェクションを開始してから37℃、5%CO条件下、培地中で72時間培養し、その後、以下の方法により細胞抽出液を調製した。
<細胞抽出液の調製>
 トランスフェクションを開始してから72時間後、培地を除去し、冷PBS(-)で洗浄した後、トリプシン溶液を用いて細胞をはがし、遠心して上清を取り除いた。さらに冷PBS(-)で洗浄後、冷Lysis buffer(50mM Tris-HCl(pH7.4),1%NP-40,0.25%デオキシコール酸ナトリウム,150mM NaClおよびProtease Inhibitor Cocktail(Sigma-Aldrich,MO,USA))を100~150μL添加し、1時間、氷上(4℃)の条件下インキュベートして細胞を溶解した。その後、遠心分離し(15,000×g、15分間、4℃)、得られた上清を細胞抽出液とした。
<SDS-PAGE用サンプルの調製>
 上記細胞抽出液と2×サンプルバッファーを等量ずつ混合し、95℃に設定したマイクロチューブ用ホットプレートを用いて3分間加熱した。その後30秒間遠心し、室温で冷ましてSDS-PAGE用サンプルとした。
<SDS-PAGE>
 上記サンプルを6μL(9μgタンパク質/レーン)ずつゲルにアプライし、パワーサプライ(Bio-Rad laboratories)とつないでゲル2枚で40mA(ゲル1枚では20mA)の定電流で約80分間電気泳動した。
<ウェスタンブロッティング>
 適当な大きさに切ったろ紙及びHybond-ECLを、前処理としてブロッティングバッファーに浸した。SDS-PAGE後、トランスファー装置を用いてタンパクをHybond-ECLに転写した。転写したHybond-ECLをブロッキングバッファー(5%スキムミルク)に浸して室温で1時間ブロッキングし、Tween bufferで5分間3回洗浄した。
 TS及びβ-アクチンを検出するために、Tween bufferで希釈したそれぞれの一次抗体(Mouse monoclonal anti-human TS antibody(1:1000)(ANASPEC,Inc.CA,USA)、Mouse monoclonal anti-human β-actin antibody(1:500)(Bio Vision,Inc.,CA,USA))を4℃で一晩反応させた。Tween bufferで5分間3回洗浄後、Tween bufferで希釈した二次抗体(HRP-conjugated goat anti-mouse secondary antibody(1:2000)(MP Biomedicals,LLC,Japan))溶液を室温で1時間反応させた。Tween bufferで5分間3回洗浄後、ECL Chemiluminescence Reagentと約1分間反応させた。目的タンパク質のバンドはX線フィルムにより検出した。
 結果を図1に示す。
 実施例1で調製したshRNAおよびsiRNAが、DLD-1細胞およびDLD-1/FU細胞におけるTSの発現を顕著に抑制できることが明らかとなった。
実施例3:siRNAおよびshRNAによる癌細胞(ヒト結腸腺癌細胞)増殖阻害効果
 本実験では96ウェルプレートスケールで実験を行った。上記実施例2と同様に調製したリポプレックスをあらかじめOptiMEMを入れておいたウェルに直接添加し、全容積が50μlとなるようにした。次にヒト結腸腺癌細胞DLD-1またはDLD-1/FUの細胞懸濁液(2,000細胞/100μl)を、リポプレックスを入れたウェルに添加し(最終合計容積を150μl)トランスフェクションを行った。ここで、ウェル中のshRNAまたはsiRNAの最終濃度は5nMである。
 トランスフェクション開始24時間後、培地を除去し、既存の化学療法剤5-FU(フルオロウラシル)を含むまたは含まない新しい培地を(200μl)添加した。ここで、DLD-1に対しては5-FUを0.1μg/mLの濃度で、DLD-1/FUに対しては5-FUを10μg/mLの濃度で添加した。新しい培地を添加して0、24、48、72、96時間後、培地を除去し、0.5%MTT(3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド)溶液を50μL加え、4時間、37℃、5%CO条件下でインキュベーションした。また細胞の入っていないウェルにも0.5%MTT溶液を加えバックグラウンドとした。
 インキュベーション終了後、それぞれのウェルに酸性イソプロパノール150μLを加え、シェイカーを用いホルマザン結晶を溶解し、プレートリーダーを用いて、570nmの波長で吸光度を測定し、細胞の増殖率を算出した。
細胞の増殖率(%)=[A570(新しい培地を添加してX時間後)/A570(新しい培地を添加して0時間後)]×100
 結果を図2および3示す。
 図2および図3に示すとおり、siTSおよびshTSは5-FUの存在下において、DLD-1細胞およびDLD-1/FU細胞の増殖を顕著に阻害した。
実施例4:PEG修飾カチオン性リポソームの調製
 カチオン性リポソームはBangham法により調製した。
 カチオン性脂質、すなわちDOPE、POPC、CHOLおよびDC-6-14はそれぞれあらかじめクロロホルムで溶解させ、ストック溶液を調製した。脂質組成がDOPE:POPC:CHOL:DC-6-14=3:2:3:2(モル比)となるようにそれぞれストック溶液からガラスシリンジを用いて正確に量り取り、栓付き試験管に入れ、混合した(総脂質量として150mmol)。次に、ロータリーエバポレーター(IWAKI、東京)を用いて減圧下クロロホルムを除去し、その後、完全にクロロホルムを取り除くために試験管を一晩真空ポンプに入れ、試験管内に脂質薄膜を形成させた。この脂質薄膜に内水相として9%スクロース溶液(30mL,pH7.4)を加え、37℃で激しく攪拌することで脂質薄膜を完全に水和させ、MLV(multilamellar vesicle)を得た(最終脂質濃度は50mM)。この溶液を37℃に加温しながら、200、100、50nmのポリカーボネート膜(Nucleopore,CA、USA)を用いてエクストリュージョン法により粒子径が約100nmとなるLUV(large unilamellar vesicle)を調製した。リポソームの粒子径(動的光散乱法)及びゼータ電位(電気泳動光散乱法)はNICOMP 370(Particle Sizing System、CA、USA)により測定した。調製したリポソームの平均粒子径119.9nmであり、ゼータ電位は25.56mVであった。
 リポソームへのPEG修飾は、ポストインサーション法により行った。基本となるリポソームを調製後、9%スクロース溶液中に完全に溶解させたmPEG2000-DSPEを脂質(DOPE、POPC、CHOL、DC-6-14)総量に対してモル比で5%となるようにリポソーム溶液に添加し、振盪機付きインキュベータ中で37℃、1時間、軽く振盪させながら行った。
実施例5:PEG修飾リポプレックスの調製
 PEG修飾リポプレックスは、上記実施例4で調製したPEG修飾カチオン性リポソームと上記実施例1で調製したshTSとを、カチオン性リポソーム:shTS=2000:1(モル比)となるように混合し、10分間激しく攪拌することで調製した。調製したPEG修飾lipoplexの平均粒子径及びゼータ電位は、286.8nm及び15.81mVであった。
実施例6:PEG修飾リポプレックスのDLD-1担がんマウスへの全身投与による抗腫瘍効果
DLD-1担がんマウスの作製
 BALB/c nu/nu雄性マウスの皮下にDLD-1細胞懸濁液(2×10細胞/100μL)を接種した。細胞移植8日後、腫瘍体積が50-100mmに達したマウスをin vivoの実験に用いた。
PEG修飾リポプレックスの制がん活性評価
 上記DLD-1担がんマウスに対し、腫瘍移植後8日目からPEG修飾リポプレックスをshRNA量で80μg/300μLずつ1日間隔で合計8回マウス尾静脈より投与した。
 既存の化学療法剤「TS-1」(大鵬薬品工業)を併用する場合には、腫瘍移植後8日目から、6.9mgテガフール/kgの用量で15日間、毎日経口投与した。
 制がん活性は、腫瘍体積変化と体重変化について検討した。
 腫瘍体積は以下の式に基づいて算出した。
  腫瘍体積(mm)=(腫瘍の長辺)×(腫瘍の短辺)×0.5
 結果を図4および図5に示す。
 対象群と比較して、TS-1またはPEG修飾リポプレックスを単独で用いて処置した群では約34%の腫瘍成長抑制効果が示された。一方、TS-1およびPEG修飾リポプレックスの併用処置群では約66%の腫瘍成長抑制効果が示された。いずれの処置群においても体重増加抑制を含む、重篤な毒性は見られなかった。また、図5に示されるとおり、PEG修飾リポプレックスとTS-1とを併用することによって、腫瘍成長が顕著に抑制されることが確認できた。
実施例7:shRNAによる癌細胞(ヒト悪性胸膜中皮腫細胞)増殖阻害効果
 本実験は、ヒト結腸腺癌細胞DLD-1またはDLD-1/FUに代えて、ヒト悪性胸膜中皮腫細胞MSTO 211Hを癌細胞として使用し、5-FUに代えて、ペメトレキセドナトリウム水和物(アリムタ(日本イーライリリー株式会社))を既存の化学療法剤として使用した点を除いて、上記実施例3と同様の方法を用いて行った。なお、トランスフェクションを行う際の、ウェル中のshRNAの最終濃度は5nMおよび10nMに調整し、ペメトレキセドナトリウム水和物は10ng/mLの濃度で培地に添加して用いた。
 細胞の増殖率は、上記実施例3と同様の方法で測定した。結果を図6に示す。
 図6に示すとおり、shTSはペメトレキセドナトリウム水和物の存在下において、MSTO 211H細胞の増殖を顕著に阻害した。
実施例8:PEG修飾リポプレックスのMSTO 211H担がんマウスへの全身投与による抗腫瘍効果
MSTO 211H担がんマウスの作製
 BALB/c nu/nu雄性マウスの皮下にMSTO 211H細胞懸濁液(5×10細胞/100μL)を接種した。細胞移植14日後、腫瘍体積が50-100mmに達した事を確認し、in vivoの実験に用いた。
PEG修飾リポプレックスのMSTO 211H担がんマウスにおける制がん活性評価
 上記MSTO 211H担がんマウスに対し、腫瘍移植後14日目から、上記実施例5で調製したPEG修飾リポプレックスをshRNA量で40μg/200μLずつ1日間隔で合計6回マウス尾静脈より投与した。
 既存の化学療法剤ペメトレキセドナトリウム水和物(アリムタ(日本イーライリリー株式会社))を併用する場合には、腫瘍移植後14日目から、100mg/kgの用量で6回(1,2,3,8,9,10日目)腹腔内投与した。
 制がん活性は、投与開始後21日目における腫瘍増殖抑制率(TGI(%))で示し、TGI(%)は上記実施例6と同様に算出した。
 結果を図7に示す。
 ペメトレキセドナトリウム水和物、またはTSに対するshRNA(TS shRNA)を含むPEG修飾リポプレックス、を単独で用いて処置した群ではそれぞれ約28%、約19%の腫瘍成長抑制効果が示された。また、ペメトレキセドナトリウム水和物と標的をもたないshRNA(NS shRNA)を含むPEG修飾リポプレックスを併用した場合、約22%の腫瘍成長抑制効果が示されたが、これはペメトレキセドナトリウム水和物単独処置群における腫瘍成長抑制効果と同等であった。一方、ペメトレキセドナトリウム水和物およびTS shRNAを含むPEG修飾リポプレックスの併用処置群では約42%の腫瘍成長抑制効果が示された。図7に示すとおり、ペメトレキセドナトリウム水和物およびTS shRNAを含むPEG修飾リポプレックスとを併用することによって、腫瘍成長が顕著に抑制されることが確認できた。
 本発明に係るチミジル酸合成酵素に対するshRNA分子を含むリポソームを有効成分とする抗腫瘍剤は、in vivo投与により、TSを発現する腫瘍の増殖を抑制することが可能である。さらに、当該抗腫瘍剤を化学療法剤と併用することによって、癌組織への指向性を高め抗腫瘍効果を顕著に向上させることができる。本発明は癌治療の分野における貢献が期待される。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (14)

  1.  RNAi作用によりチミジル酸合成酵素の発現を抑制することができるショートヘアピンRNA(shRNA)と、PEG修飾カチオン性リポソームを含む、抗腫瘍剤であって、該shRNAは該PEG修飾カチオン性リポソームの表面に結合されており、かつ3’末端に少なくとも2塩基からなるオーバーハングを有する、上記抗腫瘍剤。
  2.  shRNAが配列番号1で表される塩基配列からなるセンス鎖および該センス鎖とストリンジェントな条件下でハイブリダイズするアンチセンス鎖を含む、請求項1に記載の抗腫瘍剤。
  3.  shRNAが配列番号1で表される塩基配列からなるセンス鎖と配列番号2で表される塩基配列からなるアンチセンス鎖を含む、請求項1または2に記載の抗腫瘍剤。
  4.  shRNAが配列番号8で表される塩基配列からなる、請求項1~3のいずれか1項に記載の抗腫瘍剤。
  5.  PEG修飾カチオン性リポソームが、ジオレオイルホスファチジルエタノールアミン(DOPE)、パルミトイルオレオイルグリセロホスホコリン(POPC)、コレステロール(CHOL)およびO,O’-ジテトラデカノイル-N-(α-トリメチルアンモニオアセチル) ジエタノールアミンクロリド(DC-6-14)より構成されるカチオン性リポソームを含む、請求項1~4のいずれか1項に記載の抗腫瘍剤。
  6.  DOPE、POPC、CHOLおよびDC-6-14が、3:2:3:2のモル比で含まれる、請求項5に記載の抗腫瘍剤。
  7.  抗腫瘍剤の粒径が200~300nmである、請求項1~6のいずれか1項に記載の抗腫瘍剤。
  8.  さらに、腫瘍細胞の増殖に関与する遺伝子からなる群より選択される遺伝子の発現を抑制することができるsiRNAまたはshRNAがPEG修飾カチオン性リポソームの表面に結合されている、請求項1~7のいずれか1項に記載の抗腫瘍剤。
  9.  腫瘍細胞の増殖に関与する遺伝子が、VEGF、EGFR、PDGF、HGF、Wint、Bcl-2、サバイビン、リボヌクレオチドレダクターゼ、DNAポリメラーゼをコードする遺伝子からなる群から選択される一または複数の遺伝子である、請求項8に記載の抗腫瘍剤。
  10.  腫瘍を処置するための化学療法剤と併用される、請求項1~9のいずれか1項に記載の抗腫瘍剤。
  11.  請求項1~10のいずれか1項に記載の抗腫瘍剤と腫瘍を処置するための化学療法剤とを含む、組み合わせ物。
  12.  腫瘍を処置するための化学療法剤が、TS阻害作用を有する抗腫瘍剤である、請求項10に記載の抗腫瘍剤および請求項11に記載の組み合わせ物。
  13.  TS阻害作用を有する抗腫瘍剤が、5-FU系抗腫瘍剤またはペメトレキセドナトリウム水和物である、請求項12に記載の抗腫瘍剤または組み合わせ物。
  14.  5-FU系抗腫瘍剤が、テガフール・ギメラシル・オテラシルカリウム配合剤である、請求項13に記載の抗腫瘍剤または組み合わせ物。
PCT/JP2012/063082 2011-05-23 2012-05-22 チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途 WO2012161196A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NO12790050A NO2716304T3 (ja) 2011-05-23 2012-05-22
ES12790050.4T ES2653923T3 (es) 2011-05-23 2012-05-22 Un liposoma que contiene una molécula de ARNhc que se dirige a una timidilato sintasa y uso del mismo
CN201280025004.4A CN103561775B (zh) 2011-05-23 2012-05-22 包含抗胸苷酸合成酶的shRNA分子的脂质体及其用途
EP12790050.4A EP2716304B1 (en) 2011-05-23 2012-05-22 A LIPOSOME CONTAINING shRNA MOLECULE TARGETING A THYMIDYLATE SYNTHASE AND USE THEREOF
JP2013516384A JP5941460B2 (ja) 2011-05-23 2012-05-22 チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途
PL12790050T PL2716304T3 (pl) 2011-05-23 2012-05-22 Liposom zawierający cząsteczkę shRNA skierowaną na syntazę tymidylanową oraz jego zastosowanie
DK12790050.4T DK2716304T3 (da) 2011-05-23 2012-05-22 LIPOSOMHOLDIGT shRNA-MOLEKYLE, DER TARGETERER EN THYMIDYLATSYNTASE OG ANVENDELSE DERAF
US13/592,002 US8592572B2 (en) 2011-05-23 2012-08-22 Liposome containing shRNA molecule targeting a thymidylate synthase and use thereof
HK14103539.6A HK1190325A1 (zh) 2011-05-23 2014-04-14 包含抗胸苷酸合成酶的 分子的脂質體及其用途
HRP20171919TT HRP20171919T1 (hr) 2011-05-23 2017-12-11 Shrna-molekula koja sadrži liposom ciljano protiv sinteze timidilata i njezina uporaba

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-114946 2011-05-23
JP2011114946 2011-05-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/273,960 Continuation-In-Part US20120301537A1 (en) 2011-05-23 2011-10-14 LIPOSOME CONTAINING shRNA MOLECULE TARGETING A THYMIDYLATE SYNTHASE AND USE THEREOF

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/592,002 Continuation US8592572B2 (en) 2011-05-23 2012-08-22 Liposome containing shRNA molecule targeting a thymidylate synthase and use thereof

Publications (1)

Publication Number Publication Date
WO2012161196A1 true WO2012161196A1 (ja) 2012-11-29

Family

ID=47217272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063082 WO2012161196A1 (ja) 2011-05-23 2012-05-22 チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途

Country Status (14)

Country Link
US (1) US20120301537A1 (ja)
EP (1) EP2716304B1 (ja)
JP (1) JP5941460B2 (ja)
CN (1) CN103561775B (ja)
DK (1) DK2716304T3 (ja)
ES (1) ES2653923T3 (ja)
HK (1) HK1190325A1 (ja)
HR (1) HRP20171919T1 (ja)
HU (1) HUE037803T2 (ja)
NO (1) NO2716304T3 (ja)
PL (1) PL2716304T3 (ja)
PT (1) PT2716304T (ja)
TW (1) TWI442927B (ja)
WO (1) WO2012161196A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178152A1 (ja) 2013-04-30 2014-11-06 Delta-Fly Pharma株式会社 局所投与用リポソームおよびその用途
WO2016068160A1 (ja) * 2014-10-30 2016-05-06 Delta-Fly Pharma株式会社 局所投与用リポプレックスの新規製造方法及び該リポプレックスを使用する抗腫瘍剤
JP2016536318A (ja) * 2013-11-06 2016-11-24 ザ ユニバーシティ オブ シカゴThe University Of Chicago 化学療法用薬剤、核酸及び光増感剤の送達又は共送達のためのナノスケール輸送体
EP3459525A1 (en) 2017-09-25 2019-03-27 J-Network, Inc. Preparing method for positively-electrified charged niosome, and charged niosome
US10596116B2 (en) 2011-07-08 2020-03-24 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US11246877B2 (en) 2016-05-20 2022-02-15 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777707A1 (en) 2013-03-11 2014-09-17 Wake Forest University Health Sciences Method of Treating Brain Tumors
KR20160121584A (ko) * 2014-02-26 2016-10-19 에트리스 게엠베하 Rna의 위장 투여용 조성물
SG10202107836SA (en) * 2017-01-18 2021-08-30 Temasek Life Sciences Laboratory Ltd Hyperstabilized liposomes increase targeting of mitotic cells
WO2019012107A1 (en) * 2017-07-13 2019-01-17 Danmarks Tekniske Universitet CATIONIC LIPOSOMES
CN114557964B (zh) * 2022-03-17 2024-03-12 西安艾领克生物科技有限公司 一种可载rna的阳离子梭型柔性脂质体及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253342A (ja) * 2004-03-10 2005-09-22 Nippon Medical School ヒトチミジル酸合成酵素に対するRNAiとして作用するRNA配列
WO2010113844A1 (ja) 2009-03-31 2010-10-07 大鵬薬品工業株式会社 チミジル酸合成酵素に対するRNAi分子およびその用途
JP2011114946A (ja) 2009-11-26 2011-06-09 Toyota Motor Corp 左右独立駆動車両の駆動ユニット冷却装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202846B2 (en) * 2000-03-16 2012-06-19 Cold Spring Harbor Laboratory Methods and compositions for RNA interference
CA2604441A1 (en) * 2005-04-12 2006-10-19 Intradigm Corporation Composition and methods of rnai therapeutics for treatment of cancer and other neovascularization diseases
PL2007356T3 (pl) * 2006-04-20 2016-02-29 Silence Therapeutics Gmbh Preparaty lipopleksowe przeznaczone do swoistego dostarczania do tkanek naczyniowych śródbłonka
JPWO2008035461A1 (ja) * 2006-09-22 2010-01-28 大鵬薬品工業株式会社 胃癌の術後補助化学治療法
HUE034483T2 (en) * 2008-04-15 2018-02-28 Protiva Biotherapeutics Inc New lipid preparations for introducing a nucleic acid
EP2300017A4 (en) * 2008-06-05 2012-12-12 Univ New York State Res Found ARNMI AS THERAPEUTIC TARGETS IN CANCER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253342A (ja) * 2004-03-10 2005-09-22 Nippon Medical School ヒトチミジル酸合成酵素に対するRNAiとして作用するRNA配列
WO2010113844A1 (ja) 2009-03-31 2010-10-07 大鵬薬品工業株式会社 チミジル酸合成酵素に対するRNAi分子およびその用途
JP2011114946A (ja) 2009-11-26 2011-06-09 Toyota Motor Corp 左右独立駆動車両の駆動ユニット冷却装置

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. D. BANGHAM ET AL., J. MOL. BIOL., vol. 13, 1965, pages 238 - 252
A. D. BANGHAM; R. W. HORNE, J. MOL. BIOL., vol. 8, 1964, pages 660 - 668
B. OZPOLAT ET AL., JOURNAL OF INTERNAL MEDICINE, vol. 267, 2009, pages 44 - 53
BARICHELLO, J. M. ET AL., INT. J. PHARM., vol. 410, 2011, pages 153 - 160
KIM HK ET AL.: "Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid.", INT J PHARM., vol. 392, no. 1-2, 25 May 2010 (2010-05-25), pages 141 - 7, XP027044515 *
KUN-HUEI YEH ET AL., CANCER, vol. 82, 1998, pages 1626 - 31
PATRICK G. JOHNSTON ET AL., CANCER RES, vol. 55, 1995, pages 1407 - 12
QIXIN LENG ET AL., DRUG FUTURE, vol. 34, no. 9, September 2009 (2009-09-01), pages 721
See also references of EP2716304A4
SHERRY Y. WU ET AL., THE AAPS JOURNAL, vol. 11, no. 4, December 2009 (2009-12-01)
TATSUHIRO ISHIDA ET AL.: "Shuyonai Bisho Kankyo Henka o Riyo shita siRNA Delivery System no Kaihatsu", SYMPOSIUM ON BIOMEMBRANE-DRUG INTERACTION KOEN YOSHISHU, vol. 32, 29 November 2010 (2010-11-29), pages 7 - 8, XP008172169 *
TOMOMI UEHARA: "Kakusan Gan'yu PEG Shushoku Nanocarrier ni yoru TLR Shigeki ga Oyobosu anti-PEG IgM Bunpitsu Yudo eno Eikyo", THE PHARMACEUTICAL SOCIETY OF JAPAN DAI 131 NENKAI HAPPYO YOSHI, 1 February 2011 (2011-02-01), pages 29P-0464, XP008171797, Retrieved from the Internet <URL:http://nenkai.pharm.or.jp/131/pc/imulti_result.asp> *
YUSUKE DOI ET AL., CANCER SCI, vol. 101, no. 11, November 2010 (2010-11-01), pages 2470 - 2475

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596116B2 (en) 2011-07-08 2020-03-24 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US11872311B2 (en) 2011-07-08 2024-01-16 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
AU2013388255B2 (en) * 2013-04-30 2017-02-16 Delta-Fly Pharma, Inc. Liposome for topical administration and application thereof
WO2014178152A1 (ja) 2013-04-30 2014-11-06 Delta-Fly Pharma株式会社 局所投与用リポソームおよびその用途
JPWO2014178152A1 (ja) * 2013-04-30 2017-02-23 Delta−Fly Pharma株式会社 局所投与用リポソームおよびその用途
US9745583B2 (en) 2013-04-30 2017-08-29 Delta-Fly Pharma, Inc. Liposome for topical administration and application thereof
JP2016536318A (ja) * 2013-11-06 2016-11-24 ザ ユニバーシティ オブ シカゴThe University Of Chicago 化学療法用薬剤、核酸及び光増感剤の送達又は共送達のためのナノスケール輸送体
US10517822B2 (en) 2013-11-06 2019-12-31 The University Of Chicago Nanoscale carriers for the delivery or co-delivery of chemotherapeutics, nucleic acids and photosensitizers
AU2015337909B2 (en) * 2014-10-30 2018-12-13 Delta-Fly Pharma, Inc. New production method of lipoplex for local administration and antitumor drug using lipoplex
RU2671857C1 (ru) * 2014-10-30 2018-11-07 Дельта-Флай Фарма, Инк. Новый способ производства липоплекса для местного введения и противоопухолевое средство, в котором используется такой липоплекс
US9855345B2 (en) 2014-10-30 2018-01-02 Delta-Fly Pharma, Inc. Method for producing lipoplex for topical administration and antitumor agent using such lipoplex
JP5934848B1 (ja) * 2014-10-30 2016-06-15 Delta−Fly Pharma株式会社 局所投与用リポプレックスの新規製造方法及び該リポプレックスを使用する抗腫瘍剤
WO2016068160A1 (ja) * 2014-10-30 2016-05-06 Delta-Fly Pharma株式会社 局所投与用リポプレックスの新規製造方法及び該リポプレックスを使用する抗腫瘍剤
US11246877B2 (en) 2016-05-20 2022-02-15 The University Of Chicago Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof
US11826426B2 (en) 2017-08-02 2023-11-28 The University Of Chicago Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof
EP3459525A1 (en) 2017-09-25 2019-03-27 J-Network, Inc. Preparing method for positively-electrified charged niosome, and charged niosome

Also Published As

Publication number Publication date
DK2716304T3 (da) 2017-11-27
HUE037803T2 (hu) 2018-09-28
PT2716304T (pt) 2018-01-03
HK1190325A1 (zh) 2014-07-04
EP2716304A1 (en) 2014-04-09
NO2716304T3 (ja) 2018-03-10
JPWO2012161196A1 (ja) 2014-07-31
EP2716304B1 (en) 2017-10-11
TWI442927B (zh) 2014-07-01
CN103561775A (zh) 2014-02-05
TW201300113A (zh) 2013-01-01
US20120301537A1 (en) 2012-11-29
JP5941460B2 (ja) 2016-06-29
ES2653923T3 (es) 2018-02-09
HRP20171919T1 (hr) 2018-02-09
EP2716304A4 (en) 2014-10-29
PL2716304T3 (pl) 2018-03-30
CN103561775B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5941460B2 (ja) チミジル酸合成酵素に対するshRNA分子を含むリポソームおよびその用途
USRE48887E1 (en) RNA interference compositions and methods for malignant tumors
KR101579638B1 (ko) 티미딜산 합성효소에 대한 RNAi 분자 및 그의 용도
KR101836877B1 (ko) 국소 투여용 리포플렉스의 신규 제조 방법 및 상기 리포플렉스를 사용하는 항 종양제
JP6307070B2 (ja) 局所投与用リポソームおよびその用途
US8592572B2 (en) Liposome containing shRNA molecule targeting a thymidylate synthase and use thereof
EP3902917A2 (en) Compositions and methods for treating cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790050

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2012790050

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012790050

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013516384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE