WO2012157774A1 - 固体電解質電池および正極活物質 - Google Patents

固体電解質電池および正極活物質 Download PDF

Info

Publication number
WO2012157774A1
WO2012157774A1 PCT/JP2012/062885 JP2012062885W WO2012157774A1 WO 2012157774 A1 WO2012157774 A1 WO 2012157774A1 JP 2012062885 W JP2012062885 W JP 2012062885W WO 2012157774 A1 WO2012157774 A1 WO 2012157774A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
film
positive electrode
active material
electrode active
Prior art date
Application number
PCT/JP2012/062885
Other languages
English (en)
French (fr)
Inventor
沙織 林
佐飛 裕一
佐藤 晋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/116,646 priority Critical patent/US9325008B2/en
Priority to CN201280022551.7A priority patent/CN103518278B/zh
Publication of WO2012157774A1 publication Critical patent/WO2012157774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to a solid electrolyte battery and a positive electrode active material. More specifically, the present invention relates to a thin film type solid electrolyte battery in which constituent members of the battery are formed as thin films using a thin film deposition technique, and a positive electrode active material used therefor.
  • Lithium ion secondary batteries utilizing doping and dedoping of lithium ions are widely used in portable electronic devices and the like because of their excellent energy density.
  • these lithium-ion secondary batteries from the viewpoint of safety and reliability, research and development of all-solid-state lithium ion secondary batteries that use solid electrolytes that do not contain organic electrolytes as electrolytes are energetically advanced. Yes.
  • a thin film lithium secondary battery has been actively developed.
  • This thin film lithium secondary battery is a secondary battery in which a current collector, an active material, an electrolyte, and the like constituting the battery are formed as a thin film.
  • Each thin film which comprises a thin film lithium secondary battery is formed using film-forming methods, such as sputtering method and a vapor deposition method.
  • film-forming methods such as sputtering method and a vapor deposition method.
  • amorphous materials such as LiPON in which Li 3 PO 4 is substituted with nitrogen and LiBON in which Li x B 2 O 3 is substituted with nitrogen are used.
  • LiPON Li 3 PO 4
  • LiBON Li x B 2 O 3 is substituted with nitrogen
  • a lithium transition metal oxide such as LiCoO 2 , LiMn 2 O 4 , LiFePO 4
  • a thin film type solid electrolyte battery such as a thin film lithium secondary battery
  • a substrate or post-annealing after film formation it is necessary to use expensive heat-resistant glass as a substrate, resulting in an increase in manufacturing cost.
  • LiPON, LiBON, etc. used as the solid electrolyte are amorphous and function materials. Therefore, when these materials are annealed, the characteristics deteriorate. For this reason, it is preferable to use a material that functions even if the positive electrode active material is neither annealed, but in the case of annealless, lithium transition metal oxides such as LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 are highly non-crystalline.
  • an object of the present technology is to provide a solid electrolyte battery using a novel positive electrode active material that functions in an amorphous state and a novel positive electrode active material that functions in an amorphous state.
  • the present technology includes a positive electrode side layer having a positive electrode active material layer, a negative electrode side layer, and a solid electrolyte layer disposed between the positive electrode side layer and the negative electrode side layer,
  • the positive electrode active material layer is a solid electrolyte battery including a lithium borate compound in an amorphous state containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd. is there.
  • the present technology is a lithium borate compound containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd, and the lithium borate compound is in an amorphous state It is a positive electrode active material.
  • the positive electrode active material layer includes a lithium borate compound containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd. This amorphous lithium borate compound functions as a positive electrode active material.
  • a solid electrolyte battery using a novel positive electrode active material that functions in an amorphous state and a novel positive electrode active material that functions in an amorphous state can be provided.
  • FIG. 1A is a schematic diagram illustrating a configuration example of a solid electrolyte battery according to the first embodiment of the present technology.
  • FIG. 1B is a cross-sectional view illustrating a configuration example of the solid electrolyte battery according to the first embodiment of the present technology.
  • FIG. 1C is a cross-sectional view illustrating a configuration example of the solid electrolyte battery according to the first embodiment of the present technology.
  • FIG. 2A is a schematic diagram illustrating a configuration example of a solid electrolyte battery according to a second embodiment of the present technology.
  • FIG. 2B is a cross-sectional view illustrating a configuration example of a solid electrolyte battery according to the second embodiment of the present technology.
  • FIG. 1A is a schematic diagram illustrating a configuration example of a solid electrolyte battery according to the first embodiment of the present technology.
  • FIG. 1B is a cross-sectional view illustrating a configuration example of a solid electrolyte battery according to the
  • FIG. 2C is a cross-sectional view illustrating a configuration example of the solid electrolyte battery according to the second embodiment of the present technology.
  • FIG. 3A is a graph showing a charge / discharge curve for the solid electrolyte battery of Example 1-1.
  • FIG. 3B is a graph showing cycle characteristics of the solid electrolyte battery of Example 1-1.
  • FIG. 4A is a graph showing a charge / discharge curve for the solid electrolyte battery of Example 1-2.
  • FIG. 4B is a graph showing cycle characteristics of the solid electrolyte battery of Example 1-2.
  • FIG. 5A is a graph showing a charge / discharge curve for the solid electrolyte battery of Example 2-1.
  • FIG. 5B is a graph showing cycle characteristics of the solid electrolyte battery of Example 2-1.
  • FIG. 6A is a graph showing a charge / discharge curve for the solid electrolyte battery of Example 2-2.
  • FIG. 6B is a graph showing cycle characteristics of the solid electrolyte battery of Example 2-2.
  • FIG. 7A is a graph showing a charge / discharge curve for the solid electrolyte battery of Example 2-3.
  • FIG. 7B is a graph showing cycle characteristics of the solid electrolyte battery of Example 2-3.
  • FIG. 1 shows a configuration of a solid electrolyte battery according to a first embodiment of the present technology.
  • This solid electrolyte battery is, for example, a solid electrolyte secondary battery that can be charged and discharged.
  • the solid electrolyte battery is a thin film type solid electrolyte secondary battery in which the constituent members of the battery are formed as thin films.
  • FIG. 1A is a plan view of the solid electrolyte battery.
  • FIG. 1B is a cross-sectional view showing a cross section taken along line XX in FIG. 1A.
  • 1C is a cross-sectional view showing a cross section taken along line YY of FIG. 1A.
  • the solid electrolyte battery includes an inorganic insulating film 20 formed on a substrate 10, and a positive current collector film 30, a positive electrode active material film 40, and a solid on the inorganic insulating film 20.
  • the electrolyte membrane 50 and the negative electrode side collector film 70 have a laminated body laminated in this order.
  • An entire protective film 80 made of, for example, an ultraviolet curable resin is formed so as to cover the entire laminate.
  • an inorganic insulating film 20 may be further formed on the entire protective film 80.
  • the substrate 10 include a polycarbonate (PC) resin substrate, a fluororesin substrate, a polyethylene terephthalate (PET) substrate, a polybutylene terephthalate (PBT) substrate, a polyimide (PI) substrate, a polyamide (PA) substrate, and a polysulfone (PSF) substrate.
  • Polyethersulfone (PES) substrate polyphenylene sulfide (PPS) substrate, polyetheretherketone (PEEK) substrate, polyethylene naphthalate (PEN), cycloolefin polymer (COP) and the like can be used.
  • the material of this substrate is not particularly limited, but a substrate having low moisture absorption and moisture resistance is more preferable.
  • the material constituting the positive electrode side current collector film 30 is Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, Pd, or any of these. Including alloys can be used.
  • the positive electrode active material film 40 is composed of an amorphous lithium borate compound.
  • the positive electrode active material film 40 is composed of an amorphous lithium borate compound containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd.
  • the This lithium boric acid compound has the following excellent characteristics as a positive electrode active material. That is, it has a high potential with respect to the pair Li + / Li. The potential flatness is excellent, that is, the potential fluctuation accompanying the composition change is small. Since the composition ratio of lithium is large, the capacity is high. High electrical conductivity.
  • Li x Cu y PO 4 (Wherein x represents the composition ratio of lithium, y represents the composition ratio of copper, x is 1.0 ⁇ x ⁇ 5.0, and y is 1.0 ⁇ y ⁇ 4.0. )
  • the above-described material that functions as a positive electrode active material in an amorphous state (hereinafter, sometimes referred to as an amorphous positive electrode active material) exhibits good characteristics.
  • each battery such as a positive electrode, an electrolyte, and a negative electrode High practicality can be obtained by applying to a thin film type solid electrolyte battery in which the constituent members are formed of thin films.
  • the positive electrode active material film 40 is selected from any element M1 selected from Li, B, Cu, Ni, Co, Mn, Au, Ag, and Pd, and from Cu, Ni, Co, Mn, Au, Ag, and Pd.
  • the positive electrode active material film 40 does not include a crystalline phase and is a completely amorphous single-phase thin film.
  • the positive electrode active material film 40 is an amorphous single phase by observing a cross section with a transmission electron microscope (TEM). That is, when the cross section of the positive electrode active material film 40 is observed with a transmission electron microscope (TEM), a state in which no crystal grains are present can be confirmed in the TEM image. It can also be confirmed from an electron diffraction image.
  • TEM transmission electron microscope
  • Solid electrolyte membrane 50 As the material constituting the solid electrolyte film 50, lithium phosphate (Li 3 PO 4), nitrogen added was Li 3 PO 4-x N x ( typically a lithium phosphate (Li 3 PO 4), called LiPON have.), Li x B 2 O 3-y N y, may be used Li 4 SiO 4 -Li 3 PO 4 , Li 4 SiO 4 -Li 3 VO 4 or the like.
  • the subscripts x and y used in the compound indicate the composition ratio of the elements in the formula. (Li excess layer)
  • the negative electrode active material is generated on the negative electrode side together with charging without forming the negative electrode active material film at the time of manufacture.
  • Li excess Li metal generated between the negative electrode side current collector film 70 and the solid electrolyte film 50 and / or Li at the negative electrode side interface of the solid electrolyte film 50 (hereinafter referred to as Li excess). Layer). While using this excessively deposited Li (Li excess layer) as a negative electrode active material, it has high durability against repeated charge and discharge without impairing charge and discharge characteristics.
  • Ni excess layer Li (Negative electrode side current collector film 70)
  • Cu, Mg, Ti, Fe, Co, Ni, Zn, Al, Ge, In, Au, Pt, Ag, Pd, etc., or any of these may be used. Including alloys can be used.
  • the material constituting the inorganic insulating film 20 may be any material that can form a film having low moisture absorption and moisture resistance. Such materials include Si, Cr, Zr, Al, Ta, Ti, Mn, Mg, Zn oxides, nitrides or sulfides alone, or a mixture thereof can be used. More specifically, Si 3 N 4 , SiO 2 , Cr 2 O 3 , ZrO 2 , Al 2 O 3 , TaO 2 , TiO 2 , Mn 2 O 3 , MgO, ZnS or the like or a mixture thereof is used. To do.
  • the above-described solid electrolyte battery is manufactured as follows, for example. First, the inorganic insulating film 20 is formed on the substrate 10. Next, a positive electrode side current collector film 30, a positive electrode active material film 40, a solid electrolyte film 50, and a negative electrode side current collector film 70 are sequentially formed on the inorganic insulating film 20, thereby forming a laminate. . Next, an entire protective film 80 made of, for example, an ultraviolet curable resin is formed on the substrate 10 such as an organic insulating substrate so as to cover the entire laminate and the inorganic insulating film 20. Through the above series of steps, the solid electrolyte battery according to the first embodiment of the present technology can be formed.
  • Each thin film can be formed, for example, by a vapor phase method such as a PVD (Physical Vapor Deposition) method or a CVD (Chemical Vapor Deposition) method. Moreover, it can form by liquid phase methods, such as electroplating, electroless plating, the apply
  • a vapor phase method such as a PVD (Physical Vapor Deposition) method or a CVD (Chemical Vapor Deposition) method.
  • liquid phase methods such as electroplating, electroless plating, the apply
  • a solid phase method such as an SPE (solid phase epitaxy) method or an LB (Langmuir-Blodgett) method.
  • the PVD method is a method in which a thin film material to be thinned is once evaporated and vaporized by energy such as heat or plasma, and thinned on a substrate.
  • Examples of the PVD method include a vacuum deposition method, a sputtering method, an ion plating method, an MBE (molecular beam epitaxy) method, and a laser ablation method.
  • energy such as heat, light, and plasma is applied to the constituent material of the thin film supplied as gas to form decomposition / reaction / intermediate products of source gas molecules, and adsorption / reaction on the substrate surface. This is a method of depositing a thin film through separation.
  • Examples of the CVD method include a thermal CVD method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, an RF plasma CVD method, a photo CVD method, a laser CVD method, an LPE (Liquid Phase Epitaxy) method, and the like. Can be mentioned.
  • Those skilled in the art can form the inorganic insulating film 20, the positive electrode side current collector film 30, the positive electrode active material film 40, the solid electrolyte film 50, and the negative electrode side current collector film 70 having a desired configuration by the above-described thin film forming method. Easy for.
  • the positive electrode active material film 40 is an amorphous material containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd. It is composed of a lithium borate compound in the state. Thereby, a solid electrolyte battery having excellent characteristics can be obtained.
  • the positive electrode active material film 40 functions as a positive electrode active material even without annealing.
  • a resin substrate having low heat resistance can be used as the substrate 10, and it is not necessary to use expensive heat-resistant glass, so that the manufacturing cost can be reduced.
  • This solid electrolyte battery is, for example, a solid electrolyte secondary battery that can be charged and discharged, and is, for example, a thin film type solid electrolyte secondary battery in which constituent members of the battery are formed as thin films. (Configuration example of solid electrolyte battery) FIG.
  • FIG. 2 shows a configuration example of a solid electrolyte battery according to the second embodiment of the present technology.
  • FIG. 2A is a plan view of the solid electrolyte battery.
  • 2B is a cross-sectional view showing a cross-section along the line XX in FIG. 2A.
  • 2C is a cross-sectional view showing a cross section taken along line YY of FIG. 2A.
  • an inorganic insulating film 20 is formed on a substrate 10
  • a positive current collector film 30, a positive electrode active material film 40, a solid electrolyte film 50, and a negative electrode active material film 60 are formed on the inorganic insulating film 20.
  • the negative electrode side current collector film 70 has a laminated body laminated in this order.
  • An overall protective film 80 made of, for example, an ultraviolet curable resin is formed so as to cover the entire laminate and the inorganic insulating film 20.
  • an inorganic insulating film 20 may be further formed on the entire protective film 80.
  • the substrate 10, the inorganic insulating film 20, the positive electrode side current collector film 30, the positive electrode active material film 40, the solid electrolyte film 50, the negative electrode side current collector film 70, and the entire protective film 80 are the same as in the first embodiment. Since there are, detailed description is abbreviate
  • the negative electrode active material film 60 has the following configuration.
  • the material constituting the negative electrode active material film 60 may be any material that can easily absorb and desorb lithium ions and can absorb and desorb a large amount of lithium ions in the negative electrode active material film.
  • materials Sn, Si, Al, Ge, Sb, Ag, Ga, In, Fe, Co, Ni, Ti, Mn, Ca, Ba, La, Zr, Ce, Cu, Mg, Sr, Cr, Any oxide such as Mo, Nb, V, and Zn can be used. Moreover, these oxides can also be mixed and used.
  • the material of the negative electrode active material film 60 is, for example, a silicon-manganese alloy (Si-Mn), a silicon-cobalt alloy (Si-Co), a silicon-nickel alloy (Si-Ni), or niobium pentoxide (Nb).
  • Si-Mn silicon-manganese alloy
  • Si-Co silicon-cobalt alloy
  • Si-Ni silicon-nickel alloy
  • Nb niobium pentoxide
  • Li metal may be used as a material constituting the negative electrode active material film 60.
  • the above-described solid electrolyte battery is manufactured as follows, for example. First, the inorganic insulating film 20 is formed on the substrate 10. Next, a positive electrode side current collector film 30, a positive electrode active material film 40, a solid electrolyte film 50, a negative electrode active material film 60, and a negative electrode side current collector film 70 are sequentially formed on the inorganic insulating film 20, A laminate is formed. Next, an entire protective film 80 made of, for example, an ultraviolet curable resin is formed on the substrate 10 so as to cover the entire laminate and the inorganic insulating film 20. Through the above series of steps, the solid electrolyte battery according to the second embodiment of the present technology can be formed.
  • the second embodiment of the present technology has the same effect as that of the first embodiment. That is, in the second embodiment, the positive electrode active material film 40 is in an amorphous state containing Li and B and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd. Of lithium borate compound. Thereby, a solid electrolyte battery having excellent characteristics can be obtained.
  • the positive electrode active material film 40 functions as a positive electrode active material even without annealing. As a result, a resin substrate having low heat resistance can be used as the substrate 10, and it is not necessary to use expensive heat-resistant glass, so that the manufacturing cost can be reduced.
  • Example 1-1 A solid electrolyte battery having the configuration shown in FIG. 1 was produced.
  • a polycarbonate (PC) substrate having a thickness of 1.1 mm was used as the substrate 10.
  • a SiN film was formed as the inorganic insulating film 20 on the substrate 10.
  • a metal mask is arranged on the inorganic insulating film 20, and a positive electrode side current collector film 30, a positive electrode active material film 40, a solid electrolyte film 50, and a negative electrode side current collector film 70 are sequentially formed in a predetermined region. Formed.
  • Ti film as a positive electrode side current collector film 30 Li x Cu y BO z film as the positive electrode active material layer 40, Li 3 PO 4-x N x layer (LiPON film) as a solid electrolyte membrane 50, the anode-side current collector film As 70, a Cu film and a Ti film were formed.
  • the subscripts x, y, and z used in the compound indicate the composition ratio of the elements in the formula. (The same applies to the following explanation)
  • the film forming conditions of the inorganic insulating film 20 and each thin film constituting the laminate were as follows. The substrate 10 was not heated, and the substrate holder was cooled with water at 20 ° C. to form a film.
  • the inorganic insulating film 20 was formed using the following sputtering apparatus and film forming conditions.
  • Sputtering device C-3103, manufactured by Anelva
  • Target composition Si
  • Target size ⁇ 6 inch
  • Sputtering gas Ar 60 sccm
  • N 2 30 sccm 0.093
  • Sputtering power 1500W
  • Film thickness 25nm
  • Positive electrode side current collector film 30 The positive electrode side current collector film 30 was formed using the following sputtering apparatus and film forming conditions.
  • Sputtering device UVAC, SMO-01 special type
  • Target composition Ti Target size: ⁇ 4 inch sputtering gas: Ar 70 sccm, 0.45 Pa Sputtering power: 1000 W (DC)
  • Film thickness 100nm (Positive electrode active material film 40)
  • the positive electrode active material film was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device UVAC, SMO-01 special type
  • Target composition Li 6 C 9 O 6 B and Cu co-sputter Target size: ⁇ 4 inch Sputtering gas: Ar (80%) + O 2 (20%) 20 sccm, 0.17 Pa Sputtering power: Li 6 C 9 O 6 B600W (RF), Cu60W (DC) Film thickness: 370 nm
  • a target material Li 6 C 9 O 6 B having a large lithium composition ratio was used. This target material was produced as follows.
  • Li 2 CO 3 powder and boron powder as raw material powders were weighed at a predetermined blending ratio and mixed using a ball mill to obtain a mixed powder. Next, this mixed powder was fired to obtain a Li 6 C 9 O 6 B powder. Next, using a tablet press, after press molding Li 6 C 9 O 6 B powder, by performing sintering, to obtain a Li 6 C 9 O 6 B sintered body used as a target.
  • Solid electrolyte membrane 50 The solid electrolyte membrane 50 was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device (ULVAC, SMO-01 special type)
  • Target composition Li 3 PO 4
  • Target size ⁇ 4 inch sputtering gas: Ar20 sccm + N 2 20 sccm, 0.25 Pa
  • Sputtering power 600W
  • Film thickness 650nm
  • Cu film and a Ti film were formed in this order on the solid electrolyte film 50 as the negative electrode side current collector film 70.
  • the Cu film and the Ti film were formed by the following sputtering apparatus and film formation conditions, respectively.
  • (Negative electrode side current collecting film 70 (Cu film) The negative electrode side current collector film 70 (Cu film) was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device (ULVAC, SMO-01 special type)
  • Target composition Cu
  • Target size ⁇ 4 inch sputtering gas: Ar 70 sccm, 0.45 Pa
  • Sputtering power 1000 W
  • Film thickness 20nm (Negative electrode side current collector film 70 (Ti film))
  • the negative electrode current collector film 70 (Ti film) was formed using the following sputtering apparatus and film formation conditions.
  • the size of the solid electrolyte battery was 0.75 cm ⁇ 0.75 cm in terms of the area of the positive electrode active material film 40.
  • (Membrane structure of solid electrolyte battery) Polycarbonate substrate / SiN (25 nm) / Ti (100 nm) / Li x Cu y BOy (370 nm) / Li 3 PO 4-x N x (650 nm) / Cu (20 nm) / Ti (100 nm) / UV curable resin (20 ⁇ m) / SiN (25 nm) ⁇ Example 1-2> Polycarbonate substrate / SiN (25 nm) / Ti (100 nm) / Li x Ni y BO z (300 nm) / Li 3 PO 4-x N x (650 nm) / Ni (230 nm) / UV curable resin (20 ⁇ m) / SiN (25 nm) A solid electrolyte battery having the structure of That is, a solid
  • the positive electrode active material film 40 was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device UVAC, SMO-01 special type
  • Target composition Li 6 C 9 O 6 B and Ni co-sputter Target size: ⁇ 4 inch
  • Sputtering gas Ar (80%) + O 2 (20%) 20 sccm, 0.17
  • Sputtering power Li 6 C 9 O 6 B600W (RF), Ni150W (DC)
  • Film thickness 300nm
  • the negative electrode current collector film 70 was formed using the following sputtering apparatus and film formation conditions.
  • FIG. 3B shows the charge / discharge cycle characteristics of Example 1-1.
  • Line c is a graph in which the rate of change of charge capacity (relative value (%) when the charge capacity of the first cycle is 100%) is plotted against the number of cycles.
  • Line d is a graph in which the change rate of the discharge capacity (relative value (%) when the discharge capacity at the first cycle is 100%) is plotted against the number of cycles.
  • FIG. 4A shows the charge / discharge curve for Example 1-2.
  • FIG. 4B shows the charge / discharge cycle characteristics of Example 1-2.
  • the meanings of odd numbers and even numbers n attached to the charge / discharge curve are the same as in FIG. 3A, and in FIG. 4B, lines c and d are the same meaning as in FIG. 3B.
  • the solid electrolyte battery of Example 1-1 was excellent in flatness of the discharge potential and excellent in cycle characteristics. As shown in FIGS.
  • the solid electrolyte battery of Example 1-2 was excellent in flatness of the discharge potential and excellent in cycle characteristics. Further, when the film density of the positive electrode active material film was calculated at 3.4 g / cc, in Example 1-1, the capacity was 140 mAh / g, and in Example 1-2, the capacity was 270 mAh / g. . In particular, the positive electrode active material Li x Ni y BO z of Example 1-2 shows a higher capacity than the average capacity (100 mAh / g to 200 mAh / g) of the positive electrode active material of the lithium ion battery. It was.
  • Example 2-1 to Example 2-3 A solid electrolyte battery was produced in the same manner as in Example 1-2 except that the positive electrode active material film 40 was formed under the following film formation conditions.
  • the positive electrode active material film 40 was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device (ULVAC, SMO-01 special type) Target composition: Li 6 C 9 O 6 B and Ni co-sputter Target size: ⁇ 4 inch Sputtering gas: Ar (80%) + O 2 (20%) 20 sccm, 0.17 Pa Sputtering power: Li 6 C 9 O 6 B600W (RF), Ni50W (DC) Film thickness: 210nm ⁇ Example 2-2> A solid electrolyte battery was produced in the same manner as in Example 1-2 except that the positive electrode active material film 40 was formed under the following film formation conditions. (Positive electrode active material film 40) The positive electrode active material film 40 was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device (ULVAC, SMO-01 special type) Target composition: Li 6 C 9 O 6 B and Ni co-sputter Target size: ⁇ 4 inch Sputtering gas: Ar (80%) + O 2 (20%) 20 sccm, 0.17 Pa Sputtering power: Li 6 C 9 O 6 B600W (RF), Ni100W (DC) Film thickness: 250nm ⁇ Example 2-3> A solid electrolyte battery was produced in the same manner as in Example 1-2 except that the positive electrode active material film 40 was formed under the following film formation conditions. (Positive electrode active material film 40) The positive electrode active material film 40 was formed using the following sputtering apparatus and film formation conditions.
  • Sputtering device (ULVAC, SMO-01 special type) Target composition: Li 6 C 9 O 6 B and Ni co-sputter Target size: ⁇ 4 inch Sputtering gas: Ar (80%) + O 2 (20%) 20 sccm, 0.17 Pa Sputtering power: Li 6 C 9 O 6 B600W (RF), Ni150W (DC) Film thickness: 300nm
  • a charge / discharge test was performed on each solid electrolyte battery of Example 2-1 to Example 2-3. Charging was performed at a charging current of 30 ⁇ A and a charge cutoff voltage of 5.0V. Discharge was performed at a discharge current of 15 ⁇ A and a discharge cut-off voltage of 2.0V. The measurement results are shown in FIGS.
  • FIG. 5A shows the charge / discharge curve for Example 2-1
  • FIG. 5B shows the charge / discharge cycle characteristics for Example 2-1
  • 6A shows the charge / discharge curve for Example 2-2
  • FIG. 6B shows the charge / discharge cycle characteristics for Example 2-2
  • FIG. 7A shows the charge / discharge curve for Example 2-3
  • FIG. 7B shows the charge / discharge cycle characteristics for Example 2-3.
  • the odd numbers and even numbers n attached to the charge / discharge curves have the same meaning as in FIG. 3A.
  • 5B, 6B, and 7B lines c and d are graphs having the same meaning as in FIG. 3B.
  • Example 2-2 when the film density of the positive electrode active material film was calculated at 3.4 g / cc, a high capacity of 200 mAh / g to 270 mAh / g was exhibited in 1 to 5 cycles. Further, up to about 100 cycles, there was no capacity deterioration due to repeated charge and discharge, and excellent cycle characteristics were exhibited. 3.
  • the present technology is not limited to the above-described embodiments of the present technology, and various modifications and applications can be made without departing from the gist of the present technology.
  • the membrane configuration of the solid electrolyte battery is not limited to that described above.
  • the inorganic insulating film may be omitted.
  • a plurality of stacked bodies may be sequentially stacked, electrically connected in series, and covered with the entire protective film 80. Further, a plurality of stacked bodies may be formed side by side on the substrate, electrically connected in parallel or in series, and covered with the entire protective film 80.
  • the structure of the solid electrolyte battery is not limited to the above example.
  • the present invention can also be applied to a solid electrolyte battery having a structure in which a conductive material is used for the substrate 10 and the positive collector film 30 is omitted.
  • the positive electrode side current collector film 30 may be formed of a metal plate made of a positive electrode current collector material.
  • the negative electrode side current collector film 70 may be formed of a metal plate made of a negative electrode current collector material.
  • the present technology can also have the following configurations. (1) A positive electrode side layer having a positive electrode active material layer; A negative electrode side layer; A solid electrolyte layer disposed between the positive electrode side layer and the negative electrode side layer,
  • the positive electrode active material layer includes a solid electrolyte battery including a lithium borate compound in an amorphous state containing Li, B, and any element M1 and O selected from Cu, Ni, Co, Mn, Au, Ag, and Pd. .
  • the lithium boric acid compound further contains at least one element M2 selected from Cu, Ni, Co, Mn, Au, Ag, and Pd (where M1 ⁇ M2). Solid electrolyte battery.
  • the negative electrode side layer includes a negative electrode current collector layer, The solid electrolyte battery according to any one of (1) to (2), wherein a lithium excess layer is formed at the negative electrode side interface of the solid electrolyte layer by charging.
  • the positive electrode side layer is the solid electrolyte battery according to any one of (1) to (3), further including a positive electrode current collector layer.
  • the said negative electrode side layer is a solid electrolyte battery as described in (1) containing a negative electrode active material layer and a negative electrode collector layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 アモルファス状態で機能する新規な正極活物質を用いた固体電解質電池およびアモルファス状態で機能する新規な正極活物質を提供する。固体電解質電池は、正極活物質層を有する正極側層と、負極側層と、正極側層および負極側層との間に形成された固体電解質層とを備え、正極活物質層は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物を含むものである。

Description

固体電解質電池および正極活物質
 本技術は、固体電解質電池および正極活物質に関する。さらに詳しくは、薄膜堆積技術を用いて、電池の構成部材を薄膜で形成した薄膜型の固体電解質電池およびこれに用いる正極活物質に関する。
 リチウムイオンのドープおよび脱ドープを利用したリチウムイオン二次電池は、優れたエネルギー密度を有することから、携帯型電子機器等に広く使用されている。このリチウムイオン二次電池の中でも、安全性や信頼性の観点から、電解質として、有機電解液を含有しない固体電解質を使用した全固体リチウムイオン二次電池の研究開発が、精力的に進められている。
 この全固体リチウムイオン二次電池の一形態として、薄膜リチウム二次電池の開発が盛んに行われている。この薄膜リチウム二次電池は、電池を構成する集電体、活物質および電解質等を薄膜で形成して、二次電池とするものである。薄膜リチウム二次電池を構成する各薄膜は、スパッタリング法、蒸着法等の成膜方法を用いて形成される。(例えば、非特許文献1参照)
 薄膜リチウム二次電池に用いる固体電解質として、LiPOに窒素を置換したLiPON、Liに窒素を置換したLiBON等のアモルファス材料が用いられている。(例えば、非特許文献2参照)
 また、従来の薄膜リチウム二次電池では、正極活物質として、液系リチウムイオン二次電池と同様、LiCoO、LiMn、LiFePO等のリチウム遷移金属酸化物を用いることが一般的である。
Thin−Film lithium and lithium−ion batteries,J.B.Bates et al.:Solid State Ionics,135,33(2000) Journal of Power Sources 189(2009)211−216
 薄膜リチウム二次電池等の薄膜型の固体電解質電池では、基板加熱や成膜後のポストアニ−ルを行う場合には、基板として高価な耐熱ガラスを用いる必要があるので製造コストが高くなってしまう。また、固体電解質電池では、固体電解質として用いるLiPON、LiBON等は、アモルファスで機能する材料であるため、これらの材料に対してアニールを行うと特性が劣化してしまう。
 このため、正極活物質もアニールレスでも機能する材料を用いることが好ましいが、アニールレスでは、LiCoO、LiMn、LiFePO等のリチウム遷移金属酸化物は非結晶性が高いものであるため、正極活物質としての特性が悪い。すなわち、LiCoO、LiMn、LiFePO等のリチウム遷移金属酸化物は、アニールレスでは、イオン伝導度がLiPON等の固体電解質のイオン伝導度よりも低いため、正極活物質としての特性が悪い。
 したがって、本技術の目的は、アモルファス状態で機能する新規な正極活物質を用いた固体電解質電池およびアモルファス状態で機能する新規な正極活物質を提供することにある。
 上述した課題を解決するために、本技術は、正極活物質層を有する正極側層と、負極側層と、正極側層および負極側層との間に配置された固体電解質層とを備え、正極活物質層は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物を含む固体電解質電池である。
 本技術は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するリチウムホウ酸化合物であって、リチウムホウ酸化合物はアモルファス状態である正極活物質である。
 本技術では、正極活物質層は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するリチウムホウ酸化合物を含む。このアモルファス状態のリチウムホウ酸化合物は、正極活物質として機能する。
 本技術によれば、アモルファス状態で機能する新規な正極活物質を用いた固体電解質電池およびアモルファス状態で機能する新規な正極活物質を提供できる。
図1Aは、本技術の第1の実施の形態による固体電解質電池の構成例を示す略線図である。図1Bは、本技術の第1の実施の形態による固体電解質電池の構成例を示す断面図である。図1Cは、本技術の第1の実施の形態による固体電解質電池の構成例を示す断面図である。 図2Aは、本技術の第2の実施の形態による固体電解質電池の構成例を示す略線図である。図2Bは、本技術の第2の実施の形態による固体電解質電池の構成例を示す断面図である。図2Cは、本技術の第2の実施の形態による固体電解質電池の構成例を示す断面図である。 図3Aは、実施例1−1の固体電解質電池についての充放電曲線を示すグラフである。図3Bは、実施例1−1の固体電解質電池についてのサイクル特性を示すグラフである。 図4Aは、実施例1−2の固体電解質電池についての充放電曲線を示すグラフである。図4Bは、実施例1−2の固体電解質電池についてのサイクル特性を示すグラフである。 図5Aは、実施例2−1の固体電解質電池についての充放電曲線を示すグラフである。図5Bは、実施例2−1の固体電解質電池についてのサイクル特性を示すグラフである。 図6Aは、実施例2−2の固体電解質電池についての充放電曲線を示すグラフである。図6Bは、実施例2−2の固体電解質電池についてのサイクル特性を示すグラフである。 図7Aは、実施例2−3の固体電解質電池についての充放電曲線を示すグラフである。図7Bは、実施例2−3の固体電解質電池についてのサイクル特性を示すグラフである。
 以下、本技術の実施の形態について図面を参照して説明する。説明は、以下の順序で行う。なお、実施の形態の全図において、同一または対応する部分には同一の符号を付す。
1.第1の実施の形態(固体電解質電池の第1の例)
2.第2の実施の形態(固体電解質電池の第2の例)
3.他の実施の形態(変形例)
1.第1の実施の形態
(固体電解質電池の構成例)
 図1は本技術の第1の実施の形態による固体電解質電池の構成を示す。この固体電解質電池は、例えば、充電および放電可能な固体電解質二次電池であり、例えば、電池の構成部材を薄膜で形成した薄膜型の固体電解質二次電池である。図1Aはこの固体電解質電池の平面図である。図1Bは図1Aの線X−Xに沿った断面を示す断面図である。図1Cは図1Aの線Y−Yに沿った断面を示す断面図である。
 図1に示すように、この固体電解質電池は、基板10の上に無機絶縁膜20が形成され、無機絶縁膜20上に、正極側集電体膜30と、正極活物質膜40と、固体電解質膜50と、負極側集電体膜70とがこの順で積層された積層体を有する。この積層体の全体を覆うように、例えば、紫外線硬化樹脂から構成された全体保護膜80が形成されている。なお、全体保護膜80上にさらに無機絶縁膜20が形成されていてもよい。
(基板)
 基板10としては、例えば、ポリカーボネート(PC)樹脂基板、フッ素樹脂基板、ポリエチレンテレフタレート(PET)基板、ポリブチレンテレフタレート(PBT)基板、ポリイミド(PI)基板、ポリアミド(PA)基板、ポリスルホン(PSF)基板、ポリエーテルスルホン(PES)基板、ポリフェニレンスルフィド(PPS)基板、ポリエーテルエーテルケトン(PEEK)基板、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー(COP)等を使用することができる。この基板の材質は特に限定されるものではないが、吸湿性が低く耐湿性を有する基板がより好ましい。
(正極側集電体膜30)
 正極側集電体膜30を構成する材料としては、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pd等、又は、これらの何れかを含む合金を使用することができる。
(正極活物質膜40)
 正極活物質膜40は、アモルファス状態のリチウムホウ酸化合物で構成される。例えば、正極活物質膜40は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物で構成される。
 このリチウムホウ酸化合物は、正極活物質として以下の優れた特性を有する。すなわち、対Li/Liに対して高い電位を有する。電位の平坦性に優れる、すなわち組成変化に伴う電位変動が小さい。リチウムの組成比も大きいので高容量である。高い電気伝導性を有する。結晶質の正極活物質のように充放電の繰り返しによる結晶構造の崩壊等もないので、充放電サイクル特性も優れている。また、アニ−ルレスで形成できるため、製造プロセスの簡素化、歩留まりの向上、耐熱性の低い樹脂基板の利用を可能とする。
 ところで、本出願人は、新規な正極活物質材料として、アモルファス状態の式(1)で表されるリチウムリン酸化合物を発明し、これを特許出願している。(特願2009−263417)
式(1)
LiCuPO
(式中、xはリチウムの組成比を示す。yは銅の組成比を示す。xは1.0≦x≦5.0である。yは1.0≦y≦4.0である。)
 上記のような、アモルファス状態で正極活物質として機能する材料(以下、アモルファス正極活物質材料と称することもある)は、良好な特性を示しており、特に、正極、電解質、負極等の各電池構成部材を薄膜で形成した、薄膜型の固体電解質電池に適用することによって、高い実用性が得られる。
 本技術のリチウムホウ酸化合物と上記のアモルファス正極活物質材料(リチウムリン酸化合物)との、塩を構成する陰イオンの分子量の比較では、ホウ酸イオン(BO 3−)は、リン酸イオン(PO 3−)に比べて分子量が小さい。したがって、本技術のリチウムホウ酸化合物は、上記のアモルファス正極活物質材料(リチウムリン酸化合物)に比べて、理論容量が大きく、より高容量化を実現できることが考えられる。また、本技術のリチウムホウ酸化合物は、上記のリチウムリン酸化合物に比べて、膨張収縮が少ないことが考えられる。したがって、充電および放電に伴う正極活物質膜の体積変化をより抑制することができ、充電および放電に伴う電池特性の劣化をより抑制できることが考えられる。
 正極活物質膜40は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる少なくとも1種の元素M2(ただしM1≠M2である)とOとを含有するアモルファス状態のリチウムホウ酸化合物で構成されていてもよい。
 正極活物質膜40は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1と、Cu、Ni、Co、Mn、Au、Ag、Pdから選ばれる少なくとも1種の元素M2(ただしM1≠M2である)と、P、Mg、Al、Si、Ti、V、Cr、Fe、Zn、Ga、Ge、Nb、Mo、In、Sn、Sb、Te、W、Os、Bi、Gd、Tb、Dy、Zrから選ばれる少なくとも1種の添加元素M3とOとを含有するアモルファス状態のリチウムホウ酸化合物で構成されていてもよい。
 この正極活物質膜40は、結晶質相が含まれず、完全にアモルファス単相の薄膜である。この正極活物質膜40が、アモルファス単相であることは、透過型電子顕微鏡(TEM;transmission electron microscope)で断面を観察することで確認できる。すなわち、この正極活物質膜40を透過型電子顕微鏡(TEM)で断面を観察すると、そのTEM像において、結晶粒が存在しない状態を確認できる。また、電子線回折像からも確認できる。
(固体電解質膜50)
 固体電解質膜50を構成する材料として、リン酸リチウム(LiPO)、リン酸リチウム(LiPO)に窒素を添加したLiPO4−x(一般に、LiPONと呼ばれている。)、Li3−y、LiSiO−LiPO、LiSiO−LiVO等を使用することができる。なお、化合物中に使用する添え字のx、yは、式中の元素の組成比を示す。
(Li過剰層)
 この固体電解質電池では、製造時点に、負極活物質膜を形成することなく、負極活物質は充電と共に負極側に生じる。負極側に生じるのは、負極側集電体膜70と固体電解質膜50との間に生じるLi金属および/または固体電解質膜50の負極側界面のLiが過剰に含まれる層(以下、Li過剰層という)である。この過剰に堆積されるLi(Li過剰層)を負極活物質として利用しながら、充放電特性を損なわずに充放電の繰返しに対して高い耐久性を有する。
(負極側集電体膜70)
 負極側集電体膜70を構成する材料としては、Cu、Mg、Ti、Fe、Co、Ni、Zn、Al、Ge、In、Au、Pt、Ag、Pd等、又は、これらの何れかを含む合金を使用することができる。
(無機絶縁膜20)
 無機絶縁膜20を構成する材料は、吸湿性が低く耐湿性を有する膜を形成することがで
きる材料であればよい。このような材料として、Si、Cr、Zr、Al、Ta、Ti、
Mn、Mg、Znの酸化物又は窒化物又は硫化物の単体、或いは、これらの混合物を使用
することができる。より具体的には、Si、SiO、Cr、ZrO、Al、TaO、TiO、Mn、MgO、ZnS等、或いは、これらの混合物を使用する。
(固体電解質電池の製造方法)
 上述した固体電解質電池は例えば以下のようにして製造する。
 まず、基板10上に無機絶縁膜20を形成する。次に、無機絶縁膜20上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極側集電体膜70を順次形成し、これにより、積層体が形成される。次に、この積層体及び無機絶縁膜20の全体を覆うように、例えば、紫外線硬化樹脂等からなる全体保護膜80が、例えば有機絶縁基板等の基板10の上に形成される。以上の一連の工程によって、本技術の第1の実施の形態による固体電解質電池を形成することができる。
(薄膜の形成方法)
 無機絶縁膜20、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極側集電体膜70の形成方法について説明する。
 各薄膜は、例えば、PVD(Physical Vapor Deposition:物理気相成長)法あるいはCVD(Chemical Vapor Deposition:化学気相成長)法等の気相法により形成できる。また、電気めっき、無電界めっき、塗布法、ゾル−ゲル法等の液相法により形成できる。また、SPE(固相エピタキシー)法、LB(Langmuir−Blodgett:ラングミュアーブロジェット)法等の固相法により形成することができる。
 PVD法は、薄膜化する薄膜原料を熱やプラズマ等のエネルギーで一旦蒸発・気化し、基板上に薄膜化する方法である。PVD法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、MBE(分子線エキピタシー)法、レーザアブレーション法等が挙げられる。
 CVD法は、ガスとして供給される薄膜の構成材料に対して、熱、光、プラズマ等のエネルギーを加えて原料ガス分子の分解・反応・中間生成物を形成し、基板表面での吸着、反応、離脱を経て薄膜を堆積させる方法である。
 CVD法としては、例えば、熱CVD法、MOCVD(Metal Organic Chemical Chemical Vapor Deposition:有機金属気相成長)法、RFプラズマCVD法、光CVD法、レーザCVD法、LPE(Liquid Phase Epitaxy)法等が挙げられる。
 上述の薄膜形成方法によって、所望の構成の無機絶縁膜20、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極側集電体膜70を形成することは、当業者にとって容易である。すなわち、当業者は、薄膜原料、薄膜形成方法、薄膜形成条件等を適宜選択することによって、所望の構成の無機絶縁膜20、正極活物質膜40、固体電解質膜50、負極側集電体膜70を容易に形成できる。
 本技術の第1の実施の形態では、正極活物質膜40は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物で構成される。これにより、優れた特性を有する固体電解質電池を得ることができる。
 また、本技術の第1の実施の形態では、正極活物質膜40はアニールレスでも正極活物質として機能する。これにより、基板10として、耐熱性の低い樹脂基板を使用することができ、高価な耐熱ガラス等を用いる必要がないので、製造コストを低減することができる。
2.第2の実施の形態
 本技術の第2の実施の形態による固体電解質電池について説明する。この固体電解質電池は、例えば充電および放電可能な固体電解質二次電池であり、例えば、電池の構成部材を薄膜で形成した薄膜型の固体電解質二次電池である。
(固体電解質電池の構成例)
 図2は、本技術の第2の実施の形態による固体電解質電池の構成例を示す。図2Aは、この固体電解質電池の平面図である。図2Bは、図2Aの線X−Xに沿った断面を示す断面図である。図2Cは、図2Aの線Y−Yに沿った断面を示す断面図である。
 この固体電解質電池は、基板10の上に無機絶縁膜20が形成され、無機絶縁膜20上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70がこの順で積層された積層体を有する。この積層体および無機絶縁膜20の全体を覆うように例えば、紫外線硬化樹脂等から構成された全体保護膜80が形成されている。なお、全体保護膜80上にさらに無機絶縁膜20が形成されていてもよい。
 基板10、無機絶縁膜20、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極側集電体膜70および全体保護膜80は、第1の実施の形態と同様であるので詳細な説明を省略する。負極活物質膜60は以下の構成を有する。
(負極活物質膜)
 負極活物質膜60を構成する材料は、リチウムイオンを吸蔵および離脱させ易く、負極活物質膜に多くのリチウムイオンを吸蔵および離脱させることが可能な材料であればよい。このような材料として、Sn、Si、Al、Ge、Sb、Ag、Ga、In、Fe、Co、Ni、Ti、Mn、Ca、Ba、La、Zr、Ce、Cu、Mg、Sr、Cr、Mo、Nb、V、Zn等の何れかの酸化物を使用することができる。また、これら酸化物を混合して用いることもできる。
 負極活物質膜60の材料は具体的には、例えば、シリコン−マンガン合金(Si−Mn)、シリコン−コバルト合金(Si−Co)、シリコン−ニッケル合金(Si−Ni)、五酸化ニオブ(Nb)、五酸化バナジウム(V)、酸化チタン(TiO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化ニッケル(NiO)、Snが添加された酸化インジウム(ITO)、Alが添加された酸化亜鉛(AZO)、Gaが添加された酸化亜鉛(GZO)、Snが添加された酸化スズ(ATO)、F(フッ素)が添加された酸化スズ(FTO)等である。また、これらを混合して用いることもできる。また、負極活物質膜60を構成する材料として、Li金属を用いてもよい。
(固体電解質電池の製造方法)
 上述した固体電解質電池は例えば以下のようにして製造する。
 まず、基板10上に無機絶縁膜20を形成する。次に、無機絶縁膜20上に、正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極活物質膜60、負極側集電体膜70を順次形成し、これにより、積層体が形成される。次に、この積層体及び無機絶縁膜20の全体を覆うように、例えば、紫外線硬化樹脂からなる全体保護膜80が、基板10の上に形成される。以上の一連の工程によって、本技術の第2の実施の形態による固体電解質電池を形成することができる。
 本技術の第2の実施の形態は、第1の実施の形態と同様の効果を有する。すなわち、第2の実施の形態では、正極活物質膜40は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物で構成される。これにより、優れた特性を有する固体電解質電池を得ることができる。
 また、本技術の第2の実施の形態では、正極活物質膜40はアニールレスでも正極活物質として機能する。これにより、基板10として、耐熱性の低い樹脂基板を使用することができ、高価な耐熱ガラス等を用いる必要がないので、製造コストを低減することができる。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
<実施例1−1>
 図1に示す構成を有する固体電解質電池を作製した。基板10として厚さ1.1mmのポリカーボネート(PC)基板を用いた。基板10上に無機絶縁膜20として、SiN膜を成膜した。
 無機絶縁膜20上に金属マスクを配して、所定領域に正極側集電体膜30、正極活物質膜40、固体電解質膜50、負極側集電体膜70の順に成膜し積層体を形成した。正極側集電体膜30としてTi膜、正極活物質膜40としてLiCuBO膜、固体電解質膜50としてLiPO4−x膜(LiPON膜)、負極側集電体膜70として、Cu膜およびTi膜を形成した。なお、化合物中に使用する添え字、x、y、zは式中の元素の組成比を示す。(以下の説明でも同様)
 無機絶縁膜20および積層体を構成する各薄膜の成膜条件は、以下のようにした。なお、基板10は基板加熱をせず、基板ホルダーを20℃で水冷し成膜を行った。
(無機絶縁膜20)
 無機絶縁膜20の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アネルバ社製、C−3103)
ターゲット組成:Si
ターゲットサイズ:Φ6インチ
スパッタリングガス:Ar60sccm、N30sccm、0.093Pa
スパッタリングパワー:1500W(DC)
膜厚:25nm
(正極側集電体膜30)
 正極側集電体膜30の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:Ti
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar70sccm、0.45Pa
スパッタリングパワー:1000W(DC)
膜厚:100nm
(正極活物質膜40)
 正極活物質膜の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiBおよびCuのコスパッタ
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar(80%)+O(20%)20sccm、0.17Pa
スパッタリングパワー:LiB600W(RF)、Cu60W(DC)
膜厚:370nm
 なお、正極活物質膜のリチウム組成比を高めることにより、高容量化するため、リチウム組成比が多いターゲット材(LiB)を使用した。このターゲット材は、以下のようにして作製した。(以下の実施例1−2、実施例2−1~実施例2−3においても同様)
 原料粉末としてLiCO粉末と、ホウ素粉末とを所定配合比で秤量し、ボールミルを用いて混合することにより、混合粉末を得た。次に、この混合粉末を焼成することにより、LiB粉末を得た。次に、錠剤成形機を用いて、LiB粉末をプレス成形した後、焼結を行うことにより、ターゲットとして用いるLiB焼結体を得た。
(固体電解質膜50)
 固体電解質膜50の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiPO
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar20sccm+N20sccm、0.25Pa
スパッタリングパワー:600W(RF)
膜厚:650nm
(負極側集電体膜70)
 負極側集電体膜70として、固体電解質膜50上に、Cu膜とTi膜とをこの順で形成した。Cu膜およびTi膜は、それぞれ、下記のスパッタリング装置および成膜条件で形成した。(負極側集電膜70(Cu膜))
 負極側集電体膜70(Cu膜)の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:Cu
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar70sccm、0.45Pa
スパッタリングパワー:1000W(DC)
膜厚:20nm
(負極側集電体膜70(Ti膜))
 負極側集電体膜70(Ti膜)の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:Ti
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar70sccm、0.45Pa
スパッタリングパワー:1000W(DC)
膜厚:100nm
 最後に、全体保護膜80を、紫外線硬化樹脂(ソニーケミカル&インフォメーションデバイス製、型番SK3200)を用いて形成し、さらに紫外線硬化樹脂上に、上記と同様の成膜条件で無機絶縁膜を形成した。以上により、実施例1−1の固体電解質電池を得た。すなわち、下記の膜構成を有する実施例1−1の固体電解質電池を得た。なお、固体電解質電池のサイズは、正極活物質膜40の面積で0.75cm×0.75cmとした。
(固体電解質電池の膜構成)
 ポリカーボネート基板/SiN(25nm)/Ti(100nm)/LiCuBOy(370nm)/LiPO4−x(650nm)/Cu(20nm)/Ti(100nm)/紫外線硬化樹脂(20μm)/SiN(25nm)
<実施例1−2>
 ポリカーボネート基板/SiN(25nm)/Ti(100nm)/LiNiBO(300nm)/LiPO4−x(650nm)/Ni(230nm)/紫外線硬化樹脂(20μm)/SiN(25nm)の構成の固体電解質電池を作製した。すなわち、正極活物資膜40、負極側集電体膜70を下記の成膜条件で形成した点以外は、実施例1−1と同様にして、固体電解質電池を作製した。
(正極活物質膜40)
 正極活物質膜40の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiBおよびNiのコスパッタ
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar(80%)+O(20%)20sccm、0.17Pa
スパッタリングパワー:LiB600W(RF)、Ni150W(DC)
膜厚:300nm
(負極側集電体膜70)
 負極側集電体膜70の成膜は、下記のスパッタリン装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:Ni
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar70sccm、0.45Pa
スパッタリングパワー:1000W(DC)
膜厚:230nm
(充放電試験)
 実施例1−1および実施例1−2の固体電解質電池の充放電試験を行った。充電は、充電電流30μA、充電カットオフ電圧5.0Vで行った。放電は、放電電流15μA、放電カットオフ電圧2.0Vで行った。
 測定結果を図3A、図3B、および図4A、図4Bに示す。図3Aは、実施例1−1についての充放電曲線を示す。図3Aにおいて、充放電曲線に付して示す奇数字n=1、3、5、・・、は充電を示し、偶数字n=2、4、・・、は放電を示す。例えば、奇数字n=1は、1サイクル目の充電曲線を示し、偶数字n=2は、1サイクル目の放電曲線を示す。すなわり、奇数字n=Kは、{(K+1)/2}サイクル目の充電曲線を示し、偶数字n=Lは、(K/2)サイクル目の放電曲線を示す。
 図3Bは、実施例1−1についての充放電のサイクル特性を示す。線cは、サイクル数に対して、充電容量の変化率(1サイクル目の充電容量を100%とした場合の相対値(%))をプロットしたグラフである。線dは、サイクル数に対して、放電容量の変化率(1サイクル目の放電容量を100%とした場合の相対値(%))をプロットしたグラフである。
 図4Aは、実施例1−2についての充放電曲線を示す。図4Bは、実施例1−2についての充放電のサイクル特性を示す。なお、図4Aにおいて、充放電曲線に付す奇数字および偶数字nの示す意味は、図3Aと同じであり、図4Bにおいて、線c、線dは、図3Bと同義のグラフである。
 図3Aおよび図3Bに示すように、実施例1−1の固体電解質電池では、放電電位の平坦性に優れ、また、サイクル特性も優れていた。図4Aおよび図4Bに示すように、実施例1−2の固体電解質電池では、放電電位の平坦性に優れ、また、サイクル特性も優れていた。
 また、正極活物質膜の膜密度を3.4g/ccで計算した場合、実施例1−1では、容量が140mAh/gであり、実施例1−2では、容量が270mAh/gであった。特に、実施例1−2の正極活物質材料LiNiBOは、平均的なリチウムイオン電池の正極活物質材料の容量(100mAh/g~200mAh/g)に比べて、高い容量を示した。
[実施例2−1~実施例2−3]
<実施例2−1>
 正極活物質膜40を下記の成膜条件で形成した点以外は、実施例1−2と同様にして、固体電解質電池を作製した。
(正極活物質膜40)
 正極活物質膜40の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiBおよびNiのコスパッタ
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar(80%)+O(20%)20sccm、0.17Pa
スパッタリングパワー:LiB600W(RF)、Ni50W(DC)
膜厚:210nm
<実施例2−2>
 正極活物質膜40を下記の成膜条件で形成した点以外は、実施例1−2と同様にして、固体電解質電池を作製した。
(正極活物質膜40)
 正極活物質膜40の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiBおよびNiのコスパッタ
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar(80%)+O(20%)20sccm、0.17Pa
スパッタリングパワー:LiB600W(RF)、Ni100W(DC)
膜厚:250nm
<実施例2−3>
 正極活物質膜40を下記の成膜条件で形成した点以外は、実施例1−2と同様にして、固体電解質電池を作製した。
(正極活物質膜40)
 正極活物質膜40の成膜は、下記のスパッタリング装置および成膜条件で行った。
スパッタリング装置(アルバック社製、SMO−01特型)
ターゲット組成:LiBおよびNiのコスパッタ
ターゲットサイズ:Φ4インチ
スパッタリングガス:Ar(80%)+O(20%)20sccm、0.17Pa
スパッタリングパワー:LiB600W(RF)、Ni150W(DC)
膜厚:300nm
 実施例2−1~実施例2−3の各固体電解質電池について、充放電試験を行った。充電は、充電電流30μA、充電カットオフ電圧5.0Vで行った。放電は、放電電流15μA、放電カットオフ電圧2.0Vで行った。測定結果を図5~図7に示す。
 図5Aは、実施例2−1についての充放電曲線を示し、図5Bは、実施例2−1についての充放電のサイクル特性を示す。図6Aは、実施例2−2についての充放電曲線を示し、図6Bは、実施例2−2についての充放電のサイクル特性を示す。図7Aは、実施例2−3についての充放電曲線を示し、図7Bは、実施例2−3についての充放電のサイクル特性を示す。なお、図5A、図6A、図7Aにおいて、充放電曲線に付す奇数字および偶数字nの示す意味は、図3Aと同じである。図5B、図6B、図7Bにおいて、線c、線dのは、図3Bと同義のグラフである。
 実施例2−2では、正極活物質膜の膜密度を3.4g/ccで計算した場合、1~5サイクルにおいて、200mAh/g~270mAh/gの高容量を示した。また、100サイクル程度まで、充放電の繰り返しに伴う容量劣化もなく、優れたサイクル特性を示した。
3.他の実施の形態
 本技術は、上述した本技術の実施の形態に限定されるものでは無く、本技術の要旨を逸脱しない範囲内で様々な変形や応用が可能である。例えば固体電解質電池の膜構成は、上述したものに限定されるものではない。例えば、第1~第2の実施の形態において、無機絶縁膜を省略した構成としてもよい。
 また、積層体の複数が順次、積層されて形成され、直列に電気的に接続され、全体保護膜80によって被覆された構成とすることもできる。また、基板の上に、積層体の複数が並置されて形成され、並列または直列に電気的に接続され、全体保護膜80によって被覆された構成とすることもできる。
 また、例えば、固体電解質電池の構造は、上述の例に限定されるものではない。例えば、基板10に導電性材料を用いて正極側集電体膜30を省略した構造を有する固体電解質電池等にも適用が可能である。また、例えば、正極集電体材料からなる金属板で、正極側集電体膜30を構成してもよい。負極集電体材料からなる金属板で負極側集電体膜70を構成してもよい。
 また、本技術は、以下の構成をとることもできる。
(1)
 正極活物質層を有する正極側層と、
 負極側層と、
 上記正極側層および上記負極側層との間に配置された固体電解質層とを備え、
 上記正極活物質層は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物を含む固体電解質電池。
(2)
 上記リチウムホウ酸化合物は、さらに、Cu、Ni、Co、Mn、Au、Ag、Pdから選ばれる少なくとも1種の元素M2(ただし、M1≠M2)を含有するものである(1)に記載の固体電解質電池。
(3)
 上記負極側層は、負極集電体層を含み、
 充電によって上記固体電解質層の負極側の界面にリチウム過剰層が形成された(1)~(2)の何れかに記載の固体電解質電池。
(4)
 上記正極側層は、正極集電体層をさらに含む(1)~(3)の何れかに記載の固体電解質電池。
(5)
 上記負極側層は、負極活物質層と、負極集電体層とを含む(1)に記載の固体電解質電池。
(6)
 上記正極活物質層は、薄膜で形成されたものである(1)~(5)の何れかに記載の固体電解質電池。
(7)
 基板をさらに備え、
 上記基板上に、上記正極側層と、上記負極側層と、上記固体電解質層とを含む積層体が配置された(1)~(6)の何れかに記載の固体電解質電池。
(8)
 上記正極側層、上記固体電解質層および上記負極側層は、薄膜で形成されたものである請求項(1)~(7)の何れかに記載の固体電解質電池。
(9)
 上記基板は、樹脂基板である請求項(7)~(8)の何れかに記載の固体電解質電池。
(10)
 LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するリチウムホウ酸化合物であって、該リチウムホウ酸化合物はアモルファス状態である正極活物質。
 10・・・基板
 20・・・無機絶縁膜
 30・・・正極側集電体膜
 40・・・正極活物質膜
 50・・・固体電解質膜
 60・・・負極活物質膜
 70・・・負極側集電体膜
 80・・・全体保護膜

Claims (10)

  1.  正極活物質層を有する正極側層と、
     負極側層と、
     上記正極側層および上記負極側層との間に配置された固体電解質層とを備え、
     上記正極活物質層は、LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するアモルファス状態のリチウムホウ酸化合物を含む固体電解質電池。
  2.  上記リチウムホウ酸化合物は、さらに、Cu、Ni、Co、Mn、Au、Ag、Pdから選ばれる少なくとも1種の元素M2(ただし、M1≠M2)を含有するものである請求項1に記載の固体電解質電池。
  3.  上記負極側層は、負極集電体層を含み、
     充電によって上記固体電解質層の負極側の界面にリチウム過剰層が形成された請求項1に記載の固体電解質電池。
  4.  上記正極側層は、正極集電体層をさらに含む請求項1に記載の固体電解質電池。
  5.  上記負極側層は、負極活物質層と、負極集電体層とを含む請求項1に記載の固体電解質電池。
  6.  上記正極活物質層は、薄膜で形成されたものである請求項1に記載の固体電解質電池。
  7.  基板をさらに備え、
     上記基板上に、上記正極側層と、上記負極側層と、上記固体電解質層とを含む積層体が配置された請求項1に記載の固体電解質電池。
  8.  上記正極側層、上記固体電解質層および上記負極側層は、薄膜で形成されたものである請求項7に記載の固体電解質電池。
  9.  上記基板は、樹脂基板である請求項7に記載の固体電解質電池。
  10.  LiとBとCu、Ni、Co、Mn、Au、Ag、Pdから選ばれる何れかの元素M1とOとを含有するリチウムホウ酸化合物であって、該リチウムホウ酸化合物はアモルファス状態である正極活物質。
PCT/JP2012/062885 2011-05-16 2012-05-15 固体電解質電池および正極活物質 WO2012157774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/116,646 US9325008B2 (en) 2011-05-16 2012-05-15 Solid electrolyte battery and positive electrode active material
CN201280022551.7A CN103518278B (zh) 2011-05-16 2012-05-15 固体电解质电池和正电极活性材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-109924 2011-05-16
JP2011109924A JP5821270B2 (ja) 2011-05-16 2011-05-16 固体電解質電池および正極活物質

Publications (1)

Publication Number Publication Date
WO2012157774A1 true WO2012157774A1 (ja) 2012-11-22

Family

ID=47177088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062885 WO2012157774A1 (ja) 2011-05-16 2012-05-15 固体電解質電池および正極活物質

Country Status (4)

Country Link
US (1) US9325008B2 (ja)
JP (1) JP5821270B2 (ja)
CN (1) CN103518278B (ja)
WO (1) WO2012157774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333365A1 (en) * 2014-05-19 2015-11-19 Tdk Corporation Lithium ion secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015118B1 (fr) * 2013-12-18 2016-01-22 Electricite De France Compartiment anodique avec collecteur en alliage amorphe
CN106654184A (zh) * 2015-10-29 2017-05-10 上海比亚迪有限公司 一种锂离子电池正极材料添加剂、正极材料、正极及电池
WO2019035745A1 (en) 2017-08-14 2019-02-21 Thinika, Llc HYBRID ELECTROCHEMICAL CELL WITH THIN FILM IN SOLID STATE
CN109449494B (zh) * 2018-11-06 2022-12-20 成都市银隆新能源产业技术研究有限公司 锂离子电池固体电解质界面层的制备方法和锂离子电池
JP7297191B2 (ja) * 2019-03-22 2023-06-26 エルジー エナジー ソリューション リミテッド 硫化物系全固体電池用正極活物質粒子
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257963A (ja) * 2007-04-04 2008-10-23 Central Res Inst Of Electric Power Ind 非水電解質二次電池
JP2010182447A (ja) * 2009-02-03 2010-08-19 Sony Corp 薄膜固体リチウムイオン二次電池及びその製造方法
JP2010182448A (ja) * 2009-02-03 2010-08-19 Sony Corp 薄膜固体リチウムイオン二次電池及びその製造方法
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2011060562A (ja) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd リチウムイオン二次電池
JP2011081923A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp リチウム二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029930B2 (en) * 2002-12-06 2011-10-04 Kawatetsu Mining Co., Ltd. Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2004356048A (ja) * 2003-05-30 2004-12-16 Canon Inc リチウム二次電池用電極材料、前記電極材料を有する電極構造体及び前記電極構造体を有するリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257963A (ja) * 2007-04-04 2008-10-23 Central Res Inst Of Electric Power Ind 非水電解質二次電池
JP2010182447A (ja) * 2009-02-03 2010-08-19 Sony Corp 薄膜固体リチウムイオン二次電池及びその製造方法
JP2010182448A (ja) * 2009-02-03 2010-08-19 Sony Corp 薄膜固体リチウムイオン二次電池及びその製造方法
JP2011023335A (ja) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd 非水二次電池用電極および非水二次電池
JP2011060562A (ja) * 2009-09-10 2011-03-24 Nec Energy Devices Ltd リチウムイオン二次電池
JP2011081923A (ja) * 2009-10-02 2011-04-21 Toyota Motor Corp リチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333365A1 (en) * 2014-05-19 2015-11-19 Tdk Corporation Lithium ion secondary battery
JP2016001597A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 リチウムイオン二次電池
US10033037B2 (en) * 2014-05-19 2018-07-24 Tdk Corporation Lithium ion secondary battery including a composition containing lithium and boron

Also Published As

Publication number Publication date
CN103518278B (zh) 2016-05-04
JP5821270B2 (ja) 2015-11-24
JP2012243428A (ja) 2012-12-10
US9325008B2 (en) 2016-04-26
US20140099541A1 (en) 2014-04-10
CN103518278A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5549192B2 (ja) 固体電解質電池および正極活物質
JP6051514B2 (ja) 固体電解質電池および正極活物質
KR101085355B1 (ko) 리튬 전지 및 그의 제조 방법
JP5821270B2 (ja) 固体電解質電池および正極活物質
JP6069821B2 (ja) リチウムイオン二次電池
CN102668190B (zh) 固体电解质电池和正极活性物质
US20110281167A1 (en) Thin film solid state lithium ion secondary battery and method of manufacturing the same
JP6171980B2 (ja) 電池および電子機器
WO2006082846A1 (ja) 薄膜固体二次電池
JP2009245913A (ja) リチウム電池
JP2011044368A (ja) 非水電解質電池
JPWO2020158884A1 (ja) 固体電池およびその製造方法
JP2009199920A (ja) リチウム電池
WO2012111783A1 (ja) 固体電解質電池
JP2014229502A (ja) 積層型全固体電池の製造方法
US20230123843A1 (en) Composite cathode, method of preparing the same, and secondary battery including the composite cathode
JP6460158B2 (ja) 電池および電子機器
US20220336803A1 (en) Cathode active material, preparation method thereof, cathode including the same, and secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280022551.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14116646

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12784920

Country of ref document: EP

Kind code of ref document: A1