WO2012160998A1 - 仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム - Google Patents

仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム Download PDF

Info

Publication number
WO2012160998A1
WO2012160998A1 PCT/JP2012/062206 JP2012062206W WO2012160998A1 WO 2012160998 A1 WO2012160998 A1 WO 2012160998A1 JP 2012062206 W JP2012062206 W JP 2012062206W WO 2012160998 A1 WO2012160998 A1 WO 2012160998A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
flue gas
slurry
gypsum
finishing
Prior art date
Application number
PCT/JP2012/062206
Other languages
English (en)
French (fr)
Inventor
直行 神山
立人 長安
健 前田
哲 牛久
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012160998A1 publication Critical patent/WO2012160998A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a flue gas desulfurization facility provided with a finish flue gas desulfurization apparatus and an exhaust gas treatment system using the same.
  • FIG. 6 An example of the exhaust gas treatment system is shown in FIG.
  • the exhaust gas 11 from the boiler (coal-fired boiler) 101 is first introduced into the air heater 103 after nitrogen oxide (NOx) in the exhaust gas is removed by the denitration device 102.
  • the air supplied to the boiler is heated.
  • the exhaust gas 11 is introduced into a dry electrostatic precipitator 104 to remove dust.
  • the exhaust gas 11 is introduced into the desulfurization apparatus 105 to remove sulfur oxides (SOx).
  • SOx sulfur oxides
  • the exhaust gas 11 is introduced into the CO 2 recovery device 106 to remove carbon dioxide, and then the purified gas 112 is released from the chimney 111 to the atmosphere (for example, see Patent Document 1).
  • Patent Documents 2 to 3 There are various proposals as a method for simultaneously treating desulfurization and decarburization.
  • the CO 2 recovery device 106 when the CO 2 recovery device 106 is installed after desulfurization by the desulfurization device 105, if sulfur oxide or soot exceeding the allowable amount remains in the CO 2 recovery device 106, for example, an amine-based absorption liquid is used as the CO 2 absorption liquid. Is used, it is accumulated in the CO 2 absorbing liquid (for example, amine absorbing liquid), or the running cost is increased when reclaiming the absorbing liquid corresponding to the deterioration or replenishing the new liquid. There is.
  • the S-absorbing load in the exhaust gas at the inlet becomes low, and the moisture in the exhaust gas at the inlet of the final desulfurization apparatus is saturated and the evaporation in the slurry of the absorption liquid of the final desulfurization apparatus is difficult to promote.
  • the concentration of solid calcium sulfate component, that is, gypsum particles is low, the gypsum scale is formed on the surface of walls, structures, pipes, etc. in the absorption tower when sulfate ions react with calcium in the absorbent slurry.
  • the concentration of the seed crystal gypsum particles in the slurry for preventing the precipitation is insufficient, the scale peels off, and the absorbing liquid ejection nozzle is blocked. For this reason, for example, it is desirable to maintain 5% by weight or more as the gypsum concentration in the slurry that can prevent the gypsum scale from being deposited on equipment members.
  • the present invention provides a flue gas desulfurization facility provided with a finish flue gas desulfurization device capable of preventing the gypsum scale from being deposited on a facility member, and an exhaust gas treatment system using the same.
  • a first invention of the present invention for solving the above-mentioned problems is a main desulfurization device that removes sulfur oxide from combustion exhaust gas by an absorbent slurry containing a calcium compound, and sulfur oxide is removed by the main desulfurization device.
  • a final desulfurization apparatus that further removes sulfur oxide remaining in the desulfurized gas to an extremely low concentration, and an absorbent slurry containing a calcium compound at a predetermined concentration is supplied to the final desulfurization apparatus as a seed crystal gypsum source for preventing scaling.
  • a flue gas desulfurization facility provided with a finishing flue gas desulfurization device.
  • the absorbent slurry supply means includes an absorbent slurry circulating line that circulates through the main desulfurization device, and an absorbent slurry that is branched from the absorbent slurry circulating line and circulates.
  • the absorbent slurry supply means includes an absorbent slurry circulation line that circulates through the main desulfurization device, and an absorbent slurry that divides and circulates from the absorbent slurry circulation line.
  • Absorbing liquid slurry supply line that supplies a part of the seeding gypsum source for preventing scaling to the finishing desulfurization apparatus, and a predetermined set value that functions as a seeding gypsum source for preventing scaling of the absorbing liquid slurry concentration in the finishing desulfurization apparatus.
  • a flue gas desulfurization facility provided with a finish flue gas desulfurization device.
  • the absorbent slurry supply means includes a slurry hopper for slurrying gypsum solid-liquid separated from the absorbent slurry extracted from the main desulfurization device, and a gypsum slurry that has been plastered.
  • a flue gas desulfurization facility provided with a final flue gas desulfurization device, comprising a gypsum slurry supply line that supplies the final desulfurization device as a seed crystal gypsum source for preventing scaling.
  • the exhaust gas provided with the finish flue gas desulfurization device is characterized by comprising strong alkali supply means for supplying strong alkali into the finish desulfurization device. Located in smoke desulfurization equipment.
  • the sixth invention is a denitration device that removes nitrogen oxides in exhaust gas from boilers, a dust collector that removes soot and dust in the gas after nitrogen oxide removal, and sulfur oxides in the gas after dust removal
  • a flue gas desulfurization facility provided with any one of the first to fifth final flue gas desulfurization devices for further removing sulfur oxides remaining in the exhaust gas after desulfurization to an extremely low concentration, and purified gas
  • An exhaust gas treatment system comprising a CO 2 recovery device that recovers carbon dioxide therein.
  • the absorbent slurry of the finishing desulfurization apparatus has a predetermined calcium sulfate concentration and functions as seed crystal gypsum, thereby preventing the occurrence of gypsum scaling in the finishing desulfurization apparatus and enabling stable and continuous operation.
  • FIG. 1 is a schematic diagram of a flue gas desulfurization facility according to a first embodiment.
  • FIG. 2-1 is a schematic diagram of the flue gas desulfurization facility according to the second embodiment.
  • FIG. 2-2 is a schematic diagram of another flue gas desulfurization facility according to the second embodiment.
  • FIG. 3A is a schematic diagram of the flue gas desulfurization facility according to the third embodiment.
  • FIG. 3-2 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • FIG. 3-3 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • FIG. 3-4 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • FIG. 4 is a schematic diagram of the flue gas desulfurization facility according to the fourth embodiment.
  • FIG. 5 is a schematic diagram of an exhaust gas treatment system according to a fifth embodiment.
  • FIG. 6 is a diagram illustrating an example of an exhaust gas
  • FIG. 1 is a schematic diagram of a flue gas desulfurization facility according to a first embodiment.
  • the flue gas desulfurization facility 10 ⁇ / b> A mainly removes sulfur oxide from combustion exhaust gas (hereinafter referred to as “exhaust gas”) 11 with an absorption liquid slurry (hereinafter also referred to as absorption liquid slurry) 12 containing calcium compounds.
  • exhaust gas combustion exhaust gas
  • absorption liquid slurry absorption liquid slurry
  • reference numeral 19 denotes a flue for supplying the desulfurization gas 14 from the main desulfurization device 13 to the finishing desulfurization device 15 side.
  • the absorbing liquid slurry supply means circulates the main desulfurization apparatus 13 plume from the spray nozzle 17 (liquid column) 18 is ejected, the absorbing solution slurry circulating line L 1 to circulate the absorption liquid slurry 12
  • the absorbent slurry supply line L 2 is branched from the absorbent slurry circulating line L 1 and supplies a part of the circulating absorbent slurry 12 to the finishing desulfurizer 15.
  • the absorption liquid slurry circulation line L 1 is provided with a circulation pump P 1 that circulates the absorption liquid slurry 12, and the amount of circulation of the absorption liquid slurry 12 is controlled by the controller 22.
  • the absorbent slurry 12 supplied to the finishing desulfurization device 15 is spouted from the spray nozzle 17 provided in the finishing desulfurization device 15 and ejected from the sprayed stream (liquid column) 18 and brought into contact with the desulfurization gas 14. Sulfur oxide remaining in the catalyst is further removed to perform high-depth desulfurization as the purified gas 14A.
  • the falling liquid is stored in the storage portion 15a on the bottom side.
  • the stored absorbent slurry 12 is returned to the main desulfurizer 13 by the extraction pump P 2 interposed in the finishing desulfurizer 15 and the absorbent slurry return line L 3 .
  • a level meter 21 for monitoring the liquid level is provided in the storage unit 15 a on the bottom side of the finishing desulfurization device 15, and the water level of the liquid level is controlled by the control device 22.
  • the main desulfurization apparatus 13 absorbing liquid slurry 12 that has been stored in the storage unit 13a of the bottom side of the extraction pump P 3 interposed in the absorbing solution slurry withdrawal line L 4, gypsum dewatering It is supplied to a machine 31 where it is separated into solid and liquid and separated into gypsum 32 and dehydrated filtrate 33.
  • the separated dehydrated filtrate 33 is drained separately as drainage 34.
  • a part of the dehydrated filtrate 33 is returned to the main desulfurization device 13 side by the dehydrated filtrate return line L 5 , and the gypsum concentration in the main desulfurization device 13 is controlled to a predetermined concentration (for example, about 30 wt%).
  • reference numeral V 2 indicates a slurry supply control valve
  • P 4 indicates a drainage pump.
  • the absorbent slurry slurry 12 having the predetermined gypsum concentration is supplied from the main desulfurization apparatus 13, so that the main liquid desulfurization apparatus 13 and the final desulfurization apparatus 15 have the same absorption liquid slurry concentration. Since the water is circulated, even if the water content of the desulfurization gas 14 supplied into the finishing desulfurization device 15 is saturated, water supplied into the finishing desulfurization device 15 (for example, cleaning water for an inlet duct or mist eliminator). As a result, the absorbent slurry concentration does not decrease.
  • the gypsum adhering nucleus field surface area
  • the gypsum supersaturation level is reduced
  • the final desulfurization is performed as compared with the design condition in which the seed crystal gypsum concentration in the finishing desulfurization apparatus 15 is extremely thin.
  • the growth of gypsum on the surface of the wall surface of the device 15, the structure, the piping, etc. is prevented.
  • the gypsum supersaturation degree may increase because the gypsum adhering nucleus field (surface area) becomes extremely small. There is.
  • this gypsum supersaturation level increases, gypsum grows on the surface of the wall surface, structure, piping, etc. in the finishing desulfurization unit 15 and peels off due to vibration or heat shock at the time of starting and stopping. As a result, the desulfurization / dust removal performance may be reduced.
  • the main desulfurization device 13 side and the finish desulfurization device 15 side are shared by using the absorbent slurry 12 having the same concentration (for example, 20 to 30 wt%), thereby preventing scale generation in the finish desulfurization device 15. And a stable and continuous desulfurization operation becomes possible.
  • FIGS. 2-1 and 2-2 are schematic views of the flue gas desulfurization facility according to the second embodiment.
  • symbol is attached
  • the flue gas desulfurization facility 10B according to the second embodiment supplies a part of the absorbent slurry circulating through the main desulfurization device 13 to the finishing desulfurization device 15 as a seed crystal gypsum source for preventing scaling.
  • the absorbing liquid slurry supply line L 2 which comprises a, and absorbing liquid concentration adjusting means for adjusting a predetermined setting value that serves the absorbing solution slurry concentration in the finishing desulfurization apparatus 15 as a seed crystal gypsum source for scaling prevention It is.
  • the density meter 23 measured by the finishing desulfurization device 15 is sent to the final desulfurization device 15 while supplying a thick absorbent slurry (for example, a predetermined gypsum concentration of 20 to 30 wt%) from the main desulfurization device 13.
  • a thick absorbent slurry for example, a predetermined gypsum concentration of 20 to 30 wt% from the main desulfurization device 13.
  • the gypsum concentration of the absorbent slurry in the finishing desulfurization device 15 is set to a predetermined concentration (for example, a gypsum concentration of 10 to 20 wt%) that is about half the concentration of the absorbent slurry in the main desulfurization device 13. ).
  • the slurry absorbing liquid 12A circulated in the finishing desulfurization device 15 falls and contributes to the finishing desulfurization performance, and is stored in the storage portion 15a on the bottom side.
  • the density ( ⁇ ) of the density meter 23 of the absorbent slurry 12A circulating in the finishing desulfurizer 15 is preferably in the range of 1.06 to 1.15 where the gypsum concentration is about 10 to 20 wt%. .
  • the stored absorbent slurry 12A (predetermined gypsum concentration of 10 to 20 wt%) is returned to the main desulfurization device 13 through the absorbent slurry return line L 3 .
  • the level gauge 21 of the finishing desulfurization device 15 and the return valve V 3 are interlocked to keep the liquid level of the finishing desulfurization device 15 constant.
  • the absorption liquid slurry 12A is circulated through the finishing desulfurization unit 15 through an extraction pump P 5 interposed liquid absorbent slurry circulating line L 10.
  • a rectifying grid 24 is provided inside the reservoir 15a that supplies the finishing desulfurization apparatus 15. Thereby, it blows off into the finishing desulfurization apparatus 15, and prevents the nonuniformity by the fluctuation
  • a stirrer 25 is installed inside the finish desulfurization device 15 so that the stirring force is distributed throughout the finish desulfurization device 15.
  • the absorbent slurry 12 at the initial stage of installation of the flue gas desulfurization facility 10B or at the beginning of restart after periodic repair is a thin absorbent slurry having a predetermined minimum concentration (for example, a gypsum concentration of 5 wt%) on the main desulfurization device 13 side.
  • a predetermined minimum concentration for example, a gypsum concentration of 5 wt%
  • the main desulfurization apparatus 13 sets the gypsum concentration to a predetermined value, for example, 30 wt%.
  • the target concentration is monitored by the density meter 23 and the supply valve V 1 is operated as necessary to finish the desulfurization. What is necessary is just to make it supply the absorption liquid slurry 12 of a high concentration to the apparatus 15 side.
  • a part (* 1) of the absorbent slurry 12A circulating in the finishing desulfurizer 15 is used as the absorbent slurry supply line. After introducing into the L 2 and setting the concentration of the absorbent slurry 12A to a predetermined concentration, it may be supplied into the finishing desulfurizer 15. Thereby, for example, the absorption liquid slurry 12 having a high gypsum concentration from the main desulfurization apparatus 13 of 30 wt% is prevented, and unevenness due to fluctuations in the slurry density at the input location is suppressed.
  • an absorbing liquid slurry 12A that circulates the concentration adjustment may be used as the diluting liquid, so that the water balance in the system is not lost.
  • FIGS. 3-1 to 3-4 are schematic views of the flue gas desulfurization facility according to the third embodiment.
  • the flue gas desulfurization facility 10C-1 according to the third embodiment uses gypsum 32 (* 2) separated from the absorbent slurry 41 extracted from the main desulfurization device 13 into a gypsum slurry 43.
  • a slurry hopper 42 for slurrying and a gypsum slurry supply line L 11 for supplying the obtained gypsum slurry 43 into the finishing desulfurization apparatus 15 are provided.
  • the liquid density of the finishing desulfurization apparatus 15 is constantly measured by the density meter 23, and the amount of the charged liquid is controlled by adjusting the amount of the liquid to be charged with this value.
  • the gypsum 32 separated from the gypsum dewatering machine 31 is supplied to the finishing desulfurization device 15 to obtain a predetermined gypsum concentration, thereby preventing scale.
  • FIG. 3-2 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • limestone 44 is put into the slurry hopper 42, and a gypsum / limestone slurry 45 which is a mixture of these is put into the finishing desulfurization apparatus 15 with a gypsum slurry supply line. It is to be supplied by L 11.
  • FIG. 3-3 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • the gypsum 32 separated by the gypsum dewatering machine 31 is directly supplied as powder to the input hopper 46 by a belt conveyor, and the powder gypsum 32 is directly finished and desulfurized. It is made to supply in the apparatus 15.
  • FIG. 3-3 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • the gypsum 32 separated by the gypsum dewatering machine 31 is directly supplied as powder to the input hopper 46 by a belt conveyor, and the powder gypsum 32 is directly finished and desulfurized. It is made to supply in the apparatus 15.
  • FIG. 3-3 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • the branch line L 12 that is partially branched from the absorbing solution slurry circulating line L 10 that circulates the inside finishing desulfurization unit 15, and supplies to the feeding hopper 46 by extracting absorbing solution slurry 41 is slurried, finishing desulfurized by gravity
  • An absorbent slurry 41 is supplied to the bottom of the device 15. At this time, the amount of gypsum 32 to be supplied is adjusted to the absorbent slurry 41 in conjunction with the density meter 23.
  • FIG. 3-4 is a schematic diagram of another flue gas desulfurization facility according to the third embodiment.
  • powder limestone 44 is further charged into the charging hopper 46, and the powder mixture (gypsum 32, limestone 44) is injected. 47) is directly supplied into the finishing desulfurization apparatus 15. Note that only the gypsum 32 may be input to the input hopper 46 and the limestone 44 may be directly supplied into the finishing desulfurization apparatus 15.
  • FIG. 4 is a schematic diagram of the flue gas desulfurization facility according to the fourth embodiment.
  • the flue gas desulfurization facility 10D according to the fourth embodiment is the same as the flue gas desulfurization facility 10A according to the first embodiment.
  • Strong alkali supply means for supplying via L 7 is provided.
  • the type of the absorbing liquid other than the calcium compound of the absorbing slurry 12 used in the finishing desulfurization apparatus 15 is selected. They are replaced or mixed as appropriate.
  • This switching can be performed online or offline, and the switching timing is determined by analyzing instrument signals (desulfurization performance under reference conditions, limestone activity, finish desulfurizer gas pressure loss at reference gas amount, etc.). The switching timing is determined.
  • the controller 22 controls the absorbent slurry 12 to switch from the calcium compound absorbent to the strong alkali absorbent, and after opening the valve V 4 , the strong alkali 52 is fed from the strong alkali tank 51 by the pump P 7. ing.
  • this strong alkali absorbing solution By using this strong alkali absorbing solution, the gas film resistance is reduced and the desulfurization performance is improved.
  • NaOH, Na 2 CO 3 , NaHCO 3 , Mg (OH) 2 or the like can be used as the strong alkali absorbing solution, but the present invention is not limited to these.
  • FIG. 5 shows a schematic configuration diagram of an exhaust gas treatment system according to Embodiment 5 of the present invention.
  • the exhaust gas treatment system 100 according to the fifth embodiment recovers the heat in the gas after removing the NOx removal device 102 that removes nitrogen oxide in the exhaust gas 11 from the boiler 101, for example.
  • Flue gas desulfurization equipment comprising: an air heater 103 that performs heat recovery; an electric dust collector 104 that removes dust in the gas after heat recovery; a main desulfurization device 13 that removes sulfur oxide in the gas after dust removal; and a final desulfurization device 15 And a CO 2 recovery device 106 that recovers carbon dioxide in the purified gas 14A, and a chimney 111 that discharges the purified gas 112 after CO 2 recovery to the outside.
  • the purified gas 112 supplied to the CO 2 recovery device 106 installed on the rear stage side of the finish flue gas desulfurization device 15 has a very low concentration of sulfur oxide, and is circulated and used in the CO 2 recovery device 106.
  • Accumulation of sulfur oxides and soot and dust in the CO 2 absorbing liquid is reduced, and deterioration can be suppressed.
  • reduction of CO 2 absorption performance of the CO 2 absorbing liquid due to the deterioration is reduced, it is possible to perform stable recovery of CO 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 燃焼排ガス(排ガス)11から硫黄酸化物を、カルシウム化合物を含む吸収液スラリ(吸収液スラリ)12により除去する主脱硫装置13と、該主脱硫装置13で硫黄酸化物を除去した脱硫ガス14中に残存する硫黄酸化物を極低濃度までさらに除去する仕上げ脱硫装置15と、該仕上げ脱硫装置15に所定濃度のカルシウム化合物を含む吸収液スラリ12を供給する吸収液スラリ供給手段とを具備する。

Description

仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム
 本発明は、仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システムに関する。
 排ガス処理システムの一例を図6に示す。図6に示すように、排ガス処理システム1000においては、ボイラ(石炭焚ボイラ)101からの排ガス11は、脱硝装置102で排ガス中の窒素酸化物(NOx)を除去した後、まずエアヒータ103に導かれてボイラに供給される空気を加熱する。その後排ガス11は、乾式の電気集塵機104に導入されて煤塵が除去される。次に、排ガス11は、脱硫装置105に導入されて硫黄酸化物(SOx)が除去される。その後、排ガス11はCO2回収装置106に導入されて、二酸化炭素を除去し、その後煙突111より浄化ガス112が大気に放出される(例えば、特許文献1参照)。
 脱硫と脱炭を同時に処理する方法として種々の提案がある(特許文献2~3)。
特開平11-179147号公報 特開平06-86911号公報 特開2003-53134号公報
 しかしながら、脱硫装置105で脱硫した後に、CO2回収装置106を設置する場合、当該CO2回収装置106に許容量を超える硫黄酸化物や煤塵が残存すると、CO2吸収液として例えばアミン系吸収液を用いる場合、CO2吸収液(例えばアミン吸収液)中に蓄積され、或いは当該劣化相当分の吸収液をリクレーミングしたり、新液を補充したりする際にランニングコストが多く発生する、という問題がある。
 よって、予め脱硫装置105で硫黄酸化物が除去された排ガス11に対して、更に排ガス中の対象成分を極低濃度まで浄化できる仕上げ排煙脱硫装置を供えた排煙脱硫設備の出現が切望されており、これを備えた排ガス処理システムが考案されている。
 一方で仕上げ排煙脱硫装置では入口排ガス中のS分吸収負荷が低くなり、仕上げ脱硫装置の入口排ガス中の水分が飽和状態で蒸発が促進され難い条件下で仕上げ脱硫装置の吸収液スラリ中の固体状の硫酸カルシウム成分、すなわち石膏粒子濃度が低くなる事から、吸収液スラリ中で硫酸イオンとカルシウムがイオン反応する際に吸収塔内で壁面や構造物、配管等の表面上に石膏スケールが析出する事を防止するための種晶石膏粒子のスラリ中の含有濃度が不足し当該スケールが剥離し吸収液噴出ノズルを閉塞させる懸念がある。このため、例えば、前記の石膏スケールの設備部材への析出を防止できるスラリ中石膏濃度として5重量パーセント以上を保持する事が望ましい。
 本発明は、前記問題に鑑み、当該石膏スケールの設備部材への析出を防止することができる仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システムを提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、燃焼排ガスから硫黄酸化物を、カルシウム化合物を含む吸収液スラリにより除去する主脱硫装置と、該主脱硫装置で硫黄酸化物を除去した脱硫ガス中に残存する硫黄酸化物を極低濃度までさらに除去する仕上げ脱硫装置と、該仕上げ脱硫装置に所定濃度のカルシウム化合物を含む吸収液スラリをスケーリング防止用の種晶石膏源として供給する吸収液スラリ供給手段とを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備にある。
 第2の発明は、第1の発明において、前記吸収液スラリ供給手段が、前記主脱硫装置を循環する吸収液スラリ循環ラインと、該吸収液スラリ循環ラインから分岐され、循環する吸収液スラリの一部をスケーリング防止用の種晶石膏源として仕上げ脱硫装置に供給する吸収液スラリ供給ラインとを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備にある。
 第3の発明は、第1の発明において、前記吸収液スラリ供給手段が、前記主脱硫装置を循環する吸収液スラリ循環ラインと、該吸収液スラリ循環ラインから分岐され、循環する吸収液スラリの一部をスケーリング防止用の種晶石膏源として仕上げ脱硫装置に供給する吸収液スラリ供給ラインと、前記仕上げ脱硫装置内の吸収液スラリ濃度をスケーリング防止用の種晶石膏源として機能する所定設定値に調整する吸収液濃度調整手段と、を具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備にある。
 第4の発明は、第1の発明において、前記吸収液スラリ供給手段が、前記主脱硫装置から抜き出した吸収液スラリから固液分離した石膏をスラリ化するスラリホッパと、石膏化した石膏スラリを、仕上げ脱硫装置にスケーリング防止用の種晶石膏源として供給する石膏スラリ供給ラインとを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備にある。
 第5の発明は、第1乃至4のいずれか一つの発明において、前記仕上げ脱硫装置内に強アルカリを供給する強アルカリ供給手段を具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備にある。
 第6の発明は、ボイラ等からの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の煤塵を除去する集塵機と、除塵後のガス中の硫黄酸化物を除去する脱硫装置と、この脱硫後の排ガス中に残存する硫黄酸化物を極低濃度までさらに除去する第1乃至5のいずれか一つの仕上げ排煙脱硫装置を供えた排煙脱硫設備と、浄化ガス中の二酸化炭素を回収するCO2回収装置とを具備することを特徴とする排ガス処理システムにある。
 本発明によれば、仕上げ脱硫装置の吸収液スラリを所定硫酸カルシウム濃度とし種晶石膏として機能させることで、仕上げ脱硫装置内での石膏スケーリングの発生を防ぎ、安定した継続的な操業が可能となる。
図1は、実施例1に係る排煙脱硫設備の概略図である。 図2-1は、実施例2に係る排煙脱硫設備の概略図である。 図2-2は、実施例2に係る他の排煙脱硫設備の概略図である。 図3-1は、実施例3に係る排煙脱硫設備の概略図である。 図3-2は、実施例3に係る他の排煙脱硫設備の概略図である。 図3-3は、実施例3に係る他の排煙脱硫設備の概略図である。 図3-4は、実施例3に係る他の排煙脱硫設備の概略図である。 図4は、実施例4に係る排煙脱硫設備の概略図である。 図5は、実施例5に係る排ガス処理システムの概略図である。 図6は、排ガス処理システムの一例を示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係る排煙脱硫設備について、図面を参照して説明する。図1は、実施例1に係る排煙脱硫設備の概略図である。
 図1に示すように、排煙脱硫設備10Aは、燃焼排ガス(以下「排ガス」という)11から硫黄酸化物を、カルシウム化合物を含む吸収液スラリ(以下吸収液スラリともいう)12により除去する主脱硫装置13と、該主脱硫装置13で硫黄酸化物を除去した脱硫ガス14中に残存する硫黄酸化物を極低濃度までさらに除去する仕上げ脱硫装置15と、該仕上げ脱硫装置15に所定濃度のカルシウム化合物を含む吸収液スラリ12をスケーリング防止用の種晶石膏源として供給する吸収液スラリ供給手段とを具備するものである。なお、図1中、符号19は主脱硫装置13からの脱硫ガス14を仕上げ脱硫装置15側に供給する煙道を図示する。
 本実施例では、吸収液スラリ供給手段は、主脱硫装置13を循環して噴霧ノズル17より噴出流(液柱)18を噴出させ、吸収液スラリ12を循環させる吸収液スラリ循環ラインL1と、該吸収液スラリ循環ラインL1から分岐され、循環する吸収液スラリ12の一部を仕上げ脱硫装置15に供給する吸収液スラリ供給ラインL2とから構成されている。
 なお、吸収液スラリ循環ラインL1には、吸収液スラリ12の循環をする循環ポンプP1が介装されており、吸収液スラリ12の循環量を制御装置22により制御している。
 仕上げ脱硫装置15に供給された吸収液スラリ12は、仕上げ脱硫装置15内に設けられた噴霧ノズル17より噴出流(液柱)18を噴出させ、脱硫ガス14と接触させることで脱硫ガス14中に残存する硫黄酸化物をさらに除去し浄化ガス14Aとして、高深度脱硫を行っている。
 なお、落下液はその底部側の貯留部15aに貯留される。
 貯留された吸収液スラリ12は、仕上げ脱硫装置15に介装された抜き出しポンプP2及び、吸収液スラリ返送ラインL3により主脱硫装置13に返送している。
 なお、仕上げ脱硫装置15の底部側の貯留部15aには液面を監視するレベル計21が設けられ、その液面の水位を制御装置22により制御している。
 すなわち、仕上げ脱硫装置15に設けたレベル計21で計測を行い、制御装置22において、所定のレベル値に達していると判定したら、吸収液スラリ供給ラインL2に介装したバルブV1又は吸収液スラリ返送ラインL3に介装した抜き出しポンプP2を制御して、所定の水位を維持するようにしている。
 なお、主脱硫装置13では、主脱硫装置13の底部側の貯留部13aに貯留された吸収液スラリ12は、吸収液スラリ抜き出しラインL4に介装された抜出ポンプP3により、石膏脱水機31に供給され、ここで固液分離されて石膏32と脱水濾液33とに分離される。
 分離された脱水濾液33は、別途排水34として排水処理されている。なお、脱水濾液33の一部は、主脱硫装置13側へ脱水濾液返送ラインL5により、返送されて、主脱硫装置13内での石膏濃度を所定濃度(例えば30wt%程度)に制御している。図中、符号V2はスラリ供給調節弁、P4は排水ポンプを図示する。
 本実施例によれば、仕上げ脱硫装置15において、主脱硫装置13から所定石膏濃度の吸収液スラリ12を供給することで、主脱硫装置13と仕上げ脱硫装置15とにおいて、吸収液スラリ濃度が同じものが循環されるので、仕上げ脱硫装置15内に供給する脱硫ガス14の水分が飽和であっても、仕上げ脱硫装置15の内部に供給される水(例えば入口ダクトやミストエリミネータの洗浄水等)により吸収液スラリ濃度が薄まることがなくなる。
 この結果、仕上げ脱硫装置15内での種晶石膏濃度が極端に薄いような設計条件とする場合に較べて、石膏付着核の場(表面積)が大きくなり、石膏過飽和度が小さくなり、仕上げ脱硫装置15の壁面や構造物、配管等の表面上における石膏の成長が防止される。
 これに対し、仕上げ脱硫装置15内での種晶石膏濃度が極端に薄い設計条件とする場合には、石膏付着核の場(表面積)が極めて小さくなる事で、石膏過飽和度が大きくなる可能性がある。この石膏過飽和度が大きくなると、仕上げ脱硫装置15内の壁面や構造物、配管等の表面上に石膏が成長し、これが振動や発停時のヒートショック等で剥離し、このスケール片が循環液に混入し、吸収塔スプレーパイプ内部やノズルを閉塞させる結果、脱硫・除塵性能低下に至るおそれがある。
 本発明では、主脱硫装置13側と仕上げ脱硫装置15側とを同一の濃度(例えば20~30wt%)の吸収液スラリ12を用いて共有することで、仕上げ脱硫装置15におけるスケール発生を防止することができ、安定した継続的な脱硫操業が可能となる。
 本発明による実施例に係る排煙脱硫設備について、図面を参照して説明する。図2-1及び図2-2は、実施例2に係る排煙脱硫設備の概略図である。なお、実施例1の構成部材と同一の部材については、同一の符号を付してその説明は省略する。
 図2-1に示すように、実施例2に係る排煙脱硫設備10Bは、主脱硫装置13を循環する吸収液スラリの一部をスケーリング防止用の種晶石膏源として仕上げ脱硫装置15に供給する吸収液スラリ供給ラインL2と、前記仕上げ脱硫装置15内の吸収液スラリ濃度をスケーリング防止用の種晶石膏源として機能する所定設定値に調整する吸収液濃度調整手段と、を具備するものである。
 本実施例では、主脱硫装置13から濃い吸収液スラリ(例えば所定石膏濃度20~30wt%)のものを仕上げ脱硫装置15に送液しつつ、仕上げ脱硫装置15で測定する密度計23の値を主脱硫装置13からの供給バルブV1と連動させ、仕上げ脱硫装置15における吸収液スラリの石膏濃度を、主脱硫装置13の吸収液スラリ濃度の半分程度の所定濃度(例えば石膏濃度10~20wt%)に調整している。
 なお、仕上げ脱硫装置15での循環したスラリ吸収液12Aは、仕上げ脱硫性能に寄与して落下し、底部側の貯留部15aに貯留される。
 ここで、仕上げ脱硫装置15内を循環する吸収液スラリ12Aの密度計23の密度(ρ)としては、石膏濃度が10~20wt%程度の1.06~1.15の範囲とするのが好ましい。
 なお、貯留された吸収液スラリ12A(所定石膏濃度10~20wt%)は、吸収液スラリ返送ラインL3により主脱硫装置13に返送している。
 その際、仕上げ脱硫装置15のレベル計21と返送バルブV3とも連動させて仕上げ脱硫装置15の液位を一定に保つようにしている。
 なお、吸収液スラリ12Aは、吸収液スラリ循環ラインL10に介装された抜出ポンプP5を介して仕上げ脱硫装置15内を循環させている。
 また、仕上げ脱硫装置15に供給する貯留部15aの内部には、整流格子24を設けている。これにより、仕上げ脱硫装置15内に吹き出され、投入箇所でのスラリ密度の変動による不均一化を防止している。
 また、仕上げ脱硫装置15内部には、攪拌機25を設置して、仕上げ脱硫装置15内部全体に攪拌力を行渡らせるようにしている。
 ここで、排煙脱硫設備10Bの設置初期乃至定期修繕後の再起動当初における吸収液スラリ12は、主脱硫装置13側において、所定最低濃度(例えば石膏濃度5wt%)の薄い濃度の吸収液スラリとした後、その薄い濃度の吸収液スラリ12を仕上げ脱硫装置15側に吸収液スラリ供給ラインL2を介して供給する。そして、排煙脱硫装置の運転を開始して、主脱硫装置13では、石膏濃度を所定の例えば30wt%とする。一方、仕上げ脱硫装置15側では、目標の10~20wt%に達した後には、その後、密度計23によりその目標濃度を監視し、必要に応じて、供給バルブV1を操作して、仕上げ脱硫装置15側へ濃い濃度の吸収液スラリ12を供給するようにすればよい。
 また、本実施例では、図2-2に示す他の排煙脱硫設備10Bのように、仕上げ脱硫装置15内を循環する吸収液スラリ12Aの一部(※1)を、吸収液スラリ供給ラインL2に導入して、吸収液スラリ12Aの濃度を所定濃度とした後に、仕上げ脱硫装置15内に供給するようにしてもよい。これにより例えば30wt%という主脱硫装置13からの濃い石膏濃度の吸収液スラリ12の投入が防止され、投入箇所でのスラリ密度の変動による不均一化を抑制するようにしている。
 この際、薄め液として、濃度の調整を循環する吸収液スラリ12Aを用いても良く、これにより系内の水バランスが崩れることがないものとなる。
 本発明による実施例に係る排煙脱硫設備について、図面を参照して説明する。図3-1乃至図3-4は、実施例3に係る排煙脱硫設備の概略図である。
 図3-1に示すように、実施例3に係る排煙脱硫設備10C-1は、主脱硫装置13から抜き出した吸収液スラリ41から固液分離した石膏32(※2)を石膏スラリ43にスラリ化するスラリホッパ42と、得られた石膏スラリ43を仕上げ脱硫装置15内に供給する石膏スラリ供給ラインL11とを具備するものである。
 この際、仕上げ脱硫装置15の液密度を常時密度計23で測定し、この値で投入する量を制御して、吸収液スラリ濃度を調節するようにしている。
 本実施例では、石膏脱水機31から分離された石膏32を仕上げ脱硫装置15に供給し、所定の石膏濃度とすることで、スケールの防止を図るようにしている。
 図3-2は、実施例3に係る他の排煙脱硫設備の概略図である。
 図3-2に示す排煙脱硫設備10C-2においては、石膏32以外に石灰石44をスラリホッパ42に投入し、これらの混合物である石膏・石灰石スラリ45を仕上げ脱硫装置15内に石膏スラリ供給ラインL11により供給するようにしている。
 図3-3は、実施例3に係る他の排煙脱硫設備の概略図である。
 図3-3に示す排煙脱硫設備10C-3においては、石膏脱水機31で分離した石膏32をベルトコンベヤにより投入ホッパ46に直接粉体のまま供給し、粉体の石膏32を直接仕上げ脱硫装置15内に供給するようにしている。
 この際、仕上げ脱硫装置15内を循環させる吸収液スラリ循環ラインL10から一部分岐した分岐ラインL12より、吸収液スラリ41を抜き出して投入ホッパ46に供給してスラリー化させ、重力により仕上げ脱硫装置15の底部に吸収液スラリ41を供給している。この際、供給する石膏32の量は、密度計23と連動して吸収液スラリ41の調整を図るようにしている。
 図3-4は、実施例3に係る他の排煙脱硫設備の概略図である。
 図3-4に示す排煙脱硫設備10C-4においては、排煙脱硫設備10C-3において、投入ホッパ46に、さらに粉体の石灰石44を投入し、粉体の混合物(石膏32、石灰石44)47を直接仕上げ脱硫装置15内に直接供給するようにしている。
 なお、石膏32のみを投入ホッパ46に投入して、石灰石44を直接仕上げ脱硫装置15内に直接供給するようにしてもよい。
 本発明による実施例に係る排煙脱硫設備について、図面を参照して説明する。図4は、実施例4に係る排煙脱硫設備の概略図である。
 図4に示すように、実施例4に係る排煙脱硫設備10Dは、実施例1の排煙脱硫設備10Aにおいて、さらに仕上げ脱硫装置15内に強アルカリ52を、強アルカリ槽51かアルカリ供給ラインL7を介して供給する強アルカリ供給手段を備えている。
 本実施例では、実施例1乃至3の仕上げ脱硫装置15の内部の運転状態を正常に保つことを目的として、仕上げ脱硫装置15で使用する吸収液スラリ12のカルシウム化合物以外の吸収液の種類を適宜入れ替えたり、混合したりしている。
 この切り替えは、オンラインもしくはオフラインで行うことが可能であり、その切替タイミングは、計器信号(基準条件での脱硫性能、石灰石の活性、基準ガス量における仕上げ脱硫装置ガス圧損等)を解析することで切替タイミングを決定するようにしている。
 吸収液スラリ12としてカルシウム化合物の吸収液から、強アルカリ吸収液に切替える制御を制御装置22で行い、バルブV4を開放した後、強アルカリ槽51から強アルカリ52をポンプP7により送給している。
 この強アルカリ吸収液の使用によって、ガス境膜抵抗の低減を図り、脱硫性能を向上するようにしている。
 ここで、強アルカリ吸収液としては、NaOH、Na2CO3、NaHCO3、Mg(OH)2等を用いることができるが、本発明はこれらに限定されるものではない。
 このような強アルカリ52に切り替えることで、不具合発生時においても迅速に対応できることとなる。
 本発明による実施例5に係る排ガス処理システムの概略構成図を図5に示す。
 図5に示すように、実施例5に係る排ガス処理システム100は、例えばボイラ101からの排ガス11中の窒素酸化物を除去する脱硝装置102と、窒素酸化物除去後のガス中の熱を回収するエアヒータ103と、熱回収後のガス中の煤塵を除去する電気集塵機104と、除塵後のガス中の硫黄酸化物を除去する主脱硫装置13と仕上げ脱硫装置15とを具備する排煙脱硫設備と、浄化ガス14A中の二酸化炭素を回収するCO2回収装置106と、CO2回収後の浄化ガス112を外部に排出する煙突111とを具備するものである。
 よって、仕上げ排煙脱硫装置15の後段側に設置されるCO2回収装置106に供給される浄化ガス112は、硫黄酸化物の濃度が極めて少なくなるので、CO2回収装置106で循環して利用されるCO2吸収液(例えばアミン吸収液)中における硫黄酸化物や煤塵の蓄積が少なくなり、劣化を抑制することができる。
 この結果、CO2吸収液が劣化に起因するCO2吸収性能の低下が少なくなり、安定してCO2の回収を行うことができる。
 また、CO2吸収性能の低下を補うために、CO2吸収性能の追加供給の回数と供給量が少なくなると共に、CO2吸収性能の回復のためのリクレーミング頻度の増大がなくなり、排ガス処理システムにおけるランニングコストの削減を図ることができる。
 10A~10D 排煙脱硫設備
 11 排ガス
 12 カルシウム化合物を含む吸収液スラリ(吸収液スラリ)
 13 主脱硫装置
 14 脱硫ガス
 15 仕上げ排煙脱硫装置
 100 排ガス処理システム
 101 ボイラ
 102 脱硝装置
 103 エアヒータ
 104 電気集塵機
 105 脱硫装置
 106 CO2回収装置
 111 煙突

Claims (6)

  1.  燃焼排ガスから硫黄酸化物を、カルシウム化合物を含む吸収液スラリにより除去する主脱硫装置と、
     該主脱硫装置で硫黄酸化物を除去した脱硫ガス中に残存する硫黄酸化物を極低濃度までさらに除去する仕上げ脱硫装置と、
     該仕上げ脱硫装置に所定濃度のカルシウム化合物を含む吸収液スラリをスケーリング防止用の種晶石膏源として供給する吸収液スラリ供給手段とを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備。
  2.  請求項1において、
     前記吸収液スラリ供給手段が、
     前記主脱硫装置を循環する吸収液スラリ循環ラインと、
     該吸収液スラリ循環ラインから分岐され、循環する吸収液スラリの一部をスケーリング防止用の種晶石膏源として仕上げ脱硫装置に供給する吸収液スラリ供給ラインとを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備。
  3.  請求項1において、
     前記吸収液スラリ供給手段が、
     前記主脱硫装置を循環する吸収液スラリ循環ラインと、
     該吸収液スラリ循環ラインから分岐され、循環する吸収液スラリの一部をスケーリング防止用の種晶石膏源として仕上げ脱硫装置に供給する吸収液スラリ供給ラインと、
     前記仕上げ脱硫装置内の吸収液スラリ濃度をスケーリング防止用の種晶石膏源として機能する所定設定値に調整する吸収液濃度調整手段と、を具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備。
  4.  請求項1において、
     前記吸収液スラリ供給手段が、
     前記主脱硫装置から抜き出した吸収液スラリから固液分離した石膏をスラリ化するスラリホッパと、
     石膏化した石膏スラリを、仕上げ脱硫装置にスケーリング防止用の種晶石膏源として供給する石膏スラリ供給ラインとを具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備。
  5.  請求項1乃至4のいずれか一つにおいて、
     前記仕上げ脱硫装置内に強アルカリを供給する強アルカリ供給手段を具備することを特徴とする仕上げ排煙脱硫装置を供えた排煙脱硫設備。
  6.  ボイラ等からの排ガス中の窒素酸化物を除去する脱硝装置と、窒素酸化物除去後のガス中の煤塵を除去する集塵機と、除塵後のガス中の硫黄酸化物を除去する脱硫装置と、この脱硫後の排ガス中に残存する硫黄酸化物を極低濃度までさらに除去する請求項1乃至5のいずれか一つの仕上げ排煙脱硫装置を供えた排煙脱硫設備と、浄化ガス中の二酸化炭素を回収するCO2回収装置とを具備することを特徴とする排ガス処理システム。
PCT/JP2012/062206 2011-05-24 2012-05-11 仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム WO2012160998A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116094A JP2012240034A (ja) 2011-05-24 2011-05-24 仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム
JP2011-116094 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012160998A1 true WO2012160998A1 (ja) 2012-11-29

Family

ID=47217078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062206 WO2012160998A1 (ja) 2011-05-24 2012-05-11 仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム

Country Status (2)

Country Link
JP (1) JP2012240034A (ja)
WO (1) WO2012160998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175163A1 (ja) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 ガスクーラの洗浄排水処理方法と装置
CN106975337A (zh) * 2017-04-28 2017-07-25 包训祥 二氧化氯气相氧化脱硫脱硝一体化装置及其工艺
CN113226530A (zh) * 2018-12-27 2021-08-06 三菱动力株式会社 流体送出装置及流体送出装置的改造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244819B2 (ja) * 2013-10-29 2017-12-13 株式会社Ihi 排ガスの処理システム及び処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861393A (ja) * 1971-11-25 1973-08-28
JPS5597230A (en) * 1979-01-16 1980-07-24 Babcock Hitachi Kk Method for wet type desulfurization of exhaust gas
JPS59225724A (ja) * 1983-06-07 1984-12-18 Mitsubishi Heavy Ind Ltd 湿式石灰石こう法排煙脱硫装置における種晶スラリ供給方法
JPH05245338A (ja) * 1992-03-03 1993-09-24 Kansai Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素と硫黄酸化物を除去する方法
JPH07155537A (ja) * 1993-12-08 1995-06-20 Kansai Electric Power Co Inc:The 高性能排ガス処理方法及び装置
JP2001170444A (ja) * 1999-12-16 2001-06-26 Ishikawajima Harima Heavy Ind Co Ltd 湿式排煙脱硫装置
JP2005087828A (ja) * 2003-09-16 2005-04-07 Kansai Electric Power Co Inc:The 脱硫脱炭酸方法及びその装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861393A (ja) * 1971-11-25 1973-08-28
JPS5597230A (en) * 1979-01-16 1980-07-24 Babcock Hitachi Kk Method for wet type desulfurization of exhaust gas
JPS59225724A (ja) * 1983-06-07 1984-12-18 Mitsubishi Heavy Ind Ltd 湿式石灰石こう法排煙脱硫装置における種晶スラリ供給方法
JPH05245338A (ja) * 1992-03-03 1993-09-24 Kansai Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素と硫黄酸化物を除去する方法
JPH07155537A (ja) * 1993-12-08 1995-06-20 Kansai Electric Power Co Inc:The 高性能排ガス処理方法及び装置
JP2001170444A (ja) * 1999-12-16 2001-06-26 Ishikawajima Harima Heavy Ind Co Ltd 湿式排煙脱硫装置
JP2005087828A (ja) * 2003-09-16 2005-04-07 Kansai Electric Power Co Inc:The 脱硫脱炭酸方法及びその装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175163A1 (ja) * 2015-04-27 2016-11-03 三菱日立パワーシステムズ株式会社 ガスクーラの洗浄排水処理方法と装置
JP2016203121A (ja) * 2015-04-27 2016-12-08 三菱日立パワーシステムズ株式会社 ガスクーラの洗浄排水処理方法と装置
CN106975337A (zh) * 2017-04-28 2017-07-25 包训祥 二氧化氯气相氧化脱硫脱硝一体化装置及其工艺
CN113226530A (zh) * 2018-12-27 2021-08-06 三菱动力株式会社 流体送出装置及流体送出装置的改造方法
EP3881929A4 (en) * 2018-12-27 2022-01-12 Mitsubishi Power, Ltd. FLUID DELIVERY DEVICE AND METHOD OF MODIFICATION OF A FLUID DELIVERY DEVICE

Also Published As

Publication number Publication date
JP2012240034A (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
US10704835B2 (en) Method of spray drying and washing and method of controlling air pollution
EP2586517B1 (en) Flue gas desulfurization
JP7390431B2 (ja) 無排水化排ガス処理システム及び無排水化排ガス処理方法
US9409117B2 (en) Air pollution control system, air pollution control method, spray drying device of dewatering filtration fluid from desulfurization discharged water, and method thereof
US9527004B2 (en) Spray drying apparatus of dehydration filtrate from desulfurization waste water, and air pollution control system
JP5984712B2 (ja) 排ガス処理システム及び排ガス処理方法
CN102725047B (zh) 净化富二氧化碳烟气的方法和装置
EP2540379B1 (en) Exhaust gas treatment system, and exhaust gas treatment method
US20130248121A1 (en) Spray-drying device for dehydrated filtrate from desulfurization wastewater, air pollution control system and flue gas treatment method
JP6212401B2 (ja) 排ガス処理装置
JP6230818B2 (ja) 排ガス処理装置及び排ガス処理方法
JP6121158B2 (ja) 排ガス処理装置および排ガス処理方法
WO2012160998A1 (ja) 仕上げ排煙脱硫装置を供えた排煙脱硫設備及びこれを用いた排ガス処理システム
JP2011177674A (ja) 仕上げ排煙脱硫装置及びこれを用いた排ガス処理システム
US10005026B2 (en) Limestone supply device and air pollution control system
EP3539929A1 (en) Spray drying system
JPH08131764A (ja) 湿式排ガス処理方法および装置
KR101975141B1 (ko) 가스 쿨러의 세정 배수 처리 방법과 장치
JP2009148684A (ja) アンモニア含有排水の処理方法
JP2012020216A (ja) 湿式排煙脱硫装置
WO2023112863A1 (ja) 廃棄物焼却設備
JP2016059890A (ja) 排ガス処理装置と方法
WO2017037076A1 (en) Method and device for flue gas desulfurization
JPH0221852B2 (ja)
JP2000061257A (ja) 排煙脱硫方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789314

Country of ref document: EP

Kind code of ref document: A1