WO2012157530A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2012157530A1
WO2012157530A1 PCT/JP2012/062070 JP2012062070W WO2012157530A1 WO 2012157530 A1 WO2012157530 A1 WO 2012157530A1 JP 2012062070 W JP2012062070 W JP 2012062070W WO 2012157530 A1 WO2012157530 A1 WO 2012157530A1
Authority
WO
WIPO (PCT)
Prior art keywords
source signal
source
pixel
display device
signal line
Prior art date
Application number
PCT/JP2012/062070
Other languages
French (fr)
Japanese (ja)
Inventor
淳 中田
齊藤 浩二
正実 尾崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012157530A1 publication Critical patent/WO2012157530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 a period in which a source signal is not written to a source signal line is used as a preliminary charging period, and the source signal lines are short-circuited to each other, thereby performing preliminary charging / discharging between the source signal lines.
  • a technique for performing (charge sharing) is disclosed.
  • JP 2005-208551 A publication date: August 4, 2005
  • the present invention has been made in view of the above problems, and an object thereof is to provide a display device that can further reduce power consumption.
  • a display device includes a display panel having a plurality of gate signal lines and a plurality of source signal lines, a gate driver that sequentially selects and scans the plurality of gate signal lines, A source driver that supplies a source signal from the plurality of source signal lines to each of a plurality of pixels on the selected gate signal line, and the source signal is supplied to a certain source signal line by the source driver. And a preliminary charge / discharge control means for performing preliminary charge / discharge on the other source signal lines.
  • the source signal potential of the source signal line can be made closer to the reference potential. Accordingly, the writing time of the source signal can be shortened as compared with a conventional display device, so that power consumption can be further reduced.
  • the display device According to the display device according to the present invention, it is possible to perform pre-charging / discharging for a longer time, and thus it is possible to reduce the power consumption.
  • FIG. 1 is a diagram illustrating an overall configuration of a display device according to Embodiment 1.
  • FIG. It is a figure which shows the structural example of the source driver which concerns on Embodiment 1, and a preliminary
  • FIG. 3 is a diagram illustrating an operation for each period of the display device according to the first embodiment. It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 1.
  • FIG. 6 is a diagram illustrating a state in a third writing period of the display device according to the first embodiment.
  • FIG. A change in potential of a certain pair of source signal lines S is shown. It is a figure which shows the structural example of the source driver which concerns on Embodiment 2, and a preliminary
  • FIG. 10 is a diagram illustrating an operation for each period of the display device according to the second embodiment. It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 2.
  • FIG. 10 is a diagram illustrating a state in a third writing period of the display device according to the second embodiment. It is a figure which shows the structural example of the source driver which concerns on Embodiment 3, and a preliminary
  • FIG. It is a figure which shows the state in the precharge period of the display apparatus which concerns on Embodiment 3.
  • FIG. 10 is a diagram illustrating a state in a second writing period of the display device according to the third embodiment. It is a figure which shows the structural example of the source driver which concerns on Embodiment 4, and a preliminary
  • FIG. 10 is a diagram illustrating an operation for each period of a display device according to a fourth embodiment. It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 4.
  • FIG. FIG. 10 is a diagram illustrating a state in a third writing period of the display device according to the fourth embodiment. It is a figure which shows the display panel in the state in which the source signal was written by the 2nd display drive system. It is a figure which shows the display panel in the state in which the source signal was written by the 3rd display drive system. It is a figure which shows the display panel in the state in which the source signal was written by the 4th display drive system.
  • FIG. 1 is a diagram illustrating an overall configuration of a display device 1 according to the first embodiment.
  • a display device 1 includes a display panel 2, a gate driver (scanning line driving circuit) 4, a source driver (signal line driving circuit) 30, a common electrode driving circuit 8, a timing controller 10, and a power generation circuit. 13 is provided.
  • an active matrix type liquid crystal display device is employed as the display device 1. Therefore, the display panel 2 of the first embodiment is an active matrix type liquid crystal display panel, and the other components described above are for driving the liquid crystal display panel.
  • the display panel 2 includes a screen composed of a plurality of pixels arranged in a grid, M gate signal lines (scanning signal lines) G for selecting and scanning the screen in a line-sequential manner, and a selected gate.
  • M gate signal lines (scanning signal lines) G for selecting and scanning the screen in a line-sequential manner
  • a selected gate for selecting and scanning the screen in a line-sequential manner
  • N source signal lines (data signal lines) S for supplying source signals (data signals) to the pixels of one row included in the signal line are provided.
  • the gate signal line G and the source signal line S are orthogonal to each other.
  • the gate signal line G connecting the pixels in the m-th row (m is an arbitrary integer) is denoted as G (m).
  • G (m) is a gate signal line G connecting pixels in the 10th row
  • G (m + 1), G (m + 2), and G (m + 3) are in the 11th, 12th, and 13th rows, respectively.
  • a gate signal line G connecting the eye pixels is shown.
  • the source signal line S that connects the pixels in the n-th column (n is an arbitrary integer) is denoted as S (n).
  • S (n) is a source signal line S connecting pixels in the tenth column
  • S (n + 1), S (n + 2), S (n + 3), S (n + 4), and S (n + 5) are respectively
  • S (n + 5) is a source signal line S connecting pixels in the 11th, 12th, 13th, 14th, and 15th columns.
  • the gate driver 4 scans each gate signal line G line-sequentially from the top to the bottom of the screen.
  • the gate driver 4 sequentially outputs to each gate signal line G a voltage for turning on a switching element (TFT) provided in each pixel on the gate signal line G. Accordingly, the gate driver 4 sequentially selects and scans each gate signal line G.
  • TFT switching element
  • the source driver 30 supplies a source signal from each source signal line S to each pixel on the selected gate signal line G. Specifically, the source driver 30 calculates the value of the voltage to be output to each pixel on the selected gate signal line G based on the input video signal (arrow A), and the voltage of that value Are output from the source output amplifier toward each source signal line S. As a result, a source signal is supplied to each pixel on the selected gate signal line G, and the source signal is written.
  • the display device 1 includes a common electrode (not shown) provided for each pixel in the screen.
  • the common electrode driving circuit 8 outputs a predetermined common voltage for driving the common electrode to the common electrode based on a signal (arrow B) input from the timing controller 10.
  • Timing controller 10 outputs a reference signal for each circuit to operate in synchronization with each circuit. Specifically, the timing controller 10 supplies the gate driver 4 with a gate start pulse signal, a gate clock signal GCK, and a gate output control signal GOE (arrow E). The timing controller 10 outputs a source start pulse signal, a source latch strobe signal, and a source clock signal to the source driver 30 (arrow F).
  • the gate driver 4 starts scanning the display panel 2 with the gate start pulse signal received from the timing controller 10 as a cue, and applies to each gate signal line G according to the gate clock signal GCK and the gate output control signal GOE received from the timing controller 10.
  • the selection voltage is sequentially applied. Specifically, the gate driver 4 sequentially selects each gate signal line G according to the received gate clock GCK signal.
  • the gate driver 4 applies a selection voltage to the selected gate signal line G at the timing when the falling edge of the received gate output control signal GOE is detected. As a result, the gate driver 4 scans the selected gate signal line G.
  • the source driver 30 Based on the source start pulse signal received from the timing controller 10, the source driver 30 stores the input image data of each pixel in a register according to the source clock signal, and each source signal of the display panel 2 according to the next source latch strobe signal. Image data is written in line S.
  • the power supply generation circuit 13 generates Vdd, Vdd2, Vcc, Vgh, and Vgl, which are voltages necessary for each circuit in the display device 1 to operate. Then, Vcc, Vgh, and Vgl are output to the gate driver 4, Vdd and Vcc are output to the source driver 30, Vcc is output to the timing controller 10, and Vdd 2 is output to the common electrode drive circuit 8.
  • FIG. 2 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the first embodiment.
  • the display panel 2 includes a plurality of blocks (hereinafter referred to as “pixel blocks”) each including a predetermined number of pixel columns and a predetermined number of pixel rows.
  • pixel blocks each including a predetermined number of pixel columns and a predetermined number of pixel rows.
  • the display panel 2 of the present embodiment includes a plurality of pixel blocks including six pixel columns and four pixel rows.
  • Each pixel block includes six source signal lines S (n) to (n + 5) corresponding to six pixel columns and four pixel rows L (m) to (m + 3).
  • each pixel block As shown in FIG. 2, the configuration of each pixel block is the same, and the operation is also the same. Therefore, hereinafter, in order to make the description easy to understand, a configuration example of the source driver 30 will be described using one of a plurality of pixel blocks included in the display panel 2.
  • a pixel in which “+” is shown is a source signal whose source signal potential is positive in this frame period (first source signal; hereinafter, referred to as “source signal (+)”). Indicates the pixel to be written.
  • a source signal (second source signal; hereinafter referred to as “source signal ( ⁇ )”) in which the source signal potential is negative is written in the pixel indicated by “ ⁇ ” in this frame period. Indicates a power pixel.
  • This frame period alternately includes a frame period in which the sign of the source signal to be written in each pixel is inverted.
  • the source driver 30 includes the number of source output amplifiers 36 that is not the same as the number of source signal lines S as in the conventional display device, but smaller than the number of source signal lines S. ing.
  • the source driver 30 of the first embodiment includes one source output amplifier 36.
  • the source driver 30 of the first embodiment is configured to supply source signals to the plurality of source signal lines S by this one source output amplifier 36.
  • switching means 32 for switching the source signal line S to which the source signal output from the source output amplifier 36 is supplied is provided.
  • the switching means 32 includes a plurality of switches 34a to 34f for each source signal line S. One end of each switch 34 is connected to the corresponding source signal line S. The other end of each switch 34 is connected to the output end of the source output amplifier 36. The operation (ie, on / off) of each switch 34 is controlled by a controller 33 provided in the switching unit 32.
  • the source driver 30 employs the first display driving method. According to the first display driving method, each time the gate signal line G (pixel row) is selected, the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row). The source signal is written while inverting the positive / negative of the voltage supplied from the signal (from the reference voltage) for each pixel.
  • the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column).
  • the source signal is written without inverting the sign of each pixel.
  • each of the plurality of source signal lines S (pixel columns) has only one of the pixel to which the source signal (+) is written and the pixel to which the source signal ( ⁇ ) is written as shown in FIG. It will not exist.
  • source signal line S (+) the source signal line S in which only the pixel to which the source signal (+) is written exists (hereinafter, referred to as “source signal line S (+)”) on the display panel 2.
  • source inversion driving the display driving method in which the positive / negative of the source signal is inverted for each source signal line S (pixel column) is referred to as “source inversion driving”.
  • the polarity of the source signal supplied to each source signal line S is inverted every time the frame period is switched. For example, when a source signal (+) is written to all the pixels in the even-numbered pixel column and a source signal ( ⁇ ) is written to all the pixels in the odd-numbered pixel column in a certain frame period, the next frame period The source signal ( ⁇ ) is written to all the pixels in the even-numbered pixel column, and the source signal (+) is written to all the pixels in the odd-numbered pixel column.
  • the write operation by the source driver 30 will be specifically described.
  • the controller 33 turns on the switch 34 corresponding to the source signal line S.
  • the other switches 34 remain OFF.
  • the source output amplifier 36 and the source signal line S are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the target source signal line S.
  • the controller 33 selects the switch to be turned on according to the source signal line S to which the source signal is supplied. As a result, a source signal is supplied to each of the plurality of source signal lines S.
  • one horizontal period in the display device 1 of the first embodiment includes, in order, a precharge period, a first writing period, a second writing period, a third writing period, A fourth writing period, a fifth writing period, and a sixth writing period are included.
  • the first to sixth writing periods are writing periods for the source signal lines S (n) to (n + 5).
  • the controller 33 switches the corresponding switch 34 to ON and switches the other switches 34 to OFF.
  • the switch 34 that is already OFF is left OFF.
  • the corresponding source signal line S is connected to the source output amplifier 36, and the source signal output from the source output amplifier 36 is supplied to the source signal line S. .
  • the source driver 30 of this embodiment employs source inversion driving.
  • the source output amplifier 36 supplies the source signal of the source signal to be supplied every time the target source signal line S is switched (that is, every time the writing period is switched) in the first to sixth writing periods. Switches between positive and negative potentials.
  • the display device 1 further includes preliminary charge / discharge control means 20.
  • the preliminary charge / discharge control means 20 controls preliminary charge / discharge with respect to the plurality of source signal lines S.
  • Pre-charging / discharging refers to charging / discharging the source signal line S in advance so that the potential of the source signal line S approaches the target source signal potential for the next writing.
  • parasitic capacitance is generated in the source signal line S in addition to the pixel capacitance. For this reason, when a source signal is written to a certain pixel capacitance of the source signal line S, positive or negative charges of the source signal are stored in the source signal line S.
  • the source driver 30 of this embodiment employs source inversion driving. Therefore, focusing on the same source signal line S, the source signal supplied to the source signal line S is switched between the source signal (+) and the source signal ( ⁇ ) within the same frame period. However, every time the frame period is switched, the source signal supplied to the source signal line S is switched between the source signal (+) and the source signal ( ⁇ ).
  • the source signal line S stores charges whose source signal potential is different from that of the source signal. It has been.
  • the preliminary charge / discharge control means 20 of the first embodiment performs preliminary charge / discharge (charge sharing) between the source signal lines S by short-circuiting the source signal lines S having different positive and negative source signal potentials. .
  • the source driver 30 of the first embodiment performs source inversion driving, focusing on the same frame period, the source signal line S (+) and the source signal line S ( -) Exist alternately.
  • the preliminary charge / discharge control means 20 includes a plurality of switches 22a to 22c. One end of each switch 22 is connected to one source signal line S. The other end of each switch 22 is connected to another source signal line S adjacent to the one source signal line S.
  • the switch 22a has a configuration in which the source signal line S (n) and the source signal line S (n + 1) can be short-circuited, and the source signal lines S can be precharged and discharged. .
  • the switch 22b has a configuration in which the source signal line S (n + 2) and the source signal line S (n + 3) can be short-circuited and the source signal lines S can be precharged and discharged. .
  • the switch 22c has a configuration in which the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, and the source signal lines S can be preliminarily charged / discharged. .
  • the operation timing of each of the switches 22a to 22c is controlled by the controller 21 provided in the preliminary charge / discharge control means 20 (that is, the on / off timing).
  • the controller 21 controls the precharging for each of the source signal lines S (n) to (n + 5) by controlling the operation timing of each of the switches 22a to 22c.
  • FIG. 3 is a diagram illustrating an operation for each period of the display device 1 according to the first embodiment.
  • FIG. 4 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the first embodiment.
  • FIG. 5 is a diagram illustrating a state in the third writing period of the display device 1 according to the first embodiment.
  • a preliminary charging period is a period during which precharge / discharge is performed for each of the source signal lines S (n) to (n + 5).
  • the first to sixth writing periods are writing periods for the source signal lines S (n) to (n + 5).
  • FIG. 3 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period.
  • W indicates that the source signal is written to the source signal line S.
  • means a terminal of the source signal line S. That is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
  • Preliminary charging period the operation of the display device 1 during the preliminary charging period will be described.
  • the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
  • the display device 1 turns on all the switches 22a to 22c provided between adjacent source signal lines S as shown in FIG.
  • the switch 22a When the switch 22a is turned ON, the source signal line S (n) and the source signal line S (n + 1) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
  • the switch 22b when the switch 22b is turned on, the source signal line S (n + 2) and the source signal line S (n + 3) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
  • the switch 22c when the switch 22c is turned ON, the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
  • the display device 1 does not write the source signal to any of the source signal lines S (n) to (n + 5) as shown in FIG. Therefore, during this preliminary charging period, the display device 1 keeps all the switches 34a to 34f OFF as shown in FIG.
  • the display device 1 sequentially writes source signals to the source signal lines S (n) to (n + 5) as shown in FIG. Specifically, the display device 1 sequentially turns on the switches 34a to 34f each time the source output amplifier 36 outputs a source signal, so that the source signal lines S (n) to (n + 5) are Write source signals sequentially.
  • the display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 22 for the source signal line S capable of preliminary charging / discharging.
  • the source signal line S that can be precharged / discharged here is a source signal line S other than the source signal line S to which the source signal is written, and the source signal line S for which the source signal has already been written, and the source This is a source signal line S excluding the source signal line S that forms a pair with the source signal line S to which a signal is to be written.
  • the source signal line S to be precharged / discharged in each writing period is as shown in FIG. 3, but as an example, referring to FIG. 5, the display device 1 in the third writing period. Will be described.
  • the display device 1 writes a source signal to the source signal line S (n + 2), and simultaneously reserves the source signal lines S (n + 4) and (n + 5). Discharge.
  • the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG.
  • the source output amplifier 36 and the source signal line S (n + 2) are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the source signal line S (n + 2).
  • the display device 1 turns on the switches 22c corresponding to these source signal lines S as shown in FIG. .
  • the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, charges are averaged between these source signal lines S, and preliminary charge / discharge is performed.
  • FIG. 6 shows a change in potential of a certain pair of source signal lines S.
  • FIG. 6A shows a change in potential of a pair of source signal lines S in a conventional display device.
  • FIG. 6B shows a change in potential of a certain pair of source signal lines S in the display device 1 according to the first embodiment.
  • the source lines S (n + 2) and (n + 3) shown in FIG. 2 will be described as an example.
  • positive charges have already been stored in the source line S (n + 2) by the previous writing.
  • negative charges have already been stored in the source line S (n + 3) by the previous writing.
  • the next writing is performed in the third writing period for each of the source lines S (n + 2) and (n + 3).
  • the conventional display device performs preliminary charge / discharge only during the preliminary charge period. Therefore, in the conventional display device, the potentials of the source lines S (n + 2) and (n + 3) can be brought close to the reference potential by the third writing period in which the next writing is performed. Is insufficient, the potentials of the source lines S (n + 2) and (n + 3) cannot reach the reference potential. For this reason, at the time of the next writing, it is necessary to write the shortage to the reference potential + the shortage from the reference potential to the target potential for each of the source lines S (n + 2) and (n + 3).
  • the display device 1 performs pre-charge / discharge not only during the pre-charge period but also during the source signal writing period. For this reason, in the display device 1 of the first embodiment, the potentials of the source lines S (n + 2) and (n + 3) are made to reach the reference potential by the third writing period in which the next writing is performed. Can do. For this reason, at the time of the next writing, only writing of the shortage (V 1 and V 2 in the figure) from the reference potential to the target potential may be performed on each of the source lines S (n + 2) and (n + 3). Therefore, the writing period at the next writing can be shortened.
  • the display device 1 according to the first embodiment performs preliminary charge / discharge on the source signal line S that can be precharged / discharged not only during the period in which the source signal is not written but also in the period in which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 according to the first embodiment can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
  • the display device 1 of the first embodiment employs a configuration in which only one source output amplifier is provided and a source signal is supplied from the source output amplifier to each of a plurality of source signal lines.
  • the number of source output amplifiers for supplying source signals can be greatly reduced, and the cost associated with the source driver can be reduced.
  • the display device 1 of Embodiment 1 can reduce the total amount of steady current required by the source output amplifier by reducing the number of source output amplifiers. Therefore, the display device 1 of the first embodiment can further reduce power consumption.
  • Embodiment 2 Next, Embodiment 2 of the present invention will be described.
  • the source signal line S (+) and the source signal line S ( ⁇ ) are short-circuited to perform preliminary charging / discharging between the source signal lines S.
  • the source signal line S is preliminarily charged / discharged by grounding the source signal line S to the ground.
  • points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus the description thereof is omitted.
  • FIG. 7 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the second embodiment.
  • the preliminary charge / discharge control means 20 of the second embodiment may cause each of the plurality of source signal lines S to perform preliminary charge / discharge (discharge) by grounding each of the plurality of source signal lines S to the ground. It can be configured.
  • the preliminary charge / discharge control means 20 includes a plurality of switches 23a to 23f for each source signal line S. One end of each switch 23 is connected to the corresponding source signal line S. The other end of each switch 23 is grounded, and is configured to be able to discharge the charge stored in the corresponding source signal line S to the ground potential.
  • the operation timing of each of the switches 23a to 23f is controlled by the controller 21 provided in the preliminary charge / discharge control means 20 (that is, the on / off timing).
  • the controller 21 controls preliminary charge / discharge for each of the source signal lines S (n) to (n + 5) by controlling the operation timing of each of the switches 23a to 23f.
  • FIG. 8 is a diagram illustrating an operation for each period of the display device 1 according to the second embodiment.
  • FIG. 9 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the second embodiment.
  • FIG. 10 is a diagram illustrating a state in the third writing period of the display device 1 according to the second embodiment.
  • a precharge period, a first writing period, and a second writing are sequentially performed.
  • FIG. 8 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period.
  • W indicates that a source signal is written to the source signal line S.
  • G indicates that the source signal line S is grounded to perform the pre-charge / discharge.
  • Preliminary charging period the operation of the display device 1 during the preliminary charging period will be described.
  • the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
  • the display device 1 turns on all the switches 23a to 23f to ground all the source signal lines S to the ground. As a result, each of the source signal lines S (n) to (n + 5) performs preliminary charge / discharge.
  • the display device 1 does not write the source signal to any of the source signal lines S (n) to (n + 5) as shown in FIG.
  • the display device 1 keeps all the switches 34a to 34f OFF.
  • the display device 1 sequentially writes source signals to the source signal lines S (n) to (n + 5) as shown in FIG. Specifically, the display device 1 sequentially turns on the switches 34a to 34f each time the source output amplifier 36 outputs a source signal, so that the source signal lines S (n) to (n + 5) are Write source signals sequentially.
  • the display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 23 for the source signal line S capable of preliminary charging / discharging.
  • the source signal lines S that can be precharged and discharged in the first to sixth writing periods are source signal lines excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written. S.
  • the source signal line S to be precharged / discharged in each writing period is as shown in FIG. 8.
  • the display device 1 in the third writing period Will be described.
  • the display device 1 writes the source signal to the source signal line S (n + 2), and simultaneously reserves the source signal lines S (n + 3) to (n + 5). Discharge.
  • the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG.
  • the source output amplifier 36 and the source signal line S (n + 2) are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the source signal line S (n + 2).
  • each of the switches 23d to 23f corresponding to the source signal lines S corresponds to the source signal lines S (n + 3) to (n + 5) that can be precharged / discharged.
  • each of the source signal lines S (n + 3) to (n + 5) is grounded to the ground, and the source signal line S (n + 3) until each potential of the source signal lines S (n + 3) to (n + 5) becomes the ground potential.
  • To (n + 5) are discharged.
  • the display device 1 performs the preliminary charge / discharge for the source signal line S that can be precharged / discharged not only during the period in which the source signal is not written but also in the period in which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 2 can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
  • the display device 1 discharges the electric charge stored in the source signal line S by grounding the source signal line S to the ground. For this reason, even when it is difficult to short-circuit the source signal lines S, such as when the source signal lines S having different positive and negative source signal potentials are not adjacent to each other, preliminary charge / discharge is performed on the source signal line S. Can be done. In addition, since the source signal line S that is a short circuit partner is not required, more precharge periods can be provided for each source signal line S.
  • the display device 1 uses the reference potential as the reference potential. This is effective when the ground potential is used.
  • the source signal is written by one source output amplifier 36.
  • the third embodiment an example in which source signal writing is performed in parallel by two source output amplifiers 37 and 38 will be described.
  • points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus description thereof is omitted.
  • FIG. 11 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the third embodiment.
  • the source driver 30 of the third embodiment includes a number of source output amplifiers that are smaller than the number of source signal lines S.
  • the source driver 30 of the third embodiment includes two source output amplifiers 37 and 38.
  • the source output amplifier 37 (second source output amplifier) is for supplying a source signal ( ⁇ ) having a negative source signal potential.
  • the source output amplifier 38 (first source output amplifier) is for supplying a source signal (+) having a positive source signal potential.
  • the source output amplifier 36 of the first embodiment supplies both the source signal (+) and the source signal ( ⁇ ), whereas the source output amplifiers 37 and 38 of the third embodiment Only one of (+) and source signal (-) is supplied.
  • the source driver 30 of the third embodiment supplies the source signal (+) from the source output amplifier 37 when supplying the source signal ( ⁇ ) to each of the plurality of source signal lines S.
  • the source signal is supplied from the source output amplifier 38.
  • switching means 32 for switching the source signal line S to which the source signals output from the source output amplifiers 37 and 38 are supplied is provided on the output side of each of the source output amplifiers 37 and 38. Yes.
  • the switching means 32 includes a plurality of switches 34a to 34f for each source signal line S. Further, the switching unit 32 includes a plurality of switches 35a to 35f for each source signal line S.
  • each switch 34 One end of each switch 34 is connected to the corresponding source signal line S, and the other end of each switch 34 is connected to the output terminal of the source output amplifier 37. That is, the switches 34a to 34f are for switching the source signal line S to which the source signal output from the source output amplifier 37 is supplied.
  • each switch 35 is connected to the corresponding source signal line S, and the other end of each switch 35 is connected to the output terminal of the source output amplifier 38. That is, the switches 35a to 35f are for switching the source signal line S to which the source signal output from the source output amplifier 38 is supplied.
  • each switch 34, 35 is controlled by the controller 33 provided in the switching means 32.
  • the controller 33 turns on the switch 35 corresponding to the source signal line S. At this time, the other switches 35 remain OFF. Thereby, the source output amplifier 38 and the source signal line S are electrically connected, and the source signal (+) output from the source output amplifier 38 is supplied to the target source signal line S.
  • the controller 33 switches the switch to be turned on according to the source signal line S that is the output destination of the source signal. As a result, a source signal is supplied to each of the plurality of source signal lines S.
  • one horizontal period in the display device 1 of the third embodiment includes a preliminary charging period, a first writing period, a second writing period, and a third writing period in order. include.
  • the source driver 30 of the third embodiment simultaneously supplies the source signal ( ⁇ ) by the source output amplifier 37 and the source signal (+) by the source output amplifier 38 in each writing period.
  • writing to each of the six source signal lines S (source signal lines S (n) to (n + 5)) in three writing periods (first to third writing periods) is realized.
  • the controller 33 switches the corresponding switches 34 and 35 to ON and switches the other switches 34 and 35 to OFF. Accordingly, in each writing period, the corresponding second source signal line S is connected to the source output amplifier 37, and the source signal ( ⁇ ) output from the source output amplifier 37 is connected to the source signal line S. Will be supplied. At the same time, the corresponding first source signal line S is connected to the source output amplifier 38, and the source signal (+) output from the source output amplifier 38 is supplied to the source signal line S.
  • FIG. 12 is a diagram illustrating an operation for each period of the display device 1 according to the third embodiment.
  • FIG. 13 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the third embodiment.
  • FIG. 14 is a diagram illustrating a state in the second writing period of the display device 1 according to the third embodiment.
  • one horizontal period in the display device 1 according to the third embodiment includes a preliminary charging period, a first writing period, a second writing period, and a third writing period in this order.
  • the precharge period is a precharge period for each of the source signal lines S (n) to (n + 5).
  • the first to third writing periods are writing periods for the source signal lines S (n) to (n + 5).
  • FIG. 12 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period.
  • W indicates that the source signal is written to the source signal line S.
  • means a terminal of the source signal line S, that is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
  • Preliminary charging period the operation of the display device 1 during the preliminary charging period will be described.
  • the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
  • the display device 1 turns on all the switches 22a to 22c provided between adjacent source signal lines S as shown in FIG. As a result, all adjacent source signal lines S are short-circuited to perform preliminary charging / discharging. This is the same as the display device 1 of the first embodiment.
  • the source driver 30 writes a source signal to the source signal lines S (n) and (n + 1).
  • the source signal ( ⁇ ) is written to the source signal line S (n), and at the same time, the source signal ( Write (+).
  • the controller 33 turns on the switch 34a corresponding to the source signal line S (n), turns on the switch 35b corresponding to the source signal line S (n + 1), and turns off the other switches. .
  • the source driver 30 writes a source signal to the source signal lines S (n + 2) and (n + 3).
  • the source signal ( ⁇ ) is written to the source signal line S (n + 2), and at the same time, the source signal ( Write (+).
  • the controller 33 turns on the switch 34c corresponding to the source signal line S (n + 2), turns on the switch 35d corresponding to the source signal line S (n + 3), and turns off the other switches. .
  • the source driver 30 writes a source signal to the source signal lines S (n + 4) and (n + 5).
  • the source signal ( ⁇ ) is written to the source signal line S (n + 4) and at the same time the source signal ( ⁇ ) is applied to the source signal line S (n + 5). Write (+).
  • the controller 33 turns on the switch 34e corresponding to the source signal line S (n + 4), turns on the switch 35f corresponding to the source signal line S (n + 5), and turns off the other switches. .
  • the display device 1 performs preliminary charging / discharging by turning on the corresponding switch 23 for the source signal line S capable of preliminary charging / discharging.
  • the source signal line S that can be precharged / discharged here is a source signal line S excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written.
  • FIG. 12 which source signal line S is precharged / discharged in each period is as shown in FIG. 12, but as an example, referring to FIG. The operation will be described.
  • the display device 1 writes the source signal to the source signal lines S (n + 2) and (n + 3), and at the same time writes the source signal to the source signal lines S (n + 4) and (n + 5). Perform pre-charging and discharging.
  • the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG.
  • the source output amplifier 37 and the source signal line S (n + 2) are electrically connected, and the source signal ( ⁇ ) output from the source output amplifier 37 is written to the source signal line S (n + 2).
  • the controller 33 of the switching means 32 turns on the switch 35d corresponding to the source signal line S (n + 3) as shown in FIG. Thereby, the source output amplifier 38 and the source signal line S (n + 3) are electrically connected, and the source signal (+) output from the source output amplifier 38 is written to the source signal line S (n + 3).
  • the display device 1 turns on the switches 22c corresponding to these source signal lines S as shown in FIG. .
  • the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, charges are averaged between these source signal lines S, and preliminary charge / discharge is performed.
  • each pixel of the display device 1 is inverted with respect to FIGS. 13 and 14, but the source signal (+) is written in each pixel row of the display device 1 as in FIGS.
  • Each of the pixel columns of the display device 1 includes only one of the pixel to which the source signal (+) is written and the pixel to which the source signal ( ⁇ ) is written, as in FIGS. It will be.
  • the display device 1 performs the preliminary charging / discharging on the source signal line S that can be pre-charged / discharged not only during the period when the source signal is not written but also during the period when the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 3 can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
  • the display device 1 has a configuration in which only two source output amplifiers are provided and a source signal is supplied from the source output amplifier to each of a plurality of source signal lines.
  • the number of source output amplifiers for supplying source signals can be greatly reduced, and the cost associated with the source driver can be reduced.
  • the display device 1 according to the third embodiment can reduce the total amount of steady current required by the source output amplifier by reducing the number of source output amplifiers. Therefore, the display device 1 of the third embodiment can further reduce the power consumption.
  • the display device 1 of the third embodiment uses the source output amplifiers 37 and 38 that supply only one of the source signal (+) and the source signal ( ⁇ ).
  • the withstand voltage design range of each source output amplifier is kept on one of the positive side and the negative side. Since it can be narrowed, the power consumption of each source output amplifier can be reduced. Therefore, the display device 1 of the third embodiment can further reduce the power consumption.
  • the display device 1 of Embodiment 3 writes the source signal (+) and the source signal ( ⁇ ) in parallel.
  • the source signal writing period can be shortened.
  • the source signals for the six source signal lines S are performed. Only three writing periods are required.
  • the fact that the source signal writing period can be shortened means that the horizontal scanning period can be shortened. Therefore, the display device 1 according to the third embodiment can display more images within a predetermined unit time, and as a result, display image quality can be improved.
  • the source signals are written in the arrangement order of the source signal lines S (n) to (n + 5). That is, after writing a source signal to a certain source signal line S, writing of the source signal to an adjacent source signal line S is continued.
  • FIG. 15 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the fourth embodiment.
  • the precharge / discharge control unit 20 of the fourth embodiment further includes a plurality of switches 23a to 23f for each source signal line S. And switches 22d and e.
  • each switch 23 One end of each switch 23 is connected to the corresponding source signal line S.
  • the other end of each switch 23 is grounded, and is configured to be able to discharge charges stored in the corresponding source signal line S.
  • the preliminary charge / discharge control means 20 of the fourth embodiment has both a configuration in which the source signal lines are short-circuited to perform preliminary charge / discharge and a configuration in which the source signal lines are grounded to the ground to perform preliminary charge / discharge. It has.
  • the controller 21 provided in the preliminary charge / discharge control means 20 operates each switch 23a to 23f (ie, on / off timing) and each switch 22a to 22e (ie, on / off). Are configured to control each of them.
  • the controller 21 controls the operation timing of each of the switches 22a to 22e and the operation timing of each of the switches 23a to 23f, so that the precharge period for each of the source signal lines S (n) to (n + 5) is controlled. To control.
  • FIG. 16 is a diagram illustrating an operation for each period of the display device 1 according to the fourth embodiment.
  • FIG. 17 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the fourth embodiment.
  • FIG. 18 is a diagram illustrating a state in the third writing period of the display device 1 according to the fourth embodiment.
  • a preliminary charging period, a first writing period, and a second writing are sequentially performed.
  • FIG. 16 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period.
  • W indicates that the source signal line is written to the source signal line S.
  • G indicates that the source signal line S is grounded to perform the pre-charge / discharge.
  • means a terminal of the source signal line S, that is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
  • the display device 1 turns on all the adjacent source signal lines S by turning on all the switches 22a to 22c provided between the adjacent source signal lines S. Short circuit. This is the same as the display device 1 of the first embodiment.
  • the display device 1 writes source signals to the source signal lines S (n) to (n + 5) in an order that does not continue writing to the adjacent source signal lines S.
  • the display device 1 writes the source signals in the order of the source signal lines S (n), (n + 3), (n + 5), (n + 2), (n + 4), and (n + 1). .
  • the display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 22 or 23 for the source signal line S capable of preliminary charging / discharging. That is, the display device 1 performs preliminary charge / discharge by short-circuiting the adjacent source signal line S or grounding the source signal line S that can be pre-charged / discharged.
  • the source signal lines S that can be precharged / discharged are the source signal lines S excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written.
  • both a method of short-circuiting the adjacent source signal line S and a method of grounding to the ground are provided. Any method may be used for the preliminary charging / discharging, but in the example shown in FIG. 16, the method of short-circuiting with the adjacent source signal line S is preferentially adopted. If pre-charging / discharging by this method cannot be performed, a method of grounding to ground is adopted. As a result, the ground potential is less likely to be disturbed than when the grounding to the ground is preferentially used, and display noise and display disorder due to this are less likely to occur.
  • FIG. 16 which source signal line S is precharged / discharged in each period is as shown in FIG. 16.
  • the display device 1 writes the source signal to the source signal line S (n + 5), and at the same time, the source signal line S (n + 1), (n + 2), (n + 4). Perform pre-charging and discharging.
  • the controller 33 of the switching means 32 turns on the switch 34f corresponding to the source signal line S (n + 5) as shown in FIG.
  • the source output amplifier 36 and the source signal line S (n + 5) are electrically connected, and the source signal output from the source output amplifier 36 is written to the source signal line S (n + 5).
  • the display device 1 performs preliminary charge / discharge on the source signal lines S (n + 1), (n + 2), and (n + 4) that can be precharged / discharged.
  • the source signal lines S (n + 1) and (n + 2) are adjacent to each other. For this reason, the display device 1 short-circuits the source signal lines S (n + 1) and (n + 2) by turning on the switch 22d provided therebetween, and precharges the source signal lines S with each other. Let the discharge occur.
  • the display device 1 since the source signal line S (n + 4) does not have the adjacent prechargeable / dischargeable source signal line S, the display device 1 turns on the switch 23e to turn the source signal line S (n + 4) to the ground. And the charge stored in the source signal line S (n + 4) is discharged.
  • the display device 1 according to the fourth embodiment performs preliminary charge / discharge on the source signal line S that can be precharged / discharged not only during a period during which the source signal is not written but also during a period during which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 4 can shorten the writing time of the source signal as compared with the conventional display device.
  • source signals are written to a plurality of source signal lines S in an order not to continue writing to adjacent source signal lines S.
  • the display device 1 according to the fourth embodiment can suppress the generation of the parasitic capacitance, and as a result, display image quality can be improved.
  • the display device of the present invention does not write pixel rows in the arrangement order for all pixel rows, but does not write pixel rows in the arrangement order for at least some of the pixel rows. This can also be applied to a display device adopting as a display driving method.
  • the display device 1 of Embodiment 5 writes the source signal only to the pixels in the even-numbered pixel rows and the source signal only to the pixels in the odd-numbered pixel rows every time the frame period is switched.
  • An interlaced drive system that switches between writing and supply is adopted.
  • a source signal is written only to even-numbered pixel rows in a certain frame period, and a source signal is written only to odd-numbered pixel rows in the next frame period.
  • the display device 1 alternately performs the operation in the first frame period and the operation in the second frame period shown below.
  • the first frame period and the second frame period respectively include first and second horizontal periods according to the number of pixel rows being four.
  • each horizontal period includes the preliminary charging period and the first to sixth writing periods, and the writing operation and the preliminary charging / discharging operation in each period are the same as in the first embodiment, description thereof is omitted.
  • First frame period first horizontal period
  • the pixel row L (m) illustrated in FIG. 2 and the like is selected, and the source signal is written only to the pixels in the pixel row L (m).
  • pixel rows to be written in each frame period are limited to even rows or odd rows. Accordingly, the number of times of writing source signals can be reduced, so that power consumption can be further reduced.
  • the same effect as in the first embodiment can be obtained by performing the pre-charge / discharge similarly to the first embodiment.
  • the present invention can be applied not only to a display device that employs interlaced driving in the writing order but also to a display device that employs interlaced driving in a writing order other than the above.
  • every time one line is written one line is skipped and the next line is written.
  • a plurality of lines are skipped and the next line is written. May be written.
  • every time a plurality of lines are written one line or a plurality of lines may be skipped and the next line may be written.
  • the writing unit of the pixel row may be one row or a plurality of rows, and the number of pixel rows to be skipped after writing may be one row or a plurality of rows.
  • a part of pixel rows (for example, even-numbered pixel rows) is written in a certain frame period, and the remaining pixel rows (for example, odd-numbered pixel rows) in the next frame period. It was decided to write. That is, in the above writing order, writing to all pixel rows is performed in two frame periods. However, writing to all pixel rows may be performed in one frame period, and the writing is performed over three or more frame periods. Thus, writing may be performed for all the pixel rows.
  • some pixel rows are written in the first half of a frame period, and the remaining pixel rows (for example, odd-numbered pixel rows) are written in the second half of the frame period. (That is, writing to all pixel rows may be performed in one frame).
  • the source signal (+) is written to all the pixels in the partial pixel row in the first half of the frame period, and the source signal is applied to all the pixels in the remaining pixel row in the second half of the frame period. (-) May be written.
  • the source driver 30 can employ a display driving method other than the first display driving method.
  • FIG. 19 is a diagram showing the display panel 2 in a state where a source signal is written by the second display driving method.
  • the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
  • the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row) every time the gate signal line G (pixel row) is selected.
  • the source signal is written while inverting the positive / negative of the voltage supplied from the signal (from the reference voltage) for each pixel.
  • the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column).
  • the source signal is written by inverting the positive / negative of each pixel.
  • the pixel to which the source signal (+) is written and the pixel to which the source signal ( ⁇ ) is written in any of the plurality of pixel columns and the plurality of pixel rows. are alternately present.
  • Such a second display driving method can be referred to as “dot inversion driving”.
  • the display panel 2 changes between the state shown in FIG. 19 and the state in which the sign of each pixel is inverted from FIG. 19 for each frame period. Can be alternated.
  • FIG. 20 is a diagram showing the display panel 2 in a state where a source signal is written by the third display driving method.
  • the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
  • the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row).
  • the source signal is written without inverting the sign (from the reference voltage) of the voltage supplied as the signal for each pixel.
  • each pixel row on the display panel 2 has only one of the pixel to which the source signal (+) is written and the pixel to which the source signal ( ⁇ ) is written, as shown in FIG. .
  • the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column).
  • the source signal is written by inverting the positive / negative of each pixel.
  • the display panel 2 has the state shown in FIG. 20 and the state in which the sign of each pixel is inverted from FIG. Can be alternated.
  • FIG. 21 is a diagram showing the display panel 2 in a state where a source signal is written by the fourth display driving method.
  • the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
  • the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row) every time the gate signal line G (pixel row) is selected.
  • the source signal is written without inverting the sign (from the reference voltage) of the voltage supplied as the signal for each pixel.
  • the source driver 30 supplies a reference voltage (reference) to the plurality of pixels on each source signal line S (pixel column). Write the source signal without inverting the sign (from voltage) pixel by pixel.
  • the source driver 30 does not invert the positive / negative (from the reference voltage) of the voltage supplied as the source signal for each pixel, without reversing the positive / negative for each pixel. Write signal.
  • the source driver 30 inverts the sign (from the reference voltage) of the voltage supplied as the source signal in the relationship between adjacent pixel blocks.
  • the source signal ( ⁇ ) is written to all the pixels by the source output amplifier corresponding to this pixel block.
  • the source signal (+) is written to all the pixels by the source output amplifier corresponding to this pixel block.
  • the display panel 2 changes between the state shown in FIG. 21 and the state in which the polarity of each pixel is inverted from FIG. Can be alternated.
  • the display device 1 is not limited to the first embodiment even when any of the display driving methods described above is employed. Preliminary charging / discharging can be performed with a configuration similar to that described in the fifth to fifth embodiments, and effects similar to those described in the first to fifth embodiments can be achieved.
  • the display device of the present invention can be applied to a display device that employs a display driving method other than the first display driving method.
  • the display device is selected by a display panel having a plurality of gate signal lines and a plurality of source signal lines, a gate driver that sequentially selects and scans the plurality of gate signal lines.
  • a source driver that supplies a source signal from the plurality of source signal lines to each of a plurality of pixels on the gate signal line, and a source signal is supplied to a certain source signal line by the source driver.
  • a pre-charging / discharging control means for performing pre-charging / discharging with respect to another source signal line.
  • the source signal potential of the source signal line can be made closer to the reference potential. Accordingly, the writing time of the source signal can be shortened as compared with a conventional display device, so that power consumption can be further reduced.
  • the preliminary charging / discharging control unit short-circuits the other source signal line having a positive source signal potential and the other source signal line having a negative source signal potential. It is preferable to perform preliminary charging / discharging for other signal lines.
  • the source signal potential of these source signal lines is It can be brought close to the reference potential in advance. Thereby, when writing to these source signal lines, the writing time of the source signal can be shortened.
  • the preliminary charge / discharge control unit performs preliminary charge / discharge on the other source signal line by grounding the other source signal line to the ground.
  • the source driver outputs one source output amplifier, and each time the one source output amplifier outputs a source signal, the supply destination of the source signal is selected from among the plurality of source signal lines.
  • the switching means has a switch for connecting and disconnecting the source signal line and the one source output amplifier for each of the plurality of source signal lines, and the one source output amplifier receives the source signal. It is preferable to turn on the switch of the source signal line to which the source signal is to be supplied every time it is output.
  • the source driver outputs a first source output amplifier that outputs a first source signal having a positive source signal potential and a second source signal having a negative source signal potential.
  • the switching means includes, for each of the plurality of source signal lines, a first switch for connecting and disconnecting the source signal line and the first source output amplifier, the source signal line, and the second source signal line.
  • a second switch for connecting and disconnecting the first source output amplifier, and each time the first source output amplifier outputs the first source signal, the first source signal is supplied.
  • the first switch of the source signal line to be turned on is turned on and the second source output amplifier outputs the second source signal, the source signal line to which the second source signal is to be supplied It is preferable to turn on the second switch.
  • the withstand voltage design range of each source output amplifier is Since it can be narrowed by being accommodated in one of the positive side and the negative side, the power consumption of each source output amplifier can be reduced.
  • the output of the first source signal by the first source output amplifier and the output of the second source signal by the second source output amplifier are performed in parallel. Accordingly, it is preferable that the supply of the first source signal to the source signal line and the supply of the second source signal to the source signal line are performed in parallel.
  • the source signal writing period can be shortened. That is, since the horizontal scanning period can be shortened, more images can be displayed within a predetermined unit time, and as a result, the display image quality can be improved. That is, an image can be displayed more efficiently.
  • the source driver supplies source signals to a plurality of source signal lines in an order in which source signals are not continuously supplied to adjacent source signal lines.
  • the source driver writes a source signal to pixels in a part of the plurality of pixel rows and outputs source signals to pixels in the remaining pixel rows of the plurality of pixel rows. It is preferable to perform writing by alternately switching.
  • the source driver includes, for each pixel row, a pixel in which a source signal having a positive source signal potential is written and a pixel in which a source signal having a negative source signal potential is written.
  • Source signals are written so that they exist alternately, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written or a source signal having a negative source signal potential is written. It is preferable to employ the first display driving method for writing the source signal so that only one of the pixels is present.
  • the source driver includes, for each pixel row, a pixel to which a source signal having a positive source signal potential is written and a pixel to which a source signal having a negative source signal potential is written.
  • the source signal is written so as to be alternately present, and for each pixel column, the pixel to which the source signal having the positive source signal potential is written and the source signal having the negative source signal potential are written. It is preferable to adopt the second display driving method for writing the source signal so that the pixels are alternately present.
  • the source driver may be either a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written.
  • a source signal is written so that only one of them exists, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written and a source signal having a negative source signal potential are written. It is preferable to employ the third display driving method for writing the source signal so that the pixels in which the signal is written alternately exist.
  • the source driver may be either a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written.
  • a source signal is written so that only one of them exists, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written or a source signal having a negative source signal potential is written. It is preferable that the fourth display driving method for writing the source signal is adopted so that only one of the pixels in which is written exists.
  • the display device according to the present invention can be used in various display devices employing an active matrix method, such as a liquid crystal display device, an organic EL display device, and electronic paper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device (1) including: a display panel (2) that has a plurality of gate signal lines (G) and a plurality of source signal lines (S); a gate driver (4) that sequentially selects and scans the plurality of gate signal lines (G); a source driver (30) that supplies source signals from the plurality of source signal lines (S) to respective pixels on the selected gate signal line (G); and a precharge and predischarge control means (20) for performing precharge and predischarge for other source signal lines (S) during a period during in which the source driver (30) writes a source signal to a certain source signal line (S).

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 近年、液晶表示装置に代表される薄型、軽量、および低消費電力の表示装置が盛んに活用されている。こうした表示装置は、例えば携帯電話、スマートフォン、PDA(携帯型情報端末)、電子ブック、ラップトップ型パーソナルコンピュータ等への搭載が顕著である。また、今後はより薄型の表示装置である電子ペーパーの開発および普及も急速に進むことが期待されている。このような状況の中、現在、各種の表示装置において消費電力を低下させることが共通の課題となっている。 In recent years, thin, lightweight, and low power consumption display devices typified by liquid crystal display devices have been actively used. Such a display device is remarkably mounted on, for example, a mobile phone, a smartphone, a PDA (portable information terminal), an electronic book, a laptop personal computer, and the like. In the future, electronic paper, which is a thinner display device, is expected to develop and spread rapidly. Under such circumstances, it is currently a common problem to reduce power consumption in various display devices.
 そこで、表示装置およびその駆動方法に関し、その消費電力を低下させることを目的とした様々な技術が考案されている。例えば、特許文献1には、ソース信号ラインに対するソース信号の書き込みをおこなわない期間を予備充電期間として利用して、ソース信号ライン同士を短絡させることにより、これらソース信号ライン同士の間で予備充放電(チャージシェア)をおこなう技術が開示されている。 Therefore, various technologies have been devised for the purpose of reducing the power consumption of the display device and its driving method. For example, in Patent Document 1, a period in which a source signal is not written to a source signal line is used as a preliminary charging period, and the source signal lines are short-circuited to each other, thereby performing preliminary charging / discharging between the source signal lines. A technique for performing (charge sharing) is disclosed.
日本国公開特許公報「特開2005-208551号公報(公開日:2005年8月4日)」Japanese Patent Publication “JP 2005-208551 A (publication date: August 4, 2005)”
 しかしながら、近年、表示装置の高精細化および高解像度化が進んでおり、これに伴い、表示装置においては、1水平期間の短縮化が要求されてきているだけでなく、この1水平期間内に、より多くのソース信号ラインに対してソース信号の書き込みをおこなうことが要求されてきている。この結果、表示装置においては、非書き込み期間を十分に設けることができなくなってきている。例えば、特許文献1に記載の技術は、予備充放電をおこなう期間が、上記非書き込み期間に限られている。したがって、特許文献1に記載の技術では、予備充放電を十分におこなうことができないので、消費電力を十分に低下させることができない。 However, in recent years, display devices have been improved in definition and resolution, and accordingly, display devices are not only required to shorten one horizontal period, but also within one horizontal period. Therefore, there is a demand for writing source signals to more source signal lines. As a result, it has become impossible to provide a sufficient non-writing period in the display device. For example, in the technique described in Patent Document 1, the period during which preliminary charge / discharge is performed is limited to the non-writing period. Therefore, the technique disclosed in Patent Document 1 cannot sufficiently perform preliminary charging / discharging, and thus cannot sufficiently reduce power consumption.
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、より消費電力を低減することができる表示装置を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a display device that can further reduce power consumption.
 本発明に係る表示装置は、上述した課題を解決するため、複数のゲート信号ラインおよび複数のソース信号ラインを有する表示パネルと、前記複数のゲート信号ラインを順次選択して走査するゲートドライバと、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給するソースドライバと、前記ソースドライバによってあるソース信号ラインへのソース信号の供給がおこなわれている間、他のソース信号ラインに対する予備充放電をおこなう予備充放電制御手段とを備えることを特徴とする。 In order to solve the above-described problems, a display device according to the present invention includes a display panel having a plurality of gate signal lines and a plurality of source signal lines, a gate driver that sequentially selects and scans the plurality of gate signal lines, A source driver that supplies a source signal from the plurality of source signal lines to each of a plurality of pixels on the selected gate signal line, and the source signal is supplied to a certain source signal line by the source driver. And a preliminary charge / discharge control means for performing preliminary charge / discharge on the other source signal lines.
 この構成によれば、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインに対する予備充放電をおこなうことができるため、ソース信号の書き込みをおこなう期間には予備充放電をおこなうことができない従来の表示装置と比べ、より長時間の予備充放電をおこなうことができるので、ソース信号ラインのソース信号電位を基準電位により近づけておくことができる。したがって、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができるので、より消費電力を低減することができる。 According to this configuration, since it is possible to perform preliminary charge / discharge with respect to the source signal line capable of preliminary charge / discharge even during the period during which the source signal is written, preliminary charge / discharge is performed during the period during which the source signal is written. Compared with a conventional display device that cannot perform the precharging / discharging for a longer time, the source signal potential of the source signal line can be made closer to the reference potential. Accordingly, the writing time of the source signal can be shortened as compared with a conventional display device, so that power consumption can be further reduced.
 本発明に係る表示装置によれば、より長時間の予備充放電をおこなうことができるので、より消費電力を低減することができるという効果を奏する。 According to the display device according to the present invention, it is possible to perform pre-charging / discharging for a longer time, and thus it is possible to reduce the power consumption.
実施形態1に係る表示装置の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a display device according to Embodiment 1. FIG. 実施形態1に係るソースドライバおよび予備充放電制御手段の構成例を示す図である。It is a figure which shows the structural example of the source driver which concerns on Embodiment 1, and a preliminary | backup charge / discharge control means. 実施形態1に係る表示装置の期間毎の動作を示す図である。FIG. 3 is a diagram illustrating an operation for each period of the display device according to the first embodiment. 実施形態1に係る表示装置の予備充電期間における状態を示す図である。It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る表示装置の第3の書き込み期間における状態を示す図である。6 is a diagram illustrating a state in a third writing period of the display device according to the first embodiment. FIG. ある一対のソース信号ラインSの電位の変化を示す。A change in potential of a certain pair of source signal lines S is shown. 実施形態2に係るソースドライバおよび予備充放電制御手段の構成例を示す図である。It is a figure which shows the structural example of the source driver which concerns on Embodiment 2, and a preliminary | backup charge / discharge control means. 実施形態2に係る表示装置の期間毎の動作を示す図である。FIG. 10 is a diagram illustrating an operation for each period of the display device according to the second embodiment. 実施形態2に係る表示装置の予備充電期間における状態を示す図である。It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 2. FIG. 実施形態2に係る表示装置の第3の書き込み期間における状態を示す図である。FIG. 10 is a diagram illustrating a state in a third writing period of the display device according to the second embodiment. 実施形態3に係るソースドライバおよび予備充放電制御手段の構成例を示す図である。It is a figure which shows the structural example of the source driver which concerns on Embodiment 3, and a preliminary | backup charge / discharge control means. 実施形態3に係る表示装置の期間毎の動作を示す図である。It is a figure which shows the operation | movement for every period of the display apparatus which concerns on Embodiment 3. FIG. 実施形態3に係る表示装置の予備充電期間における状態を示す図である。It is a figure which shows the state in the precharge period of the display apparatus which concerns on Embodiment 3. FIG. 実施形態3に係る表示装置の第2の書き込み期間における状態を示す図である。FIG. 10 is a diagram illustrating a state in a second writing period of the display device according to the third embodiment. 実施形態4に係るソースドライバおよび予備充放電制御手段の構成例を示す図である。It is a figure which shows the structural example of the source driver which concerns on Embodiment 4, and a preliminary | backup charge / discharge control means. 実施形態4に係る表示装置の期間毎の動作を示す図である。FIG. 10 is a diagram illustrating an operation for each period of a display device according to a fourth embodiment. 実施形態4に係る表示装置の予備充電期間における状態を示す図である。It is a figure which shows the state in the preliminary charging period of the display apparatus which concerns on Embodiment 4. FIG. 実施形態4に係る表示装置の第3の書き込み期間における状態を示す図である。FIG. 10 is a diagram illustrating a state in a third writing period of the display device according to the fourth embodiment. 第2のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネルを示す図である。It is a figure which shows the display panel in the state in which the source signal was written by the 2nd display drive system. 第3のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネルを示す図である。It is a figure which shows the display panel in the state in which the source signal was written by the 3rd display drive system. 第4のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネルを示す図である。It is a figure which shows the display panel in the state in which the source signal was written by the 4th display drive system.
 本発明に係る実施形態について、図面を参照して以下に説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 (実施形態1)
 まず、本発明の実施形態1について説明する。実施形態1に係る表示装置1の構成について、図1を参照して説明する。図1は、実施形態1に係る表示装置1の全体構成を示す図である。この図に示すように、表示装置1は、表示パネル2、ゲートドライバ(走査線駆動回路)4、ソースドライバ(信号線駆動回路)30、共通電極駆動回路8、タイミングコントローラ10、および電源生成回路13を備えている。
(Embodiment 1)
First, Embodiment 1 of the present invention will be described. The configuration of the display device 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating an overall configuration of a display device 1 according to the first embodiment. As shown in this figure, a display device 1 includes a display panel 2, a gate driver (scanning line driving circuit) 4, a source driver (signal line driving circuit) 30, a common electrode driving circuit 8, a timing controller 10, and a power generation circuit. 13 is provided.
 本実施形態1では、表示装置1としてアクティブマトリクス型の液晶表示装置を採用している。したがって、本実施形態1の表示パネル2は、アクティブマトリクス型の液晶表示パネルであり、上記したその他の構成要素は、液晶表示パネルを駆動するためのものである。 In the first embodiment, an active matrix type liquid crystal display device is employed as the display device 1. Therefore, the display panel 2 of the first embodiment is an active matrix type liquid crystal display panel, and the other components described above are for driving the liquid crystal display panel.
 表示パネル2は、格子状に配置された複数の画素からなる画面と、前記画面を線順次に選択して走査するためのM本のゲート信号ライン(走査信号線)Gと、選択されたゲート信号ラインに含まれる一行分の画素のそれぞれにソース信号(データ信号)を供給するためのN本のソース信号ライン(データ信号線)Sとを備えている。ゲート信号ラインGとソース信号ラインSとは互いに直交している。 The display panel 2 includes a screen composed of a plurality of pixels arranged in a grid, M gate signal lines (scanning signal lines) G for selecting and scanning the screen in a line-sequential manner, and a selected gate. N source signal lines (data signal lines) S for supplying source signals (data signals) to the pixels of one row included in the signal line are provided. The gate signal line G and the source signal line S are orthogonal to each other.
 以降の説明では、m行目(mは任意の整数)の画素を接続するゲート信号ラインGを、G(m)と示す。例えば、G(m)を10行目の画素を接続するゲート信号ラインGとした場合、G(m+1),G(m+2),G(m+3)は、それぞれ11行目,12行目,13行目の画素を接続するゲート信号ラインGを示す。 In the following description, the gate signal line G connecting the pixels in the m-th row (m is an arbitrary integer) is denoted as G (m). For example, when G (m) is a gate signal line G connecting pixels in the 10th row, G (m + 1), G (m + 2), and G (m + 3) are in the 11th, 12th, and 13th rows, respectively. A gate signal line G connecting the eye pixels is shown.
 また、以降の説明では、n列目(nは任意の整数)の画素を接続するソース信号ラインSを、S(n)と示す。例えば、S(n)を10列目の画素を接続するソース信号ラインSとした場合、S(n+1),S(n+2),S(n+3),S(n+4),S(n+5)は、それぞれ11列目,12列目,13列目,14列目,15列目の画素を接続するソース信号ラインSを示す。 In the following description, the source signal line S that connects the pixels in the n-th column (n is an arbitrary integer) is denoted as S (n). For example, when S (n) is a source signal line S connecting pixels in the tenth column, S (n + 1), S (n + 2), S (n + 3), S (n + 4), and S (n + 5) are respectively The source signal lines S connecting the pixels in the 11th, 12th, 13th, 14th, and 15th columns are shown.
 ゲートドライバ4は、各ゲート信号ラインGを画面の上から下に向かって線順次走査する。ゲートドライバ4は、各ゲート信号ラインGに対して、ゲート信号ラインG上の各画素に備えられたスイッチング素子(TFT)をオン状態にさせるための電圧を順次出力する。これにより、ゲートドライバ4は、各ゲート信号ラインGを順次選択して走査する。 The gate driver 4 scans each gate signal line G line-sequentially from the top to the bottom of the screen. The gate driver 4 sequentially outputs to each gate signal line G a voltage for turning on a switching element (TFT) provided in each pixel on the gate signal line G. Accordingly, the gate driver 4 sequentially selects and scans each gate signal line G.
 ソースドライバ30は、選択されたゲート信号ラインG上の各画素に対して、各ソース信号ラインSから、ソース信号を供給する。具体的に説明すると、ソースドライバ30は、入力された映像信号(矢印A)に基づいて、選択されたゲート信号ラインG上の各画素に出力すべき電圧の値を算出し、その値の電圧をソース出力アンプから各ソース信号ラインSに向けて出力する。その結果、選択されたゲート信号ラインG上にある各画素に対してソース信号が供給され、ソース信号が書き込まれることとなる。 The source driver 30 supplies a source signal from each source signal line S to each pixel on the selected gate signal line G. Specifically, the source driver 30 calculates the value of the voltage to be output to each pixel on the selected gate signal line G based on the input video signal (arrow A), and the voltage of that value Are output from the source output amplifier toward each source signal line S. As a result, a source signal is supplied to each pixel on the selected gate signal line G, and the source signal is written.
 表示装置1は、画面内の各画素に対して設けられる共通電極(不図示)を備えている。共通電極駆動回路8は、タイミングコントローラ10から入力される信号(矢印B)に基づき、共通電極を駆動するための所定の共通電圧を共通電極に出力する。 The display device 1 includes a common electrode (not shown) provided for each pixel in the screen. The common electrode driving circuit 8 outputs a predetermined common voltage for driving the common electrode to the common electrode based on a signal (arrow B) input from the timing controller 10.
 タイミングコントローラ10は、各回路が同期して動作するための基準となる信号を各回路に対して出力する。具体的には、タイミングコントローラ10は、ゲートドライバ4に対して、ゲートスタートパルス信号、ゲートクロック信号GCK、およびゲート出力制御信号GOEを供給する(矢印E)。また、タイミングコントローラ10は、ソースドライバ30に対しては、ソーススタートパルス信号、ソースラッチストローブ信号、およびソースクロック信号を出力する(矢印F)。 Timing controller 10 outputs a reference signal for each circuit to operate in synchronization with each circuit. Specifically, the timing controller 10 supplies the gate driver 4 with a gate start pulse signal, a gate clock signal GCK, and a gate output control signal GOE (arrow E). The timing controller 10 outputs a source start pulse signal, a source latch strobe signal, and a source clock signal to the source driver 30 (arrow F).
 ゲートドライバ4は、タイミングコントローラ10から受け取ったゲートスタートパルス信号を合図に表示パネル2の走査を開始し、タイミングコントローラ10から受け取ったゲートクロック信号GCKおよびゲート出力制御信号GOEに従って各ゲート信号ラインGに対して、順次選択電圧を印加していく。この点について具体的に説明すると、ゲートドライバ4は、受け取ったゲートクロックGCK信号に従って、各ゲート信号ラインGを順次選択する。そして、ゲートドライバ4は、受け取ったゲート出力制御信号GOEの立ち下りを検出したタイミングで、選択したゲート信号ラインGに対して、選択電圧を印加する。これにより、ゲートドライバ4は、選択したゲート信号ラインGを走査することとなる。 The gate driver 4 starts scanning the display panel 2 with the gate start pulse signal received from the timing controller 10 as a cue, and applies to each gate signal line G according to the gate clock signal GCK and the gate output control signal GOE received from the timing controller 10. On the other hand, the selection voltage is sequentially applied. Specifically, the gate driver 4 sequentially selects each gate signal line G according to the received gate clock GCK signal. The gate driver 4 applies a selection voltage to the selected gate signal line G at the timing when the falling edge of the received gate output control signal GOE is detected. As a result, the gate driver 4 scans the selected gate signal line G.
 ソースドライバ30は、タイミングコントローラ10から受け取ったソーススタートパルス信号を基に、入力された各画素の画像データをソースクロック信号に従ってレジスタに蓄え、次のソースラッチストローブ信号に従って表示パネル2の各ソース信号ラインSに画像データを書き込む。 Based on the source start pulse signal received from the timing controller 10, the source driver 30 stores the input image data of each pixel in a register according to the source clock signal, and each source signal of the display panel 2 according to the next source latch strobe signal. Image data is written in line S.
 電源生成回路13は、表示装置1内の各回路が動作するために必要な電圧であるVdd、Vdd2、Vcc、Vgh、およびVglを生成する。そして、Vcc、Vgh、Vglをゲートドライバ4に出力し、VddおよびVccをソースドライバ30に出力し、Vccをタイミングコントローラ10に出力し、Vdd2を共通電極駆動回路8に出力する。 The power supply generation circuit 13 generates Vdd, Vdd2, Vcc, Vgh, and Vgl, which are voltages necessary for each circuit in the display device 1 to operate. Then, Vcc, Vgh, and Vgl are output to the gate driver 4, Vdd and Vcc are output to the source driver 30, Vcc is output to the timing controller 10, and Vdd 2 is output to the common electrode drive circuit 8.
 (ソースドライバ30および予備充放電制御手段20の構成)
 ここで、ソースドライバ30および予備充放電制御手段20の構成例について説明する。図2は、実施形態1に係るソースドライバ30および予備充放電制御手段20の構成例を示す図である。
(Configuration of source driver 30 and preliminary charge / discharge control means 20)
Here, configuration examples of the source driver 30 and the preliminary charge / discharge control means 20 will be described. FIG. 2 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the first embodiment.
 ここで、表示パネル2は、所定数の画素列および所定数の画素行からなる、複数のブロック(以下、「画素ブロック」と示す。)によって構成されている。 Here, the display panel 2 includes a plurality of blocks (hereinafter referred to as “pixel blocks”) each including a predetermined number of pixel columns and a predetermined number of pixel rows.
 本実施形態の表示パネル2は、一例として、6つの画素列および4つの画素行からなる複数の画素ブロックによって構成されている。 As an example, the display panel 2 of the present embodiment includes a plurality of pixel blocks including six pixel columns and four pixel rows.
 例えば、図2では、表示パネル2が備える複数の画素ブロックのうちの、画素ブロック2Aおよび2Bが示されている。各画素ブロックには、6つの画素列に対応する6つのソース信号ラインS(n)~(n+5)、および4つの画素行L(m)~(m+3)が含まれる。 For example, in FIG. 2, pixel blocks 2A and 2B among a plurality of pixel blocks included in the display panel 2 are shown. Each pixel block includes six source signal lines S (n) to (n + 5) corresponding to six pixel columns and four pixel rows L (m) to (m + 3).
 図2に示すように、各画素ブロックの構成は同様であり、またその動作も同様である。したがって、以降では、説明を分かり易くするため、表示パネル2が備える複数の画素ブロックのうちの1つを用いて、ソースドライバ30の構成例を説明する。 As shown in FIG. 2, the configuration of each pixel block is the same, and the operation is also the same. Therefore, hereinafter, in order to make the description easy to understand, a configuration example of the source driver 30 will be described using one of a plurality of pixel blocks included in the display panel 2.
 但し、ここでは、ソースドライバ30が一般的に備えるDAコンバータ等の他の構成部品について図示および説明を省略する。 However, here, illustration and description of other components such as a DA converter generally provided in the source driver 30 are omitted.
 なお、以降の説明は、複数のフレーム期間のうちのあるフレーム期間における表示装置1の動作および状態を説明するものである。以降の説明において、「+」が示されている画素は、このフレーム期間において、ソース信号電位が正となるソース信号(第1のソース信号。以下、「ソース信号(+)と示す。」)が書き込まれるべき画素を示す。また、「-」が示されている画素は、このフレーム期間において、ソース信号電位が負となるソース信号(第2のソース信号。以下、「ソース信号(-)と示す。」)が書き込まれるべき画素を示す。 In the following description, the operation and state of the display device 1 in a certain frame period among a plurality of frame periods will be described. In the following description, a pixel in which “+” is shown is a source signal whose source signal potential is positive in this frame period (first source signal; hereinafter, referred to as “source signal (+)”). Indicates the pixel to be written. In addition, a source signal (second source signal; hereinafter referred to as “source signal (−)”) in which the source signal potential is negative is written in the pixel indicated by “−” in this frame period. Indicates a power pixel.
 したがって、後述するソース反転駆動のように、フレーム期間毎に各画素に書き込まれるべきソース信号の正負が反転する構成を採用している場合は、以降で説明する動作および状態を成すフレーム期間と、このフレーム期間とは各画素に書き込まれるべきソース信号の正負が反転するフレーム期間とが交互に存在することなる。 Therefore, when adopting a configuration in which the positive and negative of the source signal to be written to each pixel is inverted every frame period as in the source inversion driving described later, the frame period having the operation and state described below, This frame period alternately includes a frame period in which the sign of the source signal to be written in each pixel is inverted.
 (ソースドライバ30の構成例)
 まず、ソースドライバ30の構成例について説明する。図2に示すように、本実施形態1のソースドライバ30は、従来の表示装置のようにソース信号ラインSと同数ではなく、ソース信号ラインSの数よりも少ない数のソース出力アンプ36を備えている。特に、本実施形態1のソースドライバ30は、1つのソース出力アンプ36を備えている。
(Configuration example of source driver 30)
First, a configuration example of the source driver 30 will be described. As shown in FIG. 2, the source driver 30 according to the first exemplary embodiment includes the number of source output amplifiers 36 that is not the same as the number of source signal lines S as in the conventional display device, but smaller than the number of source signal lines S. ing. In particular, the source driver 30 of the first embodiment includes one source output amplifier 36.
 すなわち、本実施形態1のソースドライバ30は、この1つのソース出力アンプ36によって、複数のソース信号ラインSに対して、ソース信号を供給する構成となっている。 That is, the source driver 30 of the first embodiment is configured to supply source signals to the plurality of source signal lines S by this one source output amplifier 36.
 これを実現するために、ソース出力アンプ36の出力側には、ソース出力アンプ36から出力されたソース信号の供給先のソース信号ラインSを切り換えるための、切り換え手段32が設けられている。 In order to realize this, on the output side of the source output amplifier 36, switching means 32 for switching the source signal line S to which the source signal output from the source output amplifier 36 is supplied is provided.
 図2に示す例では、切り替え手段32は、ソース信号ラインS毎の、複数のスイッチ34a~fを備えている。各スイッチ34の一端は、対応するソース信号ラインSに接続されている。各スイッチ34の他端は、ソース出力アンプ36の出力端に接続されている。各スイッチ34は、切り換え手段32が備えるコントローラ33によって、その動作(すなわちオン/オフ)が制御される。 In the example shown in FIG. 2, the switching means 32 includes a plurality of switches 34a to 34f for each source signal line S. One end of each switch 34 is connected to the corresponding source signal line S. The other end of each switch 34 is connected to the output end of the source output amplifier 36. The operation (ie, on / off) of each switch 34 is controlled by a controller 33 provided in the switching unit 32.
 (ソースドライバ30が採用しているディスプレイ駆動方式)
 ここで、ソースドライバ30は、第1のディスプレイ駆動方式を採用している。この第1のディスプレイ駆動方式によれば、ソースドライバ30は、ゲート信号ラインG(画素行)が選択されるごとに、そのゲート信号ラインG(画素行)上の複数の画素に対して、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させながら、ソース信号を書き込む。
(Display drive method adopted by the source driver 30)
Here, the source driver 30 employs the first display driving method. According to the first display driving method, each time the gate signal line G (pixel row) is selected, the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row). The source signal is written while inverting the positive / negative of the voltage supplied from the signal (from the reference voltage) for each pixel.
 これにより、表示パネル2上における各画素行は、図2等に示すとおり、ソース信号(+)が書き込まれる画素と、ソース信号(-)が書き込まれる画素とが、交互に存在することとなる。 As a result, in each pixel row on the display panel 2, as shown in FIG. 2 and the like, pixels to which the source signal (+) is written and pixels to which the source signal (−) is written alternately exist. .
 一方、各ソース信号ラインS(画素列)に着目すると、その各ソース信号ラインS(画素列)上の複数の画素に対して、ソースドライバ30は、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させずに、ソース信号を書き込む。 On the other hand, when attention is paid to each source signal line S (pixel column), the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column). The source signal is written without inverting the sign of each pixel.
 これにより、複数のソース信号ラインS(画素列)の各々は、図2等に示すとおり、ソース信号(+)が書き込まれる画素、または、ソース信号(-)が書き込まれる画素のいずれか一方しか存在しないこととなる。 As a result, each of the plurality of source signal lines S (pixel columns) has only one of the pixel to which the source signal (+) is written and the pixel to which the source signal (−) is written as shown in FIG. It will not exist.
 この結果、表示パネル2上には、図2等に示すとおり、ソース信号(+)が書き込まれる画素のみが存在するソース信号ラインS(以下、「ソース信号ラインS(+)」と示す。)と、ソース信号(-)が書き込まれる画素のみが存在するソース信号ラインS(以下、「ソース信号ラインS(-)」と示す。)とが、交互に存在することとなる。 As a result, as shown in FIG. 2 and the like, the source signal line S in which only the pixel to which the source signal (+) is written exists (hereinafter, referred to as “source signal line S (+)”) on the display panel 2. And source signal lines S (hereinafter referred to as “source signal lines S (−)”) in which only pixels to which the source signal (−) is written exist alternately.
 以上のように、ソース信号ラインS(画素列)毎にソース信号の正負が反転するディスプレイ駆動方式を、「ソース反転駆動」と称する。 As described above, the display driving method in which the positive / negative of the source signal is inverted for each source signal line S (pixel column) is referred to as “source inversion driving”.
 なお、ソース反転駆動では、上記に加え、フレーム期間が切り換わる毎に、各ソース信号ラインSに供給されるソース信号の正負が反転する。例えば、あるフレーム期間において、偶数番目の画素列の全ての画素にソース信号(+)が書き込まれ、奇数番目の画素列の全ての画素にソース信号(-)が書き込まれると、次にフレーム期間においては、偶数番目の画素列の全ての画素にソース信号(-)が書き込まれ、奇数番目の画素列の全ての画素にソース信号(+)が書き込まれるといった具合である。 In addition, in the source inversion driving, in addition to the above, the polarity of the source signal supplied to each source signal line S is inverted every time the frame period is switched. For example, when a source signal (+) is written to all the pixels in the even-numbered pixel column and a source signal (−) is written to all the pixels in the odd-numbered pixel column in a certain frame period, the next frame period The source signal (−) is written to all the pixels in the even-numbered pixel column, and the source signal (+) is written to all the pixels in the odd-numbered pixel column.
 (ソースドライバ30による書き込み動作)
 ソースドライバ30による書き込み動作について具体的に説明する。あるソース信号ラインSに対するソース信号の供給が行われる際、コントローラ33は、このソース信号ラインSに対応するスイッチ34をONにする。この時、その他のスイッチ34についてはOFFのままとする。これにより、ソース出力アンプ36とこのソース信号ラインSとが電気的に接続され、ソース出力アンプ36から出力されたソース信号が、対象のソース信号ラインSへ供給されるようになる。
(Write operation by the source driver 30)
The write operation by the source driver 30 will be specifically described. When a source signal is supplied to a certain source signal line S, the controller 33 turns on the switch 34 corresponding to the source signal line S. At this time, the other switches 34 remain OFF. Thereby, the source output amplifier 36 and the source signal line S are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the target source signal line S.
 コントローラ33は、ソース出力アンプ36からソース信号が出力される毎に、ONに切り換える対象のスイッチを、ソース信号の供給先のソース信号ラインSに応じて選択する。これにより、複数のソース信号ラインSの各々に対して、ソース信号が供給されることとなる。 Each time the source signal is output from the source output amplifier 36, the controller 33 selects the switch to be turned on according to the source signal line S to which the source signal is supplied. As a result, a source signal is supplied to each of the plurality of source signal lines S.
 例えば、図3以降で説明するように、本実施形態1の表示装置1における1水平期間には、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、第3の書き込み期間、第4の書き込み期間、第5の書き込み期間、および第6の書き込み期間が含まれている。この第1~6の書き込み期間は、ソース信号ラインS(n)~(n+5)の各々に対する書き込み期間である。 For example, as will be described with reference to FIG. 3 and subsequent drawings, one horizontal period in the display device 1 of the first embodiment includes, in order, a precharge period, a first writing period, a second writing period, a third writing period, A fourth writing period, a fifth writing period, and a sixth writing period are included. The first to sixth writing periods are writing periods for the source signal lines S (n) to (n + 5).
 コントローラ33は、上記書き込み期間が切り換わる毎に、対応するスイッチ34をONに切り換え、それ以外のスイッチ34をOFFに切り換える。もちろん、既にOFFとなっているスイッチ34については、OFFのままにしておく。これにより、各書き込み期間においては、対応するソース信号ラインSがソース出力アンプ36と接続され、このソース信号ラインSに対して、ソース出力アンプ36から出力されたソース信号が供給されることとなる。 Each time the writing period is switched, the controller 33 switches the corresponding switch 34 to ON and switches the other switches 34 to OFF. Of course, the switch 34 that is already OFF is left OFF. Thus, in each writing period, the corresponding source signal line S is connected to the source output amplifier 36, and the source signal output from the source output amplifier 36 is supplied to the source signal line S. .
 なお、既に説明したとおり、本実施形態のソースドライバ30はソース反転駆動を採用している。これに応じて、ソース出力アンプ36は、上記第1~6の書き込み期間において、対象のソース信号ラインSが切り換わる毎(すなわち、書き込み期間が切り換わる毎)に、供給するソース信号のソース信号電位の正負を切り換える。 As already described, the source driver 30 of this embodiment employs source inversion driving. In response to this, the source output amplifier 36 supplies the source signal of the source signal to be supplied every time the target source signal line S is switched (that is, every time the writing period is switched) in the first to sixth writing periods. Switches between positive and negative potentials.
 これにより、表示パネル2においては、図2等に示すように、ソース信号(+)が書き込まれる画素のみが存在するソース信号ラインS(+)と、ソース信号(-)が書き込まれる画素のみが存在するソース信号ラインS(-)とが、交互に存在することとなる。 Thereby, in the display panel 2, as shown in FIG. 2 and the like, only the pixel to which the source signal (+) is written and the source signal line S (+) in which only the pixel to which the source signal (+) is written exist. The existing source signal lines S (−) exist alternately.
 (予備充放電制御手段20の概要)
 次に、予備充放電制御手段20の概要について説明する。表示装置1は、予備充放電制御手段20をさらに備える。予備充放電制御手段20は、複数のソース信号ラインSに対する予備充放電を制御する。
(Outline of preliminary charge / discharge control means 20)
Next, an outline of the preliminary charge / discharge control means 20 will be described. The display device 1 further includes preliminary charge / discharge control means 20. The preliminary charge / discharge control means 20 controls preliminary charge / discharge with respect to the plurality of source signal lines S.
 予備充放電とは、ソース信号ラインSに対して、そのソース信号ラインSの電位を次の書き込みの際の目標となるソース信号電位に近づけるべく、予め充放電しておくことである。 Pre-charging / discharging refers to charging / discharging the source signal line S in advance so that the potential of the source signal line S approaches the target source signal potential for the next writing.
 これにより、ソース信号ラインSに対する次の書き込みの際には、目標のソース信号電位までの到達時間(すなわち、書き込み時間)を短縮することができるのである。 Thereby, at the time of the next writing to the source signal line S, it is possible to shorten the arrival time to the target source signal potential (that is, the writing time).
 具体的には、ソース信号ラインSには、画素容量以外にも、寄生容量が発生する。このため、ソース信号ラインSのある画素容量に対してソース信号が書き込まれると、そのソース信号ラインSには、そのソース信号の正または負の電荷が蓄えられることとなる。 Specifically, parasitic capacitance is generated in the source signal line S in addition to the pixel capacitance. For this reason, when a source signal is written to a certain pixel capacitance of the source signal line S, positive or negative charges of the source signal are stored in the source signal line S.
 上記したとおり、本実施形態のソースドライバ30はソース反転駆動を採用している。このため、同一のソース信号ラインSに着目すると、同一のフレーム期間内においては、そのソース信号ラインSに供給されるソース信号が、ソース信号(+)とソース信号(-)とで切り換わることは無いが、フレーム期間が切り換わる毎に、そのソース信号ラインSに供給されるソース信号が、ソース信号(+)とソース信号(-)とで切り換わる。 As described above, the source driver 30 of this embodiment employs source inversion driving. Therefore, focusing on the same source signal line S, the source signal supplied to the source signal line S is switched between the source signal (+) and the source signal (−) within the same frame period. However, every time the frame period is switched, the source signal supplied to the source signal line S is switched between the source signal (+) and the source signal (−).
 したがって、あるソース信号ラインSに対して、フレーム期間が切り換わった後に最初にソース信号を書き込む時点では、そのソース信号ラインSには、そのソース信号とはソース信号電位の正負が異なる電荷が蓄えられている。 Therefore, when a source signal is written to a source signal line S for the first time after the frame period has been switched, the source signal line S stores charges whose source signal potential is different from that of the source signal. It has been.
 このため、フレーム期間が切り換わった後の最初の書き込みにおいて、ソース信号ラインSの電位を、目標のソース信号電位とするまでに、相当の書き込み時間を必要とする。 For this reason, in the first writing after the frame period is switched, a considerable writing time is required until the potential of the source signal line S becomes the target source signal potential.
 そこで、フレーム期間が切り換わった後の最初の書き込みをおこなうまでに、ソース信号ラインSの電位を、次のソース信号電位に近づけておくことで、フレーム期間が切り換わった後の最初の書き込みにかかる書き込み時間を短縮することができる。 Therefore, by keeping the potential of the source signal line S close to the next source signal potential before the first writing after the frame period is switched, the first writing after the frame period is switched is performed. Such writing time can be shortened.
 本実施形態1の予備充放電制御手段20は、ソース信号電位の正負が異なるソース信号ラインS同士を短絡させることにより、これらソース信号ラインS同士の間で予備充放電(チャージシェア)をおこなわせる。 The preliminary charge / discharge control means 20 of the first embodiment performs preliminary charge / discharge (charge sharing) between the source signal lines S by short-circuiting the source signal lines S having different positive and negative source signal potentials. .
 具体的には、上記したとおり、本実施形態1のソースドライバ30は、ソース反転駆動をおこなっているから、同一のフレーム期間に着目すると、ソース信号ラインS(+)と、ソース信号ラインS(-)とが、交互に存在することとなる。 Specifically, as described above, since the source driver 30 of the first embodiment performs source inversion driving, focusing on the same frame period, the source signal line S (+) and the source signal line S ( -) Exist alternately.
 そこで、隣接するソース信号ラインS同士を短絡させることで、この隣接するソース信号ラインS間で電荷が移動し、両ソースラインSの電位は、両ソースラインSの電位の概ね中間の電位である、基準電位付近まで平均化される。すなわち、両ソースラインSのそれぞれの電位が、次の書き込みのソース信号電位に近づくこととなる。 Therefore, by short-circuiting adjacent source signal lines S, charges move between the adjacent source signal lines S, and the potentials of both source lines S are approximately intermediate between the potentials of both source lines S. , Averaged to near the reference potential. That is, the potentials of both source lines S approach the source signal potential for the next writing.
 (予備充放電制御手段20の構成例)
 次に、予備充放電制御手段20の構成例について説明する。図2に示すように、予備充放電制御手段20は、複数のスイッチ22a~cを備えている。各スイッチ22の一端は、一のソース信号ラインSに接続されている。各スイッチ22の他端は、上記一のソース信号ラインSに隣接する、他のソース信号ラインSに接続されている。
(Configuration Example of Preliminary Charge / Discharge Control Unit 20)
Next, a configuration example of the preliminary charge / discharge control means 20 will be described. As shown in FIG. 2, the preliminary charge / discharge control means 20 includes a plurality of switches 22a to 22c. One end of each switch 22 is connected to one source signal line S. The other end of each switch 22 is connected to another source signal line S adjacent to the one source signal line S.
 例えば、スイッチ22aの一端は、ソース信号ラインS(n)に接続されており、スイッチ22aの他端は、ソース信号ラインS(n+1)に接続されている。すなわち、スイッチ22aは、ソース信号ラインS(n)とソース信号ラインS(n+1)とを短絡させて、これらソース信号ラインS同士で、予備充放電をおこなわせることが可能な構成となっている。 For example, one end of the switch 22a is connected to the source signal line S (n), and the other end of the switch 22a is connected to the source signal line S (n + 1). That is, the switch 22a has a configuration in which the source signal line S (n) and the source signal line S (n + 1) can be short-circuited, and the source signal lines S can be precharged and discharged. .
 また、スイッチ22bの一端は、ソース信号ラインS(n+2)に接続されており、スイッチ22bの他端は、ソース信号ラインS(n+3)に接続されている。すなわち、スイッチ22bは、ソース信号ラインS(n+2)とソース信号ラインS(n+3)とを短絡させて、これらソース信号ラインS同士で、予備充放電をおこなわせることが可能な構成となっている。 Further, one end of the switch 22b is connected to the source signal line S (n + 2), and the other end of the switch 22b is connected to the source signal line S (n + 3). That is, the switch 22b has a configuration in which the source signal line S (n + 2) and the source signal line S (n + 3) can be short-circuited and the source signal lines S can be precharged and discharged. .
 そして、スイッチ22cの一端は、ソース信号ラインS(n+4)に接続されており、スイッチ22aの他端は、ソース信号ラインS(n+5)に接続されている。すなわち、スイッチ22cは、ソース信号ラインS(n+4)とソース信号ラインS(n+5)とを短絡させて、これらソース信号ラインS同士で、予備充放電をおこなわせることが可能な構成となっている。 One end of the switch 22c is connected to the source signal line S (n + 4), and the other end of the switch 22a is connected to the source signal line S (n + 5). That is, the switch 22c has a configuration in which the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, and the source signal lines S can be preliminarily charged / discharged. .
 スイッチ22a~cの各々は、予備充放電制御手段20が備えるコントローラ21によって、その動作タイミング(すなわちオン/オフのタイミング)が制御される。コントローラ21は、スイッチ22a~cの各々の動作タイミングを制御することによって、ソース信号ラインS(n)~(n+5)の各々に対する予備充電を制御する。 The operation timing of each of the switches 22a to 22c is controlled by the controller 21 provided in the preliminary charge / discharge control means 20 (that is, the on / off timing). The controller 21 controls the precharging for each of the source signal lines S (n) to (n + 5) by controlling the operation timing of each of the switches 22a to 22c.
 (表示装置1の動作例)
 続いて、図3~5を参照して、実施形態1に係る表示装置1による、予備充放電動作および書き込み動作について説明する。図3は、実施形態1に係る表示装置1の期間毎の動作を示す図である。図4は、実施形態1に係る表示装置1の予備充電期間における状態を示す図である。図5は、実施形態1に係る表示装置1の第3の書き込み期間における状態を示す図である。
(Operation example of display device 1)
Next, the pre-charge / discharge operation and the write operation by the display device 1 according to the first embodiment will be described with reference to FIGS. FIG. 3 is a diagram illustrating an operation for each period of the display device 1 according to the first embodiment. FIG. 4 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the first embodiment. FIG. 5 is a diagram illustrating a state in the third writing period of the display device 1 according to the first embodiment.
 図3に示すように、表示装置1における1水平期間には、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、第3の書き込み期間、第4の書き込み期間、第5の書き込み期間、および第6の書き込み期間が含まれている。予備充電期間は、ソース信号ラインS(n)~(n+5)のそれぞれに対する予備充放電をおこなう期間である。第1~6の書き込み期間は、ソース信号ラインS(n)~(n+5)のそれぞれに対する書き込み期間である。 As shown in FIG. 3, in one horizontal period in the display device 1, a preliminary charging period, a first writing period, a second writing period, a third writing period, a fourth writing period, A writing period and a sixth writing period are included. The precharge period is a period during which precharge / discharge is performed for each of the source signal lines S (n) to (n + 5). The first to sixth writing periods are writing periods for the source signal lines S (n) to (n + 5).
 図3では、ソース信号ラインS(n)~(n+5)のそれぞれに対して、表示装置1がおこなう動作を、各期間毎に示している。図3において、「W」は、そのソース信号ラインSに対して、ソース信号の書き込みをおこなうことを示す。また、図3において、「○」は、そのソース信号ラインSの端子を意味するものであり、すなわち、この端子同士を接続する実線は、この端子同士を短絡させて、このソースラインS同士で予備充放電をおこなわせることを示す。 FIG. 3 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period. In FIG. 3, “W” indicates that the source signal is written to the source signal line S. In FIG. 3, “◯” means a terminal of the source signal line S. That is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
 (予備充電期間)
 ここで、予備充電期間における表示装置1の動作について説明する。この予備充電期間においては、表示装置1は、図3に示すように、ソース信号ラインS(n)~(n+5)のそれぞれに対して予備充放電をおこなう。
(Preliminary charging period)
Here, the operation of the display device 1 during the preliminary charging period will be described. In this preliminary charging period, the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
 具体的には、表示装置1は、図4に示すように、隣接するソース信号ラインS間に設けられているスイッチ22a~cを全てONにする。 Specifically, the display device 1 turns on all the switches 22a to 22c provided between adjacent source signal lines S as shown in FIG.
 スイッチ22aがONとなることにより、ソース信号ラインS(n)とソース信号ラインS(n+1)とが短絡され、これらのソース信号ラインS同士で予備充放電を行われる。 When the switch 22a is turned ON, the source signal line S (n) and the source signal line S (n + 1) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
 また、スイッチ22bがONとなることにより、ソース信号ラインS(n+2)とソース信号ラインS(n+3)とが短絡され、これらのソース信号ラインS同士で予備充放電がおこなわれる。 Further, when the switch 22b is turned on, the source signal line S (n + 2) and the source signal line S (n + 3) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
 同様に、スイッチ22cがONとなることにより、ソース信号ラインS(n+4)とソース信号ラインS(n+5)とが短絡され、これらのソース信号ラインS同士で予備充放電がおこなわれる。 Similarly, when the switch 22c is turned ON, the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, and preliminary charge / discharge is performed between these source signal lines S.
 一方、この予備充電期間においては、表示装置1は、図3に示すように、ソース信号ラインS(n)~(n+5)のいずれに対しても、ソース信号の書き込みをおこなわない。したがって、この予備充電期間においては、表示装置1は、図4に示すように、スイッチ34a~fの全てをOFFとしたままとする。 On the other hand, in this preliminary charging period, the display device 1 does not write the source signal to any of the source signal lines S (n) to (n + 5) as shown in FIG. Therefore, during this preliminary charging period, the display device 1 keeps all the switches 34a to 34f OFF as shown in FIG.
 (第1~6の書き込み期間)
 次に、第1~6の書き込み期間における表示装置1の動作について説明する。第1~6の書き込み期間においては、表示装置1は、図3に示したとおり、ソース信号ラインS(n)~(n+5)に対して、ソース信号の順次書き込みをおこなう。具体的には、表示装置1は、ソース出力アンプ36がソース信号を出力する毎に、スイッチ34a~fを順次ONにすることにより、ソース信号ラインS(n)~(n+5)に対して、ソース信号の順次書き込みをおこなう。
(First to sixth writing periods)
Next, the operation of the display device 1 in the first to sixth writing periods will be described. In the first to sixth writing periods, the display device 1 sequentially writes source signals to the source signal lines S (n) to (n + 5) as shown in FIG. Specifically, the display device 1 sequentially turns on the switches 34a to 34f each time the source output amplifier 36 outputs a source signal, so that the source signal lines S (n) to (n + 5) are Write source signals sequentially.
 表示装置1は、上記書き込みをおこなうとともに、予備充放電可能なソース信号ラインSに対して、対応するスイッチ22をONにすることにより、予備充放電をおこなう。 The display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 22 for the source signal line S capable of preliminary charging / discharging.
 ここでいう予備充放電可能なソース信号ラインSとは、ソース信号の書き込み対象のソース信号ラインS以外のソース信号ラインSであって、既にソース信号の書き込みが終了したソース信号ラインS、およびソース信号の書き込み対象のソース信号ラインSとの対をなすソース信号ラインSを除く、ソース信号ラインSである。 The source signal line S that can be precharged / discharged here is a source signal line S other than the source signal line S to which the source signal is written, and the source signal line S for which the source signal has already been written, and the source This is a source signal line S excluding the source signal line S that forms a pair with the source signal line S to which a signal is to be written.
 各書き込み期間において、どのソース信号ラインSに対して予備充放電をおこなうかは、図3に示したとおりであるが、一例として、図5を参照して、第3の書き込み期間における表示装置1の動作について説明する。この第3の書き込み期間においては、表示装置1は、ソース信号ラインS(n+2)に対してソース信号の書き込みをおこなうと同時に、ソース信号ラインS(n+4),(n+5)に対して、予備充放電をおこなう。 The source signal line S to be precharged / discharged in each writing period is as shown in FIG. 3, but as an example, referring to FIG. 5, the display device 1 in the third writing period. Will be described. In the third writing period, the display device 1 writes a source signal to the source signal line S (n + 2), and simultaneously reserves the source signal lines S (n + 4) and (n + 5). Discharge.
 上記書き込みのため、切り換え手段32のコントローラ33は、図5に示すように、ソース信号ラインS(n+2)に対応するスイッチ34cをONにする。これにより、ソース出力アンプ36とソース信号ラインS(n+2)とが電気的に接続され、ソース出力アンプ36から出力されたソース信号が、ソース信号ラインS(n+2)に供給される。 For the above writing, the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG. Thus, the source output amplifier 36 and the source signal line S (n + 2) are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the source signal line S (n + 2).
 このとき、表示装置1は、予備充放電可能なソース信号ラインS(n+4),(n+5)に対して、図5に示すように、これらのソース信号ラインSに対応するスイッチ22cをONにする。これにより、ソース信号ラインS(n+4)とソース信号ラインS(n+5)とが短絡され、これらのソース信号ラインS間で電荷が平均化され、予備充放電がおこなわれる。 At this time, for the source signal lines S (n + 4) and (n + 5) that can be precharged / discharged, the display device 1 turns on the switches 22c corresponding to these source signal lines S as shown in FIG. . As a result, the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, charges are averaged between these source signal lines S, and preliminary charge / discharge is performed.
 (効果)
 ここで、本実施形態1の表示装置1が奏する効果を説明する。図6は、ある一対のソース信号ラインSの電位の変化を示す。このうち、図6(a)は、従来の表示装置におけるある一対のソース信号ラインSの電位の変化を示す。また、図6(b)は、本実施形態1の表示装置1におけるある一対のソース信号ラインSの電位の変化を示す。
(effect)
Here, the effect which the display apparatus 1 of this Embodiment 1 show | plays is demonstrated. FIG. 6 shows a change in potential of a certain pair of source signal lines S. Among these, FIG. 6A shows a change in potential of a pair of source signal lines S in a conventional display device. FIG. 6B shows a change in potential of a certain pair of source signal lines S in the display device 1 according to the first embodiment.
 この例では、図2に示したソースラインS(n+2),(n+3)を例に説明する。ここで、ソースラインS(n+2)には、前回の書き込みにより、既に正の電荷が蓄えられていることとする。また、ソースラインS(n+3)には、前回の書き込みにより、既に負の電荷が蓄えられていることとする。そして、この例では、ソースラインS(n+2),(n+3)のそれぞれに対し、第3の書き込み期間に次の書き込みを行うこととする。 In this example, the source lines S (n + 2) and (n + 3) shown in FIG. 2 will be described as an example. Here, it is assumed that positive charges have already been stored in the source line S (n + 2) by the previous writing. Further, it is assumed that negative charges have already been stored in the source line S (n + 3) by the previous writing. In this example, the next writing is performed in the third writing period for each of the source lines S (n + 2) and (n + 3).
 図6(a)に示すように、従来の表示装置は、予備充電期間のみ予備充放電をおこなう。このため、従来の表示装置では、次の書き込みを行う第3の書き込み期間までに、ソースラインS(n+2),(n+3)の各々の電位を、基準電位に近づけることはできるが、予備充電期間が不足しているため、ソースラインS(n+2),(n+3)の各々の電位を、基準電位まで到達させることができない。このため、次の書き込み時には、基準電位までの不足分+基準電位から目標電位までの不足分の書き込みを、ソースラインS(n+2),(n+3)の各々に対しておこなう必要がある。 As shown in FIG. 6A, the conventional display device performs preliminary charge / discharge only during the preliminary charge period. Therefore, in the conventional display device, the potentials of the source lines S (n + 2) and (n + 3) can be brought close to the reference potential by the third writing period in which the next writing is performed. Is insufficient, the potentials of the source lines S (n + 2) and (n + 3) cannot reach the reference potential. For this reason, at the time of the next writing, it is necessary to write the shortage to the reference potential + the shortage from the reference potential to the target potential for each of the source lines S (n + 2) and (n + 3).
 一方、図6(b)に示すように、本実施形態1の表示装置1は、予備充電期間のみならず、ソース信号の書き込み期間においても予備充放電をおこなう。このため、本実施形態1の表示装置1では、次の書き込みを行う第3の書き込み期間までに、ソースラインS(n+2),(n+3)の各々の電位を、基準電位まで到達させておくことができる。このため、次の書き込み時には、基準電位から目標電位までの不足分(図中VおよびV)の書き込みのみを、ソースラインS(n+2),(n+3)の各々に対しておこなえばよい。したがって、次の書き込み時の書き込み期間を短縮することができる。 On the other hand, as shown in FIG. 6B, the display device 1 according to the first embodiment performs pre-charge / discharge not only during the pre-charge period but also during the source signal writing period. For this reason, in the display device 1 of the first embodiment, the potentials of the source lines S (n + 2) and (n + 3) are made to reach the reference potential by the third writing period in which the next writing is performed. Can do. For this reason, at the time of the next writing, only writing of the shortage (V 1 and V 2 in the figure) from the reference potential to the target potential may be performed on each of the source lines S (n + 2) and (n + 3). Therefore, the writing period at the next writing can be shortened.
 このように、本実施形態1の表示装置1は、ソース信号の書き込みをおこなわない期間のみならず、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインSに対する予備充放電をおこなうため、ソース信号の書き込みをおこなわない期間のみ予備充放電をおこなう従来の表示装置と比べ、より長時間の予備充放電をおこなうことができる。したがって、本実施形態1の表示装置1は、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができるので、より消費電力を低減することができる。 As described above, the display device 1 according to the first embodiment performs preliminary charge / discharge on the source signal line S that can be precharged / discharged not only during the period in which the source signal is not written but also in the period in which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 according to the first embodiment can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
 特に、本実施形態1の表示装置1は、ソース出力アンプを1つだけ設け、このソース出力アンプから複数のソース信号ラインの各々に対してソース信号を供給する構成を採用している。これにより、ソース信号を供給するためのソース出力アンプの数を大幅に減らすことができるので、ソースドライバに係るコストを削減することができる。 In particular, the display device 1 of the first embodiment employs a configuration in which only one source output amplifier is provided and a source signal is supplied from the source output amplifier to each of a plurality of source signal lines. As a result, the number of source output amplifiers for supplying source signals can be greatly reduced, and the cost associated with the source driver can be reduced.
 また、本実施形態1の表示装置1は、ソース出力アンプの数を減らすことにより、ソース出力アンプが必要とする定常電流の総量を削減することができる。したがって、本実施形態1の表示装置1は、消費電力をより削減することができる。 In addition, the display device 1 of Embodiment 1 can reduce the total amount of steady current required by the source output amplifier by reducing the number of source output amplifiers. Therefore, the display device 1 of the first embodiment can further reduce power consumption.
 (実施形態2)
 次に、本発明の実施形態2について説明する。実施形態1では、ソース信号ラインS(+)と、ソース信号ラインS(-)とを短絡させることにより、これらソース信号ラインS同士で予備充放電をおこなわせることとした。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described. In the first embodiment, the source signal line S (+) and the source signal line S (−) are short-circuited to perform preliminary charging / discharging between the source signal lines S.
 この実施形態2では、ソース信号ラインSをグランドに接地させることにより、ソース信号ラインSの予備充放電をおこなう例を説明する。なお、実施形態2の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。 In the second embodiment, an example in which the source signal line S is preliminarily charged / discharged by grounding the source signal line S to the ground will be described. In the display device 1 according to the second embodiment, points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus the description thereof is omitted.
 (予備充放電制御手段20の構成例)
 まず、予備充放電制御手段20の構成例について説明する。図7は、実施形態2に係るソースドライバ30および予備充放電制御手段20の構成例を示す図である。本実施形態2の予備充放電制御手段20は、複数のソース信号ラインSの各々をグランドに接地させることにより、これら複数のソース信号ラインSの各々に予備充放電(放電)をおこなわせることができる構成となっている。
(Configuration example of the preliminary charge / discharge control means 20)
First, a configuration example of the preliminary charge / discharge control unit 20 will be described. FIG. 7 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the second embodiment. The preliminary charge / discharge control means 20 of the second embodiment may cause each of the plurality of source signal lines S to perform preliminary charge / discharge (discharge) by grounding each of the plurality of source signal lines S to the ground. It can be configured.
 図7に示すように、予備充放電制御手段20は、ソース信号ラインS毎の、複数のスイッチ23a~fを備えている。各スイッチ23の一端は、対応するソース信号ラインSに接続されている。各スイッチ23の他端は、グランドに接地されており、対応するソース信号ラインSに蓄えられている電荷をグランド電位まで放電することが可能な構成となっている。 As shown in FIG. 7, the preliminary charge / discharge control means 20 includes a plurality of switches 23a to 23f for each source signal line S. One end of each switch 23 is connected to the corresponding source signal line S. The other end of each switch 23 is grounded, and is configured to be able to discharge the charge stored in the corresponding source signal line S to the ground potential.
 スイッチ23a~fの各々は、予備充放電制御手段20が備えるコントローラ21によって、その動作タイミング(すなわちオン/オフのタイミング)が制御される。コントローラ21は、スイッチ23a~fの各々の動作タイミングを制御することによって、ソース信号ラインS(n)~(n+5)の各々に対する予備充放電を制御する。 The operation timing of each of the switches 23a to 23f is controlled by the controller 21 provided in the preliminary charge / discharge control means 20 (that is, the on / off timing). The controller 21 controls preliminary charge / discharge for each of the source signal lines S (n) to (n + 5) by controlling the operation timing of each of the switches 23a to 23f.
 (表示装置1の動作例)
 続いて、図8~10を参照して、実施形態2に係る表示装置1による、予備充放電動作および書き込み動作について説明する。図8は、実施形態2に係る表示装置1の期間毎の動作を示す図である。図9は、実施形態2に係る表示装置1の予備充電期間における状態を示す図である。図10は、実施形態2に係る表示装置1の第3の書き込み期間における状態を示す図である。
(Operation example of display device 1)
Next, the pre-charge / discharge operation and the write operation by the display device 1 according to the second embodiment will be described with reference to FIGS. FIG. 8 is a diagram illustrating an operation for each period of the display device 1 according to the second embodiment. FIG. 9 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the second embodiment. FIG. 10 is a diagram illustrating a state in the third writing period of the display device 1 according to the second embodiment.
 図8に示すように、実施形態2に係る表示装置1における1水平期間には、実施形態1に係る表示装置1と同様に、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、第3の書き込み期間、第4の書き込み期間、第5の書き込み期間、および第6の書き込み期間を含んでいる。 As shown in FIG. 8, in one horizontal period in the display device 1 according to the second embodiment, as in the display device 1 according to the first embodiment, a precharge period, a first writing period, and a second writing are sequentially performed. A period, a third writing period, a fourth writing period, a fifth writing period, and a sixth writing period.
 図8では、ソース信号ラインS(n)~(n+5)のそれぞれに対して、表示装置1がおこなう動作を、各期間毎に示している。図8において、「W」は、そのソース信号ラインSに対して、ソース信号の書き込みをおこなうことを示す。また、図8において、「G」は、そのソース信号ラインSをグランドに接地させて、予備充放電をおこなうことを示す。 FIG. 8 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period. In FIG. 8, “W” indicates that a source signal is written to the source signal line S. In FIG. 8, “G” indicates that the source signal line S is grounded to perform the pre-charge / discharge.
 (予備充電期間)
 ここで、予備充電期間における表示装置1の動作について説明する。この予備充電期間においては、表示装置1は、図8に示すように、ソース信号ラインS(n)~(n+5)のそれぞれに対して予備充放電をおこなう。
(Preliminary charging period)
Here, the operation of the display device 1 during the preliminary charging period will be described. In the preliminary charging period, the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
 具体的には、表示装置1は、図9に示すように、スイッチ23a~fを全てONにすることにより、全てのソース信号ラインSを、グランドに接地させる。これにより、ソース信号ラインS(n)~(n+5)のそれぞれが、予備充放電をおこなうこととなる。 Specifically, as shown in FIG. 9, the display device 1 turns on all the switches 23a to 23f to ground all the source signal lines S to the ground. As a result, each of the source signal lines S (n) to (n + 5) performs preliminary charge / discharge.
 一方、この予備充電期間においては、表示装置1は、図8に示すように、ソース信号ラインS(n)~(n+5)のいずれに対しても、ソース信号の書き込みをおこなわない。 On the other hand, in this preliminary charging period, the display device 1 does not write the source signal to any of the source signal lines S (n) to (n + 5) as shown in FIG.
 したがって、この予備充電期間においては、表示装置1は、スイッチ34a~fの全てをOFFとしたままとする。 Therefore, during this preliminary charging period, the display device 1 keeps all the switches 34a to 34f OFF.
 (第1~6の書き込み期間)
 次に、第1~6の書き込み期間における表示装置1の動作について説明する。第1~6の書き込み期間においては、表示装置1は、図8に示したとおり、ソース信号ラインS(n)~(n+5)に対して、ソース信号の順次書き込みをおこなう。具体的には、表示装置1は、ソース出力アンプ36がソース信号を出力する毎に、スイッチ34a~fを順次ONにすることにより、ソース信号ラインS(n)~(n+5)に対して、ソース信号の順次書き込みをおこなう。
(First to sixth writing periods)
Next, the operation of the display device 1 in the first to sixth writing periods will be described. In the first to sixth writing periods, the display device 1 sequentially writes source signals to the source signal lines S (n) to (n + 5) as shown in FIG. Specifically, the display device 1 sequentially turns on the switches 34a to 34f each time the source output amplifier 36 outputs a source signal, so that the source signal lines S (n) to (n + 5) are Write source signals sequentially.
 表示装置1は、上記書き込みをおこなうとともに、予備充放電可能なソース信号ラインSに対して、対応するスイッチ23をONにすることにより、予備充放電をおこなう。 The display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 23 for the source signal line S capable of preliminary charging / discharging.
 第1~6の書き込み期間における予備充放電可能なソース信号ラインSとは、既にソース信号の書き込みが終了したソース信号ラインS、およびソース信号の書き込み対象のソース信号ラインSを除く、ソース信号ラインSである。 The source signal lines S that can be precharged and discharged in the first to sixth writing periods are source signal lines excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written. S.
 各書き込み期間において、どのソース信号ラインSに対して予備充放電をおこなうかは、図8に示したとおりであるが、一例として、図10を参照して、第3の書き込み期間における表示装置1の動作について説明する。この第3の書き込み期間においては、表示装置1は、ソース信号ラインS(n+2)に対してソース信号の書き込みをおこなうと同時に、ソース信号ラインS(n+3)~(n+5)に対して、予備充放電をおこなう。 The source signal line S to be precharged / discharged in each writing period is as shown in FIG. 8. As an example, referring to FIG. 10, the display device 1 in the third writing period. Will be described. In the third writing period, the display device 1 writes the source signal to the source signal line S (n + 2), and simultaneously reserves the source signal lines S (n + 3) to (n + 5). Discharge.
 上記書き込みのため、切り換え手段32のコントローラ33は、図10に示すように、ソース信号ラインS(n+2)に対応するスイッチ34cをONにする。これにより、ソース出力アンプ36とソース信号ラインS(n+2)とが電気的に接続され、ソース出力アンプ36から出力されたソース信号が、ソース信号ラインS(n+2)に供給される。 For the above writing, the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG. Thus, the source output amplifier 36 and the source signal line S (n + 2) are electrically connected, and the source signal output from the source output amplifier 36 is supplied to the source signal line S (n + 2).
 このとき、表示装置1は、予備充放電可能なソース信号ラインS(n+3)~(n+5)に対して、図10に示すように、これらのソース信号ラインSに対応するスイッチ23d~fの各々をONにする。これにより、ソース信号ラインS(n+3)~(n+5)の各々がグランドに接地され、ソース信号ラインS(n+3)~(n+5)の各々の電位がグランド電位となるまで、ソース信号ラインS(n+3)~(n+5)の各々に蓄えられていた電荷が放電される。 At this time, as shown in FIG. 10, each of the switches 23d to 23f corresponding to the source signal lines S corresponds to the source signal lines S (n + 3) to (n + 5) that can be precharged / discharged. Set to ON. As a result, each of the source signal lines S (n + 3) to (n + 5) is grounded to the ground, and the source signal line S (n + 3) until each potential of the source signal lines S (n + 3) to (n + 5) becomes the ground potential. ) To (n + 5) are discharged.
 (効果)
 このように、本実施形態2の表示装置1は、ソース信号の書き込みをおこなわない期間のみならず、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインSに対する予備充放電をおこなうため、ソース信号の書き込みをおこなわない期間のみ予備充放電をおこなう従来の表示装置と比べ、より長時間の予備充放電をおこなうことができる。したがって、本実施形態2の表示装置1は、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができるので、より消費電力を低減することができる。
(effect)
As described above, the display device 1 according to the second embodiment performs the preliminary charge / discharge for the source signal line S that can be precharged / discharged not only during the period in which the source signal is not written but also in the period in which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 2 can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
 特に、本実施形態2の表示装置1は、ソース信号ラインSをグランドに接地させることで、ソース信号ラインSに蓄えられている電荷を放電することとした。このため、ソース信号電位の正負が異なるソース信号ラインS同士が隣接していない等、ソース信号ライン同士を短絡させることが困難な場合であっても、ソース信号ラインSに対して予備充放電をおこなうことができる。また、短絡相手のソース信号ラインSを必要としないため、ソース信号ラインSの各々について、より多くの予備充電期間を設けることができる。 In particular, the display device 1 according to the second embodiment discharges the electric charge stored in the source signal line S by grounding the source signal line S to the ground. For this reason, even when it is difficult to short-circuit the source signal lines S, such as when the source signal lines S having different positive and negative source signal potentials are not adjacent to each other, preliminary charge / discharge is performed on the source signal line S. Can be done. In addition, since the source signal line S that is a short circuit partner is not required, more precharge periods can be provided for each source signal line S.
 なお、ソース信号ラインSに蓄えられている電荷を放電するということは、ソース信号ラインSの電位をグランドの電位に近づけるということであるから、本実施形態2の表示装置1は、基準電位としてグランドの電位を採用している場合に有効である。 Note that discharging the charge stored in the source signal line S means that the potential of the source signal line S is brought close to the ground potential. Therefore, the display device 1 according to the second embodiment uses the reference potential as the reference potential. This is effective when the ground potential is used.
 (実施形態3)
 次に、本発明の実施形態3について説明する。実施形態1,2では、1つのソース出力アンプ36によって、ソース信号の書き込みをおこなうことした。この実施形態3では、2つのソース出力アンプ37,38によって、ソース信号の書き込みを並行しておこなう例を説明する。なお、実施形態3の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described. In the first and second embodiments, the source signal is written by one source output amplifier 36. In the third embodiment, an example in which source signal writing is performed in parallel by two source output amplifiers 37 and 38 will be described. In the display device 1 according to the third embodiment, points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus description thereof is omitted.
 (ソースドライバ30の構成例)
 まず、ソースドライバ30の構成例について説明する。図11は、実施形態3に係るソースドライバ30および予備充放電制御手段20の構成例を示す図である。図11に示すように、本実施形態3のソースドライバ30は、ソース信号ラインSの数よりも少ない数のソース出力アンプを備えている。特に、本実施形態3のソースドライバ30は、2つのソース出力アンプ37,38を備えている。
(Configuration example of source driver 30)
First, a configuration example of the source driver 30 will be described. FIG. 11 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the third embodiment. As shown in FIG. 11, the source driver 30 of the third embodiment includes a number of source output amplifiers that are smaller than the number of source signal lines S. In particular, the source driver 30 of the third embodiment includes two source output amplifiers 37 and 38.
 ソース出力アンプ37(第2のソース出力アンプ)は、ソース信号電位が負となるソース信号(-)を供給するためのものである。一方、ソース出力アンプ38(第1のソース出力アンプ)は、ソース信号電位が正となるソース信号(+)を供給するためのものである。 The source output amplifier 37 (second source output amplifier) is for supplying a source signal (−) having a negative source signal potential. On the other hand, the source output amplifier 38 (first source output amplifier) is for supplying a source signal (+) having a positive source signal potential.
 すなわち、実施形態1のソース出力アンプ36が、ソース信号(+)およびソース信号(-)の双方を供給するものであったの対し、実施形態3のソース出力アンプ37,38は、ソース信号(+)またはソース信号(-)のいずれか一方のみを供給する。 That is, the source output amplifier 36 of the first embodiment supplies both the source signal (+) and the source signal (−), whereas the source output amplifiers 37 and 38 of the third embodiment Only one of (+) and source signal (-) is supplied.
 これにより、本実施形態3のソースドライバ30は、複数のソース信号ラインSの各々に対して、ソース信号(-)を供給する場合にはソース出力アンプ37から、ソース信号(+)を供給する場合にはソース出力アンプ38から、ソース信号を供給する構成となっている。 Thereby, the source driver 30 of the third embodiment supplies the source signal (+) from the source output amplifier 37 when supplying the source signal (−) to each of the plurality of source signal lines S. In this case, the source signal is supplied from the source output amplifier 38.
 これに伴い、ソース出力アンプ37,38の各々の出力側には、ソース出力アンプ37,38から出力されたソース信号の供給先のソース信号ラインSを切り換えるための、切り換え手段32が設けられている。 Accordingly, switching means 32 for switching the source signal line S to which the source signals output from the source output amplifiers 37 and 38 are supplied is provided on the output side of each of the source output amplifiers 37 and 38. Yes.
 例えば、図11に示す例では、切り換え手段32は、ソース信号ラインS毎の、複数のスイッチ34a~fを備えている。さらに、切り換え手段32は、ソース信号ラインS毎の、複数のスイッチ35a~fを備えている。 For example, in the example shown in FIG. 11, the switching means 32 includes a plurality of switches 34a to 34f for each source signal line S. Further, the switching unit 32 includes a plurality of switches 35a to 35f for each source signal line S.
 各スイッチ34の一端は、対応するソース信号ラインSに接続されており、各スイッチ34の他端は、ソース出力アンプ37の出力端に接続されている。すなわち、スイッチ34a~fは、ソース出力アンプ37から出力されたソース信号の供給先のソース信号ラインSを切り換えるためのものである。 One end of each switch 34 is connected to the corresponding source signal line S, and the other end of each switch 34 is connected to the output terminal of the source output amplifier 37. That is, the switches 34a to 34f are for switching the source signal line S to which the source signal output from the source output amplifier 37 is supplied.
 一方、各スイッチ35の一端は、対応するソース信号ラインSに接続されており、各スイッチ35の他端は、ソース出力アンプ38の出力端に接続されている。すなわち、スイッチ35a~fは、ソース出力アンプ38から出力されたソース信号の供給先のソース信号ラインSを切り換えるためのものである。 On the other hand, one end of each switch 35 is connected to the corresponding source signal line S, and the other end of each switch 35 is connected to the output terminal of the source output amplifier 38. That is, the switches 35a to 35f are for switching the source signal line S to which the source signal output from the source output amplifier 38 is supplied.
 各スイッチ34,35は、切り換え手段32が備えるコントローラ33によって、その動作(すなわちオン/オフ)が制御される。 The operation (ie, on / off) of each switch 34, 35 is controlled by the controller 33 provided in the switching means 32.
 (ソースドライバ30による書き込み動作)
 あるソース信号ラインSに対するソース信号(-)の供給が行われる際、コントローラ33は、このソース信号ラインSに対応するスイッチ34をONにする。この時、その他のスイッチ34についてはOFFのままとする。これにより、ソース出力アンプ37とこのソース信号ラインSとが電気的に接続され、ソース出力アンプ37から出力されたソース信号(-)が、対象のソース信号ラインSへ供給されるようになる。
(Write operation by the source driver 30)
When the source signal (−) is supplied to a certain source signal line S, the controller 33 turns on the switch 34 corresponding to the source signal line S. At this time, the other switches 34 remain OFF. As a result, the source output amplifier 37 and the source signal line S are electrically connected, and the source signal (−) output from the source output amplifier 37 is supplied to the target source signal line S.
 一方、あるソース信号ラインSに対するソース信号(+)の供給が行われる際、コントローラ33は、このソース信号ラインSに対応するスイッチ35をONにする。この時、その他のスイッチ35についてはOFFのままとする。これにより、ソース出力アンプ38とこのソース信号ラインSとが電気的に接続され、ソース出力アンプ38から出力されたソース信号(+)が、対象のソース信号ラインSへ供給されるようになる。 On the other hand, when the source signal (+) is supplied to a certain source signal line S, the controller 33 turns on the switch 35 corresponding to the source signal line S. At this time, the other switches 35 remain OFF. Thereby, the source output amplifier 38 and the source signal line S are electrically connected, and the source signal (+) output from the source output amplifier 38 is supplied to the target source signal line S.
 コントローラ33は、ソース出力アンプ37,38からソース信号が出力される毎に、ONにする対象のスイッチを、ソース信号の出力先のソース信号ラインSに応じて切り換える。これにより、複数のソース信号ラインSの各々に対して、ソース信号が供給されることとなる。 Each time the source signal is output from the source output amplifiers 37 and 38, the controller 33 switches the switch to be turned on according to the source signal line S that is the output destination of the source signal. As a result, a source signal is supplied to each of the plurality of source signal lines S.
 例えば、図12以降で説明するように、本実施形態3の表示装置1における1水平期間には、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、第3の書き込み期間が含まれている。 For example, as will be described with reference to FIG. 12 and subsequent figures, one horizontal period in the display device 1 of the third embodiment includes a preliminary charging period, a first writing period, a second writing period, and a third writing period in order. include.
 ここで、本実施形態3のソースドライバ30は、上記各書き込み期間において、ソース出力アンプ37によるソース信号(-)の供給と、ソース出力アンプ38によるソース信号(+)の供給とを並行しておこなうことにより、3つの書き込み期間(第1~3の書き込み期間)による、6つのソース信号ラインS(ソース信号ラインS(n)~(n+5))の各々に対する書き込みを実現している。 Here, the source driver 30 of the third embodiment simultaneously supplies the source signal (−) by the source output amplifier 37 and the source signal (+) by the source output amplifier 38 in each writing period. As a result, writing to each of the six source signal lines S (source signal lines S (n) to (n + 5)) in three writing periods (first to third writing periods) is realized.
 コントローラ33は、上記書き込み期間が切り換わる毎に、対応するスイッチ34,35をONに切り換え、それ以外のスイッチ34,35をOFFに切り換える。これにより、各書き込み期間においては、対応する第2のソース信号ラインSがソース出力アンプ37と接続され、このソース信号ラインSに対して、ソース出力アンプ37から出力されたソース信号(-)が供給されることとなる。同時に、対応する第1のソース信号ラインSがソース出力アンプ38と接続され、このソース信号ラインSに対して、ソース出力アンプ38から出力されたソース信号(+)が供給されることとなる。 Each time the writing period is switched, the controller 33 switches the corresponding switches 34 and 35 to ON and switches the other switches 34 and 35 to OFF. Accordingly, in each writing period, the corresponding second source signal line S is connected to the source output amplifier 37, and the source signal (−) output from the source output amplifier 37 is connected to the source signal line S. Will be supplied. At the same time, the corresponding first source signal line S is connected to the source output amplifier 38, and the source signal (+) output from the source output amplifier 38 is supplied to the source signal line S.
 (表示装置1の動作例)
 続いて、図12~14を参照して、実施形態3に係る表示装置1による、予備充放電動作および書き込み動作について説明する。図12は、実施形態3に係る表示装置1の期間毎の動作を示す図である。図13は、実施形態3に係る表示装置1の予備充電期間における状態を示す図である。図14は、実施形態3に係る表示装置1の第2の書き込み期間における状態を示す図である。
(Operation example of display device 1)
Next, the pre-charge / discharge operation and the write operation by the display device 1 according to the third embodiment will be described with reference to FIGS. FIG. 12 is a diagram illustrating an operation for each period of the display device 1 according to the third embodiment. FIG. 13 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the third embodiment. FIG. 14 is a diagram illustrating a state in the second writing period of the display device 1 according to the third embodiment.
 図12に示すように、実施形態3に係る表示装置1における1水平期間には、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、および第3の書き込み期間を含んでいる。予備充電期間は、ソース信号ラインS(n)~(n+5)のそれぞれに対する予備充電期間である。第1~3の書き込み期間は、ソース信号ラインS(n)~(n+5)のそれぞれに対する書き込み期間である。 As shown in FIG. 12, one horizontal period in the display device 1 according to the third embodiment includes a preliminary charging period, a first writing period, a second writing period, and a third writing period in this order. . The precharge period is a precharge period for each of the source signal lines S (n) to (n + 5). The first to third writing periods are writing periods for the source signal lines S (n) to (n + 5).
 図12では、ソース信号ラインS(n)~(n+5)のそれぞれに対して、表示装置1がおこなう動作を、各期間毎に示している。図12において、「W」は、そのソース信号ラインSに対して、ソース信号の書き込みをおこなうことを示す。また、図12において、「○」は、そのソース信号ラインSの端子を意味するものであり、すなわち、この端子同士を接続する実線は、この端子同士を短絡させて、このソースラインS同士で予備充放電をおこなわせることを示す。 FIG. 12 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period. In FIG. 12, “W” indicates that the source signal is written to the source signal line S. In FIG. 12, “◯” means a terminal of the source signal line S, that is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
 (予備充電期間)
 ここで、予備充電期間における表示装置1の動作について説明する。この予備充電期間においては、表示装置1は、図12に示すように、ソース信号ラインS(n)~(n+5)のそれぞれに対して予備充放電をおこなう。
(Preliminary charging period)
Here, the operation of the display device 1 during the preliminary charging period will be described. In this preliminary charging period, the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
 具体的には、表示装置1は、図13に示すように、隣接するソース信号ラインS間に設けられているスイッチ22a~cを全てONにする。これにより、全ての隣接するソース信号ラインS同士を短絡させて予備充放電を行わせる。この点については、実施形態1の表示装置1と同様である。 Specifically, the display device 1 turns on all the switches 22a to 22c provided between adjacent source signal lines S as shown in FIG. As a result, all adjacent source signal lines S are short-circuited to perform preliminary charging / discharging. This is the same as the display device 1 of the first embodiment.
 (第1の書き込み期間)
 第1の書き込み期間においては、ソースドライバ30は、ソース信号ラインS(n),(n+1)に対してソース信号の書き込みをおこなう。
(First writing period)
In the first writing period, the source driver 30 writes a source signal to the source signal lines S (n) and (n + 1).
 例えば、画素行L(m)が選択されている場合、ソース信号ラインS(n)に対してソース信号(-)の書き込みをおこなうと同時に、ソース信号ラインS(n+1)に対してソース信号(+)の書き込みをおこなう。 For example, when the pixel row L (m) is selected, the source signal (−) is written to the source signal line S (n), and at the same time, the source signal ( Write (+).
 このため、コントローラ33は、ソース信号ラインS(n)に対応するスイッチ34aをONにするとともに、ソース信号ラインS(n+1)に対応するスイッチ35bをONにし、それ以外のスイッチについてはOFFにする。 Therefore, the controller 33 turns on the switch 34a corresponding to the source signal line S (n), turns on the switch 35b corresponding to the source signal line S (n + 1), and turns off the other switches. .
 (第2の書き込み期間)
 第2の書き込み期間においては、ソースドライバ30は、ソース信号ラインS(n+2),(n+3)に対してソース信号の書き込みをおこなう。
(Second writing period)
In the second writing period, the source driver 30 writes a source signal to the source signal lines S (n + 2) and (n + 3).
 例えば、画素行L(m)が選択されている場合、ソース信号ラインS(n+2)に対してソース信号(-)の書き込みをおこなうと同時に、ソース信号ラインS(n+3)に対してソース信号(+)の書き込みをおこなう。 For example, when the pixel row L (m) is selected, the source signal (−) is written to the source signal line S (n + 2), and at the same time, the source signal ( Write (+).
 このため、コントローラ33は、ソース信号ラインS(n+2)に対応するスイッチ34cをONにするとともに、ソース信号ラインS(n+3)に対応するスイッチ35dをONにし、それ以外のスイッチについてはOFFにする。 For this reason, the controller 33 turns on the switch 34c corresponding to the source signal line S (n + 2), turns on the switch 35d corresponding to the source signal line S (n + 3), and turns off the other switches. .
 (第3の書き込み期間)
 第3の書き込み期間においては、ソースドライバ30は、ソース信号ラインS(n+4),(n+5)に対してソース信号の書き込みをおこなう。
(Third writing period)
In the third writing period, the source driver 30 writes a source signal to the source signal lines S (n + 4) and (n + 5).
 例えば、画素行L(m)が選択されている場合、ソース信号ラインS(n+4)に対してソース信号(-)の書き込みをおこなうと同時に、ソース信号ラインS(n+5)に対してソース信号(+)の書き込みをおこなう。 For example, when the pixel row L (m) is selected, the source signal (−) is written to the source signal line S (n + 4) and at the same time the source signal (−) is applied to the source signal line S (n + 5). Write (+).
 このため、コントローラ33は、ソース信号ラインS(n+4)に対応するスイッチ34eをONにするとともに、ソース信号ラインS(n+5)に対応するスイッチ35fをONにし、それ以外のスイッチについてはOFFにする。 Therefore, the controller 33 turns on the switch 34e corresponding to the source signal line S (n + 4), turns on the switch 35f corresponding to the source signal line S (n + 5), and turns off the other switches. .
 (第1~3の書き込み期間における予備充放電)
 上記第1~3の書き込み期間において、表示装置1は、予備充放電可能なソース信号ラインSに対して、対応するスイッチ23をONにすることにより、予備充放電をおこなう。ここでいう予備充放電可能なソース信号ラインSとは、既にソース信号の書き込みが終了したソース信号ラインS、およびソース信号の書き込み対象のソース信号ラインSを除く、ソース信号ラインSである。
(Preliminary charge / discharge during the first to third writing periods)
In the first to third writing periods, the display device 1 performs preliminary charging / discharging by turning on the corresponding switch 23 for the source signal line S capable of preliminary charging / discharging. The source signal line S that can be precharged / discharged here is a source signal line S excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written.
 各期間において、どのソース信号ラインSに対して予備充放電をおこなうかは、図12に示したとおりであるが、一例として、図14を参照して、第2の書き込み期間における表示装置1の動作について説明する。この第2の書き込み期間においては、表示装置1は、ソース信号ラインS(n+2),(n+3)に対してソース信号の書き込みをおこなうと同時に、ソース信号ラインS(n+4),(n+5)に対して、予備充放電をおこなう。 In FIG. 12, which source signal line S is precharged / discharged in each period is as shown in FIG. 12, but as an example, referring to FIG. The operation will be described. In the second writing period, the display device 1 writes the source signal to the source signal lines S (n + 2) and (n + 3), and at the same time writes the source signal to the source signal lines S (n + 4) and (n + 5). Perform pre-charging and discharging.
 上記書き込みのため、切り換え手段32のコントローラ33は、図14に示すように、このソース信号ラインS(n+2)に対応するスイッチ34cをONにする。これにより、ソース出力アンプ37とソース信号ラインS(n+2)とが電気的に接続され、ソース出力アンプ37から出力されたソース信号(-)が、ソース信号ラインS(n+2)に書き込まれる。 For the above writing, the controller 33 of the switching means 32 turns on the switch 34c corresponding to the source signal line S (n + 2) as shown in FIG. As a result, the source output amplifier 37 and the source signal line S (n + 2) are electrically connected, and the source signal (−) output from the source output amplifier 37 is written to the source signal line S (n + 2).
 同時に、切り換え手段32のコントローラ33は、図14に示すように、このソース信号ラインS(n+3)に対応するスイッチ35dをONにする。これにより、ソース出力アンプ38とソース信号ラインS(n+3)とが電気的に接続され、ソース出力アンプ38から出力されたソース信号(+)が、ソース信号ラインS(n+3)に書き込まれる。 At the same time, the controller 33 of the switching means 32 turns on the switch 35d corresponding to the source signal line S (n + 3) as shown in FIG. Thereby, the source output amplifier 38 and the source signal line S (n + 3) are electrically connected, and the source signal (+) output from the source output amplifier 38 is written to the source signal line S (n + 3).
 このとき、表示装置1は、予備充放電可能なソース信号ラインS(n+4),(n+5)に対して、図14に示すように、これらのソース信号ラインSに対応するスイッチ22cをONにする。これにより、ソース信号ラインS(n+4)とソース信号ラインS(n+5)とが短絡され、これらのソース信号ラインS間で電荷が平均化され、予備充放電がおこなわれる。 At this time, for the source signal lines S (n + 4) and (n + 5) that can be precharged / discharged, the display device 1 turns on the switches 22c corresponding to these source signal lines S as shown in FIG. . As a result, the source signal line S (n + 4) and the source signal line S (n + 5) are short-circuited, charges are averaged between these source signal lines S, and preliminary charge / discharge is performed.
 なお、図12~14では、あるフレーム期間における各スイッチの状態を示しているが、フレーム期間が切り換わると、各ソース信号ラインSに供給されるソース信号の正負が反転するように、コントローラ33は、上記の説明において、スイッチ34をONとするようにした部分については、対応するスイッチ35をONとするように制御し、また、スイッチ35をONとするようにした部分については、対応するスイッチ34をONとするように制御する。 12 to 14 show the state of each switch in a certain frame period. When the frame period is switched, the controller 33 is arranged so that the positive / negative of the source signal supplied to each source signal line S is inverted. In the above description, the part in which the switch 34 is turned on is controlled to turn on the corresponding switch 35, and the part in which the switch 35 is turned on corresponds. The switch 34 is controlled to be turned on.
 これにより、表示装置1の各画素の正負は図13、14に対して反転するが、表示装置1の各画素行の各々は、図13,14と同様に、ソース信号(+)が書き込まれた画素と、ソース信号(-)が書き込まれた画素とが、交互に存在することとなる。また、表示装置1の各画素列の各々は、図13,14と同様に、ソース信号(+)が書き込まれた画素またはソース信号(-)が書き込まれた画素のいずれか一方のみが存在することとなる。 As a result, the sign of each pixel of the display device 1 is inverted with respect to FIGS. 13 and 14, but the source signal (+) is written in each pixel row of the display device 1 as in FIGS. The pixels in which the source signal (−) is written alternately exist. Each of the pixel columns of the display device 1 includes only one of the pixel to which the source signal (+) is written and the pixel to which the source signal (−) is written, as in FIGS. It will be.
 (効果)
 このように、本実施形態3の表示装置1は、ソース信号の書き込みをおこなわない期間のみならず、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインSに対する予備充放電をおこなうため、ソース信号の書き込みをおこなわない期間のみ予備充放電をおこなう従来の表示装置と比べ、より長時間の予備充放電をおこなうことができる。したがって、本実施形態3の表示装置1は、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができるので、より消費電力を低減することができる。
(effect)
As described above, the display device 1 according to the third embodiment performs the preliminary charging / discharging on the source signal line S that can be pre-charged / discharged not only during the period when the source signal is not written but also during the period when the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 3 can shorten the writing time of the source signal as compared with the conventional display device, and thus can further reduce power consumption.
 特に、本実施形態3の表示装置1は、ソース出力アンプを2つだけ設け、このソース出力アンプから複数のソース信号ラインの各々に対してソース信号を供給する構成とした。これにより、ソース信号を供給するためのソース出力アンプの数を大幅に減らすことができるので、ソースドライバに係るコストを削減することができる。 In particular, the display device 1 according to the third embodiment has a configuration in which only two source output amplifiers are provided and a source signal is supplied from the source output amplifier to each of a plurality of source signal lines. As a result, the number of source output amplifiers for supplying source signals can be greatly reduced, and the cost associated with the source driver can be reduced.
 また、本実施形態3の表示装置1は、ソース出力アンプの数を減らすことにより、ソース出力アンプが必要とする定常電流の総量を削減することができる。したがって、本実施形態3の表示装置1は、その消費電力をより削減することができる。 Further, the display device 1 according to the third embodiment can reduce the total amount of steady current required by the source output amplifier by reducing the number of source output amplifiers. Therefore, the display device 1 of the third embodiment can further reduce the power consumption.
 また、実施形態3の表示装置1は、ソース信号(+)またはソース信号(-)のいずれか一方のみを供給するソース出力アンプ37,38を用いた。これにより、ソース信号(+)およびソース信号(-)の双方を供給するソース出力アンプを用いる構成と比べて、各ソース出力アンプの耐圧設計範囲を、正側または負側の一方に収めることにより狭めることができるので、各ソース出力アンプの消費電力を削減することができる。したがって、本実施形態3の表示装置1は、その消費電力をより削減することができる。 Further, the display device 1 of the third embodiment uses the source output amplifiers 37 and 38 that supply only one of the source signal (+) and the source signal (−). As a result, compared to a configuration using a source output amplifier that supplies both the source signal (+) and the source signal (−), the withstand voltage design range of each source output amplifier is kept on one of the positive side and the negative side. Since it can be narrowed, the power consumption of each source output amplifier can be reduced. Therefore, the display device 1 of the third embodiment can further reduce the power consumption.
 さらに、本実施形態3の表示装置1は、ソース信号(+)とソース信号(-)とを並列して書き込むこととした。これにより、ソース信号の書き込み期間を短縮することができる。例えば、実施形態1では、6つのソース信号ラインSに対するソース信号をおこなう場合、6つの書き込み期間を要していたのに対し、実施形態3では、6つのソース信号ラインSに対するソース信号をおこなう場合、3つの書き込み期間しか要しない。ソース信号の書き込み期間を短縮することができるということは、水平走査期間を短縮することができるということである。したがって、本実施形態3の表示装置1は、所定の単位時間内により多くの画像を表示することができ、結果的に表示画質を高めることができる。 Furthermore, the display device 1 of Embodiment 3 writes the source signal (+) and the source signal (−) in parallel. Thus, the source signal writing period can be shortened. For example, in the first embodiment, when the source signals for the six source signal lines S are performed, six write periods are required, whereas in the third embodiment, the source signals for the six source signal lines S are performed. Only three writing periods are required. The fact that the source signal writing period can be shortened means that the horizontal scanning period can be shortened. Therefore, the display device 1 according to the third embodiment can display more images within a predetermined unit time, and as a result, display image quality can be improved.
 (実施形態4)
 次に、本発明の実施形態4について説明する。実施形態1~3では、ソース信号ラインS(n)~(n+5)の並び順に、ソース信号の書き込みをおこなうこととした。すなわち、あるソース信号ラインSに対するソース信号の書き込みをおこなった後、隣接するソース信号ラインSに対するソース信号の書き込みを続けておこなうこととしている。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described. In the first to third embodiments, the source signals are written in the arrangement order of the source signal lines S (n) to (n + 5). That is, after writing a source signal to a certain source signal line S, writing of the source signal to an adjacent source signal line S is continued.
 この実施形態4では、隣接するソース信号ラインSへの書き込みを続けておこなわないような順序で、ソース信号ラインS(n)~(n+5)に対するソース信号の書き込みをおこなう例を説明する。なお、実施形態4の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。 In the fourth embodiment, an example will be described in which source signals are written to the source signal lines S (n) to (n + 5) in an order not to continue writing to the adjacent source signal lines S. In the display device 1 according to the fourth embodiment, points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus description thereof is omitted.
 (予備充放電制御手段20の構成例)
 まず、予備充放電制御手段20の構成例について説明する。図15は、実施形態4に係るソースドライバ30および予備充放電制御手段20の構成例を示す図である。
(Configuration Example of Preliminary Charge / Discharge Control Unit 20)
First, a configuration example of the preliminary charge / discharge control unit 20 will be described. FIG. 15 is a diagram illustrating a configuration example of the source driver 30 and the preliminary charge / discharge control unit 20 according to the fourth embodiment.
 図15に示すように、実施形態4の予備充放電制御手段20は、実施形態1の予備充放電制御手段20の構成に加えて、さらに、ソース信号ラインS毎の、複数のスイッチ23a~fと、スイッチ22d,eとを備えている。 As shown in FIG. 15, in addition to the configuration of the precharge / discharge control unit 20 of the first embodiment, the precharge / discharge control unit 20 of the fourth embodiment further includes a plurality of switches 23a to 23f for each source signal line S. And switches 22d and e.
 各スイッチ23の一端は、対応するソース信号ラインSに接続されている。各スイッチ23の他端は、グランドに接地されており、対応するソース信号ラインSに蓄えられている電荷を放電することが可能な構成となっている。 One end of each switch 23 is connected to the corresponding source signal line S. The other end of each switch 23 is grounded, and is configured to be able to discharge charges stored in the corresponding source signal line S.
 すなわち、実施形態4の予備充放電制御手段20は、ソース信号ライン同士を短絡させて予備充放電をおこなわせる構成と、ソース信号ラインをグランドに接地させて予備充放電をおこなう構成との、双方を備えている。 That is, the preliminary charge / discharge control means 20 of the fourth embodiment has both a configuration in which the source signal lines are short-circuited to perform preliminary charge / discharge and a configuration in which the source signal lines are grounded to the ground to perform preliminary charge / discharge. It has.
 これに応じて、予備充放電制御手段20が備えるコントローラ21は、スイッチ23a~fの各々の動作タイミング(すなわちオン/オフのタイミング)と、スイッチ22a~eの各々の動作タイミング(すなわちオン/オフのタイミング)とのそれぞれを制御するよう構成されている。 In response to this, the controller 21 provided in the preliminary charge / discharge control means 20 operates each switch 23a to 23f (ie, on / off timing) and each switch 22a to 22e (ie, on / off). Are configured to control each of them.
 コントローラ21は、スイッチ22a~eの各々の動作タイミングと、スイッチ23a~fの各々の動作タイミングとを、それぞれ制御することによって、ソース信号ラインS(n)~(n+5)の各々に対する予備充電期間を制御する。 The controller 21 controls the operation timing of each of the switches 22a to 22e and the operation timing of each of the switches 23a to 23f, so that the precharge period for each of the source signal lines S (n) to (n + 5) is controlled. To control.
 (予備充放電制御手段20の動作例)
 続いて、図16~18を参照して、実施形態4に係る表示装置1による、予備充放電動作および書き込み動作について説明する。図16は、実施形態4に係る表示装置1の期間毎の動作を示す図である。図17は、実施形態4に係る表示装置1の予備充電期間における状態を示す図である。図18は、実施形態4に係る表示装置1の第3の書き込み期間における状態を示す図である。
(Example of operation of preliminary charge / discharge control means 20)
Next, the pre-charge / discharge operation and the write operation by the display device 1 according to the fourth embodiment will be described with reference to FIGS. FIG. 16 is a diagram illustrating an operation for each period of the display device 1 according to the fourth embodiment. FIG. 17 is a diagram illustrating a state in the preliminary charging period of the display device 1 according to the fourth embodiment. FIG. 18 is a diagram illustrating a state in the third writing period of the display device 1 according to the fourth embodiment.
 図16に示すように、実施形態4に係る表示装置1における1水平期間には、実施形態1に係る表示装置1と同様に、順に、予備充電期間、第1の書き込み期間、第2の書き込み期間、第3の書き込み期間、第4の書き込み期間、第5の書き込み期間、および第6の書き込み期間を含んでいる。 As shown in FIG. 16, in one horizontal period in the display device 1 according to the fourth embodiment, as in the display device 1 according to the first embodiment, a preliminary charging period, a first writing period, and a second writing are sequentially performed. A period, a third writing period, a fourth writing period, a fifth writing period, and a sixth writing period.
 図16では、ソース信号ラインS(n)~(n+5)のそれぞれに対して、表示装置1がおこなう動作を、各期間毎に示している。図16において、「W」は、そのソース信号ラインSに対して、ソース信号ラインの書き込みをおこなうことを示す。また、図16において、「G」は、そのソース信号ラインSをグランドに接地させて、予備充放電をおこなうことを示す。また、図16において、「○」は、そのソース信号ラインSの端子を意味するものであり、すなわち、この端子同士を接続する実線は、この端子同士を短絡させて、このソースラインS同士で予備充放電おこなわせることを示す。 FIG. 16 shows the operation performed by the display device 1 for each of the source signal lines S (n) to (n + 5) for each period. In FIG. 16, “W” indicates that the source signal line is written to the source signal line S. In FIG. 16, “G” indicates that the source signal line S is grounded to perform the pre-charge / discharge. In FIG. 16, “◯” means a terminal of the source signal line S, that is, the solid line connecting the terminals is short-circuited between the source lines S. Indicates that pre-charging / discharging is performed.
 (予備充電期間)
 まず、予備充電期間における表示装置1の動作について説明する。この予備充電期間においては、表示装置1は、図16に示すように、ソース信号ラインS(n)~(n+5)のそれぞれに対して予備充放電をおこなう。
(Preliminary charging period)
First, the operation of the display device 1 during the preliminary charging period will be described. In the preliminary charging period, the display device 1 performs preliminary charging / discharging on each of the source signal lines S (n) to (n + 5) as shown in FIG.
 具体的には、表示装置1は、図17に示すように、隣接するソース信号ラインS間に設けられているスイッチ22a~cを全てONにすることにより、全ての隣接するソース信号ラインS同士を短絡させる。この点については、実施形態1の表示装置1と同様である。 Specifically, as shown in FIG. 17, the display device 1 turns on all the adjacent source signal lines S by turning on all the switches 22a to 22c provided between the adjacent source signal lines S. Short circuit. This is the same as the display device 1 of the first embodiment.
 (第1~6の書き込み期間)
 次に、第1~6の書き込み期間における表示装置1の動作について説明する。第1~6の書き込み期間においては、表示装置1は、図16に示したとおり、ソース信号ラインS(n)~(n+5)に対して、ソース信号の順次書き込みをおこなう。
(First to sixth writing periods)
Next, the operation of the display device 1 in the first to sixth writing periods will be described. In the first to sixth writing periods, the display device 1 sequentially writes source signals to the source signal lines S (n) to (n + 5) as shown in FIG.
 このとき、表示装置1は、隣接するソース信号ラインSへの書き込みを続けておこなわないような順序で、ソース信号ラインS(n)~(n+5)に対するソース信号の書き込みをおこなう。 At this time, the display device 1 writes source signals to the source signal lines S (n) to (n + 5) in an order that does not continue writing to the adjacent source signal lines S.
 例えば、図16に示す例では、表示装置1は、ソース信号ラインS(n),(n+3),(n+5),(n+2),(n+4),(n+1)の順に、ソース信号の書き込みをおこなう。 For example, in the example shown in FIG. 16, the display device 1 writes the source signals in the order of the source signal lines S (n), (n + 3), (n + 5), (n + 2), (n + 4), and (n + 1). .
 表示装置1は、上記書き込みをおこなうとともに、予備充放電可能なソース信号ラインSに対して、対応するスイッチ22または23をONにすることにより、予備充放電をおこなう。すなわち、表示装置1は、予備充放電可能なソース信号ラインSに対して、隣接するソース信号ラインSと短絡させるか、もしくはグランドに接地させることにより、予備充放電をおこなう。 The display device 1 performs the above writing and performs preliminary charging / discharging by turning on the corresponding switch 22 or 23 for the source signal line S capable of preliminary charging / discharging. That is, the display device 1 performs preliminary charge / discharge by short-circuiting the adjacent source signal line S or grounding the source signal line S that can be pre-charged / discharged.
 ここでいう予備充放電可能なソース信号ラインSとは、既にソース信号の書き込みが終了したソース信号ラインS、およびソース信号の書き込み対象のソース信号ラインSを除く、ソース信号ラインSである。 Here, the source signal lines S that can be precharged / discharged are the source signal lines S excluding the source signal line S for which the source signal has already been written and the source signal line S to which the source signal is to be written.
 本実施形態4では、各ソース信号ラインSに対する予備充放電方法として、隣接するソース信号ラインSと短絡させる方法と、グランドに接地させる方法との双方を備えている。いずれの方法によって予備充放電をおこなっても良いが、図16に示す例では、隣接するソース信号ラインSと短絡させる方法を、優先して採用している。そして、この方法による予備充放電が出来ない場合、グランドに接地させる方法を採用している。これにより、グランドへの接地を優先的に用いるよりも、グランド電位の乱れが生じにくくなり、これに起因する表示ノイズや表示乱れの発生を生じにくくすることができる。 In the fourth embodiment, as a pre-charge / discharge method for each source signal line S, both a method of short-circuiting the adjacent source signal line S and a method of grounding to the ground are provided. Any method may be used for the preliminary charging / discharging, but in the example shown in FIG. 16, the method of short-circuiting with the adjacent source signal line S is preferentially adopted. If pre-charging / discharging by this method cannot be performed, a method of grounding to ground is adopted. As a result, the ground potential is less likely to be disturbed than when the grounding to the ground is preferentially used, and display noise and display disorder due to this are less likely to occur.
 各期間において、どのソース信号ラインSに対して予備充放電をおこなうかは、図16に示したとおりであるが、一例として、図18を参照して、第3の書き込み期間における表示装置1の動作について説明する。この第3の書き込み期間においては、表示装置1は、ソース信号ラインS(n+5)に対してソース信号の書き込みをおこなうと同時に、ソース信号ラインS(n+1),(n+2),(n+4)に対して、予備充放電をおこなう。 In FIG. 16, which source signal line S is precharged / discharged in each period is as shown in FIG. 16. As an example, referring to FIG. The operation will be described. In the third writing period, the display device 1 writes the source signal to the source signal line S (n + 5), and at the same time, the source signal line S (n + 1), (n + 2), (n + 4). Perform pre-charging and discharging.
 上記書き込みのため、切り換え手段32のコントローラ33は、図18に示すように、このソース信号ラインS(n+5)に対応するスイッチ34fをONにする。これにより、ソース出力アンプ36とソース信号ラインS(n+5)とが電気的に接続され、ソース出力アンプ36から出力されたソース信号が、ソース信号ラインS(n+5)に書き込まれる。 For the above writing, the controller 33 of the switching means 32 turns on the switch 34f corresponding to the source signal line S (n + 5) as shown in FIG. Thus, the source output amplifier 36 and the source signal line S (n + 5) are electrically connected, and the source signal output from the source output amplifier 36 is written to the source signal line S (n + 5).
 このとき、表示装置1は、予備充放電可能なソース信号ラインS(n+1),(n+2),(n+4)に対して、予備充放電をおこなう。ソース信号ラインS(n+1),(n+2)は、互いに隣接している。このため、表示装置1は、これらの間に設けられたスイッチ22dをONにすることにより、ソース信号ラインS(n+1),(n+2)同士を短絡させ、これらのソース信号ラインS同士で予備充放電をおこなわせる。 At this time, the display device 1 performs preliminary charge / discharge on the source signal lines S (n + 1), (n + 2), and (n + 4) that can be precharged / discharged. The source signal lines S (n + 1) and (n + 2) are adjacent to each other. For this reason, the display device 1 short-circuits the source signal lines S (n + 1) and (n + 2) by turning on the switch 22d provided therebetween, and precharges the source signal lines S with each other. Let the discharge occur.
 一方、ソース信号ラインS(n+4)は、隣接する予備充放電可能なソース信号ラインSが存在しないため、表示装置1は、スイッチ23eをONにすることにより、ソース信号ラインS(n+4)をグランドに接地させ、このソース信号ラインS(n+4)に蓄えられていた電荷を放電させる。 On the other hand, since the source signal line S (n + 4) does not have the adjacent prechargeable / dischargeable source signal line S, the display device 1 turns on the switch 23e to turn the source signal line S (n + 4) to the ground. And the charge stored in the source signal line S (n + 4) is discharged.
 (効果)
 このように、本実施形態4の表示装置1は、ソース信号の書き込みをおこなわない期間のみならず、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインSに対する予備充放電をおこなうため、ソース信号の書き込みをおこなわない期間のみ予備充放電をおこなう従来の表示装置と比べ、より長時間の予備充放電をおこなうことができる。したがって、本実施形態4の表示装置1は、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができる。
(effect)
As described above, the display device 1 according to the fourth embodiment performs preliminary charge / discharge on the source signal line S that can be precharged / discharged not only during a period during which the source signal is not written but also during a period during which the source signal is written. Therefore, precharge / discharge for a longer time can be performed as compared with a conventional display device in which precharge / discharge is performed only during a period in which no source signal is written. Therefore, the display device 1 of Embodiment 4 can shorten the writing time of the source signal as compared with the conventional display device.
 特に、本実施形態4では、隣接するソース信号ラインSへの書き込みを続けておこなわないような順序で、複数のソース信号ラインSに対するソース信号の書き込みをおこなうこととした。 In particular, in the fourth embodiment, source signals are written to a plurality of source signal lines S in an order not to continue writing to adjacent source signal lines S.
 これにより、隣接するソース信号ライン間における寄生容量の発生を抑えることができる。上記寄生容量は、画素に書き込まれた画像データの電圧レベルの変動につながり、表示のにじみの要因となる。したがって、本実施形態4の表示装置1は、上記寄生容量の発生を抑えることができるので、結果的に表示画質を高めることができる。 This can suppress the generation of parasitic capacitance between adjacent source signal lines. The parasitic capacitance leads to fluctuations in the voltage level of the image data written in the pixels and causes display blurring. Therefore, the display device 1 according to the fourth embodiment can suppress the generation of the parasitic capacitance, and as a result, display image quality can be improved.
 (実施形態5)
 次に、本発明の実施形態5について説明する。なお、実施形態5の表示装置1において、以下に説明する以外の点は、実施形態5の表示装置1の構成と同様であるため、説明を省略する。
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described. In the display device 1 according to the fifth embodiment, points other than those described below are the same as the configuration of the display device 1 according to the fifth embodiment, and thus description thereof is omitted.
 本発明の表示装置は、全ての画素行に対して並び順に画素行の書き込みを行うのではなく、少なくとも一部の画素行に対して、並び順に画素行の書き込みを行わない、いわゆるインタレース駆動をディスプレイ駆動方式として採用している表示装置にも適用することができる。 The display device of the present invention does not write pixel rows in the arrangement order for all pixel rows, but does not write pixel rows in the arrangement order for at least some of the pixel rows. This can also be applied to a display device adopting as a display driving method.
 その一例として、実施形態5の表示装置1は、フレーム期間が切り換わる毎に、偶数行目の画素行の画素のみに対するソース信号の書き込みと、奇数行目の画素行の画素のみに対するソース信号の書き込み供給とを切り換えるインタレース駆動方式を採用している。 As an example, the display device 1 of Embodiment 5 writes the source signal only to the pixels in the even-numbered pixel rows and the source signal only to the pixels in the odd-numbered pixel rows every time the frame period is switched. An interlaced drive system that switches between writing and supply is adopted.
 すなわち、あるフレーム期間には、偶数行目の画素行にのみソース信号を書き込み、その次のフレーム期間には、奇数行目の画素行にのみソース信号を書き込むといった具合である。 That is, a source signal is written only to even-numbered pixel rows in a certain frame period, and a source signal is written only to odd-numbered pixel rows in the next frame period.
 以下、実施形態5に係る表示装置1による動作例について説明する。表示装置1は、以下に示す、第1フレーム期間の動作および第2のフレーム期間の動作を、交互におこなう。なお、第1のフレーム期間および第2のフレーム期間は、画素行数が4つであることに応じて、それぞれ第1~2の水平期間を含んでいる。 Hereinafter, an operation example of the display device 1 according to the fifth embodiment will be described. The display device 1 alternately performs the operation in the first frame period and the operation in the second frame period shown below. Note that the first frame period and the second frame period respectively include first and second horizontal periods according to the number of pixel rows being four.
 各水平期間が、予備充電期間および第1~6の書き込み期間を含んでいることや、各期間における書き込み動作および予備充放電動作については、実施形態1と同様のため、説明を省略する。 Since each horizontal period includes the preliminary charging period and the first to sixth writing periods, and the writing operation and the preliminary charging / discharging operation in each period are the same as in the first embodiment, description thereof is omitted.
 (第1のフレーム期間)
 この第1のフレーム期間では、奇数行目の画素行のみが選択され、奇数行目の画素のみに対し、ソース信号が書き込まれる。
(First frame period)
In the first frame period, only the odd-numbered pixel rows are selected, and the source signal is written only to the odd-numbered pixels.
 (第1のフレーム期間:第1の水平期間)
 この期間においては、図2等に示す画素行L(m)が選択され、当該画素行L(m)の画素のみに対し、ソース信号が書き込まれる。
(First frame period: first horizontal period)
In this period, the pixel row L (m) illustrated in FIG. 2 and the like is selected, and the source signal is written only to the pixels in the pixel row L (m).
 (第1のフレーム期間:第2の水平期間)
 この期間においては、図2等に示す画素行L(m+2)が選択され、当該画素行L(m+2)の画素のみに対し、ソース信号が書き込まれる。
(First frame period: second horizontal period)
In this period, the pixel row L (m + 2) shown in FIG. 2 or the like is selected, and the source signal is written only to the pixels in the pixel row L (m + 2).
 (第2のフレーム期間)
 この第2のフレーム期間では、偶数行目の画素行のみが選択され、偶数行目の画素のみに対し、ソース信号が書き込まれる。
(Second frame period)
In the second frame period, only even-numbered pixel rows are selected, and source signals are written only to even-numbered pixels.
 (第2のフレーム期間:第1の水平期間)
 この期間においては、図2等に示す画素行L(m+1)が選択され、当該画素行L(m+1)の画素のみに対し、ソース信号が書き込まれる。
(Second frame period: first horizontal period)
In this period, the pixel row L (m + 1) shown in FIG. 2 or the like is selected, and the source signal is written only to the pixels in the pixel row L (m + 1).
 (第2のフレーム期間:第2の水平期間)
 この期間においては、図2等に示す画素行L(m+3)が選択され、当該画素行L(m+3)の画素のみに対し、ソース信号が書き込まれる。
(Second frame period: second horizontal period)
In this period, the pixel row L (m + 3) shown in FIG. 2 and the like is selected, and the source signal is written only to the pixels in the pixel row L (m + 3).
 (効果)
 このように、本実施形態5の表示装置1は、各フレーム期間における書き込みを行う画素行を偶数行あるいは奇数行に限定している。これにより、ソース信号の書き込み回数を削減することができるため、より消費電力を削減することができる。
(effect)
As described above, in the display device 1 according to the fifth embodiment, pixel rows to be written in each frame period are limited to even rows or odd rows. Accordingly, the number of times of writing source signals can be reduced, so that power consumption can be further reduced.
 この場合も、各ソース信号ラインSにおいて、ソース信号電位の反転は生じるため、実施形態1と同様に予備充放電をおこなうことにより、実施形態1と同様の効果を得ることができる。 Also in this case, since the source signal potential is inverted in each source signal line S, the same effect as in the first embodiment can be obtained by performing the pre-charge / discharge similarly to the first embodiment.
 なお、本発明は、上記書き込み順序のインタレース駆動を採用した表示装置に限らず、上記以外の書き込み順序のインタレース駆動を採用した表示装置にも適用することができる。 Note that the present invention can be applied not only to a display device that employs interlaced driving in the writing order but also to a display device that employs interlaced driving in a writing order other than the above.
 例えば、上記書き込み順序では、1行の書き込みを行う毎に1行を飛ばして、次の行の書き込みを行っているが、1行の書き込みを行う毎に、複数行を飛ばして、次の行の書き込みを行っても良い。また、複数行の書き込みを行う毎に、1行または複数行を飛ばして、次の行の書き込みを行っても良い。 For example, in the above writing order, every time one line is written, one line is skipped and the next line is written. However, every time one line is written, a plurality of lines are skipped and the next line is written. May be written. Further, every time a plurality of lines are written, one line or a plurality of lines may be skipped and the next line may be written.
 すなわち、画素行の書き込み単位は1行であっても複数行であっても良く、書き込みを行った後に飛ばす画素行の数は1行であっても複数行であっても良い。 That is, the writing unit of the pixel row may be one row or a plurality of rows, and the number of pixel rows to be skipped after writing may be one row or a plurality of rows.
 また、上記書き込み順序では、あるフレーム期間に一部の画素行(例えば、偶数行目の画素行)の書き込みを行い、次のフレーム期間に残りの画素行(例えば、奇数行目の画素行)の書き込みを行うこととした。すなわち、上記書き込み順序では、2フレーム期間で全ての画素行に対する書き込みを行うこととしたが、1フレーム期間内に全ての画素行に対する書き込みを行うようにしても良く、3以上のフレーム期間に亘って全ての画素行に対する書き込みを行うようにしても良い。 In the above writing order, a part of pixel rows (for example, even-numbered pixel rows) is written in a certain frame period, and the remaining pixel rows (for example, odd-numbered pixel rows) in the next frame period. It was decided to write. That is, in the above writing order, writing to all pixel rows is performed in two frame periods. However, writing to all pixel rows may be performed in one frame period, and the writing is performed over three or more frame periods. Thus, writing may be performed for all the pixel rows.
 例えば、あるフレーム期間の前半に一部の画素行(例えば、偶数行目の画素行)の書き込みを行い、そのフレーム期間の後半に残りの画素行(例えば、奇数行目の画素行)の書き込みを行うようにしても良い(すなわち、1フレームで全ての画素行に対する書き込みを行うようにしても良い)。 For example, some pixel rows (for example, even-numbered pixel rows) are written in the first half of a frame period, and the remaining pixel rows (for example, odd-numbered pixel rows) are written in the second half of the frame period. (That is, writing to all pixel rows may be performed in one frame).
 このとき、フレーム期間の前半において、上記一部の画素行の全ての画素に対してソース信号(+)を書き込み、フレーム期間の後半において、上記残りの画素行の全ての画素に対してソース信号(-)が書き込むようにしても良い。 At this time, the source signal (+) is written to all the pixels in the partial pixel row in the first half of the frame period, and the source signal is applied to all the pixels in the remaining pixel row in the second half of the frame period. (-) May be written.
 すなわち、インタレース駆動を採用しつつ、ソース信号(+)の書き込みと、ソース信号(-)の書き込みとを、ある程度まとまった単位で行うようにすると良い。これにより、ソース信号の出力の切り換え(ソース信号(+)からソース信号(-)への切り換え、およびソース信号(-)からソース信号(+)への切り換え)回数を削減することができるため、低電力化を実現することができる。 That is, it is preferable to perform writing of the source signal (+) and writing of the source signal (−) in a certain unit while adopting interlace driving. As a result, the number of switching of the source signal output (switching from the source signal (+) to the source signal (−) and switching from the source signal (−) to the source signal (+)) can be reduced. Low power can be realized.
 (変形例)
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
(Modification)
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 (ディスプレイ駆動方式の変形例)
 ここで、図19~21を参照して、ソースドライバ30が採用するディスプレイ駆動方式の変形例について説明する。ここまでの説明では、ソースドライバ30がソース反転駆動(第1のディスプレイ駆動方式)を採用している場合について説明した。
(Modification of display drive system)
Here, with reference to FIGS. 19 to 21, a modified example of the display driving method adopted by the source driver 30 will be described. In the description so far, the case where the source driver 30 adopts the source inversion driving (first display driving method) has been described.
 ソースドライバ30は、第1のディスプレイ駆動方式以外のディスプレイ駆動方式を採用することができる。 The source driver 30 can employ a display driving method other than the first display driving method.
 そこで、ここでは、ソースドライバ30が採用し得る第2~4のディスプレイ駆動方式について説明する。 Therefore, here, the second to fourth display driving methods that can be adopted by the source driver 30 will be described.
 (第2のディスプレイ駆動方式)
 まず、図19を参照して、ソースドライバ30が採用し得る第2のディスプレイ駆動方式について説明する。図19は、第2のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネル2を示す図である。
(Second display drive method)
First, the second display driving method that can be adopted by the source driver 30 will be described with reference to FIG. FIG. 19 is a diagram showing the display panel 2 in a state where a source signal is written by the second display driving method.
 すでに説明したとおり、表示パネル2は、複数の画素ブロックによって構成されているが、ここでは、そのうちの1つの画素ブロックについて説明する。 As already described, the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
 この第2のディスプレイ駆動方式によれば、ソースドライバ30は、ゲート信号ラインG(画素行)が選択されるごとに、そのゲート信号ラインG(画素行)上の複数の画素に対して、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させながら、ソース信号を書き込む。 According to the second display driving method, the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row) every time the gate signal line G (pixel row) is selected. The source signal is written while inverting the positive / negative of the voltage supplied from the signal (from the reference voltage) for each pixel.
 これにより、表示パネル2上における各画素行は、図19に示すとおり、ソース信号(+)が書き込まれる画素と、ソース信号(-)が書き込まれる画素とが、交互に存在することとなる。この点については、第1のディスプレイ駆動方式と同様である。 Thereby, in each pixel row on the display panel 2, as shown in FIG. 19, a pixel to which the source signal (+) is written and a pixel to which the source signal (−) is written alternately exist. This is the same as the first display driving method.
 一方、各ソース信号ラインS(画素列)に着目すると、その各ソース信号ラインS(画素列)上の複数の画素に対して、ソースドライバ30は、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させて、ソース信号を書き込む。 On the other hand, when attention is paid to each source signal line S (pixel column), the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column). The source signal is written by inverting the positive / negative of each pixel.
 この結果、表示パネル2上においては、図19に示すとおり、複数の画素列および複数の画素行のいずれにおいても、ソース信号(+)が書き込まれる画素と、ソース信号(-)が書き込まれる画素とが、交互に存在することとなる。このような第2のディスプレイ駆動方式を、「ドット反転駆動」と称することができる。 As a result, on the display panel 2, as shown in FIG. 19, the pixel to which the source signal (+) is written and the pixel to which the source signal (−) is written in any of the plurality of pixel columns and the plurality of pixel rows. Are alternately present. Such a second display driving method can be referred to as “dot inversion driving”.
 さらにフレーム周期で各画素の極性が反転する構成を併せて採用した場合、表示パネル2は、フレーム期間毎に、図19に示した状態と、図19から各画素の正負が反転した状態とを、交互に成し得る。 Further, when the configuration in which the polarity of each pixel is inverted in the frame period is also adopted, the display panel 2 changes between the state shown in FIG. 19 and the state in which the sign of each pixel is inverted from FIG. 19 for each frame period. Can be alternated.
 (第3のディスプレイ駆動方式)
 次に、図20を参照して、ソースドライバ30が採用し得る第3のディスプレイ駆動方式について説明する。図20は、第3のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネル2を示す図である。
(Third display driving method)
Next, a third display driving method that can be adopted by the source driver 30 will be described with reference to FIG. FIG. 20 is a diagram showing the display panel 2 in a state where a source signal is written by the third display driving method.
 すでに説明したとおり、表示パネル2は、複数の画素ブロックによって構成されているが、ここでは、そのうちの1つの画素ブロックについて説明する。 As already described, the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
 この第3のディスプレイ駆動方式によれば、ソースドライバ30は、ゲート信号ラインG(画素行)が選択されるごとに、そのゲート信号ラインG(画素行)上の複数の画素に対して、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させずに、ソース信号を書き込む。 According to the third display driving method, each time the gate signal line G (pixel row) is selected, the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row). The source signal is written without inverting the sign (from the reference voltage) of the voltage supplied as the signal for each pixel.
 これにより、表示パネル2上における各画素行は、図20に示すとおり、ソース信号(+)が書き込まれる画素、または、ソース信号(-)が書き込まれる画素のいずれか一方しか存在しないこととなる。 As a result, each pixel row on the display panel 2 has only one of the pixel to which the source signal (+) is written and the pixel to which the source signal (−) is written, as shown in FIG. .
 一方、各ソース信号ラインS(画素列)に着目すると、その各ソース信号ラインS(画素列)上の複数の画素に対して、ソースドライバ30は、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させて、ソース信号を書き込む。 On the other hand, when attention is paid to each source signal line S (pixel column), the source driver 30 supplies a voltage supplied as a source signal (from the reference voltage) to a plurality of pixels on each source signal line S (pixel column). The source signal is written by inverting the positive / negative of each pixel.
 この結果、表示パネル2上には、図20に示すとおり、ソース信号(+)が書き込まれる画素のみが存在するゲート信号ラインGと、ソース信号(-)が書き込まれる画素のみが存在するゲート信号ラインGとが、交互に存在することとなる。 As a result, as shown in FIG. 20, on the display panel 2, the gate signal line G in which only the pixel to which the source signal (+) is written exists and the gate signal in which only the pixel to which the source signal (−) is written exist. Lines G are alternately present.
 さらに、フレーム周期で各画素の極性が反転する構成を併せて採用した場合、表示パネル2は、フレーム期間毎に、図20に示した状態と、図20から各画素の正負が反転した状態とを、交互に成し得る。 Furthermore, when the configuration in which the polarity of each pixel is inverted in the frame period is also adopted, the display panel 2 has the state shown in FIG. 20 and the state in which the sign of each pixel is inverted from FIG. Can be alternated.
 (第4のディスプレイ駆動方式)
 次に、図21を参照して、ソースドライバ30が採用し得る第4のディスプレイ駆動方式について説明する。図21は、第4のディスプレイ駆動方式によりソース信号が書き込まれた状態の表示パネル2を示す図である。
(Fourth display drive method)
Next, a fourth display driving method that can be adopted by the source driver 30 will be described with reference to FIG. FIG. 21 is a diagram showing the display panel 2 in a state where a source signal is written by the fourth display driving method.
 すでに説明したとおり、表示パネル2は、複数の画素ブロックによって構成されているが、ここでは、そのうちの1つの画素ブロックについて説明する。 As already described, the display panel 2 is composed of a plurality of pixel blocks. Here, one of the pixel blocks will be described.
 この第4のディスプレイ駆動方式によれば、ソースドライバ30は、ゲート信号ラインG(画素行)が選択されるごとに、そのゲート信号ラインG(画素行)上の複数の画素に対して、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させずに、ソース信号を書き込む。 According to the fourth display driving method, the source driver 30 applies source to a plurality of pixels on the gate signal line G (pixel row) every time the gate signal line G (pixel row) is selected. The source signal is written without inverting the sign (from the reference voltage) of the voltage supplied as the signal for each pixel.
 また、各ソース信号ラインS(画素列)に着目しても、その各ソース信号ラインS(画素列)上の複数の画素に対して、ソースドライバ30は、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させずに、ソース信号を書き込む。 Further, even if attention is paid to each source signal line S (pixel column), the source driver 30 supplies a reference voltage (reference) to the plurality of pixels on each source signal line S (pixel column). Write the source signal without inverting the sign (from voltage) pixel by pixel.
 すなわち、同一のフレーム期間内に限っては、ソースドライバ30は、ソース信号として供給する電圧の(基準電圧からの)正負を画素毎に反転させることなく、複数の画素の各々に対して、ソース信号を書き込む。 That is, only within the same frame period, the source driver 30 does not invert the positive / negative (from the reference voltage) of the voltage supplied as the source signal for each pixel, without reversing the positive / negative for each pixel. Write signal.
 この結果、表示パネル2上には、図21に示すとおり、ソース信号(+)が書き込まれる画素、または、ソース信号(-)が書き込まれる画素のいずれか一方しか存在しないこととなる。 As a result, as shown in FIG. 21, only one of the pixel to which the source signal (+) is written or the pixel to which the source signal (−) is written exists on the display panel 2.
 但し、ソースドライバ30は、隣接する画素ブロック同士の関係においては、ソース信号として供給する電圧の(基準電圧からの)正負を反転させる。 However, the source driver 30 inverts the sign (from the reference voltage) of the voltage supplied as the source signal in the relationship between adjacent pixel blocks.
 例えば、図21に示すように、画素ブロック2Aについては、この画素ブロックに対応するソース出力アンプによって、全ての画素に対してソース信号(-)を書き込む。 For example, as shown in FIG. 21, for the pixel block 2A, the source signal (−) is written to all the pixels by the source output amplifier corresponding to this pixel block.
 一方、画素ブロック2Aに隣接する画素ブロック2Bについては、この画素ブロックに対応するソース出力アンプによって、全ての画素に対してソース信号(+)を書き込む。 On the other hand, for the pixel block 2B adjacent to the pixel block 2A, the source signal (+) is written to all the pixels by the source output amplifier corresponding to this pixel block.
 さらにフレーム周期で各画素の極性が反転する構成を併せて採用した場合、表示パネル2は、フレーム期間毎に、図21に示した状態と、図21から各画素の正負が反転した状態とを、交互に成し得る。 Further, when the configuration in which the polarity of each pixel is inverted in the frame period is also adopted, the display panel 2 changes between the state shown in FIG. 21 and the state in which the polarity of each pixel is inverted from FIG. Can be alternated.
 実施形態1~5では、第1のディスプレイ駆動方式を採用した場合を例に説明したが、上記したいずれのディスプレイ駆動方式を採用している場合であっても、表示装置1は、実施形態1~5で説明した構成と同様の構成による予備充放電を行うことができ、実施形態1~5で説明した効果と同様の効果を奏することができる。 In the first to fifth embodiments, the case where the first display driving method is employed has been described as an example. However, the display device 1 is not limited to the first embodiment even when any of the display driving methods described above is employed. Preliminary charging / discharging can be performed with a configuration similar to that described in the fifth to fifth embodiments, and effects similar to those described in the first to fifth embodiments can be achieved.
 すなわち、本発明の表示装置は、第1のディスプレイ駆動方式以外のディスプレイ駆動方式を採用している表示装置に対しても、適用することが可能である。 That is, the display device of the present invention can be applied to a display device that employs a display driving method other than the first display driving method.
 (まとめ)
 以上のように、本実施形態に係る表示装置は、複数のゲート信号ラインおよび複数のソース信号ラインを有する表示パネルと、前記複数のゲート信号ラインを順次選択して走査するゲートドライバと、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給するソースドライバと、前記ソースドライバによってあるソース信号ラインへのソース信号の供給がおこなわれている間、他のソース信号ラインに対する予備充放電をおこなう予備充放電制御手段とを備えることを特徴とする。
(Summary)
As described above, the display device according to the present embodiment is selected by a display panel having a plurality of gate signal lines and a plurality of source signal lines, a gate driver that sequentially selects and scans the plurality of gate signal lines. A source driver that supplies a source signal from the plurality of source signal lines to each of a plurality of pixels on the gate signal line, and a source signal is supplied to a certain source signal line by the source driver. And a pre-charging / discharging control means for performing pre-charging / discharging with respect to another source signal line.
 この構成によれば、ソース信号の書き込みをおこなう期間においても、予備充放電可能なソース信号ラインに対する予備充放電をおこなうことができるため、ソース信号の書き込みをおこなう期間には予備充放電をおこなうことができない従来の表示装置と比べ、より長時間の予備充放電をおこなうことができるので、ソース信号ラインのソース信号電位を基準電位により近づけておくことができる。したがって、従来の表示装置に比べ、ソース信号の書き込み時間を短縮することができるので、より消費電力を低減することができる。 According to this configuration, since it is possible to perform preliminary charge / discharge with respect to the source signal line capable of preliminary charge / discharge even during the period during which the source signal is written, preliminary charge / discharge is performed during the period during which the source signal is written. Compared with a conventional display device that cannot perform the precharging / discharging for a longer time, the source signal potential of the source signal line can be made closer to the reference potential. Accordingly, the writing time of the source signal can be shortened as compared with a conventional display device, so that power consumption can be further reduced.
 上記表示装置において、前記予備充放電制御手段は、ソース信号電位が正となる前記他のソース信号ラインと、ソース信号電位が負となる前記他のソース信号ラインとを互いに短絡させることにより、これら他の信号ラインに対する予備充放電をおこなうことが好ましい。 In the display device, the preliminary charging / discharging control unit short-circuits the other source signal line having a positive source signal potential and the other source signal line having a negative source signal potential. It is preferable to perform preliminary charging / discharging for other signal lines.
 この構成によれば、ソース信号電位が正となるソース信号ラインと、ソース信号電位が負となる他のソース信号ラインとの双方を短絡させるだけで、これらのソース信号ラインのソース信号電位を、予め基準電位付近に近づけておくことができる。これにより、これらのソース信号ラインに対する書き込みをおこなう際、ソース信号の書き込み時間を短縮することができる。 According to this configuration, by simply short-circuiting both the source signal line whose source signal potential is positive and the other source signal line whose source signal potential is negative, the source signal potential of these source signal lines is It can be brought close to the reference potential in advance. Thereby, when writing to these source signal lines, the writing time of the source signal can be shortened.
 また、上記表示装置において、前記予備充放電制御手段は、前記他のソース信号ラインをグランドに接地させることにより、前記他のソース信号ラインに対する予備充放電をおこなうことが好ましい。 In the display device, it is preferable that the preliminary charge / discharge control unit performs preliminary charge / discharge on the other source signal line by grounding the other source signal line to the ground.
 この構成によれば、ソース信号ライン同士を短絡させることが困難な場合であっても、ソース信号ラインに対して予備充放電をおこなうことができる。また、短絡相手のソース信号ラインを必要としないために予備充放電の機会が増えるので、ソース信号ラインの各々について、より多くの予備充電期間を設けることができる。 According to this configuration, even when it is difficult to short-circuit the source signal lines, it is possible to perform preliminary charge / discharge on the source signal lines. In addition, since the source signal line of the short-circuit partner is not required, the opportunity for pre-charging / discharging increases, so that more pre-charging periods can be provided for each source signal line.
 また、上記表示装置において、前記ソースドライバは、1つのソース出力アンプと、前記1つのソース出力アンプがソース信号を出力する毎に、当該ソース信号の供給先を、前記複数のソース信号ラインのうちの当該ソース信号が供給されるべきソース信号ラインへ切り換える切り換え手段とを備えることが好ましい。 Further, in the display device, the source driver outputs one source output amplifier, and each time the one source output amplifier outputs a source signal, the supply destination of the source signal is selected from among the plurality of source signal lines. Switching means for switching to the source signal line to be supplied with the source signal.
 特に、前記切り換え手段は、前記複数のソース信号ラインの各々に対し、当該ソース信号ラインと前記1つのソース出力アンプとを接続および切断するスイッチを有し、前記1つのソース出力アンプがソース信号を出力する毎に、当該ソース信号が供給されるべきソース信号ラインの前記スイッチをオンに切り換えることが好ましい。 In particular, the switching means has a switch for connecting and disconnecting the source signal line and the one source output amplifier for each of the plurality of source signal lines, and the one source output amplifier receives the source signal. It is preferable to turn on the switch of the source signal line to which the source signal is to be supplied every time it is output.
 この構成によれば、ソース出力アンプの数を大幅に減らすことができるので、ソースドライバに係るコストをより削減することができる。また、ソース出力アンプが必要とする定常電流の総量をより削減することができる。したがって、消費電力をより削減することができる。 According to this configuration, since the number of source output amplifiers can be significantly reduced, the cost associated with the source driver can be further reduced. In addition, the total amount of steady current required by the source output amplifier can be further reduced. Therefore, power consumption can be further reduced.
 また、上記表示装置において、前記ソースドライバは、ソース信号電位が正となる第1のソース信号を出力する第1のソース出力アンプと、ソース信号電位が負となる第2のソース信号を出力する第2のソース出力アンプと、前記第1のソース信号および前記第2のソース信号の供給先をそれぞれ切り換える切り換え手段とを備え、前記切り換え手段は、前記第1のソース出力アンプが前記第1のソース信号を出力する毎に、当該第1のソース信号の供給先を、前記複数のソース信号ラインのうちの当該第1のソース信号が供給されるべきソース信号ラインへ切り換え、前記第2のソース出力アンプが前記第2のソース信号を出力する毎に、当該第2のソース信号の供給先を、前記複数のソース信号ラインのうちの当該第2のソース信号が供給されるべきソース信号ラインへ切り換えることが好ましい。 In the display device, the source driver outputs a first source output amplifier that outputs a first source signal having a positive source signal potential and a second source signal having a negative source signal potential. A second source output amplifier; and a switching unit that switches a supply destination of each of the first source signal and the second source signal, and the switching unit includes the first source output amplifier and the first source output amplifier. Each time a source signal is output, the supply source of the first source signal is switched to the source signal line to which the first source signal of the plurality of source signal lines is to be supplied, and the second source Each time the output amplifier outputs the second source signal, the supply source of the second source signal is changed to the second source signal of the plurality of source signal lines. It is preferable to switch to the source signal line to be fed.
 特に、前記切り換え手段は、前記複数のソース信号ラインの各々に対し、当該ソース信号ラインと前記第1のソース出力アンプとを接続および切断する第1のスイッチと、当該ソース信号ラインと前記第2のソース出力アンプとを接続および切断する第2のスイッチと、をそれぞれ有し、前記第1のソース出力アンプが前記第1のソース信号を出力する毎に、当該第1のソース信号が供給されるべきソース信号ラインの前記第1のスイッチをオンに切り換え、前記第2のソース出力アンプが前記第2のソース信号を出力する毎に、当該第2のソース信号が供給されるべきソース信号ラインの前記第2のスイッチをオンに切り換えることが好ましい。 In particular, the switching means includes, for each of the plurality of source signal lines, a first switch for connecting and disconnecting the source signal line and the first source output amplifier, the source signal line, and the second source signal line. A second switch for connecting and disconnecting the first source output amplifier, and each time the first source output amplifier outputs the first source signal, the first source signal is supplied. Each time the first switch of the source signal line to be turned on is turned on and the second source output amplifier outputs the second source signal, the source signal line to which the second source signal is to be supplied It is preferable to turn on the second switch.
 この構成によれば、ソース信号電位が正となるソース信号およびソース信号電位が負となるソース信号の双方を供給するソース出力アンプを用いる構成と比べて、各ソース出力アンプの耐圧設計範囲を、正側または負側の一方に収めることにより狭めることができるので、各ソース出力アンプの消費電力を削減することができる。 According to this configuration, compared to a configuration using a source output amplifier that supplies both a source signal having a positive source signal potential and a source signal having a negative source signal potential, the withstand voltage design range of each source output amplifier is Since it can be narrowed by being accommodated in one of the positive side and the negative side, the power consumption of each source output amplifier can be reduced.
 また、上記表示装置において、前記第1のソース出力アンプによる前記第1のソース信号の出力と、前記第2のソース出力アンプによる前記第2のソース信号の出力とが、並行して行われることにより、前記第1のソース信号のソース信号ラインへの供給と、前記第2のソース信号のソース信号ラインへの供給とが、並行して行われることが好ましい。 In the display device, the output of the first source signal by the first source output amplifier and the output of the second source signal by the second source output amplifier are performed in parallel. Accordingly, it is preferable that the supply of the first source signal to the source signal line and the supply of the second source signal to the source signal line are performed in parallel.
 この構成によれば、ソース信号の書き込み期間を短縮することができる。すなわち、水平走査期間を短縮することができるので、所定の単位時間内により多くの画像を表示することができ、結果的に表示画質を高めることができる。すなわち、より効率的に画像を表示することができる。 According to this configuration, the source signal writing period can be shortened. That is, since the horizontal scanning period can be shortened, more images can be displayed within a predetermined unit time, and as a result, the display image quality can be improved. That is, an image can be displayed more efficiently.
 また、上記表示装置において、前記ソースドライバは、隣接するソース信号ライン同士へのソース信号の供給が連続して行われない順序で、複数のソース信号ラインに対するソース信号の供給をおこなうことが好ましい。 In the display device, it is preferable that the source driver supplies source signals to a plurality of source signal lines in an order in which source signals are not continuously supplied to adjacent source signal lines.
 この構成によれば、隣接するソース信号ライン間における寄生容量の発生を抑えることができる。この寄生容量は、画素に書き込まれた画像データの電圧レベルの変動につながり、表示のにじみの要因となる。 According to this configuration, generation of parasitic capacitance between adjacent source signal lines can be suppressed. This parasitic capacitance leads to fluctuations in the voltage level of the image data written in the pixels, and causes display blurring.
 また、上記表示装置において、前記ソースドライバは、複数の画素行のうちの一部の画素行の画素に対するソース信号の書き込みと、複数の画素行のうちの残りの画素行の画素に対するソース信号の書き込みとを、交互に切り換えて行うことが好ましい。 In the display device, the source driver writes a source signal to pixels in a part of the plurality of pixel rows and outputs source signals to pixels in the remaining pixel rows of the plurality of pixel rows. It is preferable to perform writing by alternately switching.
 この構成によれば、例えば上記切り換えをフレーム周期で行うことにより、各フレーム期間におけるソース信号の書き込み回数を削減することができる。したがって、より消費電力を削減することができる。 According to this configuration, for example, by performing the switching in the frame period, the number of times of writing the source signal in each frame period can be reduced. Therefore, power consumption can be further reduced.
 また、上記表示装置において、前記ソースドライバは、各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込み、各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込む第1のディスプレイ駆動方式を採用していることが好ましい。 In the display device, the source driver includes, for each pixel row, a pixel in which a source signal having a positive source signal potential is written and a pixel in which a source signal having a negative source signal potential is written. Source signals are written so that they exist alternately, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written or a source signal having a negative source signal potential is written. It is preferable to employ the first display driving method for writing the source signal so that only one of the pixels is present.
 この構成によれば、第1のディスプレイ駆動方式を採用している場合であっても、上記表示装置と同様の効果を奏することができる。 According to this configuration, even when the first display driving method is adopted, the same effect as that of the display device can be obtained.
 また、上記表示装置において、前記ソースドライバは、各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込み、各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込む第2のディスプレイ駆動方式を採用していることが好ましい。 In the display device, the source driver includes, for each pixel row, a pixel to which a source signal having a positive source signal potential is written and a pixel to which a source signal having a negative source signal potential is written. The source signal is written so as to be alternately present, and for each pixel column, the pixel to which the source signal having the positive source signal potential is written and the source signal having the negative source signal potential are written. It is preferable to adopt the second display driving method for writing the source signal so that the pixels are alternately present.
 この構成によれば、第2のディスプレイ駆動方式を採用している場合であっても、上記表示装置と同様の効果を奏することができる。 According to this configuration, even when the second display driving method is adopted, the same effect as that of the display device can be obtained.
 また、上記表示装置において、前記ソースドライバは、各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込み、各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込む第3のディスプレイ駆動方式を採用していることが好ましい。 In the above display device, the source driver may be either a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written. A source signal is written so that only one of them exists, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written and a source signal having a negative source signal potential are written. It is preferable to employ the third display driving method for writing the source signal so that the pixels in which the signal is written alternately exist.
 この構成によれば、第3のディスプレイ駆動方式を採用している場合であっても、上記表示装置と同様の効果を奏することができる。 According to this configuration, even when the third display driving method is adopted, the same effect as that of the display device can be obtained.
 また、上記表示装置において、前記ソースドライバは、各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込み、各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込む第4のディスプレイ駆動方式を採用していることが好ましい。 In the above display device, the source driver may be either a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written. A source signal is written so that only one of them exists, and for each pixel column, a pixel to which a source signal having a positive source signal potential is written or a source signal having a negative source signal potential is written It is preferable that the fourth display driving method for writing the source signal is adopted so that only one of the pixels in which is written exists.
 この構成によれば、第4のディスプレイ駆動方式を採用している場合であっても、上記表示装置と同様の効果を奏することができる。 According to this configuration, even when the fourth display driving method is adopted, the same effect as that of the display device can be obtained.
 本発明に係る表示装置は、液晶表示装置、有機EL表示装置、および電子ペーパー等、アクティブマトリクス方式を採用した各種表示装置において利用可能である。 The display device according to the present invention can be used in various display devices employing an active matrix method, such as a liquid crystal display device, an organic EL display device, and electronic paper.
 1    表示装置
 2    表示パネル
 4    ゲートドライバ
 8    共通電極駆動回路
 10   タイミングコントローラ
 13   電源生成回路
 20   予備充放電制御手段
 21   コントローラ
 22   スイッチ
 23   スイッチ
 30   ソースドライバ
 32   切り換え手段
 33   コントローラ
 34   スイッチ
 35   スイッチ
 36   ソース出力アンプ
 37   ソース出力アンプ
 38   ソース出力アンプ
DESCRIPTION OF SYMBOLS 1 Display apparatus 2 Display panel 4 Gate driver 8 Common electrode drive circuit 10 Timing controller 13 Power supply generation circuit 20 Preliminary charge / discharge control means 21 Controller 22 Switch 23 Switch 30 Source driver 32 Switching means 33 Controller 34 Switch 35 Switch 36 Source output amplifier 37 Source output amplifier 38 Source output amplifier

Claims (14)

  1.  複数のゲート信号ラインおよび複数のソース信号ラインを有する表示パネルと、
     前記複数のゲート信号ラインを順次選択して走査するゲートドライバと、
     選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給するソースドライバと、
     前記ソースドライバによってあるソース信号ラインへのソース信号の供給がおこなわれている間、他のソース信号ラインに対する予備充放電をおこなう予備充放電制御手段と
     を備えることを特徴とする表示装置。
    A display panel having a plurality of gate signal lines and a plurality of source signal lines;
    A gate driver that sequentially selects and scans the plurality of gate signal lines;
    A source driver for supplying a source signal from the plurality of source signal lines to each of the plurality of pixels on the selected gate signal line;
    A display device comprising: preliminary charge / discharge control means for performing preliminary charge / discharge on another source signal line while a source signal is being supplied to a certain source signal line by the source driver.
  2.  前記予備充放電制御手段は、
     ソース信号電位が正となる前記他のソース信号ラインと、ソース信号電位が負となる前記他のソース信号ラインとを互いに短絡させることにより、これら他の信号ラインに対する予備充放電をおこなう
     ことを特徴とする請求項1に記載の表示装置。
    The preliminary charge / discharge control means includes:
    The other source signal line having a positive source signal potential and the other source signal line having a negative source signal potential are short-circuited to each other to perform preliminary charge / discharge on the other signal lines. The display device according to claim 1.
  3.  前記予備充放電制御手段は、
     前記他のソース信号ラインをグランドに接地させることにより、前記他のソース信号ラインに対する予備充放電をおこなう
     ことを特徴とする請求項1に記載の表示装置。
    The preliminary charge / discharge control means includes:
    The display device according to claim 1, wherein precharging / discharging is performed on the other source signal line by grounding the other source signal line to the ground.
  4.  前記ソースドライバは、
     1つのソース出力アンプと、
     前記1つのソース出力アンプがソース信号を出力する毎に、当該ソース信号の供給先を、前記複数のソース信号ラインのうちの当該ソース信号が供給されるべきソース信号ラインへ切り換える切り換え手段と
     を備えることを特徴とする請求項1から3のいずれかに記載の表示装置。
    The source driver is
    One source output amplifier,
    Switching means for switching the source signal supply destination to the source signal line to which the source signal is to be supplied among the plurality of source signal lines each time the one source output amplifier outputs the source signal. The display device according to claim 1, wherein the display device is a display device.
  5.  前記切り換え手段は、
     前記複数のソース信号ラインの各々に対し、当該ソース信号ラインと前記1つのソース出力アンプとを接続および切断するスイッチを有し、
     前記1つのソース出力アンプがソース信号を出力する毎に、当該ソース信号が供給されるべきソース信号ラインの前記スイッチをオンに切り換える
     ことを特徴とする請求項4に記載の表示装置。
    The switching means is
    A switch for connecting and disconnecting the source signal line and the one source output amplifier for each of the plurality of source signal lines;
    5. The display device according to claim 4, wherein each time the one source output amplifier outputs a source signal, the switch of the source signal line to which the source signal is to be supplied is turned on.
  6.  前記ソースドライバは、
     ソース信号電位が正となる第1のソース信号を出力する第1のソース出力アンプと、
     ソース信号電位が負となる第2のソース信号を出力する第2のソース出力アンプと、
     前記第1のソース信号および前記第2のソース信号の供給先をそれぞれ切り換える切り換え手段と
     を備え、
     前記切り換え手段は、
     前記第1のソース出力アンプが前記第1のソース信号を出力する毎に、当該第1のソース信号の供給先を、前記複数のソース信号ラインのうちの当該第1のソース信号が供給されるべきソース信号ラインへ切り換え、
     前記第2のソース出力アンプが前記第2のソース信号を出力する毎に、当該第2のソース信号の供給先を、前記複数のソース信号ラインのうちの当該第2のソース信号が供給されるべきソース信号ラインへ切り換える
     ことを特徴とする請求項1から3のいずれかに記載の表示装置。
    The source driver is
    A first source output amplifier that outputs a first source signal having a positive source signal potential;
    A second source output amplifier that outputs a second source signal having a negative source signal potential;
    Switching means for switching the supply source of the first source signal and the second source signal, respectively.
    The switching means is
    Each time the first source output amplifier outputs the first source signal, the supply source of the first source signal is supplied with the first source signal of the plurality of source signal lines. Switch to the source signal line
    Each time the second source output amplifier outputs the second source signal, the second source signal of the plurality of source signal lines is supplied to the destination of the second source signal. The display device according to claim 1, wherein the display device is switched to a power source signal line.
  7.  前記切り換え手段は、
     前記複数のソース信号ラインの各々に対し、当該ソース信号ラインと前記第1のソース出力アンプとを接続および切断する第1のスイッチと、当該ソース信号ラインと前記第2のソース出力アンプとを接続および切断する第2のスイッチと、をそれぞれ有し、
     前記第1のソース出力アンプが前記第1のソース信号を出力する毎に、当該第1のソース信号が供給されるべきソース信号ラインの前記第1のスイッチをオンに切り換え、
     前記第2のソース出力アンプが前記第2のソース信号を出力する毎に、当該第2のソース信号が供給されるべきソース信号ラインの前記第2のスイッチをオンに切り換える
     ことを特徴とする請求項6に記載の表示装置。
    The switching means is
    For each of the plurality of source signal lines, a first switch for connecting and disconnecting the source signal line and the first source output amplifier is connected, and the source signal line and the second source output amplifier are connected. And a second switch to disconnect, respectively
    Each time the first source output amplifier outputs the first source signal, the first switch of the source signal line to which the first source signal is to be supplied is turned on.
    Each time the second source output amplifier outputs the second source signal, the second switch of the source signal line to which the second source signal is to be supplied is turned on. Item 7. The display device according to Item 6.
  8.  前記第1のソース出力アンプによる前記第1のソース信号の出力と、前記第2のソース出力アンプによる前記第2のソース信号の出力とが、並行して行われることにより、
     前記第1のソース信号のソース信号ラインへの供給と、前記第2のソース信号のソース信号ラインへの供給とが、並行して行われる
     ことを特徴とする請求項6または7に記載の表示装置。
    The output of the first source signal by the first source output amplifier and the output of the second source signal by the second source output amplifier are performed in parallel.
    The display according to claim 6 or 7, wherein the supply of the first source signal to the source signal line and the supply of the second source signal to the source signal line are performed in parallel. apparatus.
  9.  前記ソースドライバは、
     隣接するソース信号ライン同士へのソース信号の供給が連続して行われない順序で、複数のソース信号ラインに対するソース信号の供給をおこなう
     ことを特徴とする請求項1~8のいずれかに記載の表示装置。
    The source driver is
    9. The source signal is supplied to a plurality of source signal lines in an order in which source signals are not continuously supplied to adjacent source signal lines. Display device.
  10.  前記ソースドライバは、
     複数の画素行のうちの一部の画素行の画素に対するソース信号の書き込みと、複数の画素行のうちの残りの画素行の画素に対するソース信号の書き込みとを、交互に切り換えて行う
     ことを特徴とする請求項1~9のいずれかに記載の表示装置。
    The source driver is
    The source signal writing to the pixels of some pixel rows of the plurality of pixel rows and the source signal writing to the pixels of the remaining pixel rows of the plurality of pixel rows are alternately switched. The display device according to any one of claims 1 to 9.
  11.  前記ソースドライバは、
     各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込み、
     各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込む
     第1のディスプレイ駆動方式を採用している
     ことを特徴とする請求項1~10のいずれかに記載の表示装置。
    The source driver is
    For each pixel row, the source signal is such that the pixel to which the source signal having a positive source signal potential is written and the pixel to which a source signal having a negative source signal potential is written alternately exist. Write
    For each pixel column, only one of a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written exists. 11. The display device according to claim 1, wherein a first display driving method for writing a source signal is adopted.
  12.  前記ソースドライバは、
     各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込み、
     各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込む
     第2のディスプレイ駆動方式を採用している
     ことを特徴とする請求項1~10のいずれかに記載の表示装置。
    The source driver is
    For each pixel row, the source signal is such that the pixel to which the source signal having a positive source signal potential is written and the pixel to which a source signal having a negative source signal potential is written alternately exist. Write
    For each pixel column, a pixel to which a source signal having a positive source signal potential is written and a pixel to which a source signal having a negative source signal potential is written alternately exist. The display device according to any one of claims 1 to 10, wherein a second display driving method for writing a source signal is adopted.
  13.  前記ソースドライバは、
     各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込み、
     各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素と、ソース信号電位が負となるソース信号が書き込まれた画素とが交互に存在することとなるように、ソース信号を書き込む
     第3のディスプレイ駆動方式を採用している
     ことを特徴とする請求項1~10のいずれかに記載の表示装置。
    The source driver is
    For each pixel row, only one of a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written exists. Write source signal,
    For each pixel column, a pixel to which a source signal having a positive source signal potential is written and a pixel to which a source signal having a negative source signal potential is written alternately exist. The display device according to any one of claims 1 to 10, wherein a third display driving method for writing a source signal is adopted.
  14.  前記ソースドライバは、
     各画素行に対し、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込み、
     各画素列に対しては、ソース信号電位が正となるソース信号が書き込まれた画素、またはソース信号電位が負となるソース信号が書き込まれた画素のいずれか一方のみが存在することとなるように、ソース信号を書き込む
     第4のディスプレイ駆動方式を採用している
     ことを特徴とする請求項1~10のいずれかに記載の表示装置。
    The source driver is
    For each pixel row, only one of a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written exists. Write source signal,
    For each pixel column, only one of a pixel to which a source signal having a positive source signal potential is written or a pixel to which a source signal having a negative source signal potential is written exists. 11. The display device according to claim 1, wherein a fourth display driving method for writing a source signal is adopted.
PCT/JP2012/062070 2011-05-13 2012-05-10 Display device WO2012157530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011108790 2011-05-13
JP2011-108790 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157530A1 true WO2012157530A1 (en) 2012-11-22

Family

ID=47176854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062070 WO2012157530A1 (en) 2011-05-13 2012-05-10 Display device

Country Status (1)

Country Link
WO (1) WO2012157530A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221932A (en) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Liquid crystal display device and its driving method
JP2002196732A (en) * 2000-04-27 2002-07-12 Toshiba Corp Display device, picture control semiconductor device, and method for driving the display device
JP2003022054A (en) * 2001-07-06 2003-01-24 Sharp Corp Image display device
JP2006072391A (en) * 1997-05-13 2006-03-16 Oki Electric Ind Co Ltd Source line drive circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072391A (en) * 1997-05-13 2006-03-16 Oki Electric Ind Co Ltd Source line drive circuit
JP2000221932A (en) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd Liquid crystal display device and its driving method
JP2002196732A (en) * 2000-04-27 2002-07-12 Toshiba Corp Display device, picture control semiconductor device, and method for driving the display device
JP2003022054A (en) * 2001-07-06 2003-01-24 Sharp Corp Image display device

Similar Documents

Publication Publication Date Title
US8121244B2 (en) Dual shift register
JP5704976B2 (en) Liquid crystal display panel, liquid crystal display device, and driving method of liquid crystal display device
US10453377B2 (en) Display panel and driving method thereof, and display apparatus
US20120169783A1 (en) Display driving circuit and operating methods
JP2008116556A (en) Driving method of liquid crystal display apparatus and data side driving circuit therefor
US8610703B2 (en) Liquid crystal display device, and driving method and integrated circuit used in same
US20120113084A1 (en) Liquid crystal display device and driving method of the same
US9898981B2 (en) Liquid crystal driving apparatus and liquid crystal display comprising the same
US10748465B2 (en) Gate drive circuit, display device and method for driving gate drive circuit
KR100549983B1 (en) Liquid crystal display device and driving method of the same
JP2007065454A (en) Liquid crystal display and its driving method
TWI406258B (en) Double-gate liquid crystal display device and related driving method
JP2008281913A (en) Display device and pre-charge circuit of the same
JP5752216B2 (en) Display device
JP4959728B2 (en) Display device, driving circuit and driving method thereof
US9607564B2 (en) Clock generator circuit of liquid crystal display device and operation method thereof
WO2012133281A1 (en) Display device
US8884862B2 (en) Display and method of driving the same
WO2012090803A1 (en) Liquid crystal display device
JP2007328120A (en) Method for driving liquid crystal display, and device for driving the same
KR20080086617A (en) A liquid crystal display device and a method for driving the same
JP2005128153A (en) Liquid crystal display apparatus and driving circuit and method of the same
JP2010250029A (en) Display
JP2008233283A (en) Liquid crystal display device and driving method thereof
KR20090113080A (en) Gate drive circuit for liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP