WO2012090803A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012090803A1
WO2012090803A1 PCT/JP2011/079587 JP2011079587W WO2012090803A1 WO 2012090803 A1 WO2012090803 A1 WO 2012090803A1 JP 2011079587 W JP2011079587 W JP 2011079587W WO 2012090803 A1 WO2012090803 A1 WO 2012090803A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
pixel
signal line
memory
operation mode
Prior art date
Application number
PCT/JP2011/079587
Other languages
French (fr)
Japanese (ja)
Inventor
鷲尾 一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012090803A1 publication Critical patent/WO2012090803A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3659Control of matrices with row and column drivers using an active matrix the addressing of the pixel involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependant on signal of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0857Static memory circuit, e.g. flip-flop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to a liquid crystal display device including a memory circuit capable of holding data in a pixel.
  • a liquid crystal display device has been proposed as a liquid crystal display device including a pixel memory that performs display by holding image data written in the pixel in a memory circuit (referred to as a pixel memory) in the pixel (Patent Document 1). etc).
  • a pixel memory that performs display by holding image data written in the pixel in a memory circuit (referred to as a pixel memory) in the pixel (Patent Document 1). etc).
  • a new image data is rewritten on a pixel-by-frame basis through a data signal line for display.
  • a rewrite image is displayed. Display is performed using image data held in the pixel memory without supplying data.
  • the operation of the drive circuit that drives the scanning signal line and the data signal line can be stopped, so that power consumption can be greatly reduced. Accordingly, the memory operation is often used for image display that is strongly demanded to reduce power consumption, such as a standby screen display of a cellular phone.
  • one pixel memory circuit (DM18 in FIG. 33) is provided for each pixel, and a still image display is performed using image data held in each pixel memory circuit. ing.
  • JP 2002-229532 A (published on August 16, 2002)
  • the effect of low power consumption can be sufficiently obtained, but when a plurality of images are switched and displayed, An operation similar to that of normal moving image display is required, and the effect of low power consumption cannot be obtained.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to reduce power consumption when a plurality of images are switched and displayed in a liquid crystal display device including a pixel memory circuit. is there.
  • the liquid crystal display device provides A liquid crystal display device provided with a storage unit for holding image data in each pixel, In each pixel, the storage unit includes a plurality of memory circuits each holding individual image data, Display is performed based on image data held in each memory circuit.
  • each pixel is provided with a plurality of memory circuits, and each memory circuit can individually hold image data.
  • each memory circuit can individually hold image data.
  • the storage unit in each pixel, includes a plurality of memory circuits each holding individual image data, and based on the image data held in each memory circuit. It is the structure which performs a display. Thereby, in the liquid crystal display device provided with the pixel memory circuit, there is an effect that it is possible to reduce power consumption when switching and displaying a plurality of images.
  • FIG. 3 is an equivalent circuit diagram illustrating a configuration of one pixel in the liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. 3 is a schematic diagram illustrating a configuration of a pixel of the liquid crystal display panel in FIG. 2.
  • 3 is a timing chart illustrating a driving method of the liquid crystal display device according to the first embodiment.
  • 6 is a timing chart illustrating another driving method of the liquid crystal display device according to the first embodiment.
  • 6 is a timing chart illustrating another driving method of the liquid crystal display device according to the first embodiment.
  • FIG. 6 is an equivalent circuit diagram illustrating a first modification of the pixel in FIG. 1.
  • FIG. 6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is an equivalent circuit diagram illustrating a configuration of one pixel in the liquid crystal display device according to Embodiment 2.
  • FIG. 10 is a circuit diagram of a decoder included in the pixel of FIG. 9. 10 is a table showing a relationship between a combination of a first image data selection signal and a second image data selection signal, an output signal of the decoder of FIG. 10, and a pixel memory selected from a storage unit included in the pixel of FIG.
  • FIG. 10 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 9.
  • FIG. 6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to Embodiment 3.
  • FIG. 6 is an equivalent circuit diagram showing a configuration of one pixel in a liquid crystal display device according to Embodiment 3.
  • FIG. 6 is a timing chart illustrating a method for driving a liquid crystal display device according to a third embodiment.
  • FIG. 6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a fourth embodiment.
  • 6 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to Embodiment 4.
  • FIG. FIG. 18 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 17.
  • FIG. 18 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 17.
  • FIG. 10 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a fifth embodiment.
  • FIG. 10 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a fifth embodiment.
  • FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a fifth embodiment.
  • 10 is a timing chart illustrating a driving method of the liquid crystal display device according to the fifth embodiment.
  • FIG. 22 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 21.
  • FIG. 10 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a sixth embodiment.
  • FIG. 10 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a fifth embodiment.
  • FIG. 10 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display
  • FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a sixth embodiment.
  • FIG. 16 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a seventh embodiment.
  • FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a seventh embodiment.
  • 18 is a timing chart illustrating a driving method of the liquid crystal display device according to the seventh embodiment.
  • FIG. 16 is a schematic diagram showing a pixel configuration of a liquid crystal display panel in a liquid crystal display device according to an eighth embodiment.
  • FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to an eighth embodiment.
  • FIG. 31 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 30.
  • FIG. 10 is an equivalent circuit diagram illustrating a second modification of the pixel in FIG. 1. It is a figure which shows
  • FIG. 2 is a block diagram showing the overall configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 10 includes a liquid crystal display panel 100 and a display control circuit 200.
  • the liquid crystal display panel 100 includes a source driver (data signal line driving circuit) 300, a gate driver (scanning signal line driving circuit) 400, a display unit 500, and a memory operation driver 600.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line) SL2, a gate bus line (scanning signal line) GL, an image data selection line SEL, A high potential side power supply line VHL and a low potential side power supply line VLL are included.
  • the first source bus line SL1 and the second source bus line SL2 are connected to the source driver 300
  • the gate bus line GL is connected to the gate driver 400
  • the image data selection line SEL the high potential side power supply line VHL
  • the low The potential power supply line VLL is connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P.
  • One gate bus line GL and two source bus lines (first source bus line SL1, second source bus line) corresponding to each pixel P. SL2), an image data selection line SEL, a high potential side power supply line VHL, and a low potential side power supply line VLL are provided.
  • Each pixel P has a pixel electrode PIX for applying a voltage according to an image to be displayed to a liquid crystal capacitor Clc, which will be described later, and a common electrode COM that is a common electrode provided to the plurality of pixels P.
  • a liquid crystal layer provided in common to the plurality of pixels P and sandwiched between the pixel electrode PIX and the common electrode COM.
  • Each pixel P is provided with a storage unit, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes.
  • the first memory circuit is referred to as a first pixel memory MR1
  • the second memory circuit is referred to as a second pixel memory MR2.
  • the liquid crystal display device 10 performs display by holding the image data written in the pixel P in the first pixel memory MR1 and the second pixel memory MR2 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written and an image data holding period in which display is performed while holding the written image data.
  • First image data for two image data corresponding to images (first image and second image) (for convenience, the first image data corresponding to the first image and the second image data corresponding to the second image) Is written in the first pixel memory MR1, the second image data is written in the second pixel memory MR2, and in the image data holding period, the first image held in the first pixel memory MR1 is displayed when displaying the first image.
  • the display is switched to the second image data held in the second pixel memory MR2.
  • the display control circuit 200 receives a data signal DAT and an image data selection signal VSEL sent from the outside, and receives a digital video signal DV (image data) and a source start pulse signal SSP for controlling image display on the display unit 500, A source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, a gate clock signal GCK, and an image data selection signal VSEL for selecting an image (first image, second image) to be displayed on the display unit 500 Output.
  • a specific configuration for selecting an image will be described later.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1).
  • a driving video signal (image data) is applied to the 2-source bus line SL2).
  • the first image data is applied to the first source bus line SL1
  • the second image data is applied to the second source bus line SL2.
  • the first image data is white image data and the second image data is black. It can be image data.
  • the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period (1H) when writing image data (first image data, second image data) (image data writing period). Based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal (gate signal) is sequentially applied to each gate bus line GL. Thereby, in each pixel P in the same row (horizontal line), the first image data is written in the first pixel memory MR1, and at the same time, the second image data is written in the second pixel memory MR2. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 3 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows.
  • FIG. 1 is an equivalent circuit diagram showing the configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
  • the switch unit 50 includes a first switch unit SW10 and a second switch unit SW20, and the first switch unit SW10 is realized by an N-type TFT (hereinafter referred to as “N-type” as needed),
  • the switch SW12 and the inverter circuit INV11 (hereinafter referred to as “P-type” if necessary) realized by a P-type TFT include an inverter circuit INV11.
  • the second switch unit SW20 includes an N-type switch SW21, a P-type switch SW22, and an inverter.
  • a circuit INV21 is included.
  • a switch with a white circle is a P-type switch
  • a switch without a white circle is an N-type switch.
  • the terms “N type” and “P type” are omitted as necessary.
  • the switch SW11 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the first source bus line SL1, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10.
  • the switch SW12 has a control terminal connected to the output terminal of the inverter circuit INV11, one conduction terminal connected to the first source bus line SL1, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10. Yes.
  • the input terminal of the inverter circuit INV11 is connected to the gate bus line GL.
  • the switch SW21 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the second source bus line SL2, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20.
  • the switch SW22 has a control terminal connected to the output terminal of the inverter circuit INV21, one conduction terminal connected to the second source bus line SL2, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20. Yes.
  • the input terminal of the inverter circuit INV21 is connected to the gate bus line GL.
  • the storage unit 51 includes a first pixel memory MR1 and a second pixel memory MR2.
  • the first pixel memory MR1 includes two inverter circuits INV12 and INV13.
  • the second pixel memory MR2 includes two inverter circuits INV22 and INV23. Is included.
  • the inverter circuit INV12 has an input terminal connected to the output terminal swout1 of the first switch unit SW10, and an output terminal connected to the output terminal mout1 of the first pixel memory MR1.
  • the inverter circuit INV13 has an input terminal connected to the output terminal of the inverter circuit INV12, and an output terminal connected to the input terminal of the inverter circuit INV12.
  • the inverter circuit INV22 has an input terminal connected to the output terminal swout2 of the second switch unit SW20, and an output terminal connected to the output terminal mout2 of the second pixel memory MR2.
  • the inverter circuit INV23 has an input terminal connected to the output terminal of the inverter circuit INV22, and an output terminal connected to the input terminal of the inverter circuit INV22.
  • the data selection unit 52 includes N-type switches SW13 and SW23, P-type switches SW14 and SW24, and an inverter circuit INV14.
  • the switch SW13 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been.
  • the switch SW23 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW24 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the inverter circuit INV14 has an input terminal connected to the image data selection line SEL, and an output terminal connected to the control terminal of the switch SW14 and the control terminal of the switch SW23.
  • the display element unit 53 includes N-type switches SW15 and SW25, P-type switches SW16 and SW26, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, and a liquid crystal capacitor Clc.
  • the switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, one conduction terminal connected to the low potential power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX.
  • a liquid crystal capacitance Clc is formed between the pixel electrode PIX and the counter electrode COM.
  • FIG. 4 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10.
  • VSL1 and VSL2 are signals of the first image data and the second image data supplied to the first source bus line SL1 and the second source bus line SL2, respectively.
  • VGL (n ⁇ 1), VGLn, VGL ( n + 1) are gate signals (scanning signals) supplied to the gate bus lines GL (n ⁇ 1), GLn, GL (n + 1) in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively.
  • VSEL indicates an image data selection signal supplied to the image data selection line SEL
  • VMR1 (n ⁇ 1), VMR1n, and VMR1 (n + 1) are the (n ⁇ 1) th row, the nth row, and (n + 1), respectively.
  • VMR2 (n ⁇ 1), VMR2n, VMR2 (n + 1) are the second in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively.
  • Pixel memory VP (n ⁇ 1), VPn, VP (n + 1) are the potentials (pixel potentials) of the pixel electrodes PIX in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively. Is shown.
  • the display image is switched between the first image and the second image. This switching is performed based on an image data selection signal VSEL sent to the display control circuit 200 from the outside.
  • VSEL image data selection signal
  • FIG. 4 shows a case where the first image displayed by the first image data is a white solid image, and the second image displayed by the second image data is a black solid image.
  • image data is written from time t1 to time t2.
  • active signals are sequentially supplied to the gate bus lines GL (n ⁇ 1), GLn, and GL (n + 1) for a predetermined period.
  • a high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL.
  • H level image data selection signal VSEL is supplied.
  • the first image data (image data corresponding to white: H level (“1”)) supplied to the first source bus line SL1 is supplied to the first pixel of the storage unit 51 via the switches SW11 and SW12.
  • Second image data (image data corresponding to black: L level (“0”)) input to the memory MR1 and supplied to the second source bus line SL2 is stored in the storage unit 51 via the switches SW21 and SW22. It is input to the second pixel memory MR2.
  • the first pixel memory MR1 when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 4).
  • the L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
  • the second pixel memory MR2 when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, an L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 4).
  • the H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
  • the switch SW13 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is turned off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is turned off. As a result, an L level signal of the first pixel memory MR ⁇ b> 1 is output from the data selection unit 52 and input to the display element unit 53.
  • an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. As a result, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
  • Display method for image data retention period display is performed using the image data held in the storage unit 51. For example, paying attention to the pixel Pn in the n-th row, the display is performed with the first image data (white) stored in the first pixel memory MR1 from the time point t2 to the time point t3, and the second pixel memory after the time point t3. It is assumed that display is performed using the second image data (black) stored in MR2.
  • an inactive signal (L level) is supplied to all the gate bus lines GL (n ⁇ 1), GLn, and GL (n + 1).
  • the image data selection line SEL is continuously supplied with the H level image data selection signal VSEL as in the image data writing period.
  • an H level data signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 4), and an L level data signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 4). Therefore, an L level data signal is output from the first pixel memory MR1, and an H level data signal is output from the second pixel memory MR2.
  • the switch SW13 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is kept on and the switch SW24 is kept off. In addition, since an L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is kept on and the switch SW23 is kept off. As a result, as in the image data writing period, the output signal (L level) of the first pixel memory MR1 is output from the data selection unit 52 and input to the display element unit 53.
  • the switches SW15 and SW26 since the L level signal is supplied to the switches SW15 and SW26 and the H level signal is supplied to the switches SW16 and SW25 via the inverter INV15, the switches SW15 and SW16 maintain the OFF state. SW25 and SW26 are kept on. Accordingly, the voltage (H level) of the high potential side power supply line VHL is continuously applied to the pixel electrode PIX, and white display is maintained in the pixel Pn (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and the display of the white solid image is maintained.
  • the L-level image data selection signal VSEL is supplied to the image data selection line SEL.
  • the inactive signal (L level) is supplied to all the gate bus lines GL (n ⁇ 1), GLn, and GL (n + 1), the supply of the data signal is stopped.
  • the switch SW13 is turned off and the switch SW24 is turned on.
  • the H level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned off and the switch SW23 is turned on.
  • the output signal (H level) of the second pixel memory MR ⁇ b> 2 is output from the data selection unit 52 and input to the display element unit 53.
  • the H level signal is supplied to the switches SW15 and SW26, and the L level signal is supplied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned on, and the switch SW25 is turned on. , SW26 is turned off.
  • the voltage (L level) of the low potential side power supply line VLL is applied to the pixel electrode PIX, and the pixel Pn is switched to black display (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and the white solid image is switched to the black solid image.
  • the image data holding period display is performed using the image data held in the storage unit 51, and the first image data held in the first pixel memory MR1 is displayed on the basis of the image data selection signal VSEL.
  • the corresponding first image and the second image corresponding to the second image data held in the second pixel memory MR2 can be switched and displayed.
  • black display is performed in the image data writing period from time t1 to time t2 and image data holding period from time t2 to time t3, and white display is performed after time t3 as shown in the timing chart of FIG.
  • the potential level (H / L) of the image data selection signal VSEL may be reversed.
  • FIG. 1 when the first image data is a first image having a horizontal stripe pattern (stripe) and the second image data is a second image having a horizontal stripe pattern (black and white of each pixel is reversed from the first image), FIG. As shown in the timing chart, the potential levels of the first image data supplied to the first source bus line SL1 and the second image data supplied to the second source bus line SL2 are reversed from each other, and each image data The potential level may be reversed every horizontal scanning period (1H). Furthermore, when a checkerboard pattern is displayed, the connection between the first source bus line SL1 and the second source bus line SL2 may be configured to be opposite to each other in adjacent pixel columns. For example, in the pixel adjacent to the pixel shown in FIG. 1 in the row direction (the horizontal direction in FIG. 1), the first source bus line SL1 is connected to the second switch unit SW12, and the second source bus line SL2 is connected to the first switch. What is necessary is just to connect to part SW10.
  • a liquid crystal display device adopts AC driving to prevent deterioration of a liquid crystal material used for a liquid crystal display panel.
  • the AC driving in this description means that the voltage applied to both ends of the liquid crystal capacitor Clc shown in FIG.
  • synchronized alternating current waveform signals are input to the high potential side power supply line VHL, the low potential side power supply line VLL, and the common electrode COM.
  • the common electrode COM and the low potential power line VLL are signals having the same potential and the same timing
  • the high potential power line VHL is The signal has a phase opposite to that of the common electrode COM and the low-potential side power supply line VLL. The same applies to other embodiments.
  • FIG. 7 is an equivalent circuit diagram showing a first modification of the pixel P in FIG.
  • the pixel P in FIG. 7 schematically has a configuration in which the inverter circuit INV15 of the display element unit 53 in the pixel P in FIG. 1 is omitted. Below, it demonstrates centering on difference with the pixel P of FIG.
  • the switch unit 50 and the storage unit 51 have the same configuration as the pixel P in FIG.
  • the image data selection unit 52 is provided with N-type switches SW17 and SW27 and P-type switches SW18 and SW28 in addition to the switches SW13, SW14, SW23 and SW24 and the inverter circuit INV14 shown in FIG.
  • Each of the switches SW13 and SW14 has one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout1 of the data selection unit 52.
  • Each of the switches SW23 and SW24 has one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout1 of the data selection unit 52.
  • the switch SW17 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the input terminal of the inverter circuit INV12 and the output terminal of the inverter circuit INV13 in the first pixel memory MR1, and the other conduction terminal connected to the data.
  • the selector 52 is connected to the output terminal selout2.
  • the switch SW18 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the input terminal of the inverter circuit INV12 and the output terminal of the inverter circuit INV13, and the other conduction terminal output of the data selection unit 52. It is connected to the terminal selout2.
  • the switch SW27 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the input terminal of the inverter circuit INV22 and the output terminal of the inverter circuit INV23, and the other conduction terminal output of the data selection unit 52. It is connected to the terminal selout2.
  • the switch SW28 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the input terminal of the inverter circuit INV22 and the output terminal of the inverter circuit INV23, and the other conduction terminal output terminal of the data selection unit 52. It is connected to selout2.
  • the inverter circuit INV14 has an input terminal connected to the image data selection line SEL and an output terminal connected to the control terminals of the switches SW14, SW18, SW23, and SW27.
  • the display element unit 53 includes switches SW15, SW25, SW16, SW26, a pixel electrode PIX, a counter electrode COM, and a liquid crystal capacitor Clc.
  • the switch SW15 has a control terminal connected to the output terminal selout1 of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW16 has a control terminal connected to the output terminal selout2 of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW25 has a control terminal connected to the output terminal selout2 of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW26 has a control terminal connected to the output terminal selout1 of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX.
  • a liquid crystal capacitance Clc is formed between the pixel electrode PIX and the counter electrode COM.
  • FIG. 32 is an equivalent circuit diagram showing a second modification of the pixel P in FIG.
  • the gate bus line GLB and the image data selection line SELB are further provided for each pixel P in the liquid crystal display panel 100 shown in FIG.
  • the gate bus line GLB is supplied with an inversion signal VGLB of the gate signal VGL supplied to the gate bus line GL
  • the image data selection line SELB is inverted with the image data selection signal VSEL supplied to the image data selection line SEL.
  • a signal VSELB is supplied.
  • the inverter circuits INV11 and INV21 of the switch unit 50 and the inverter circuit INV14 of the data selection unit 52 in the pixel P of FIG. 1 are omitted.
  • the storage unit 51 and the display element unit 53 have the same configuration as the pixel P in FIG.
  • an active gate signal VGL (H level) is supplied to the gate bus line GL
  • an inactive gate signal VGLB (inversion signal of VGL; L level) is supplied to the gate bus line.
  • the switches SW11, SW12, SW21, and SW22 are turned on, the inactive gate signal VGL (L level) is supplied to the gate bus line GL, and the active gate signal VGLB (inverted signal of VGL). ; H level) is supplied to the gate bus line GLB, the switches SW11, SW12, SW21, SW22 are turned off.
  • an active image data selection signal VSEL (H level) is supplied to the image data selection line SEL, and an inactive image data selection signal VSELB (inverted signal of VSEL; L level) is selected for image data.
  • VSELB inverted signal of VSEL; L level
  • an inactive image data selection signal VSEL (L level) is supplied to the image data selection line SEL
  • an active image data selection signal VSELB (inverted signal of VSEL; H level) is supplied to the image data selection line SELB. Then, the switches SW13 and SW14 are turned off, and the switches SW23 and SW24 are turned on.
  • the driving method of the liquid crystal display device having the pixel P according to the modified example 2 of FIG. 32 is the same as the driving method shown in FIG.
  • Modification 1 and Modification 2 can be similarly applied to the liquid crystal display device according to each embodiment of the present invention.
  • the liquid crystal display device of the present invention is not limited to the configuration shown in this embodiment mode.
  • another embodiment of the liquid crystal display device of the present invention will be described.
  • the terms defined in this embodiment are used in accordance with the definitions in this embodiment unless otherwise specified.
  • Embodiment 2 In the first embodiment, two images (first image and second image) are switched and displayed.
  • the present invention is not limited to this, and three images or more images are displayed. It is good also as a structure which switches and displays.
  • the liquid crystal display device according to the present embodiment has a configuration in which three images are held and switched to be displayed.
  • the schematic configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200 as in the first embodiment shown in FIG. 2, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), and a third source bus line (third data signal).
  • a signal line SL3, a gate bus line GL, a first image data selection line SEL1, a second image data selection line SEL2, a high potential side power supply line VHL, and a low potential side power supply line VLL are included.
  • the first source bus line SL1, the second source bus line SL2, and the third source bus line SL3 are connected to the source driver 300
  • the gate bus line GL is connected to the gate driver 400
  • the second image data selection line SEL2, the high potential side power supply line VHL, and the low potential side power supply line VLL are connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and three source bus lines (first source bus line SL1, second source bus line SL2, 3 source bus lines SL3), two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high potential side power supply line VHL, and low potential side power supply line VLL.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
  • the first memory circuit is referred to as a first pixel memory MR1
  • the second memory circuit is referred to as a second pixel memory MR2
  • the third memory circuit is referred to as a third pixel memory MR3.
  • the liquid crystal display device 10 performs display by holding the image data written in the pixel P in the first pixel memory MR1, the second pixel memory MR2, and the third pixel memory MR3 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written, and an image data holding period in which display is performed while holding the written image data.
  • the first image data is the first pixel.
  • the second image data is written in the second pixel memory MR2
  • the third image data is written in the third pixel memory MR3
  • the first pixel is displayed when the first image is displayed in the image data holding period.
  • the second image data held in the second pixel memory MR2 is switched to the second image data. Instead it is used to display, when displaying the third image performs display is switched to the third image data stored in the third pixel memory MR3.
  • the display control circuit 200 receives the data signal DAT, the first image data selection signal VSEL1 and the second image data selection signal VSEL2 sent from the outside, and displays the digital video signal DV (image data) and the image display on the display unit 500.
  • a source start pulse signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, and a gate clock signal GCK for controlling, and images to be displayed on the display unit 500 (first image, second image, first image)
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting (three images) are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1).
  • a driving video signal (image data) is applied to the two source bus lines SL2 and the third source bus lines SL3). Specifically, the first image data is applied to the first source bus line SL1, the second image data is applied to the second source bus line SL2, and the third image data is applied to the third source bus line SL3.
  • the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period when writing image data (first image data, second image data, third image data) (image data writing period).
  • image data first image data, second image data, third image data
  • an active scanning signal is sequentially applied to each gate bus line GL.
  • the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 8 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n ⁇ 1), n, and (n + 1) rows.
  • FIG. 9 is an equivalent circuit diagram showing the configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
  • the switch unit 50 includes a first switch unit SW10, a second switch unit SW20, and a third switch unit SW30.
  • the first switch unit SW10 and the second switch unit SW20 have the same configuration as that of FIG.
  • the third switch unit SW30 includes an N-type switch SW31, a P-type switch SW32, and an inverter circuit INV31.
  • the switch SW31 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the third source bus line SL3, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30.
  • the switch SW32 has a control terminal connected to the output terminal of the inverter circuit INV31, one conduction terminal connected to the third source bus line SL3, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30. Yes.
  • the input terminal of the inverter circuit INV31 is connected to the gate bus line GL.
  • the storage unit 51 includes a first pixel memory MR1, a second pixel memory MR2, and a third pixel memory MR3.
  • the first pixel memory MR1 and the second pixel memory MR2 have the same configuration as that shown in FIG.
  • the third pixel memory MR3 includes two inverter circuits INV32 and INV33.
  • the inverter circuit INV32 has an input terminal connected to the output terminal swout3 of the third switch unit SW30, and an output terminal of the inverter circuit INV32 connected to the output terminal mout3 of the third pixel memory MR3.
  • the inverter circuit INV33 has an input terminal connected to the output terminal of the inverter circuit INV32, and an output terminal connected to the input terminal of the inverter circuit INV32.
  • the data selection unit 52 includes N-type switches SW13, SW23, SW33, P-type switches SW14, SW24, SW34, inverter circuits INV16, INV26, INV36, and a decoder 5.
  • the decoder 5 includes three NOR circuits 5a, 5b, and 5c and two inverter circuits INVb and INVc, and receives the first image data selection signal VSEL1 and the second image data selection signal VSEL2.
  • the NOR circuit 5a has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the second image data selection line SEL2, and an output terminal connected to the output terminal dcout1 of the decoder 5. Yes.
  • the input terminal of the inverter circuit INVb is connected to the second image data selection line SEL2, and the input terminal of the inverter circuit INVc is connected to the first image data selection line SEL1.
  • the NOR circuit 5b has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the output terminal of the inverter circuit INVb, and the output terminal connected to the output terminal dcout2 of the decoder 5.
  • the NOR circuit 5c has one input terminal connected to the output terminal of the inverter circuit INVc, the other input terminal connected to the second image data selection line SEL2, and the output terminal connected to the output terminal dcout3 of the decoder 5. .
  • the switch SW13 has a control terminal connected to the output terminal dcout1 of the decoder 5, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV16, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV16 is connected to the output terminal dcout1 of the decoder 5.
  • the switch SW23 has a control terminal connected to the output terminal dcout2 of the decoder 5, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW24 has a control terminal connected to the output terminal of the inverter circuit INV26, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV26 is connected to the output terminal dcout2 of the decoder 5.
  • the switch SW33 has a control terminal connected to the output terminal dcout3 of the decoder 5, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW34 has a control terminal connected to the output terminal of the inverter circuit INV36, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV36 is connected to the output terminal dcout3 of the decoder 5.
  • the display element unit 53 has the same configuration as that of FIG. 1, and image display is performed based on the output signal of the data selection unit 52 described above.
  • FIG. 10 is a circuit diagram of the decoder 5.
  • FIG. 11 shows a combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2, output signals a, b, c of the decoder 5, and a storage unit 51.
  • the output signal c of the terminal dcout3 becomes “0” (L level).
  • the switches SW23 and SW24 are turned on, and the data signal of the second pixel memory MR20 is input to the display element unit 53.
  • VSEL1 is “1” and VSEL2 is “0”
  • the output signal a of the terminal dcout1 of the decoder 5 is “0” (L level)
  • the output signal b of the terminal dcout2 is “0” (L level).
  • the output signal c from the terminal dcout3 becomes “1” (H level).
  • the switches SW33 and SW34 are turned on, and the data signal of the third pixel memory MR30 is input to the display element unit 53.
  • each pixel P is supported. This can be realized by providing n pixel memories MR and n source bus lines SL and generating the image data selection signal VSEL by a combination of known logic circuits.
  • FIG. 12 is an equivalent circuit diagram showing a modification of the pixel P shown in FIG. As shown in FIG. 12, the decoder 5 is not provided for each pixel P, and one decoder 5 is provided in the memory driving driver 600 (see FIG. 2), and the output of the decoder 5 is input to each pixel P.
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 are input to the decoder 5 via the display control circuit 200, and the output signals a, b, and c of the decoder 5 are respectively applied to the pixels P. Is input to the data selection unit 52. That is, the terminal dcout1 of the decoder 5 is connected to the first selection line SELa, and the first selection line SELa is connected to the control terminal of the switch SW13 of each pixel P and the input terminal of the inverter circuit INV16.
  • the terminal dcout2 of the decoder 5 is connected to the second selection line SELb, and the second selection line SELb is connected to the control terminal of the switch SW23 of each pixel P and the input terminal of the inverter circuit INV26.
  • the terminal dcout3 of the decoder 5 is connected to the third selection line SELc, and the third selection line SELc is connected to the control terminal of the switch SW33 of each pixel P and the input terminal of the inverter circuit INV36.
  • the relationship between the combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2 and the output signals a, b, c of the decoder 5 is as shown in FIG. According to the configuration of FIG. 12, it is not necessary to provide each pixel P with the decoder 5, so that the circuit configuration can be simplified.
  • first embodiment two images are obtained from different source bus lines (first source bus line SL1 and second source bus line SL2) in two pixel memories (first pixel memory MR1 and second pixel memory MR2).
  • first image data and second image data are written, but the present invention is not limited to this, and one source bus line and two gate bus lines per pixel P
  • two image data may be written in each of the two pixel memories at different timings (time).
  • the liquid crystal display device according to the present embodiment has the above-described configuration.
  • the overall configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200, as in the first embodiment shown in FIG. 2.
  • the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, an image data selection line SEL, A high potential side power supply line VHL and a low potential side power supply line VLL are included.
  • the source bus line SL is connected to the source driver 300
  • the first gate bus line GL1 and the second gate bus line GL2 are connected to the gate driver 400
  • the image data selection line SEL the high potential side power supply line VHL
  • the potential power supply line VLL is connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, there are two gate bus lines (first gate bus line GL1, second gate bus line GL2) and one source bus line SL.
  • the image data selection line SEL, the high potential side power supply line VHL, and the low potential side power supply line VLL are provided.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes.
  • the first memory circuit is referred to as a first pixel memory MR1
  • the second memory circuit is referred to as a second pixel memory MR2.
  • the liquid crystal display device 10 performs display by holding the image data written in the pixel P in the first pixel memory MR1 and the second pixel memory MR2 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written and an image data holding period in which display is performed while holding the written image data. For image data (first image data corresponding to the first image and second image data corresponding to the second image), the first image data is written in the first pixel memory MR1, and the second image data is stored in the second pixel.
  • the display control circuit 200 receives the data signal DAT and the image data selection signal VSEL sent from the outside, and controls the digital video signal DV (image data) and the image display on the display unit 500.
  • the image data selection signal VSEL is output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data).
  • Each source bus line SL has a video signal (first image data) corresponding to the first image (white solid image) and a video signal (second image data) corresponding to the second image (black solid image). ) Are alternately supplied.
  • the gate driver 400 When the gate driver 400 writes image data (first image data, second image data) (image data writing period), the gate driver 400 sequentially selects each gate bus line GL one horizontal scanning period at a time. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in each pixel, the second image data is first written in the second pixel memory MR2 when the second gate bus line GL2 is selected, and then the first gate bus line GL1 is selected. First image data is written into the one-pixel memory MR1. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 13 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels in each of the (n ⁇ 1) row, the n row, and the (n + 1) row.
  • FIG. 14 is an equivalent circuit diagram showing a configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
  • the switch unit 50 includes a first switch unit SW10 and a second switch unit SW20.
  • the first switch unit SW10 includes switches SW11 and SW12 and an inverter circuit INV11.
  • the second switch unit SW20 includes switches SW21, SW22, And an inverter circuit INV21.
  • the switch SW11 has a control terminal connected to the first gate bus line GL1, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10.
  • the switch SW12 has a control terminal connected to the output terminal of the inverter circuit INV11, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10.
  • the input terminal of the inverter circuit INV11 is connected to the first gate bus line GL1.
  • the switch SW21 has a control terminal connected to the second gate bus line GL2, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20.
  • the switch SW22 has a control terminal connected to the output terminal of the inverter circuit INV21, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20.
  • the input terminal of the inverter circuit INV21 is connected to the second gate bus line GL2.
  • the storage unit 51, the data selection unit 52, and the display element unit 53 have the same configuration as that of the first embodiment shown in FIG.
  • FIG. 15 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10 of FIG.
  • VSL is the first image data (image data corresponding to white: H level (“1”)) and second image data (image data corresponding to black: L level (“0”) supplied to the source bus line SL. )
  • VGL2 (n ⁇ 1), VGL2n, and VGL2 (n + 1) are the second gate bus lines GL2 (n ⁇ ) of the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively.
  • the second gate signal (second scanning signal) supplied to GL2n, GL2 (n + 1), and VGL1 (n ⁇ 1), VGL1n, VGL1 (n + 1) are respectively in the (n ⁇ 1) th row
  • VSEL indicates image data selection Image supplied to line SEL Indicates a data selection signal
  • VMR1 (n ⁇ 1), VMR1n, VMR1 (n + 1) respectively indicate the potential of the first pixel memory MR1 in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row
  • VMR2 (n ⁇ 1), VMR2n, VMR2 (n + 1) respectively indicate the potentials of the second pixel memory MR2 in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row
  • the display image is switched between the first image data and the second image data, and this switching is performed based on the image data selection signal VSEL sent from the outside to the display control circuit 200.
  • the image data Driving method for writing period 4 will be described in order, and in FIG.4, the first image displayed by the first image data is a white solid image, and the second image displayed by the second image data is A case of a black solid image is shown.
  • image data is written from time t1 to time t2.
  • active signals are sequentially supplied to the gate bus lines GL2 (n ⁇ 1), GL1 (n ⁇ 1), GL2n, GL1n, GL2 (n + 1), and GL1 (n + 1) in order for a predetermined period.
  • a high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL.
  • H level image data selection signal VSEL is supplied.
  • the second image data (image data corresponding to black: L level (“0”)) supplied to the source bus line SL is input to the second pixel memory MR2 of the storage unit 51 via the switch SW12. Is done.
  • the second pixel memory MR2 when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, the L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 15).
  • the H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
  • the switch SW24 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW24 is turned off. Further, since the L level signal is supplied to the SW 23 via the inverter circuit INV14, the switch SW23 is turned off. Thereby, the H level signal of the second pixel memory MR2 is not output from the data selection unit 52.
  • the first image data (image data corresponding to white: H level (“1”)) supplied to the source bus line SL is input to the first pixel memory MR1 of the storage unit 51 via the switch SW11. Is done.
  • the first pixel memory MR1 when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 15).
  • the L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
  • the switch SW13 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is kept off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is kept off. As a result, an L level signal of the first pixel memory MR ⁇ b> 1 is output from the data selection unit 52 and input to the display element unit 53.
  • an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. As a result, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 15). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
  • the same operation as that of the first embodiment shown in FIG. 4 is performed. That is, during the period from time t2 to time t3, the H level image data selection signal VSEL is supplied to the image data selection line SEL, whereby the output signal (L level) of the first pixel memory MR1 from the data selection unit 52. Is output. Thereby, the voltage (H level) of the high potential side power supply line VHL is continuously applied to the pixel electrode PIX, and white display is maintained in the pixel Pn (“VPn” in FIG. 15).
  • the L-level image data selection signal VSEL is supplied to the image data selection line SEL, so that the output signal (H level) of the second pixel memory MR 2 is output from the data selection unit 52. .
  • the voltage (L level) of the low potential side power supply line VLL is applied to the pixel electrode PIX, and the pixel Pn switches to black display (“VPn” in FIG. 15).
  • display is performed using the image data held in the storage unit 51, and the first image data held in the first pixel memory MR1 and the first image data based on the image data selection signal VSEL
  • the second image data held in the second pixel memory MR2 can be switched and displayed.
  • the liquid crystal display device according to the third embodiment has a configuration including three pixel memories MR, holds three images, and performs display by switching between them. is there.
  • the schematic configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200 as in the first embodiment shown in FIG. 2, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, and a second gate bus line (second scanning signal line).
  • GL2 a third gate bus line (third scanning signal line) GL3, a first image data selection line SEL1, a second image data selection line SEL2, a high potential side power supply line VHL, and a low potential side power supply line VLL are included.
  • the source bus line SL is connected to the source driver 300, and the first gate bus line GL1, the second gate bus line GL2, and the third gate bus line GL3 are connected to the gate driver 400, and the first image data selection line SEL1.
  • the second image data selection line SEL2, the high potential side power supply line VHL, and the low potential side power supply line VLL are connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, three gate bus lines (first gate bus line GL1, second gate bus line GL2, third gate bus line GL3) and 1 There are provided one source bus line, two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), a high potential side power supply line VHL, and a low potential side power supply line VLL. It has been.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
  • the first memory circuit is referred to as a first pixel memory MR1
  • the second memory circuit is referred to as a second pixel memory MR2
  • the third memory circuit is referred to as a third pixel memory MR3.
  • the liquid crystal display device 10 performs display by holding the image data written in the pixel P in the first pixel memory MR1, the second pixel memory MR2, and the third pixel memory MR3 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written, and an image data holding period in which display is performed while holding the written image data.
  • the first image data is the first pixel.
  • the second image data is written in the second pixel memory MR2
  • the third image data is written in the third pixel memory MR3
  • the first pixel is displayed when the first image is displayed in the image data holding period.
  • the second image data held in the second pixel memory MR2 is switched to the second image data. Instead it is used to display, when displaying the third image performs display is switched to the third image data stored in the third pixel memory MR3.
  • the display control circuit 200 receives the data signal DAT, the first image data selection signal VSEL1 and the second image data selection signal VSEL2 sent from the outside, and displays the digital video signal DV (image data) and the image display on the display unit 500.
  • a source start pulse signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, and a gate clock signal GCK for controlling, and images to be displayed on the display unit 500 (first image, second image, first image)
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting (three images) are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data).
  • Each source bus line SL has a video signal corresponding to the first image (first image data), a video signal corresponding to the second image (second image data), and a video signal corresponding to the third image. (Third image data) are supplied in order.
  • the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period when writing image data (first image data, second image data, third image data) (image data writing period).
  • image data first image data, second image data, third image data
  • an active scanning signal is sequentially applied to each gate bus line GL.
  • the third image data is written in the third pixel memory MR3 by first selecting the third gate bus line GL3, and then the second gate bus line GL2 is selected to select the second image data.
  • Second image data is written to the two-pixel memory MR2, and then the first image data is written to the first pixel memory MR1 by selecting the first gate bus line GL1.
  • the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 16 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n ⁇ 1) row, the n row, and the (n + 1) row.
  • FIG. 17 is an equivalent circuit diagram showing the configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
  • the switch unit 50 includes a first switch unit SW10, a second switch unit SW20, and a third switch unit SW30.
  • the first switch unit SW10 and the second switch unit SW20 have the same configuration as that shown in FIG.
  • the third switch unit SW30 includes an N-type switch SW31, a P-type switch SW32, and an inverter circuit INV31.
  • the switch SW31 has a control terminal connected to the third gate bus line GL3, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30.
  • the switch SW32 has a control terminal connected to the output terminal of the inverter circuit INV31, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30.
  • the input terminal of the inverter circuit INV31 is connected to the third gate bus line GL3.
  • the storage unit 51 includes a first pixel memory MR1, a second pixel memory MR2, and a third pixel memory MR3.
  • the first pixel memory MR1 and the second pixel memory MR2 have the same configuration as that shown in FIG.
  • the third pixel memory MR3 includes two inverter circuits INV32 and INV33.
  • the inverter circuit INV32 has an input terminal connected to the output terminal swout3 of the third switch unit SW30, and an output terminal of the inverter circuit INV32 connected to the output terminal mout3 of the third pixel memory MR3.
  • the inverter circuit INV33 has an input terminal connected to the output terminal of the inverter circuit INV32, and an output terminal connected to the input terminal of the inverter circuit INV32.
  • the data selection unit 52 includes N-type switches SW13, SW23, SW33, P-type switches SW14, SW24, SW34, inverter circuits INV16, INV26, INV36, and a decoder 5.
  • the decoder 5 includes three NOR circuits 5a, 5b, and 5c and two inverter circuits INVb and INVc, and receives the first image data selection signal VSEL1 and the second image data selection signal VSEL2.
  • the NOR circuit 5a has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the second image data selection line SEL2, and an output terminal connected to the output terminal dcout1 of the decoder 5. Yes.
  • the input terminal of the inverter circuit INVb is connected to the second image data selection line SEL2, and the input terminal of the inverter circuit INVc is connected to the first image data selection line SEL1.
  • the NOR circuit 5b has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the output terminal of the inverter circuit INVb, and the output terminal connected to the output terminal dcout2 of the decoder 5.
  • the NOR circuit 5c has one input terminal connected to the output terminal of the inverter circuit INVc, the other input terminal connected to the second image data selection line SEL2, and the output terminal connected to the output terminal dcout3 of the decoder 5. .
  • the switch SW13 has a control terminal connected to the output terminal dcout1 of the decoder 5, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV16, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV16 is connected to the output terminal dcout1 of the decoder 5.
  • the switch SW23 has a control terminal connected to the output terminal dcout2 of the decoder 5, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW24 has a control terminal connected to the output terminal of the inverter circuit INV26, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV26 is connected to the output terminal dcout2 of the decoder 5.
  • the switch SW33 has a control terminal connected to the output terminal dcout3 of the decoder 5, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the switch SW34 has a control terminal connected to the output terminal of the inverter circuit INV36, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52.
  • the input terminal of the inverter circuit INV36 is connected to the output terminal dcout3 of the decoder 5.
  • the display element unit 53 has the same configuration as that of FIG. 1, and image display is performed based on the output signal of the data selection unit 52 described above.
  • the decoder 5 has the same configuration as in FIG. Therefore, the combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2, the output signals a, b, c of the decoder 5, and the pixel memory MR (MR1, MR2, MR3) selected from the storage unit 51. Is as shown in the table of FIG.
  • each pixel corresponds to each pixel.
  • This can be realized by providing n pixel memories MR and n gate bus lines GL and generating the image data selection signal VSEL by a combination of known logic circuits.
  • FIG. 18 is an equivalent circuit diagram showing a modification of the pixel P shown in FIG. As shown in FIG. 18, the decoder 5 is not provided in each pixel P, and one decoder 5 is provided in the memory driving driver 600 (see FIG. 2). Since the connection relationship between the decoder 5 and the data selection unit 52 is the same as that shown in FIG. 12, the description thereof is omitted here. According to the configuration of FIG. 18, it is not necessary to provide each pixel P with the decoder 5, so that the circuit configuration can be simplified.
  • Embodiment 5 In the liquid crystal display device 10 according to the present embodiment, in addition to the function for performing still image display (memory operation mode) shown in Embodiment 1, the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
  • FIG. 19 is a block diagram showing an overall configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 10 includes a liquid crystal display panel 100 and a display control circuit 200.
  • the liquid crystal display panel 100 includes a source driver 300, a gate driver 400, a display unit 500, and a memory operation driver 600.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), a gate bus line GL, an image data selection line SEL, and a high-potential-side power supply line VHL. , A low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2.
  • the first source bus line SL1 and the second source bus line SL2 are connected to the source driver 300
  • the gate bus line GL is connected to the gate driver 400
  • the potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and two source bus lines (first source bus line SL1, second source bus line SL2), An image data selection line SEL, a high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are provided.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. If necessary, a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added).
  • a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes.
  • the first memory circuit is referred to as a first pixel memory MR1
  • the second memory circuit is referred to as a second pixel memory MR2.
  • the display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500.
  • DV image data
  • Image data selection signal VSEL and an operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1).
  • a driving video signal (image data) is applied to the 2-source bus line SL2).
  • moving image data moving image data
  • still image data first still image data
  • Image image data second still image data
  • the gate driver 400 When the gate driver 400 writes image data (moving image data, first still image data, and second still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Thereby, in each pixel P in the same row (horizontal line), in the normal operation mode, moving image data (gradation data) is directly written to the pixel electrode, and in the memory operation mode, the first pixel memory MR1 has the first data. Still image data is written, and second still image data is written in the second pixel memory MR2. In the image data holding period in the memory operation mode, the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 20 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n ⁇ 1) row, the n row, and the (n + 1) row.
  • FIG. 21 is an equivalent circuit diagram showing a configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
  • the switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
  • the display mode switching unit 54 includes N-type switches SW1 and SW3 and P-type switches SW2 and SW4.
  • the switch SW1 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal.
  • the switch SW2 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal.
  • the switch SW3 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW4 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
  • the display element unit 53 includes N-type switches SW15, SW25 and SW5, P-type switches SW16, SW26 and SW6, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, a liquid crystal capacitor Clc, and a holding capacitor Ch.
  • the switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the low-potential side power supply line VLL.
  • the switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the low-potential-side power line VLL.
  • the switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the high potential side power supply line VHL.
  • the switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the high potential side power supply line VHL.
  • the switch SW5 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected.
  • the switch SW6 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected.
  • a liquid crystal capacitor Clc is formed between the pixel electrode PIX and the counter electrode COM, and a holding capacitor Ch (also referred to as an auxiliary capacitor) is formed in parallel with the liquid crystal capacitor Clc.
  • FIG. 22 is a timing chart showing a driving method (normally black mode) of the present liquid crystal display device 10.
  • VSL1 is moving image data (gradation data) and first still image data supplied to the first source bus line SL1
  • VSL2 is a signal of second still image data supplied to the second source bus line SL2.
  • VGL (n ⁇ 1), VGLn, and VGL (n + 1) are the gate bus lines GL (n ⁇ 1), GLn, GL of the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively.
  • N + 1) indicates a gate signal (scanning signal) supplied
  • VMSL1 indicates a first operation mode switching signal supplied to the first operation mode switching line MSL1
  • VMSL2 is supplied to the second operation mode switching line MSL2
  • a second operation mode switching signal (inverted signal of VMSL1)
  • VSEL indicates an image data selection signal supplied to the image data selection line SEL
  • VMR1 (n ⁇ ), VMR1n, VMR1 (n + 1) indicate the potentials of the first pixel memory MR1 in the (n-1) th row, the nth row, and the (n + 1) th row, respectively.
  • VMR2 (n-1), VMR2n, VMR2 ( n + 1) indicates the potential of the second pixel memory MR2 in the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively, and VP (n ⁇ 1), VPn, and VP (n + 1) are respectively ( The potential (pixel potential) of the pixel electrode PIX in the (n-1) th row, the nth row, and the (n + 1) th row is shown.
  • moving image (gradation) display is performed in the normal operation mode, and the first still image and the second still image are switched and displayed at a desired timing in the memory operation mode. .
  • the switching of the operation mode and the switching between the first still image and the second still image are performed based on the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL sent from the outside to the display control circuit 200. Is called.
  • the driving method in the normal operation mode, the driving method in the image data writing period and the driving method in the image data holding period in the memory operation mode will be described in order.
  • the first still image displayed by the first still image data is a white solid image
  • the second still image displayed by the second still image data is a black solid image. The case is shown.
  • a normal gradation display operation is performed from time t0 to time t1.
  • An active signal is supplied to each gate bus line GL (n ⁇ 1), GLn, GL (n + 1) in order for a predetermined period.
  • a high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL.
  • H high
  • L low
  • the first operation mode switching line MSL1 is supplied with a first (H) level first operation mode switching signal VMSL1, and the second operation mode switching line MSL2 is supplied with a second (L) level second operation mode switching signal VMSL2. Is supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned off, and the switches SW3 and SW4 are turned on.
  • the gradation data (image data corresponding to white) supplied to the first source bus line SL1 is applied to the pixel electrode PIX via the switches SW11, SW12, SW3, and SW4, and the white level is generated in the pixel Pn. Key is displayed ("VPn" in FIG. 22).
  • the supply of image data to the second source bus line SL2 is stopped.
  • the first operation mode switching signal VMSL1 at L level is supplied to the first operation mode switching line MSL1
  • the second operation mode switching signal VMSL2 at H level is supplied to the second operation mode switching line MSL2.
  • the switches SW1, SW2, SW5, and SW6 are turned on, and the switches SW3 and SW4 are turned off.
  • an active signal is supplied to each gate bus line GL (n ⁇ 1), GLn, GL (n + 1) in order for a predetermined period.
  • the first still image data (image data corresponding to white: H level (“1”)) supplied to the first source bus line SL1 is stored in the storage unit via the switches SW11, SW12, SW1, and SW2.
  • the second still image data (image data corresponding to black: L level (“0”)) input to the first pixel memory MR1 of 51 and supplied to the second source bus line SL2 is supplied to the switches SW21 and SW22.
  • the inverter circuit INV12 when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 22).
  • the L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
  • the second pixel memory MR2 when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, the L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 22).
  • the H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
  • the switch SW13 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is turned off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is turned off. As a result, an L level signal of the first pixel memory MR ⁇ b> 1 is output from the data selection unit 52 and input to the display element unit 53.
  • an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. Thereby, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 22). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
  • the image data holding period is the same as that shown in FIG.
  • the display is performed by the first image data (white) stored in the first pixel memory MR1 from the time point t2 to the time point t3 (“VPn” in FIG. 22), and in the second pixel memory MR2 after the time point t3.
  • Display is performed using the stored second image data (black) (“VPn” in FIG. 22).
  • display is performed using still image data held in the storage unit 51, and the first still image data held in the first pixel memory MR1 is supported based on the image data selection signal VSEL.
  • the first still image and the second still image corresponding to the second still image data held in the second pixel memory MR2 can be switched and displayed.
  • FIG. 23 is an equivalent circuit diagram showing a modification of the pixel P in FIG.
  • the switches SW12, SW22, SW2, SW3, SW6, the inverter circuits INV11, INV21, and the first operation mode switching line MSL1 in the pixel P of FIG. 21 are schematically omitted.
  • a function of performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
  • the schematic configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), a third source bus line (third data signal line) SL3, and a gate bus line.
  • GL, first image data selection line SEL1, second image data selection line SEL2, high potential side power supply line VHL, low potential side power supply line VLL, first operation mode switching line MSL1, and second operation mode switching line MSL2 include.
  • the first source bus line SL1, the second source bus line SL2, and the third source bus line SL3 are connected to the source driver 300, the gate bus line GL is connected to the gate driver 400, and the first image data selection line SEL1.
  • the second image data selection line SEL2, the high potential side power supply line VHL, the low potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600. ing.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and three source bus lines (first source bus line SL1, second source bus line SL2, 3 source bus lines SL3), two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high potential side power supply line VHL, low potential side power supply line VLL, A first operation mode switching line MSL1 and a second operation mode switching line MSL2 are provided.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added).
  • a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
  • the display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500.
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting, and the operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1).
  • a driving video signal (image data) is applied to the two source bus lines SL2 and the third source bus lines SL3). Specifically, moving image data (moving image data) and still image data (first still image data) are applied to the first source bus line SL1, and the second source bus line SL2 is stationary. Image data for image (second still image data) is applied, and image data for still image (third still image data) is applied to the third source bus line SL3.
  • the gate driver 400 When writing image data (moving image data, first still image data, second still image data, and third still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Therefore, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL.
  • moving image data grade data
  • the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 24 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows.
  • FIG. 25 is an equivalent circuit diagram showing a configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
  • the switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
  • the display mode switching unit 54 includes N-type switches SW1 and SW3 and P-type switches SW2 and SW4.
  • the switch SW1 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal.
  • the switch SW2 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal.
  • the switch SW3 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
  • the switch SW4 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
  • the display element unit 53 includes N-type switches SW15, SW25 and SW5, P-type switches SW16, SW26 and SW6, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, a liquid crystal capacitor Clc, and a holding capacitor Ch.
  • the switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the low-potential side power supply line VLL.
  • the switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the low-potential-side power line VLL.
  • the switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the high potential side power supply line VHL.
  • the switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the high potential side power supply line VHL.
  • the switch SW5 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected.
  • the switch SW6 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected.
  • a liquid crystal capacitor Clc is formed between the pixel electrode PIX and the counter electrode COM, and a holding capacitor Ch (also referred to as an auxiliary capacitor) is added in parallel to the liquid crystal capacitor Clc as necessary.
  • moving image (gradation) display is performed in the normal operation mode, and the first still image, the second still image, and the third still image are switched at a desired timing in the memory operation mode. Displayed.
  • the operation mode switching and the first still image, the second still image, and the third still image are switched from the outside to the display control circuit 200 by the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL.
  • the driving method in the normal operation mode is the same as the driving method of the fifth embodiment shown in FIG. 22, and three images (first still image, second still image, and third still image) are displayed in the memory operation mode.
  • the method of switching is as shown in FIG. 10 and FIG.
  • decoder 5 is not provided in each pixel P as shown in FIG. 12, and one decoder 5 may be provided in the memory driving driver 600.
  • the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
  • the schematic configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, an image data selection line SEL, A high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are included.
  • the source bus line SL is connected to the source driver 300, the first gate bus line GL1 and the second gate bus line GL2 are connected to the gate driver 400, the image data selection line SEL, the high potential side power supply line VHL, the low potential The side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, there are two gate bus lines (first gate bus line GL1, second gate bus line GL2) and one source bus line SL.
  • An image data selection line SEL, a high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are provided.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage capacitor also referred to as an auxiliary capacitor
  • a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes.
  • the display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500.
  • DV image data
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 and an operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data).
  • Each source bus line SL is supplied with moving image data (moving image data) in the normal operation mode, and in the memory operation mode, the first still image data for the still image and the second still image for the still image. Data is supplied alternately.
  • the gate driver 400 When the gate driver 400 writes image data (moving image data, first still image data, and second still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in the normal operation mode, display is performed based on moving image data by sequentially selecting the first gate bus line GL1 of each pixel. Further, in the image data writing period in the memory operation mode, first, in each pixel, the second gate bus line GL2 is selected, whereby the second image data is written into the second pixel memory MR2, and then the first gate bus line.
  • the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 26 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n ⁇ 1) row, the n row, and the (n + 1) row.
  • FIG. 27 is an equivalent circuit diagram showing the configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
  • the switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
  • the connection relationship between the display element unit 53 and the display mode switching unit 54 is the same as that of the pixel P in FIG.
  • FIG. 28 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10 of FIG.
  • VSL indicates gradation data and first still image data supplied to the source bus line SL, and VGL2 (n ⁇ 1), VGL2n, and VGL2 (n + 1) are respectively in the (n ⁇ 1) th row.
  • the second gate signal (second scanning signal) supplied to the second gate bus lines GL2 (n ⁇ 1), GL2n, GL2 (n + 1) in the nth row and the (n + 1) th row, and VGL1 (n ⁇ 1), VGL1n and VGL1 (n + 1) are supplied to the first gate bus lines GL1 (n ⁇ 1), GL1n and GL1 (n + 1) in the (n ⁇ 1) th row, the nth row and the (n + 1) th row, respectively.
  • VMSL1 indicates a first operation mode switching signal supplied to the first operation mode switching line MSL1
  • VMSL2 is supplied to the second operation mode switching line MSL2.
  • VSEL indicates an image data selection signal supplied to the image data selection line SEL
  • VMR1 (n ⁇ 1), VMR1n, and VMR1 (n + 1) are (n ⁇ 1) rows, respectively.
  • the potentials of the first pixel memory MR1 in the 1st, nth and (n + 1) th rows are shown, and VMR2 (n ⁇ 1), VMR2n and VMR2 (n + 1) are respectively the (n ⁇ 1) th, nth,
  • the potential of the second pixel memory MR2 in the (n + 1) th row is shown, and VP (n ⁇ 1), VPn, and VP (n + 1) are the (n ⁇ 1) th row, the nth row, and the (n + 1) th row, respectively.
  • the potential of the pixel electrode PIX is shown.
  • moving image (gradation) display is performed in the normal operation mode, and the first still image and the second still image are switched and displayed at a desired timing in the memory operation mode. .
  • the switching of the operation mode and the switching between the first still image and the second still image are performed based on the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL sent from the outside to the display control circuit 200. Is called.
  • the driving method in the normal operation mode, the driving method in the image data writing period and the driving method in the image data holding period in the memory operation mode will be described in order.
  • the first still image displayed by the first still image data is a white solid image
  • the second still image displayed by the second still image data is a black solid image. The case is shown.
  • a normal gradation display operation is performed from time t0 to time t1.
  • An active signal is supplied to each gate bus line GL1 (n ⁇ 1), GL1n, GL1 (n + 1) in order for a predetermined period. That is, in the normal operation mode, one (first gate bus line) of the two gate bus lines GL provided in each pixel P is selected in order.
  • a high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL.
  • H level image data selection signal VSEL is supplied.
  • the first operation mode switching line MSL1 is supplied with a first (H) level first operation mode switching signal VMSL1, and the second operation mode switching line MSL2 is supplied with a second (L) level second operation mode switching signal VMSL2. Is supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned off, and the switches SW3 and SW4 are turned on.
  • the gradation data (image data corresponding to white) supplied to the source bus line SL is applied to the pixel electrode PIX via the switches SW11, SW12, SW3, and SW4, and the white gradation is generated in the pixel Pn. Is displayed ("VPn" in FIG. 28).
  • the first operation mode switching signal VMSL1 at L level is supplied to the first operation mode switching line MSL1
  • the second operation mode switching signal VMSL2 at H level is supplied to the second operation mode switching line MSL2.
  • the switches SW1, SW2, SW5, and SW6 are turned on, and the switches SW3 and SW4 are turned off.
  • the gate bus lines GL2 (n ⁇ 1), GL1 (n ⁇ 1), GL2n, GL1n, GL2 (n + 1), and GL1 (n + 1) are sequentially supplied with active signals for a predetermined period.
  • the subsequent operation is the same as the operation shown in FIG. 15, and white is displayed in the pixel Pn (“VPn” in FIG. 28). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
  • the image data holding period is the same as that shown in FIG.
  • the display is performed from the time t2 to the time t3 by the first image data (white) stored in the first pixel memory MR1 (“VPn” in FIG. 28), and after the time t3, the second pixel memory MR2 is displayed.
  • Display is performed using the stored second image data (black) (“VPn” in FIG. 28).
  • display is performed using still image data held in the storage unit 51, and the first still image data held in the first pixel memory MR1 is supported based on the image data selection signal VSEL.
  • the first still image and the second still image corresponding to the second still image data held in the second pixel memory MR2 can be switched and displayed.
  • the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
  • the schematic configuration of the liquid crystal display device includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included.
  • the display control circuit 200 includes a memory drive control unit 20.
  • the display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, and a third gate bus line ( (Third scanning signal line) GL3, first image data selection line SEL1, second image data selection line SEL2, high potential side power supply line VHL, low potential side power supply line VLL, first operation mode switching line MSL1, and second An operation mode switching line MSL2 is included.
  • the source bus line SL is connected to the source driver 300, and the first gate bus line GL1, the second gate bus line GL2, and the third gate bus line GL3 are connected to the gate driver 400, and the first image data selection line SEL1.
  • the second image data selection line SEL2, the high potential side power supply line VHL, the low potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600. Yes.
  • the display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, three gate bus lines (first gate bus line GL1, second gate bus line GL2, third gate bus line GL3) and 1 Source bus lines, two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high-potential-side power supply line VHL, low-potential-side power supply line VLL, A first operation mode switching line MSL1 and a second operation mode switching line MSL2 are provided.
  • Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer.
  • a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added).
  • a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
  • the display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500.
  • the first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting, and the operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
  • the source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data).
  • Each source bus line SL is supplied with moving image data (moving image data) in the normal operation mode, and in the memory operation mode, still image first still image data, second still image data, and Third still image data is sequentially supplied.
  • the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Therefore, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in the normal operation mode, display is performed based on moving image data by sequentially selecting the first gate bus line GL1 of each pixel. Further, in the image data writing period in the memory operation mode, first, in each pixel, the third gate bus line GL3 is selected, so that the third image data is written in the third pixel memory MR3, and then the second gate bus line.
  • the second image data is written in the second pixel memory MR2 by selecting GL2, and the first image data is written in the first pixel memory MR1 by selecting the first gate bus line GL1.
  • the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
  • FIG. 29 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows.
  • FIG. 30 is an equivalent circuit diagram illustrating a configuration of one pixel P.
  • the pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
  • the switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
  • the connection relationship between the display element unit 53 and the display mode switching unit 54 is the same as that of the pixel P in FIG.
  • moving image (gradation) display is performed in the normal operation mode, and the first still image, the second still image, and the third still image are switched at a desired timing in the memory operation mode. Displayed.
  • the operation mode switching and the first still image, the second still image, and the third still image are switched from the outside to the display control circuit 200 by the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL.
  • the driving method in the normal operation mode is the same as that in the seventh embodiment shown in FIG. 28, and three images (first still image, second still image, and third still image) are displayed in the memory operation mode.
  • the method of switching is as shown in FIG. 10 and FIG.
  • the decoder 5 is not provided in each pixel P, and one decoder 5 may be provided in the memory driving driver 600.
  • FIG. 31 is an equivalent circuit diagram showing a modification of the pixel P in FIG.
  • the switches SW12, SW22, SW32, SW2, SW3, SW6, the inverter circuits INV11, INV21, INV31, and the first operation mode switching line MSL1 in the pixel P of FIG. 30 are schematically omitted. ing.
  • Each pixel further includes an image data selection unit for selecting an image to be displayed,
  • the image data selection unit selects image data held in a corresponding memory circuit based on a selection signal input from the outside, A configuration may be adopted in which display is performed based on the selected image data.
  • the storage unit includes first and second memory circuits, One scanning signal line and first and second data signal lines are provided corresponding to one pixel, First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line, The first image data and the second image data may be switched and displayed.
  • the storage unit includes first, second, and third memory circuits, One scanning signal line and first, second, and third data signal lines are provided corresponding to one pixel, First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line, Third image data is supplied to the third memory circuit via the third data signal line, The first, second and third image data may be switched and displayed.
  • the storage unit includes first and second memory circuits, Corresponding to one pixel, first and second scanning signal lines and a data signal line are provided, The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line, The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line. The first image data and the second image data may be switched and displayed.
  • the storage unit includes first, second, and third memory circuits, Corresponding to one pixel, first, second and third scanning signal lines and a data signal line are provided, The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line, The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line. The third memory circuit is provided at an intersection of the third scanning signal line and the data signal line, and third image data is supplied through the data signal line. The first, second and third image data may be switched and displayed.
  • a normal operation mode in which display is performed based on image data supplied via the data signal line and a memory operation mode in which display is performed based on the image data held in the storage unit may be included.
  • moving image display (gradation display) can be performed in the normal operation mode, and a plurality of still images can be switched and displayed in the memory operation mode while reducing power consumption.
  • image data may not be supplied to each memory circuit of the storage unit.
  • a normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data, In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal. Configuration in which display is performed based on the first and second image data held in the first and second memory circuits when the second image data is supplied to the memory circuit and the scanning signal line becomes inactive. It can also be.
  • a normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data, In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal.
  • the first to A configuration may be adopted in which display is performed based on the first to third image data held in each of the third memory circuits.
  • a normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data, In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. When the second image data is supplied from the data signal line to the second memory circuit and the first and second scanning signal lines become inactive, the first and second memory circuits respectively hold the second image data.
  • a configuration may be adopted in which display is performed based on the first and second image data.
  • a normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data, In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. The second image data is supplied from the data signal line to the second memory circuit, and the third image data is supplied from the data signal line to the third memory circuit while the third scanning signal line is active. In addition, when the first to third scanning signal lines become inactive, display can be performed based on the first to third image data held in the first to third memory circuits. .
  • the present invention can be suitably used for a mobile phone display or the like.
  • Liquid crystal display device 100 Liquid crystal display panel 200 Display control circuit 300 Source driver (data signal line drive circuit) 400 Gate driver (scanning signal line drive circuit) 500 Display unit 600 Memory drive driver 5 Decoder 50 Switch unit 51 Storage unit 52 Data selection unit 53 Display element unit 54 Display mode switching unit P Pixel PIX Pixel electrode COM Counter electrode (common electrode) GL gate line (scanning signal line) SL source line (data signal line) SEL Image data selection line VHL High potential power line VLL Low potential power line SW Switch (transistor, TFT) INV inverter circuit

Abstract

A liquid crystal display device provided with memory units (51) that hold image data and are disposed in each pixel (P). Each pixel (P) has a memory unit (51) that includes a first pixel memory (MR1) and a second pixel memory (MR2) that each hold two image data, and displays based on the image data hold by each pixel memory (MR1, MR2). This enables power consumption when displaying by switching between a plurality of images in the liquid crystal display device comprising a pixel memory circuit to be reduced.

Description

液晶表示装置Liquid crystal display
 本発明は、画素内にデータの保持が可能なメモリ回路を備えた液晶表示装置に関する。 The present invention relates to a liquid crystal display device including a memory circuit capable of holding data in a pixel.
 近年、液晶表示装置には、画素に書き込まれた画像データを画素内のメモリ回路(画素メモリという)に保持して表示を行う画素メモリを備えた液晶表示装置が提案されている(特許文献1等)。多階調の動画を表示する通常動作においては、データ信号線を介して画素に1フレームごとに新しい画像データに書き換えて表示を行う一方、静止画を表示するメモリ動作においては、書き換え用の画像データを供給することなく、画素メモリに保持した画像データを用いて表示を行う。 In recent years, a liquid crystal display device has been proposed as a liquid crystal display device including a pixel memory that performs display by holding image data written in the pixel in a memory circuit (referred to as a pixel memory) in the pixel (Patent Document 1). etc). In a normal operation for displaying a multi-gradation moving image, a new image data is rewritten on a pixel-by-frame basis through a data signal line for display. On the other hand, in a memory operation for displaying a still image, a rewrite image is displayed. Display is performed using image data held in the pixel memory without supplying data.
 そのため、メモリ動作においては、走査信号線およびデータ信号線を駆動する駆動回路の動作を停止させることが可能になるため、消費電力を大幅に削減することができる。従って、メモリ動作は、携帯電話の待ち受け画面表示などの低消費電力化の要求が強い画像表示の際によく用いられる。 Therefore, in the memory operation, the operation of the drive circuit that drives the scanning signal line and the data signal line can be stopped, so that power consumption can be greatly reduced. Accordingly, the memory operation is often used for image display that is strongly demanded to reduce power consumption, such as a standby screen display of a cellular phone.
 特許文献1の液晶表示装置では、1画素ごとに1つの画素メモリ回路(図33のDM18)が設けられており、各画素メモリ回路に保持された画像データにより静止画表示を行う構成を有している。 In the liquid crystal display device disclosed in Patent Document 1, one pixel memory circuit (DM18 in FIG. 33) is provided for each pixel, and a still image display is performed using image data held in each pixel memory circuit. ing.
日本国公開特許公報「特開2002-229532号公報(2002年8月16日公開)」Japanese Patent Publication “JP 2002-229532 A (published on August 16, 2002)”
 ところが、上記特許文献1の液晶表示装置では、1画素ごとに1つの画素メモリ回路が設けられているため、例えば、表示している画像(第1画像)を別の画像(第2画像)に切り替えたい場合は、データ信号線および走査信号線をアクティブ状態にして、第2画像に対応する画像データを画素メモリ回路に書き込む(書き換える)ことを要する。そのため、データ信号線および走査信号線を駆動するための電力が必要となり、消費電力が増大するという問題がある。 However, in the liquid crystal display device of Patent Document 1, since one pixel memory circuit is provided for each pixel, for example, a displayed image (first image) is changed to another image (second image). When switching, it is necessary to write (rewrite) the image data corresponding to the second image to the pixel memory circuit by setting the data signal line and the scanning signal line to the active state. Therefore, there is a problem that power for driving the data signal line and the scanning signal line is required, and power consumption increases.
 このように、従来の液晶表示装置では、1つの画像を静止画として長時間表示する場合は低消費電力の効果を十分に得ることができるが、複数の画像を切り替えて表示する場合には、通常の動画表示と同様の動作が必要となり、低消費電力の効果を得ることができない。 Thus, in the conventional liquid crystal display device, when one image is displayed as a still image for a long time, the effect of low power consumption can be sufficiently obtained, but when a plurality of images are switched and displayed, An operation similar to that of normal moving image display is required, and the effect of low power consumption cannot be obtained.
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、画素メモリ回路を備えた液晶表示装置において、複数の画像を切り替えて表示する場合の消費電力の低減を図ることにある。 The present invention has been made in view of the above-described conventional problems, and an object thereof is to reduce power consumption when a plurality of images are switched and displayed in a liquid crystal display device including a pixel memory circuit. is there.
 本発明に係る液晶表示装置は、上記の課題を解決するために、
 各画素に、画像データを保持する記憶部が設けられた液晶表示装置であって、
 各画素において、上記記憶部は、個別の画像データをそれぞれ保持する複数のメモリ回路を含み、
 各メモリ回路に保持された画像データに基づいて表示を行うことを特徴とする。
In order to solve the above problems, the liquid crystal display device according to the present invention provides
A liquid crystal display device provided with a storage unit for holding image data in each pixel,
In each pixel, the storage unit includes a plurality of memory circuits each holding individual image data,
Display is performed based on image data held in each memory circuit.
 上記の構成によれば、各画素に複数のメモリ回路が設けられ、各メモリ回路が、個別に画像データを保持することができる。これにより、画像を切り替える場合には、各メモリ回路に保持されている画像データを切り替えて表示すればよいため、従来のように通常の動画表示と同様の動作を行う必要がなく、消費電力を削減することができる。 According to the above configuration, each pixel is provided with a plurality of memory circuits, and each memory circuit can individually hold image data. As a result, when switching images, it is only necessary to switch and display the image data held in each memory circuit, so there is no need to perform the same operation as normal moving image display as in the prior art, and power consumption is reduced. Can be reduced.
 以上のように、本発明に係る液晶表示装置では、各画素において、上記記憶部は、個別の画像データをそれぞれ保持する複数のメモリ回路を含み、各メモリ回路に保持された画像データに基づいて表示を行う構成である。これにより、画素メモリ回路を備えた液晶表示装置において、複数の画像を切り替えて表示する場合の消費電力の低減を図ることができるという効果を奏する。 As described above, in the liquid crystal display device according to the present invention, in each pixel, the storage unit includes a plurality of memory circuits each holding individual image data, and based on the image data held in each memory circuit. It is the structure which performs a display. Thereby, in the liquid crystal display device provided with the pixel memory circuit, there is an effect that it is possible to reduce power consumption when switching and displaying a plurality of images.
実施の形態1に係る液晶表示装置における1つの画素の構成を示す等価回路図である。3 is an equivalent circuit diagram illustrating a configuration of one pixel in the liquid crystal display device according to Embodiment 1. FIG. 実施の形態1に係る液晶表示装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a liquid crystal display device according to Embodiment 1. FIG. 図2の液晶表示パネルの画素の構成を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration of a pixel of the liquid crystal display panel in FIG. 2. 実施の形態1に係る液晶表示装置の駆動方法を示すタイミングチャートである。3 is a timing chart illustrating a driving method of the liquid crystal display device according to the first embodiment. 実施の形態1に係る液晶表示装置の他の駆動方法を示すタイミングチャートである。6 is a timing chart illustrating another driving method of the liquid crystal display device according to the first embodiment. 実施の形態1に係る液晶表示装置の他の駆動方法を示すタイミングチャートである。6 is a timing chart illustrating another driving method of the liquid crystal display device according to the first embodiment. 図1の画素の変形例1を示す等価回路図である。FIG. 6 is an equivalent circuit diagram illustrating a first modification of the pixel in FIG. 1. 実施の形態2に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to Embodiment 2. FIG. 実施の形態2に係る液晶表示装置における1つの画素の構成を示す等価回路図である。6 is an equivalent circuit diagram illustrating a configuration of one pixel in the liquid crystal display device according to Embodiment 2. FIG. 図9の画素に含まれるデコーダの回路図である。FIG. 10 is a circuit diagram of a decoder included in the pixel of FIG. 9. 第1画像データ選択信号および第2画像データ選択信号の組み合わせと、図10のデコーダの出力信号と、図9の画素に含まれる記憶部から選択される画素メモリとの関係を示す表である。10 is a table showing a relationship between a combination of a first image data selection signal and a second image data selection signal, an output signal of the decoder of FIG. 10, and a pixel memory selected from a storage unit included in the pixel of FIG. 図9の画素の変形例を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 9. 実施の形態3に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to Embodiment 3. FIG. 実施の形態3に係る液晶表示装置における1つの画素の構成を示す等価回路図である。6 is an equivalent circuit diagram showing a configuration of one pixel in a liquid crystal display device according to Embodiment 3. FIG. 実施の形態3に係る液晶表示装置の駆動方法を示すタイミングチャートである。6 is a timing chart illustrating a method for driving a liquid crystal display device according to a third embodiment. 実施の形態4に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a fourth embodiment. 実施の形態4に係る液晶表示装置における1つの画素の構成を示す等価回路図である。6 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to Embodiment 4. FIG. 図17の画素の変形例を示す等価回路図である。FIG. 18 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 17. 実施の形態5に係る液晶表示装置の全体構成を示すブロック図である。FIG. 10 is a block diagram illustrating an overall configuration of a liquid crystal display device according to a fifth embodiment. 実施の形態5に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a fifth embodiment. 実施の形態5に係る液晶表示装置における1つの画素の構成を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a fifth embodiment. 実施の形態5に係る液晶表示装置の駆動方法を示すタイミングチャートである。10 is a timing chart illustrating a driving method of the liquid crystal display device according to the fifth embodiment. 図21の画素の変形例を示す等価回路図である。FIG. 22 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 21. 実施の形態6に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a sixth embodiment. 実施の形態6に係る液晶表示装置における1つの画素の構成を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a sixth embodiment. 実施の形態7に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。FIG. 16 is a schematic diagram illustrating a configuration of a pixel of a liquid crystal display panel in a liquid crystal display device according to a seventh embodiment. 実施の形態7に係る液晶表示装置における1つの画素の構成を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to a seventh embodiment. 実施の形態7に係る液晶表示装置の駆動方法を示すタイミングチャートである。18 is a timing chart illustrating a driving method of the liquid crystal display device according to the seventh embodiment. 実施の形態8に係る液晶表示装置における液晶表示パネルの画素の構成を示す模式図である。FIG. 16 is a schematic diagram showing a pixel configuration of a liquid crystal display panel in a liquid crystal display device according to an eighth embodiment. 実施の形態8に係る液晶表示装置における1つの画素の構成を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a configuration of one pixel in a liquid crystal display device according to an eighth embodiment. 図30の画素の変形例を示す等価回路図である。FIG. 31 is an equivalent circuit diagram illustrating a modification of the pixel in FIG. 30. 図1の画素の変形例2を示す等価回路図である。FIG. 10 is an equivalent circuit diagram illustrating a second modification of the pixel in FIG. 1. 従来の液晶表示装置における画素の構成を示す図である。It is a figure which shows the structure of the pixel in the conventional liquid crystal display device.
 〔実施の形態1〕
 本発明の一実施の形態について図面を用いて説明する。図2は、本実施の形態に係る液晶表示装置の全体構成を示すブロック図である。本液晶表示装置10は、液晶表示パネル100と表示制御回路200とを備えている。液晶表示パネル100には、ソースドライバ(データ信号線駆動回路)300とゲートドライバ(走査信号線駆動回路)400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。表示部500には、第1ソースバスライン(第1データ信号線)SL1、第2ソースバスライン(第2データ信号線)SL2、ゲートバスライン(走査信号線)GL、画像データ選択ラインSEL、高電位側電源ラインVHL、および、低電位側電源ラインVLLが含まれている。なお、第1ソースバスラインSL1および第2ソースバスラインSL2はソースドライバ300に接続され、ゲートバスラインGLはゲートドライバ400に接続され、画像データ選択ラインSEL、高電位側電源ラインVHL、および低電位側電源ラインVLLは、メモリ駆動用ドライバ600に接続されている。
[Embodiment 1]
An embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing the overall configuration of the liquid crystal display device according to the present embodiment. The liquid crystal display device 10 includes a liquid crystal display panel 100 and a display control circuit 200. The liquid crystal display panel 100 includes a source driver (data signal line driving circuit) 300, a gate driver (scanning signal line driving circuit) 400, a display unit 500, and a memory operation driver 600. The display control circuit 200 includes a memory drive control unit 20. The display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line) SL2, a gate bus line (scanning signal line) GL, an image data selection line SEL, A high potential side power supply line VHL and a low potential side power supply line VLL are included. The first source bus line SL1 and the second source bus line SL2 are connected to the source driver 300, the gate bus line GL is connected to the gate driver 400, the image data selection line SEL, the high potential side power supply line VHL, and the low The potential power supply line VLL is connected to the memory driving driver 600.
 また、表示部500は、複数の画素Pを含み、各画素Pに対応して、1本のゲートバスラインGLと、2本のソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2)と、画像データ選択ラインSELと、高電位側電源ラインVHLと、低電位側電源ラインVLLとが設けられている。また、各画素Pは、表示すべき画像に応じた電圧を後述の液晶容量Clcに印加するための画素電極PIXと、上記複数の画素Pに共通的に設けられた対向電極である共通電極COMと、上記複数の画素Pに共通的に設けられ、画素電極PIXと共通電極COMとの間に挟持された液晶層とからなる。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が2つずつ(第1メモリ回路および第2メモリ回路)設けられている。以下では、第1メモリ回路を第1画素メモリMR1、第2メモリ回路を第2画素メモリMR2と示す。 In addition, the display unit 500 includes a plurality of pixels P. One gate bus line GL and two source bus lines (first source bus line SL1, second source bus line) corresponding to each pixel P. SL2), an image data selection line SEL, a high potential side power supply line VHL, and a low potential side power supply line VLL are provided. Each pixel P has a pixel electrode PIX for applying a voltage according to an image to be displayed to a liquid crystal capacitor Clc, which will be described later, and a common electrode COM that is a common electrode provided to the plurality of pixels P. And a liquid crystal layer provided in common to the plurality of pixels P and sandwiched between the pixel electrode PIX and the common electrode COM. Each pixel P is provided with a storage unit, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes. Hereinafter, the first memory circuit is referred to as a first pixel memory MR1, and the second memory circuit is referred to as a second pixel memory MR2.
 本実施の形態に係る液晶表示装置10は、画素Pに書き込まれた画像データを画素P内の第1画素メモリMR1および第2画素メモリMR2に保持して表示を行う。より詳細には、液晶表示装置10は、画像データを書き込む画像データ書き込み期間と、書き込まれた画像データを保持しつつ表示を行う画像データ保持期間とを有し、画像データ書き込み期間では、2つの画像(第1画像、第2画像)に対応する2つの画像データ(便宜上、第1画像に対応する第1画像データ、第2画像に対応する第2画像データとする)について、第1画像データを第1画素メモリMR1に書き込み、第2画像データを第2画素メモリMR2に書き込み、画像データ保持期間では、第1画像を表示する際には、第1画素メモリMR1に保持されている第1画像データにより表示を行い、第2画像を表示する際には、第2画素メモリMR2に保持されている第2画像データに切り替えて表示を行う。 The liquid crystal display device 10 according to the present embodiment performs display by holding the image data written in the pixel P in the first pixel memory MR1 and the second pixel memory MR2 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written and an image data holding period in which display is performed while holding the written image data. First image data for two image data corresponding to images (first image and second image) (for convenience, the first image data corresponding to the first image and the second image data corresponding to the second image) Is written in the first pixel memory MR1, the second image data is written in the second pixel memory MR2, and in the image data holding period, the first image held in the first pixel memory MR1 is displayed when displaying the first image. When displaying with the image data and displaying the second image, the display is switched to the second image data held in the second pixel memory MR2.
 表示制御回路200は、外部から送られるデータ信号DATと画像データ選択信号VSELとを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1画像、第2画像)を選択するための画像データ選択信号VSELを出力する。画像を選択する具体的な構成については後述する。 The display control circuit 200 receives a data signal DAT and an image data selection signal VSEL sent from the outside, and receives a digital video signal DV (image data) and a source start pulse signal SSP for controlling image display on the display unit 500, A source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, a gate clock signal GCK, and an image data selection signal VSEL for selecting an image (first image, second image) to be displayed on the display unit 500 Output. A specific configuration for selecting an image will be described later.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2)に駆動用の映像信号(画像データ)を印加する。具体的には、第1ソースバスラインSL1に第1画像データを印加するとともに、第2ソースバスラインSL2に第2画像データを印加する。例えば、第1画像としての白のベタ画像と、第2画像としての黒のベタ画像を、相互に切り替えて表示させたい場合は、第1画像データを白画像データとし、第2画像データを黒画像データとすることができる。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1). A driving video signal (image data) is applied to the 2-source bus line SL2). Specifically, the first image data is applied to the first source bus line SL1, and the second image data is applied to the second source bus line SL2. For example, when it is desired to switch between a white solid image as the first image and a black solid image as the second image, the first image data is white image data and the second image data is black. It can be image data.
 ゲートドライバ400は、画像データ(第1画像データ、第2画像データ)を書き込む際(画像データ書き込み期間)に、各ゲートバスラインGLを1水平走査期間(1H)ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号(ゲート信号)を各ゲートバスラインGLに順次に印加する。これにより、同一行(水平ライン)の各画素Pにおいて、第1画素メモリMR1に第1画像データが書き込まれ、これと同時に、第2画素メモリMR2に第2画像データが書き込まれる。画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 The gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period (1H) when writing image data (first image data, second image data) (image data writing period). Based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal (gate signal) is sequentially applied to each gate bus line GL. Thereby, in each pixel P in the same row (horizontal line), the first image data is written in the first pixel memory MR1, and at the same time, the second image data is written in the second pixel memory MR2. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図3は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図1は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、および表示エレメント部53を備えている。
(Pixel circuit configuration)
FIG. 3 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows. FIG. 1 is an equivalent circuit diagram showing the configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
 スイッチ部50は、第1スイッチ部SW10および第2スイッチ部SW20を備え、第1スイッチ部SW10は、N型TFTで実現される(以下、必要に応じて「N型」と称す)スイッチSW11、P型TFTで実現される(以下、必要に応じて「P型」と称す)スイッチSW12、およびインバータ回路INV11を含み、第2スイッチ部SW20は、N型スイッチSW21、P型スイッチSW22、およびインバータ回路INV21を含んでいる。なお、各スイッチについて、白丸が付されているスイッチがP型スイッチであり、白丸が付されていないスイッチがN型スイッチである。以下の説明では、必要に応じて「N型」「P型」の語は省略する。 The switch unit 50 includes a first switch unit SW10 and a second switch unit SW20, and the first switch unit SW10 is realized by an N-type TFT (hereinafter referred to as “N-type” as needed), The switch SW12 and the inverter circuit INV11 (hereinafter referred to as “P-type” if necessary) realized by a P-type TFT include an inverter circuit INV11. The second switch unit SW20 includes an N-type switch SW21, a P-type switch SW22, and an inverter. A circuit INV21 is included. For each switch, a switch with a white circle is a P-type switch, and a switch without a white circle is an N-type switch. In the following description, the terms “N type” and “P type” are omitted as necessary.
 スイッチSW11は、制御端子がゲートバスラインGLに接続され、一方の導通端子が第1ソースバスラインSL1に接続され、他方の導通端子が第1スイッチ部SW10の出力端子swout1に接続されている。スイッチSW12は、制御端子がインバータ回路INV11の出力端子に接続され、一方の導通端子が第1ソースバスラインSL1に接続され、他方の導通端子が第1スイッチ部SW10の出力端子swout1に接続されている。インバータ回路INV11の入力端子はゲートバスラインGLに接続されている。 The switch SW11 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the first source bus line SL1, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10. The switch SW12 has a control terminal connected to the output terminal of the inverter circuit INV11, one conduction terminal connected to the first source bus line SL1, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10. Yes. The input terminal of the inverter circuit INV11 is connected to the gate bus line GL.
 スイッチSW21は、制御端子がゲートバスラインGLに接続され、一方の導通端子が第2ソースバスラインSL2に接続され、他方の導通端子が第2スイッチ部SW20の出力端子swout2に接続されている。スイッチSW22は、制御端子がインバータ回路INV21の出力端子に接続され、一方の導通端子が第2ソースバスラインSL2に接続され、他方の導通端子が第2スイッチ部SW20の出力端子swout2に接続されている。インバータ回路INV21の入力端子はゲートバスラインGLに接続されている。 The switch SW21 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the second source bus line SL2, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20. The switch SW22 has a control terminal connected to the output terminal of the inverter circuit INV21, one conduction terminal connected to the second source bus line SL2, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20. Yes. The input terminal of the inverter circuit INV21 is connected to the gate bus line GL.
 記憶部51は、第1画素メモリMR1および第2画素メモリMR2を備え、第1画素メモリMR1は、2つのインバータ回路INV12、INV13を含み、第2画素メモリMR2は、2つのインバータ回路INV22、INV23を含んでいる。 The storage unit 51 includes a first pixel memory MR1 and a second pixel memory MR2. The first pixel memory MR1 includes two inverter circuits INV12 and INV13. The second pixel memory MR2 includes two inverter circuits INV22 and INV23. Is included.
 インバータ回路INV12は、入力端子が第1スイッチ部SW10の出力端子swout1に接続され、出力端子が第1画素メモリMR1の出力端子mout1に接続されている。インバータ回路INV13は、入力端子がインバータ回路INV12の出力端子に接続され、出力端子がインバータ回路INV12の入力端子に接続されている。 The inverter circuit INV12 has an input terminal connected to the output terminal swout1 of the first switch unit SW10, and an output terminal connected to the output terminal mout1 of the first pixel memory MR1. The inverter circuit INV13 has an input terminal connected to the output terminal of the inverter circuit INV12, and an output terminal connected to the input terminal of the inverter circuit INV12.
 インバータ回路INV22は、入力端子が第2スイッチ部SW20の出力端子swout2に接続され、出力端子が第2画素メモリMR2の出力端子mout2に接続されている。インバータ回路INV23は、入力端子がインバータ回路INV22の出力端子に接続され、出力端子がインバータ回路INV22の入力端子に接続されている。 The inverter circuit INV22 has an input terminal connected to the output terminal swout2 of the second switch unit SW20, and an output terminal connected to the output terminal mout2 of the second pixel memory MR2. The inverter circuit INV23 has an input terminal connected to the output terminal of the inverter circuit INV22, and an output terminal connected to the input terminal of the inverter circuit INV22.
 データ選択部52は、N型スイッチSW13およびSW23、P型スイッチSW14およびSW24、インバータ回路INV14を含んでいる。スイッチSW13は、制御端子が画像データ選択ラインSELに接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW14は、制御端子がインバータ回路INV14の出力端子に接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW23は、制御端子がインバータ回路INV14の出力端子に接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW24は、制御端子が画像データ選択ラインSELに接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV14は、入力端子が画像データ選択ラインSELに接続され、出力端子がスイッチSW14の制御端子およびスイッチSW23の制御端子に接続されている。 The data selection unit 52 includes N-type switches SW13 and SW23, P-type switches SW14 and SW24, and an inverter circuit INV14. The switch SW13 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. ing. The switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW23 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW24 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. ing. The inverter circuit INV14 has an input terminal connected to the image data selection line SEL, and an output terminal connected to the control terminal of the switch SW14 and the control terminal of the switch SW23.
 表示エレメント部53は、N型スイッチSW15およびSW25、P型スイッチSW16およびSW26、インバータ回路INV15、画素電極PIX、対向電極COM、液晶容量Clcを含んでいる。スイッチSW15は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が低電位側電源ラインVLLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW16は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が低電位側電源ラインVLLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW25は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が高電位側電源ラインVHLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW26は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が高電位側電源ラインVHLに接続され、他方の導通端子が画素電極PIXに接続されている。画素電極PIXと対向電極COMとの間に液晶容量Clcが形成されている。 The display element unit 53 includes N-type switches SW15 and SW25, P-type switches SW16 and SW26, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, and a liquid crystal capacitor Clc. The switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, one conduction terminal connected to the low potential power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX. A liquid crystal capacitance Clc is formed between the pixel electrode PIX and the counter electrode COM.
 (駆動方法)
 次に、図1~図4を参照しつつ、本実施の形態における駆動方法について説明する。図4は、本液晶表示装置10の駆動方法(ノーマリブラックモード)を示すタイミングチャートである。なお、VSL1、VSL2はそれぞれ第1ソースバスラインSL1、第2ソースバスラインSL2それぞれに供給される第1画像データ、第2画像データの信号を示し、VGL(n-1)、VGLn、VGL(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目のゲートバスラインGL(n-1)、GLn、GL(n+1)に供給されるゲート信号(走査信号)を示し、VSELは画像データ選択ラインSELに供給される画像データ選択信号を示し、VMR1(n-1)、VMR1n、VMR1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1画素メモリMR1の電位を示し、VMR2(n-1)、VMR2n、VMR2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2画素メモリMR2の電位を示し、VP(n-1)、VPn、VP(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の画素電極PIXの電位(画素電位)を示している。本実施の形態では、上述のとおり、表示画像が、第1画像と第2画像との間で切り替えられる。この切り替えは、外部から表示制御回路200に送られる画像データ選択信号VSELに基づいて行われる。以下、画像データ書き込み期間の駆動方法、および画像データ保持期間の駆動方法について順に説明する。また、図4では、第1画像データにより表示される第1画像が白のベタ画像であり、第2画像データにより表示される第2画像が黒のベタ画像である場合を示している。
(Driving method)
Next, a driving method in the present embodiment will be described with reference to FIGS. FIG. 4 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10. VSL1 and VSL2 are signals of the first image data and the second image data supplied to the first source bus line SL1 and the second source bus line SL2, respectively. VGL (n−1), VGLn, VGL ( n + 1) are gate signals (scanning signals) supplied to the gate bus lines GL (n−1), GLn, GL (n + 1) in the (n−1) th row, the nth row, and the (n + 1) th row, respectively. VSEL indicates an image data selection signal supplied to the image data selection line SEL, and VMR1 (n−1), VMR1n, and VMR1 (n + 1) are the (n−1) th row, the nth row, and (n + 1), respectively. ) Indicates the potential of the first pixel memory MR1 in the row, and VMR2 (n−1), VMR2n, VMR2 (n + 1) are the second in the (n−1) th row, the nth row, and the (n + 1) th row, respectively. Pixel memory VP (n−1), VPn, VP (n + 1) are the potentials (pixel potentials) of the pixel electrodes PIX in the (n−1) th row, the nth row, and the (n + 1) th row, respectively. Is shown. In the present embodiment, as described above, the display image is switched between the first image and the second image. This switching is performed based on an image data selection signal VSEL sent to the display control circuit 200 from the outside. Hereinafter, a driving method during the image data writing period and a driving method during the image data holding period will be described in order. FIG. 4 shows a case where the first image displayed by the first image data is a white solid image, and the second image displayed by the second image data is a black solid image.
 (画像データ書き込み期間の駆動方法)
 図4において、時点t1から時点t2までは画像データが書き込まれる。画像データ書き込み期間では、各ゲートバスラインGL(n-1)、GLn、GL(n+1)に順に所定の期間ずつアクティブな信号が供給される。画像データ選択ラインSELにはハイ(H)レベルあるいはロー(L)レベルの画像データ選択信号VSELが供給されるが、ここでは、Hレベルの画像データ選択信号VSELが供給されるとする。
(Driving method for image data writing period)
In FIG. 4, image data is written from time t1 to time t2. In the image data writing period, active signals are sequentially supplied to the gate bus lines GL (n−1), GLn, and GL (n + 1) for a predetermined period. A high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL. Here, it is assumed that an H level image data selection signal VSEL is supplied.
 ここで、n行目の画素Pnに着目すると、画素Pnに対応して設けられているゲートバスラインGLnにアクティブな信号(Hレベル)が印加されると、スイッチSW11、SW21がオン状態になる。同時に、Hレベルの信号がインバータ回路INV11、INV21に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW12、SW22に与えられるため、スイッチSW12、SW22もオン状態になる。 Here, focusing on the pixel Pn in the n-th row, when an active signal (H level) is applied to the gate bus line GLn provided corresponding to the pixel Pn, the switches SW11 and SW21 are turned on. . At the same time, the H level signal is input to the inverter circuits INV11 and INV21, and the inverted level (L level) output signal is applied to the switches SW12 and SW22, so that the switches SW12 and SW22 are also turned on.
 これにより、第1ソースバスラインSL1に供給されている第1画像データ(白色に対応する画像データ:Hレベル(「1」))が、スイッチSW11、SW12を介して記憶部51の第1画素メモリMR1に入力され、第2ソースバスラインSL2に供給されている第2画像データ(黒色に対応する画像データ:Lレベル(「0」))が、スイッチSW21、SW22を介して記憶部51の第2画素メモリMR2に入力される。 Accordingly, the first image data (image data corresponding to white: H level (“1”)) supplied to the first source bus line SL1 is supplied to the first pixel of the storage unit 51 via the switches SW11 and SW12. Second image data (image data corresponding to black: L level (“0”)) input to the memory MR1 and supplied to the second source bus line SL2 is stored in the storage unit 51 via the switches SW21 and SW22. It is input to the second pixel memory MR2.
 第1画素メモリMR1では、インバータ回路INV12にHレベルの信号が入力されることにより、Lレベルの信号がインバータ回路INV13に入力され、これにより再びインバータ回路INV12にHレベルの信号が入力される。このようにして、第1画素メモリMR1にHレベルの信号が保持される(図4の「VMR1n」)。また、インバータ回路INV12から出力されたLレベルの信号が第1画素メモリMR1の出力として、データ選択部52のスイッチSW13、SW14に与えられる。 In the first pixel memory MR1, when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 4). The L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
 第2画素メモリMR2では、インバータ回路INV22にLレベルの信号が入力されることにより、Hレベルの信号がインバータ回路INV23に入力され、これにより再びインバータ回路INV22にLレベルの信号が入力される。このようにして、第2画素メモリMR2にLレベルの信号が保持される(図4の「VMR2n」)。また、インバータ回路INV22から出力されたHレベルの信号が第2画素メモリMR2の出力として、データ選択部52のスイッチSW23、SW24に与えられる。 In the second pixel memory MR2, when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, an L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 4). The H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
 データ選択部52には、Hレベルの画像データ選択信号VSELが入力されるため、スイッチSW13がオン状態になり、スイッチSW24がオフ状態になる。また、インバータ回路INV14を介してLレベルの信号が、スイッチSW14、SW23に与えられるため、スイッチSW14がオン状態になり、スイッチSW23がオフ状態になる。これにより、データ選択部52から第1画素メモリMR1のLレベルの信号が出力され、表示エレメント部53に入力される。 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is turned off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is turned off. As a result, an L level signal of the first pixel memory MR <b> 1 is output from the data selection unit 52 and input to the display element unit 53.
 表示エレメント部53では、Lレベルの信号がスイッチSW15、SW26に与えられ、インバータINV15を介してHレベルの信号がスイッチSW16、SW25に与えられる。そのため、スイッチSW15、SW16はオフ状態になり、スイッチSW25、SW26はオン状態になる。これにより、高電位側電源ラインVHLの電圧(Hレベル)が画素電極PIXに印加され、画素Pnにおいて白が表示される(図4の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像が表示される。 In the display element section 53, an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. As a result, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
 (画像データ保持期間の駆動方法)
 画像データ保持期間では、記憶部51に保持された画像データにより表示が行われる。例えば、n行目の画素Pnに着目して、時点t2から時点t3までは第1画素メモリMR1に記憶された第1画像データ(白)により表示が行われ、時点t3以降は第2画素メモリMR2に記憶された第2画像データ(黒)により表示が行われるとする。
(Driving method for image data retention period)
In the image data holding period, display is performed using the image data held in the storage unit 51. For example, paying attention to the pixel Pn in the n-th row, the display is performed with the first image data (white) stored in the first pixel memory MR1 from the time point t2 to the time point t3, and the second pixel memory after the time point t3. It is assumed that display is performed using the second image data (black) stored in MR2.
 まず、画像データ保持期間に移行すると(時点t2)、全てのゲートバスラインGL(n-1)、GLn、GL(n+1)に非アクティブな信号(Lレベル)が供給される。画像データ選択ラインSELには、画像データ書き込み期間と同様、引き続きHレベルの画像データ選択信号VSELが供給される。 First, when the image data holding period starts (time t2), an inactive signal (L level) is supplied to all the gate bus lines GL (n−1), GLn, and GL (n + 1). The image data selection line SEL is continuously supplied with the H level image data selection signal VSEL as in the image data writing period.
 全てのゲートバスラインGL(n-1)、GLn、GL(n+1)に非アクティブな信号(Lレベル)が印加されると、スイッチSW11、SW21はオフ状態になる。同時に、Lレベルの信号がインバータ回路INV11、INV21に入力され、その反転レベル(Hレベル)の出力信号がスイッチSW12、SW22に与えられるため、スイッチSW12、SW22もオフ状態になる。これにより、スイッチ部50から記憶部51へのデータ信号の供給が停止する。そのため、画像データ保持期間では、ソースドライバ300の動作を停止することができるため、消費電力を削減することができる。 When an inactive signal (L level) is applied to all the gate bus lines GL (n−1), GLn, GL (n + 1), the switches SW11 and SW21 are turned off. At the same time, since the L level signal is input to the inverter circuits INV11 and INV21 and the inverted signal (H level) is output to the switches SW12 and SW22, the switches SW12 and SW22 are also turned off. Thereby, the supply of the data signal from the switch unit 50 to the storage unit 51 is stopped. Therefore, since the operation of the source driver 300 can be stopped in the image data holding period, power consumption can be reduced.
 記憶部51では、第1画素メモリMR1にHレベルのデータ信号が保持(図4の「VMR1n」)され、第2画素メモリMR2にLレベルのデータ信号が保持(図4の「VMR2n」)されているため、第1画素メモリMR1からLレベルのデータ信号が出力され、第2画素メモリMR2からHレベルのデータ信号が出力される。 In the storage unit 51, an H level data signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 4), and an L level data signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 4). Therefore, an L level data signal is output from the first pixel memory MR1, and an H level data signal is output from the second pixel memory MR2.
 データ選択部52には、Hレベルの画像データ選択信号VSELが入力されているため、スイッチSW13がオン状態を維持し、スイッチSW24がオフ状態を維持する。また、インバータ回路INV14を介してLレベルの信号が、スイッチSW14、SW23に与えられるため、スイッチSW14がオン状態を維持し、スイッチSW23がオフ状態を維持する。これにより、画像データ書き込み期間と同様、データ選択部52から第1画素メモリMR1の出力信号(Lレベル)が出力され、表示エレメント部53に入力される。 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is kept on and the switch SW24 is kept off. In addition, since an L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is kept on and the switch SW23 is kept off. As a result, as in the image data writing period, the output signal (L level) of the first pixel memory MR1 is output from the data selection unit 52 and input to the display element unit 53.
 表示エレメント部53では、Lレベルの信号がスイッチSW15、SW26に与えられ、インバータINV15を介してHレベルの信号がスイッチSW16、SW25に与えられるため、スイッチSW15、SW16はオフ状態を維持し、スイッチSW25、SW26はオン状態を維持する。これにより、引き続き、高電位側電源ラインVHLの電圧(Hレベル)が画素電極PIXに印加され、画素Pnにおいて白表示が維持される(図4の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像の表示が維持される。 In the display element section 53, since the L level signal is supplied to the switches SW15 and SW26 and the H level signal is supplied to the switches SW16 and SW25 via the inverter INV15, the switches SW15 and SW16 maintain the OFF state. SW25 and SW26 are kept on. Accordingly, the voltage (H level) of the high potential side power supply line VHL is continuously applied to the pixel electrode PIX, and white display is maintained in the pixel Pn (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and the display of the white solid image is maintained.
 次に、時点t3になると、画像データ選択ラインSELに、Lレベルの画像データ選択信号VSELが供給される。なお、ここでも全てのゲートバスラインGL(n-1)、GLn、GL(n+1)には非アクティブな信号(Lレベル)が供給されるため、データ信号の供給は停止される。 Next, at time t3, the L-level image data selection signal VSEL is supplied to the image data selection line SEL. In this case as well, since the inactive signal (L level) is supplied to all the gate bus lines GL (n−1), GLn, and GL (n + 1), the supply of the data signal is stopped.
 これにより、データ選択部52には、Lレベルの画像データ選択信号VSELが入力されるため、スイッチSW13がオフ状態になり、スイッチSW24がオン状態になる。また、インバータ回路INV14を介してHレベルの信号が、スイッチSW14、SW23に与えられるため、スイッチSW14がオフ状態になり、スイッチSW23がオン状態になる。これにより、データ選択部52から第2画素メモリMR2の出力信号(Hレベル)が出力され、表示エレメント部53に入力される。 Thus, since the L-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned off and the switch SW24 is turned on. Further, since the H level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned off and the switch SW23 is turned on. As a result, the output signal (H level) of the second pixel memory MR <b> 2 is output from the data selection unit 52 and input to the display element unit 53.
 表示エレメント部53では、Hレベルの信号がスイッチSW15、SW26に与えられ、インバータINV15を介してLレベルの信号がスイッチSW16、SW25に与えられるため、スイッチSW15、SW16はオン状態になり、スイッチSW25、SW26はオフ状態になる。これにより、低電位側電源ラインVLLの電圧(Lレベル)が画素電極PIXに印加され、画素Pnにおいて黒表示に切り替わる(図4の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像から黒のベタ画像に切り替わる。 In the display element unit 53, the H level signal is supplied to the switches SW15 and SW26, and the L level signal is supplied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned on, and the switch SW25 is turned on. , SW26 is turned off. As a result, the voltage (L level) of the low potential side power supply line VLL is applied to the pixel electrode PIX, and the pixel Pn is switched to black display (“VPn” in FIG. 4). The same operation is performed on the pixels adjacent to the pixel Pn, and the white solid image is switched to the black solid image.
 以上のように、画像データ保持期間では、記憶部51に保持された画像データにより表示が行われるとともに、画像データ選択信号VSELに基づいて、第1画素メモリMR1に保持された第1画像データに対応する第1画像、および、第2画素メモリMR2に保持された第2画像データに対応する第2画像を切り替えて表示することができる。 As described above, in the image data holding period, display is performed using the image data held in the storage unit 51, and the first image data held in the first pixel memory MR1 is displayed on the basis of the image data selection signal VSEL. The corresponding first image and the second image corresponding to the second image data held in the second pixel memory MR2 can be switched and displayed.
 ここで、時点t1から時点t2までの画像データ書き込み期間および時点t2から時点t3までの画像データ保持期間では黒表示とし、時点t3以降を白表示とする場合は、図5のタイミングチャートに示すように、画像データ選択信号VSELの電位レベル(H/L)を逆転させればよい。 Here, black display is performed in the image data writing period from time t1 to time t2 and image data holding period from time t2 to time t3, and white display is performed after time t3 as shown in the timing chart of FIG. In addition, the potential level (H / L) of the image data selection signal VSEL may be reversed.
 また、第1画像データを横縞(ストライプ)模様の第1画像とし、第2画像データを横縞模様(第1画像とは各画素の白黒が反転)の第2画像とする場合は、図6のタイミングチャートに示すように、第1ソースバスラインSL1に供給する第1画像データ、および、第2ソースバスラインSL2に供給する第2画像データの電位レベルを互いに逆にするとともに、各画像データについて、1水平走査期間(1H)ごとに電位レベルを反転させればよい。さらに、市松模様を表示する場合は、第1ソースバスラインSL1および第2ソースバスラインSL2の接続を、隣り合う画素列において互いに逆になるように構成すればよい。例えば、図1に示す画素に行方向に隣り合う画素(図1の紙面左右方向)では、第1ソースバスラインSL1を第2スイッチ部SW12に接続し、第2ソースバスラインSL2を第1スイッチ部SW10に接続すればよい。 In addition, when the first image data is a first image having a horizontal stripe pattern (stripe) and the second image data is a second image having a horizontal stripe pattern (black and white of each pixel is reversed from the first image), FIG. As shown in the timing chart, the potential levels of the first image data supplied to the first source bus line SL1 and the second image data supplied to the second source bus line SL2 are reversed from each other, and each image data The potential level may be reversed every horizontal scanning period (1H). Furthermore, when a checkerboard pattern is displayed, the connection between the first source bus line SL1 and the second source bus line SL2 may be configured to be opposite to each other in adjacent pixel columns. For example, in the pixel adjacent to the pixel shown in FIG. 1 in the row direction (the horizontal direction in FIG. 1), the first source bus line SL1 is connected to the second switch unit SW12, and the second source bus line SL2 is connected to the first switch. What is necessary is just to connect to part SW10.
 ところで、一般に、液晶表示装置では、液晶表示パネルに使用される液晶材料の劣化を防ぐために、交流駆動を採用することが知られている。本説明での交流駆動とは、図3に記載の液晶容量Clcの両端に印加される電圧が交流化されていることをいう。本液晶表示装置10では、高電位側電源ラインVHL、低電位側電源ラインVLL及び共通電極COMには、同期した交流波形の信号が入力される。また、本実施の形態では、ノーマリブラックの液晶材料を用いているので、共通電極COM及び低電位側電源ラインVLLは、同電位かつ同タイミングの信号であり、高電位側電源ラインVHLは、共通電極COM及び低電位側電源ラインVLLと逆位相の信号となる。他の実施の形態についても同様である。 Incidentally, it is generally known that a liquid crystal display device adopts AC driving to prevent deterioration of a liquid crystal material used for a liquid crystal display panel. The AC driving in this description means that the voltage applied to both ends of the liquid crystal capacitor Clc shown in FIG. In the present liquid crystal display device 10, synchronized alternating current waveform signals are input to the high potential side power supply line VHL, the low potential side power supply line VLL, and the common electrode COM. In the present embodiment, since normally black liquid crystal material is used, the common electrode COM and the low potential power line VLL are signals having the same potential and the same timing, and the high potential power line VHL is The signal has a phase opposite to that of the common electrode COM and the low-potential side power supply line VLL. The same applies to other embodiments.
 (変形例1)
 図7は、図1の画素Pの変形例1を示す等価回路図である。図7の画素Pでは、概略的には、図1の画素Pにおける表示エレメント部53のインバータ回路INV15が省略されている構成である。以下では、図1の画素Pとの相違点を中心に説明する。
(Modification 1)
FIG. 7 is an equivalent circuit diagram showing a first modification of the pixel P in FIG. The pixel P in FIG. 7 schematically has a configuration in which the inverter circuit INV15 of the display element unit 53 in the pixel P in FIG. 1 is omitted. Below, it demonstrates centering on difference with the pixel P of FIG.
 スイッチ部50および記憶部51は、図1の画素Pと同一の構成である。 The switch unit 50 and the storage unit 51 have the same configuration as the pixel P in FIG.
 画像データ選択部52は、図1に示したスイッチSW13、SW14、SW23、SW24、およびインバータ回路INV14に加えて、N型スイッチSW17およびSW27、P型スイッチSW18およびSW28が設けられている。スイッチSW13、SW14それぞれは、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子selout1に接続されている。スイッチSW23、SW24それぞれは、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子selout1に接続されている。スイッチSW17は、制御端子が画像データ選択ラインSELに接続され、一方の導通端子が第1画素メモリMR1におけるインバータ回路INV12の入力端子およびインバータ回路INV13の出力端子に接続され、他方の導通端子がデータ選択部52の出力端子selout2に接続されている。スイッチSW18は、制御端子がインバータ回路INV14の出力端子に接続され、一方の導通端子がインバータ回路INV12の入力端子およびインバータ回路INV13の出力端子に接続され、他方の導通端子がデータ選択部52の出力端子selout2に接続されている。スイッチSW27は、制御端子がインバータ回路INV14の出力端子に接続され、一方の導通端子がインバータ回路INV22の入力端子およびインバータ回路INV23の出力端子に接続され、他方の導通端子がデータ選択部52の出力端子selout2に接続されている。スイッチSW28は、制御端子が画像データ選択ラインSELに接続され、一方の導通端子がインバータ回路INV22の入力端子およびインバータ回路INV23の出力端子に接続され、他方の導通端子がデータ選択部52の出力端子selout2に接続されている。インバータ回路INV14は、入力端子が画像データ選択ラインSELに接続され、出力端子がスイッチSW14、SW18、SW23、SW27それぞれの制御端子に接続されている。 The image data selection unit 52 is provided with N-type switches SW17 and SW27 and P-type switches SW18 and SW28 in addition to the switches SW13, SW14, SW23 and SW24 and the inverter circuit INV14 shown in FIG. Each of the switches SW13 and SW14 has one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout1 of the data selection unit 52. Each of the switches SW23 and SW24 has one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout1 of the data selection unit 52. The switch SW17 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the input terminal of the inverter circuit INV12 and the output terminal of the inverter circuit INV13 in the first pixel memory MR1, and the other conduction terminal connected to the data. The selector 52 is connected to the output terminal selout2. The switch SW18 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the input terminal of the inverter circuit INV12 and the output terminal of the inverter circuit INV13, and the other conduction terminal output of the data selection unit 52. It is connected to the terminal selout2. The switch SW27 has a control terminal connected to the output terminal of the inverter circuit INV14, one conduction terminal connected to the input terminal of the inverter circuit INV22 and the output terminal of the inverter circuit INV23, and the other conduction terminal output of the data selection unit 52. It is connected to the terminal selout2. The switch SW28 has a control terminal connected to the image data selection line SEL, one conduction terminal connected to the input terminal of the inverter circuit INV22 and the output terminal of the inverter circuit INV23, and the other conduction terminal output terminal of the data selection unit 52. It is connected to selout2. The inverter circuit INV14 has an input terminal connected to the image data selection line SEL and an output terminal connected to the control terminals of the switches SW14, SW18, SW23, and SW27.
 表示エレメント部53は、スイッチSW15、SW25、SW16、SW26、画素電極PIX、対向電極COM、液晶容量Clcを含んでいる。スイッチSW15は、制御端子がデータ選択部52の出力端子selout1に接続され、一方の導通端子が低電位側電源ラインVLLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW16は、制御端子がデータ選択部52の出力端子selout2に接続され、一方の導通端子が低電位側電源ラインVLLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW25は、制御端子がデータ選択部52の出力端子selout2に接続され、一方の導通端子が高電位側電源ラインVHLに接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW26は、制御端子がデータ選択部52の出力端子selout1に接続され、一方の導通端子が高電位側電源ラインVHLに接続され、他方の導通端子が画素電極PIXに接続されている。画素電極PIXと対向電極COMとの間に液晶容量Clcが形成されている。 The display element unit 53 includes switches SW15, SW25, SW16, SW26, a pixel electrode PIX, a counter electrode COM, and a liquid crystal capacitor Clc. The switch SW15 has a control terminal connected to the output terminal selout1 of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW16 has a control terminal connected to the output terminal selout2 of the data selection unit 52, one conduction terminal connected to the low potential side power supply line VLL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW25 has a control terminal connected to the output terminal selout2 of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX. The switch SW26 has a control terminal connected to the output terminal selout1 of the data selection unit 52, one conduction terminal connected to the high potential side power supply line VHL, and the other conduction terminal connected to the pixel electrode PIX. A liquid crystal capacitance Clc is formed between the pixel electrode PIX and the counter electrode COM.
 図7の変形例1に係る画素Pを有する液晶表示装置の駆動方法は、図4に示した駆動方法と同一であるため、その説明を省略する。 7 is the same as the driving method shown in FIG. 4 because the driving method of the liquid crystal display device having the pixel P according to Modification 1 of FIG. 7 is omitted.
 (変形例2)
 図32は、図1の画素Pの変形例2を示す等価回路図である。変形例2に係る画素Pを有する液晶表示パネル100では、図3に示す液晶表示パネル100において、さらに、ゲートバスラインGLBおよび画像データ選択ラインSELBが、画素Pごと1本ずつ設けられている。ゲートバスラインGLBには、ゲートバスラインGLに供給されるゲート信号VGLの反転信号VGLBが供給され、画像データ選択ラインSELBには、画像データ選択ラインSELに供給される画像データ選択信号VSELの反転信号VSELBが供給される。
(Modification 2)
FIG. 32 is an equivalent circuit diagram showing a second modification of the pixel P in FIG. In the liquid crystal display panel 100 having the pixel P according to the second modification, the gate bus line GLB and the image data selection line SELB are further provided for each pixel P in the liquid crystal display panel 100 shown in FIG. The gate bus line GLB is supplied with an inversion signal VGLB of the gate signal VGL supplied to the gate bus line GL, and the image data selection line SELB is inverted with the image data selection signal VSEL supplied to the image data selection line SEL. A signal VSELB is supplied.
 また、図32の画素Pでは、図1の画素Pにおけるスイッチ部50のインバータ回路INV11、INV21、および、データ選択部52のインバータ回路INV14が省略されている。記憶部51および表示エレメント部53は、図1の画素Pと同一の構成である。 32, the inverter circuits INV11 and INV21 of the switch unit 50 and the inverter circuit INV14 of the data selection unit 52 in the pixel P of FIG. 1 are omitted. The storage unit 51 and the display element unit 53 have the same configuration as the pixel P in FIG.
 図32の構成によれば、スイッチ部50において、アクティブなゲート信号VGL(Hレベル)がゲートバスラインGLに供給され、非アクティブなゲート信号VGLB(VGLの反転信号;Lレベル)がゲートバスラインGLBに供給されると、スイッチSW11、SW12、SW21、SW22はオン状態になり、非アクティブなゲート信号VGL(Lレベル)がゲートバスラインGLに供給され、アクティブなゲート信号VGLB(VGLの反転信号;Hレベル)がゲートバスラインGLBに供給されると、スイッチSW11、SW12、SW21、SW22はオフ状態になる。 32, in the switch unit 50, an active gate signal VGL (H level) is supplied to the gate bus line GL, and an inactive gate signal VGLB (inversion signal of VGL; L level) is supplied to the gate bus line. When supplied to GLB, the switches SW11, SW12, SW21, and SW22 are turned on, the inactive gate signal VGL (L level) is supplied to the gate bus line GL, and the active gate signal VGLB (inverted signal of VGL). ; H level) is supplied to the gate bus line GLB, the switches SW11, SW12, SW21, SW22 are turned off.
 また、データ選択部52において、アクティブな画像データ選択信号VSEL(Hレベル)が画像データ選択ラインSELに供給され、非アクティブな画像データ選択信号VSELB(VSELの反転信号;Lレベル)が画像データ選択ラインSELBに供給されると、スイッチSW13、SW14はオン状態になり、スイッチSW23、SW24はオフ状態になる。また、非アクティブな画像データ選択信号VSEL(Lレベル)が画像データ選択ラインSELに供給され、アクティブな画像データ選択信号VSELB(VSELの反転信号;Hレベル)が画像データ選択ラインSELBに供給されると、スイッチSW13、SW14はオフ状態になり、スイッチSW23、SW24はオン状態になる。 In the data selection unit 52, an active image data selection signal VSEL (H level) is supplied to the image data selection line SEL, and an inactive image data selection signal VSELB (inverted signal of VSEL; L level) is selected for image data. When supplied to the line SELB, the switches SW13 and SW14 are turned on, and the switches SW23 and SW24 are turned off. Further, an inactive image data selection signal VSEL (L level) is supplied to the image data selection line SEL, and an active image data selection signal VSELB (inverted signal of VSEL; H level) is supplied to the image data selection line SELB. Then, the switches SW13 and SW14 are turned off, and the switches SW23 and SW24 are turned on.
 図32の変形例2に係る画素Pを有する液晶表示装置の駆動方法は、図4に示した駆動方法と同一であるため、その説明を省略する。 32. The driving method of the liquid crystal display device having the pixel P according to the modified example 2 of FIG. 32 is the same as the driving method shown in FIG.
 上記変形例1および変形例2の構成は、本発明の各実施の形態に係る液晶表示装置に同様に適用することができる。 The configurations of Modification 1 and Modification 2 can be similarly applied to the liquid crystal display device according to each embodiment of the present invention.
 本発明の液晶表示装置は、本実施の形態に示した構成に限定されるものではない。以下では、本発明の液晶表示装置の他の形態について説明する。なお、説明の便宜上、本実施の形態において定義した用語については、特に断らない限り本実施の形態においてもその定義に則って用いるものとする。 The liquid crystal display device of the present invention is not limited to the configuration shown in this embodiment mode. Hereinafter, another embodiment of the liquid crystal display device of the present invention will be described. For convenience of explanation, the terms defined in this embodiment are used in accordance with the definitions in this embodiment unless otherwise specified.
 〔実施の形態2〕
 実施の形態1では、2つの画像(第1画像、第2画像)を切り替えて表示を行う構成であるが、本発明はこれに限定されるものではなく、3つの画像あるいはそれ以上の画像を切り替えて表示する構成としても良い。本実施の形態に係る液晶表示装置は、3つの画像を保持するとともに相互に切り替えて表示を行う構成を有する。
[Embodiment 2]
In the first embodiment, two images (first image and second image) are switched and displayed. However, the present invention is not limited to this, and three images or more images are displayed. It is good also as a structure which switches and displays. The liquid crystal display device according to the present embodiment has a configuration in which three images are held and switched to be displayed.
 本実施の形態に係る液晶表示装置の概略構成は、図2に示した実施の形態1と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The schematic configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200 as in the first embodiment shown in FIG. 2, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、実施の形態1とは異なり、第1ソースバスライン(第1データ信号線)SL1、第2ソースバスライン(第2データ信号線)、第3ソースバスライン(第3データ信号線)SL3、ゲートバスラインGL、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、および低電位側電源ラインVLLが含まれている。なお、第1ソースバスラインSL1、第2ソースバスラインSL2、および第3ソースバスラインSL3はソースドライバ300に接続され、ゲートバスラインGLはゲートドライバ400に接続され、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、および低電位側電源ラインVLLはメモリ駆動用ドライバ600に接続されている。 Unlike the first embodiment, the display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), and a third source bus line (third data signal). A signal line SL3, a gate bus line GL, a first image data selection line SEL1, a second image data selection line SEL2, a high potential side power supply line VHL, and a low potential side power supply line VLL are included. The first source bus line SL1, the second source bus line SL2, and the third source bus line SL3 are connected to the source driver 300, the gate bus line GL is connected to the gate driver 400, and the first image data selection line SEL1. The second image data selection line SEL2, the high potential side power supply line VHL, and the low potential side power supply line VLL are connected to the memory driving driver 600.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、1本のゲートバスラインGLと3本のソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2、第3ソースバスラインSL3)と、2本の画像データ選択ライン(第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2)と、高電位側電源ラインVHLと、低電位側電源ラインVLLとが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなる。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が3つずつ(第1メモリ回路、第2メモリ回路、第3メモリ回路)設けられている。以下では、第1メモリ回路を第1画素メモリMR1、第2メモリ回路を第2画素メモリMR2、第3メモリ回路を第3画素メモリMR3と示す。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and three source bus lines (first source bus line SL1, second source bus line SL2, 3 source bus lines SL3), two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high potential side power supply line VHL, and low potential side power supply line VLL. Is provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. In addition, a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit). Hereinafter, the first memory circuit is referred to as a first pixel memory MR1, the second memory circuit is referred to as a second pixel memory MR2, and the third memory circuit is referred to as a third pixel memory MR3.
 本実施の形態に係る液晶表示装置10は、画素Pに書き込まれた画像データを画素P内の第1画素メモリMR1、第2画素メモリMR2および第3画素メモリMR3に保持して表示を行う。より詳細には、液晶表示装置10は、画像データを書き込む画像データ書き込み期間と、書き込まれた画像データを保持しつつ表示を行う画像データ保持期間とを有し、画像データ書き込み期間では、3つの画像データ(便宜上、第1画像に対応する第1画像データ、第2画像に対応する第2画像データ、第3画像に対応する第3画像データとする)について、第1画像データを第1画素メモリMR1に書き込み、第2画像データを第2画素メモリMR2に書き込み、第3画像データを第3画素メモリMR3に書き込み、画像データ保持期間では、第1画像を表示する際には、第1画素メモリMR1に保持されている第1画像データにより表示を行い、第2画像を表示する際には、第2画素メモリMR2に保持されている第2画像データに切り替えて表示を行い、第3画像を表示する際には、第3画素メモリMR3に保持されている第3画像データに切り替えて表示を行う。 The liquid crystal display device 10 according to the present embodiment performs display by holding the image data written in the pixel P in the first pixel memory MR1, the second pixel memory MR2, and the third pixel memory MR3 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written, and an image data holding period in which display is performed while holding the written image data. For image data (for convenience, the first image data corresponding to the first image, the second image data corresponding to the second image, and the third image data corresponding to the third image), the first image data is the first pixel. In the memory MR1, the second image data is written in the second pixel memory MR2, the third image data is written in the third pixel memory MR3, and the first pixel is displayed when the first image is displayed in the image data holding period. When displaying with the first image data held in the memory MR1 and displaying the second image, the second image data held in the second pixel memory MR2 is switched to the second image data. Instead it is used to display, when displaying the third image performs display is switched to the third image data stored in the third pixel memory MR3.
 表示制御回路200は、外部から送られるデータ信号DATと第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2とを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1画像、第2画像、第3画像)を選択するための第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2を出力する。 The display control circuit 200 receives the data signal DAT, the first image data selection signal VSEL1 and the second image data selection signal VSEL2 sent from the outside, and displays the digital video signal DV (image data) and the image display on the display unit 500. A source start pulse signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, and a gate clock signal GCK for controlling, and images to be displayed on the display unit 500 (first image, second image, first image) The first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting (three images) are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2、第3ソースバスラインSL3)に駆動用の映像信号(画像データ)を印加する。具体的には、第1ソースバスラインSL1に第1画像データを印加し、第2ソースバスラインSL2に第2画像データを印加し、第3ソースバスラインSL3に第3画像データを印加する。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1). A driving video signal (image data) is applied to the two source bus lines SL2 and the third source bus lines SL3). Specifically, the first image data is applied to the first source bus line SL1, the second image data is applied to the second source bus line SL2, and the third image data is applied to the third source bus line SL3.
 ゲートドライバ400は、画像データ(第1画像データ、第2画像データ、第3画像データ)を書き込む際(画像データ書き込み期間)に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。これにより、同一行(水平ライン)の各画素Pにおいて、同時に、第1画素メモリMR1に第1画像データが書き込まれ、第2画素メモリMR2に第2画像データが書き込まれ、第3画素メモリMR3に第3画像データが書き込まれる。画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 The gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period when writing image data (first image data, second image data, third image data) (image data writing period). In addition, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL. As a result, in each pixel P in the same row (horizontal line), the first image data is simultaneously written in the first pixel memory MR1, the second image data is written in the second pixel memory MR2, and the third pixel memory MR3. The third image data is written in. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図8は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図9は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、および表示エレメント部53を備えている。
(Pixel circuit configuration)
FIG. 8 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n−1), n, and (n + 1) rows. FIG. 9 is an equivalent circuit diagram showing the configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
 スイッチ部50は、第1スイッチ部SW10、第2スイッチ部SW20、および第3スイッチ部SW30を備え、第1スイッチ部SW10および第2スイッチ部SW20は、図1の構成と同一である。第3スイッチ部SW30は、N型スイッチSW31、P型スイッチSW32、およびインバータ回路INV31を含んでいる。 The switch unit 50 includes a first switch unit SW10, a second switch unit SW20, and a third switch unit SW30. The first switch unit SW10 and the second switch unit SW20 have the same configuration as that of FIG. The third switch unit SW30 includes an N-type switch SW31, a P-type switch SW32, and an inverter circuit INV31.
 スイッチSW31は、制御端子がゲートバスラインGLに接続され、一方の導通端子が第3ソースバスラインSL3に接続され、他方の導通端子が第3スイッチ部SW30の出力端子swout3に接続されている。スイッチSW32は、制御端子がインバータ回路INV31の出力端子に接続され、一方の導通端子が第3ソースバスラインSL3に接続され、他方の導通端子が第3スイッチ部SW30の出力端子swout3に接続されている。インバータ回路INV31の入力端子はゲートバスラインGLに接続されている。 The switch SW31 has a control terminal connected to the gate bus line GL, one conduction terminal connected to the third source bus line SL3, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30. The switch SW32 has a control terminal connected to the output terminal of the inverter circuit INV31, one conduction terminal connected to the third source bus line SL3, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30. Yes. The input terminal of the inverter circuit INV31 is connected to the gate bus line GL.
 記憶部51は、第1画素メモリMR1、第2画素メモリMR2および第3画素メモリMR3を備え、第1画素メモリMR1および第2画素メモリMR2は、図1の構成と同一である。第3画素メモリMR3は、2つのインバータ回路INV32、INV33を含んでいる。 The storage unit 51 includes a first pixel memory MR1, a second pixel memory MR2, and a third pixel memory MR3. The first pixel memory MR1 and the second pixel memory MR2 have the same configuration as that shown in FIG. The third pixel memory MR3 includes two inverter circuits INV32 and INV33.
 インバータ回路INV32は、入力端子が第3スイッチ部SW30の出力端子swout3に接続され、インバータ回路INV32の出力端子が、第3画素メモリMR3の出力端子mout3に接続されている。インバータ回路INV33は、入力端子がインバータ回路INV32の出力端子に接続され、出力端子がインバータ回路INV32の入力端子に接続されている。 The inverter circuit INV32 has an input terminal connected to the output terminal swout3 of the third switch unit SW30, and an output terminal of the inverter circuit INV32 connected to the output terminal mout3 of the third pixel memory MR3. The inverter circuit INV33 has an input terminal connected to the output terminal of the inverter circuit INV32, and an output terminal connected to the input terminal of the inverter circuit INV32.
 データ選択部52は、N型スイッチSW13、SW23、SW33、P型スイッチSW14、SW24、SW34、インバータ回路INV16、INV26、INV36、デコーダ5を含んでいる。 The data selection unit 52 includes N-type switches SW13, SW23, SW33, P-type switches SW14, SW24, SW34, inverter circuits INV16, INV26, INV36, and a decoder 5.
 デコーダ5は、3つのNOR回路5a、5b、5cと、2つのインバータ回路INVb、INVcを備え、第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2が入力される。NOR回路5aは、一方の入力端子が第1画像データ選択ラインSEL1に接続され、他方の入力端子が第2画像データ選択ラインSEL2に接続され、出力端子がデコーダ5の出力端子dcout1に接続されている。インバータ回路INVbの入力端子は第2画像データ選択ラインSEL2に接続され、インバータ回路INVcの入力端子は第1画像データ選択ラインSEL1に接続されている。NOR回路5bは、一方の入力端子が第1画像データ選択ラインSEL1に接続され、他方の入力端子がインバータ回路INVbの出力端子に接続され、出力端子がデコーダ5の出力端子dcout2に接続されている。NOR回路5cは、一方の入力端子がインバータ回路INVcの出力端子に接続され、他方の入力端子が第2画像データ選択ラインSEL2に接続され、出力端子がデコーダ5の出力端子dcout3に接続されている。 The decoder 5 includes three NOR circuits 5a, 5b, and 5c and two inverter circuits INVb and INVc, and receives the first image data selection signal VSEL1 and the second image data selection signal VSEL2. The NOR circuit 5a has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the second image data selection line SEL2, and an output terminal connected to the output terminal dcout1 of the decoder 5. Yes. The input terminal of the inverter circuit INVb is connected to the second image data selection line SEL2, and the input terminal of the inverter circuit INVc is connected to the first image data selection line SEL1. The NOR circuit 5b has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the output terminal of the inverter circuit INVb, and the output terminal connected to the output terminal dcout2 of the decoder 5. . The NOR circuit 5c has one input terminal connected to the output terminal of the inverter circuit INVc, the other input terminal connected to the second image data selection line SEL2, and the output terminal connected to the output terminal dcout3 of the decoder 5. .
 スイッチSW13は、制御端子がデコーダ5の出力端子dcout1に接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW14は、制御端子がインバータ回路INV16の出力端子に接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV16の入力端子は、デコーダ5の出力端子dcout1に接続されている。 The switch SW13 has a control terminal connected to the output terminal dcout1 of the decoder 5, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV16, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV16 is connected to the output terminal dcout1 of the decoder 5.
 スイッチSW23は、制御端子がデコーダ5の出力端子dcout2に接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW24は、制御端子がインバータ回路INV26の出力端子に接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV26の入力端子は、デコーダ5の出力端子dcout2に接続されている。 The switch SW23 has a control terminal connected to the output terminal dcout2 of the decoder 5, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW24 has a control terminal connected to the output terminal of the inverter circuit INV26, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV26 is connected to the output terminal dcout2 of the decoder 5.
 スイッチSW33は、制御端子がデコーダ5の出力端子dcout3に接続され、一方の導通端子が第3画素メモリMR3の出力端子mout3に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW34は、制御端子がインバータ回路INV36の出力端子に接続され、一方の導通端子が第3画素メモリMR3の出力端子mout3に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV36の入力端子は、デコーダ5の出力端子dcout3に接続されている。 The switch SW33 has a control terminal connected to the output terminal dcout3 of the decoder 5, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW34 has a control terminal connected to the output terminal of the inverter circuit INV36, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV36 is connected to the output terminal dcout3 of the decoder 5.
 表示エレメント部53は、図1の構成と同一であり、上記のデータ選択部52の出力信号に基づいて、画像表示が行われる。 The display element unit 53 has the same configuration as that of FIG. 1, and image display is performed based on the output signal of the data selection unit 52 described above.
 図10は、デコーダ5の回路図であり、図11は、第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2の組み合わせと、デコーダ5の出力信号a、b、cと、記憶部51から選択される画素メモリMR(MR1、MR2、MR3)との関係を示す表である。 10 is a circuit diagram of the decoder 5. FIG. 11 shows a combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2, output signals a, b, c of the decoder 5, and a storage unit 51. Is a table showing the relationship with the pixel memory MR (MR1, MR2, MR3) selected from.
 例えば、VSEL1が「0」で、VSEL2が「0」の場合は、デコーダ5の端子dcout1の出力信号aは「1」(Hレベル)、端子dcout2の出力信号bは「0」(Lレベル)、端子dcout3の出力信号cは「0」(Lレベル)になる。この場合は、スイッチSW13、SW14がオン状態になり、第1画素メモリMR10のデータ信号が表示エレメント部53に入力される。また、VSEL1が「0」で、VSEL2が「1」の場合は、デコーダ5の端子dcout1の出力信号aは「0」(Lレベル)、端子dcout2の出力信号bは「1」(Hレベル)、端子dcout3の出力信号cは「0」(Lレベル)になる。この場合は、スイッチSW23、SW24がオン状態になり、第2画素メモリMR20のデータ信号が表示エレメント部53に入力される。また、VSEL1が「1」で、VSEL2が「0」の場合は、デコーダ5の端子dcout1の出力信号aは「0」(Lレベル)、端子dcout2の出力信号bは「0」(Lレベル)、端子dcout3の出力信号cは「1」(Hレベル)になる。この場合は、スイッチSW33、SW34がオン状態になり、第3画素メモリMR30のデータ信号が表示エレメント部53に入力される。 For example, when VSEL1 is “0” and VSEL2 is “0”, the output signal a of the terminal dcout1 of the decoder 5 is “1” (H level), and the output signal b of the terminal dcout2 is “0” (L level). The output signal c of the terminal dcout3 becomes “0” (L level). In this case, the switches SW13 and SW14 are turned on, and the data signal of the first pixel memory MR10 is input to the display element unit 53. When VSEL1 is “0” and VSEL2 is “1”, the output signal a of the terminal dcout1 of the decoder 5 is “0” (L level), and the output signal b of the terminal dcout2 is “1” (H level). The output signal c of the terminal dcout3 becomes “0” (L level). In this case, the switches SW23 and SW24 are turned on, and the data signal of the second pixel memory MR20 is input to the display element unit 53. When VSEL1 is “1” and VSEL2 is “0”, the output signal a of the terminal dcout1 of the decoder 5 is “0” (L level), and the output signal b of the terminal dcout2 is “0” (L level). The output signal c from the terminal dcout3 becomes “1” (H level). In this case, the switches SW33 and SW34 are turned on, and the data signal of the third pixel memory MR30 is input to the display element unit 53.
 以上の構成により、3つの画像を切り替えて表示を行うことが可能となる。ここで、4つ以上の画像を切り替えて表示を行う場合にも同様の構成により実現可能であり、具体的には、n個の画像を切り替えて表示を行う場合には、各画素Pに対応して、n個の画素メモリMRと、n本のソースバスラインSLとを設け、画像データ選択信号VSELを周知の論理回路の組み合わせにより生成することによって実現可能である。 With the above configuration, it is possible to switch and display three images. Here, even when four or more images are switched and displayed, the same configuration can be realized. Specifically, when n images are switched and displayed, each pixel P is supported. This can be realized by providing n pixel memories MR and n source bus lines SL and generating the image data selection signal VSEL by a combination of known logic circuits.
 ここで、上述した図9に示す画素Pでは、デコーダ5はデータ選択部52に含まれているが、本液晶表示装置10はこれに限定されず、以下の構成としても良い。図12は、図9に示す画素Pの変形例を示す等価回路図である。図12に示すように、デコーダ5は各画素Pには設けられず、1つのデコーダ5がメモリ駆動用ドライバ600(図2参照)内に設けられ、デコーダ5の出力が各画素Pに入力される。詳細には、デコーダ5に、表示制御回路200を介して第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2が入力され、デコーダ5の出力信号a、b、cがそれぞれ、各画素Pのデータ選択部52に入力される。すなわち、デコーダ5の端子dcout1が第1選択ラインSELaに接続され、第1選択ラインSELaが各画素PのスイッチSW13の制御端子及びインバータ回路INV16の入力端子に接続される。デコーダ5の端子dcout2が第2選択ラインSELbに接続され、第2選択ラインSELbが各画素PのスイッチSW23の制御端子及びインバータ回路INV26の入力端子に接続される。デコーダ5の端子dcout3が第3選択ラインSELcに接続され、第3選択ラインSELcが各画素PのスイッチSW33の制御端子及びインバータ回路INV36の入力端子に接続される。第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2の組み合わせと、デコーダ5の出力信号a、b、cとの関係は、図11に示したとおりである。図12の構成によれば、デコーダ5を各画素Pの設ける必要がないため、回路構成を簡略化できるという効果も得られる。 Here, in the pixel P shown in FIG. 9 described above, the decoder 5 is included in the data selection unit 52, but the present liquid crystal display device 10 is not limited to this, and may have the following configuration. FIG. 12 is an equivalent circuit diagram showing a modification of the pixel P shown in FIG. As shown in FIG. 12, the decoder 5 is not provided for each pixel P, and one decoder 5 is provided in the memory driving driver 600 (see FIG. 2), and the output of the decoder 5 is input to each pixel P. The Specifically, the first image data selection signal VSEL1 and the second image data selection signal VSEL2 are input to the decoder 5 via the display control circuit 200, and the output signals a, b, and c of the decoder 5 are respectively applied to the pixels P. Is input to the data selection unit 52. That is, the terminal dcout1 of the decoder 5 is connected to the first selection line SELa, and the first selection line SELa is connected to the control terminal of the switch SW13 of each pixel P and the input terminal of the inverter circuit INV16. The terminal dcout2 of the decoder 5 is connected to the second selection line SELb, and the second selection line SELb is connected to the control terminal of the switch SW23 of each pixel P and the input terminal of the inverter circuit INV26. The terminal dcout3 of the decoder 5 is connected to the third selection line SELc, and the third selection line SELc is connected to the control terminal of the switch SW33 of each pixel P and the input terminal of the inverter circuit INV36. The relationship between the combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2 and the output signals a, b, c of the decoder 5 is as shown in FIG. According to the configuration of FIG. 12, it is not necessary to provide each pixel P with the decoder 5, so that the circuit configuration can be simplified.
 〔実施の形態3〕
 実施の形態1では、2つの画素メモリ(第1画素メモリMR1、第2画素メモリMR2)それぞれに、互いに異なるソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2)から2つの画像データ(第1画像データ、第2画像データ)それぞれを書き込む構成であるが、本発明はこれに限定されるものではなく、1つの画素Pに1本のソースバスラインおよび2本のゲートバスラインを設け、異なるタイミング(時間)で2つの画像データを2つの画素メモリそれぞれに書き込む構成としても良い。本実施の形態に係る液晶表示装置は、上記の構成を有する。
[Embodiment 3]
In the first embodiment, two images are obtained from different source bus lines (first source bus line SL1 and second source bus line SL2) in two pixel memories (first pixel memory MR1 and second pixel memory MR2). Each of the data (first image data and second image data) is written, but the present invention is not limited to this, and one source bus line and two gate bus lines per pixel P And two image data may be written in each of the two pixel memories at different timings (time). The liquid crystal display device according to the present embodiment has the above-described configuration.
 本実施の形態に係る液晶表示装置の全体構成は、図2に示した実施の形態1と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The overall configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200, as in the first embodiment shown in FIG. 2. The liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、ソースバスライン(データ信号線)SL、第1ゲートバスライン(第1走査信号線)GL1、第2ゲートバスライン(第2走査信号線)GL2、画像データ選択ラインSEL、高電位側電源ラインVHL、および低電位側電源ラインVLLが含まれている。なお、ソースバスラインSLはソースドライバ300に接続され、第1ゲートバスラインGL1および第2ゲートバスラインGL2はゲートドライバ400に接続され、画像データ選択ラインSEL、高電位側電源ラインVHL、および低電位側電源ラインVLLはメモリ駆動用ドライバ600に接続されている。 The display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, an image data selection line SEL, A high potential side power supply line VHL and a low potential side power supply line VLL are included. The source bus line SL is connected to the source driver 300, the first gate bus line GL1 and the second gate bus line GL2 are connected to the gate driver 400, the image data selection line SEL, the high potential side power supply line VHL, and the low The potential power supply line VLL is connected to the memory driving driver 600.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、2本のゲートバスライン(第1ゲートバスラインGL1、第2ゲートバスラインGL2)と1本のソースバスラインSLと、画像データ選択ラインSELと、高電位側電源ラインVHLと、低電位側電源ラインVLLとが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなる。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が2つずつ(第1メモリ回路、第2メモリ回路)設けられている。以下では、第1メモリ回路を第1画素メモリMR1、第2メモリ回路を第2画素メモリMR2と示す。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, there are two gate bus lines (first gate bus line GL1, second gate bus line GL2) and one source bus line SL. The image data selection line SEL, the high potential side power supply line VHL, and the low potential side power supply line VLL are provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. In addition, a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes. Hereinafter, the first memory circuit is referred to as a first pixel memory MR1, and the second memory circuit is referred to as a second pixel memory MR2.
 本実施の形態に係る液晶表示装置10は、画素Pに書き込まれた画像データを画素P内の第1画素メモリMR1および第2画素メモリMR2に保持して表示を行う。より詳細には、液晶表示装置10は、画像データを書き込む画像データ書き込み期間と、書き込まれた画像データを保持しつつ表示を行う画像データ保持期間とを有し、画像データ書き込み期間では、2つの画像データ(第1画像に対応する第1画像データ、第2画像に対応する第2画像データとする)について、第1画像データを第1画素メモリMR1に書き込み、第2画像データを第2画素メモリMR2に書き込み、画像データ保持期間では、第1画像を表示する際には、第1画素メモリMR1に保持されている第1画像データにより表示を行い、第2画像を表示する際には、第2画素メモリMR2に保持されている第2画像データに切り替えて表示を行う。 The liquid crystal display device 10 according to the present embodiment performs display by holding the image data written in the pixel P in the first pixel memory MR1 and the second pixel memory MR2 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written and an image data holding period in which display is performed while holding the written image data. For image data (first image data corresponding to the first image and second image data corresponding to the second image), the first image data is written in the first pixel memory MR1, and the second image data is stored in the second pixel. In the image data holding period written in the memory MR2, when displaying the first image, display is performed using the first image data held in the first pixel memory MR1, and when displaying the second image, The display is switched to the second image data held in the second pixel memory MR2.
 表示制御回路200は、実施の形態1と同様、外部から送られるデータ信号DATと画像データ選択信号VSELとを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1画像、第2画像)を選択するための画像データ選択信号VSELを出力する。 As in the first embodiment, the display control circuit 200 receives the data signal DAT and the image data selection signal VSEL sent from the outside, and controls the digital video signal DV (image data) and the image display on the display unit 500. Source start pulse signal SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP, and gate clock signal GCK, and an image (first image, second image) to be displayed on the display unit 500 The image data selection signal VSEL is output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスラインSLに駆動用の映像信号(画像データ)を印加する。なお、各ソースバスラインSLには、第1画像(白のベタ画像)に対応する映像信号(第1画像データ)および第2画像(黒のベタ画像)に対応する映像信号(第2画像データ)が交互に供給される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data). Each source bus line SL has a video signal (first image data) corresponding to the first image (white solid image) and a video signal (second image data) corresponding to the second image (black solid image). ) Are alternately supplied.
 ゲートドライバ400は、画像データ(第1画像データ、第2画像データ)を書き込む際(画像データ書き込み期間)に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。詳細には、各画素において、まず第2ゲートバスラインGL2が選択されることにより第2画素メモリMR2に第2画像データが書き込まれ、続いて第1ゲートバスラインGL1が選択されることにより第1画素メモリMR1に第1画像データが書き込まれる。画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 When the gate driver 400 writes image data (first image data, second image data) (image data writing period), the gate driver 400 sequentially selects each gate bus line GL one horizontal scanning period at a time. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in each pixel, the second image data is first written in the second pixel memory MR2 when the second gate bus line GL2 is selected, and then the first gate bus line GL1 is selected. First image data is written into the one-pixel memory MR1. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図13は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素を示している。図14は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、および表示エレメント部53を備えている。
(Pixel circuit configuration)
FIG. 13 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels in each of the (n−1) row, the n row, and the (n + 1) row. FIG. 14 is an equivalent circuit diagram showing a configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
 スイッチ部50は、第1スイッチ部SW10および第2スイッチ部SW20を備え、第1スイッチ部SW10は、スイッチSW11、SW12、およびインバータ回路INV11を含み、第2スイッチ部SW20は、スイッチSW21、SW22、およびインバータ回路INV21を含んでいる。 The switch unit 50 includes a first switch unit SW10 and a second switch unit SW20. The first switch unit SW10 includes switches SW11 and SW12 and an inverter circuit INV11. The second switch unit SW20 includes switches SW21, SW22, And an inverter circuit INV21.
 スイッチSW11は、制御端子が第1ゲートバスラインGL1に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第1スイッチ部SW10の出力端子swout1に接続されている。スイッチSW12は、制御端子がインバータ回路INV11の出力端子に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第1スイッチ部SW10の出力端子swout1に接続されている。インバータ回路INV11の入力端子は第1ゲートバスラインGL1に接続されている。 The switch SW11 has a control terminal connected to the first gate bus line GL1, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10. The switch SW12 has a control terminal connected to the output terminal of the inverter circuit INV11, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout1 of the first switch unit SW10. The input terminal of the inverter circuit INV11 is connected to the first gate bus line GL1.
 スイッチSW21は、制御端子が第2ゲートバスラインGL2に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第2スイッチ部SW20の出力端子swout2に接続されている。スイッチSW22は、制御端子がインバータ回路INV21の出力端子に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第2スイッチ部SW20の出力端子swout2に接続されている。インバータ回路INV21の入力端子は第2ゲートバスラインGL2に接続されている。 The switch SW21 has a control terminal connected to the second gate bus line GL2, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20. The switch SW22 has a control terminal connected to the output terminal of the inverter circuit INV21, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout2 of the second switch unit SW20. The input terminal of the inverter circuit INV21 is connected to the second gate bus line GL2.
 記憶部51、データ選択部52、および表示エレメント部53は、図1に示す実施の形態1と同一の構成である。 The storage unit 51, the data selection unit 52, and the display element unit 53 have the same configuration as that of the first embodiment shown in FIG.
 (駆動方法)
 次に、図13~図15を参照しつつ、本実施の形態における駆動方法について説明する。図15は、図14の液晶表示装置10の駆動方法(ノーマリブラックモード)を示すタイミングチャートである。なお、VSLはソースバスラインSLに供給される第1画像データ(白色に対応する画像データ:Hレベル(「1」))、第2画像データ(黒色に対応する画像データ:Lレベル(「0」)の信号を示し、VGL2(n-1)、VGL2n、VGL2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2ゲートバスラインGL2(n-1)、GL2n、GL2(n+1)に供給される第2ゲート信号(第2走査信号)を示し、VGL1(n-1)、VGL1n、VGL1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1ゲートバスラインGL1(n-1)、GL1n、GL1(n+1)に供給される第1ゲート信号(第1走査信号)を示し、VSELは画像データ選択ラインSELに供給される画像データ選択信号を示し、VMR1(n-1)、VMR1n、VMR1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1画素メモリMR1の電位を示し、VMR2(n-1)、VMR2n、VMR2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2画素メモリMR2の電位を示し、VP(n-1)、VPn、VP(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の画素電極PIXの電位(画素電位)を示している。本実施の形態では、上述のとおり、表示画像が、第1画像データと第2画像データとの間で切り替えられる。この切り替えは、外部から表示制御回路200に送られる画像データ選択信号VSELに基づいて行われる。以下、画像データ書き込み期間の駆動方法、および画像データ保持期間の駆動方法について順に説明する。また、図4では、第1画像データにより表示される第1画像が白のベタ画像であり、第2画像データにより表示される第2画像が黒のベタ画像である場合を示している。
(Driving method)
Next, a driving method in the present embodiment will be described with reference to FIGS. FIG. 15 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10 of FIG. VSL is the first image data (image data corresponding to white: H level (“1”)) and second image data (image data corresponding to black: L level (“0”) supplied to the source bus line SL. )), And VGL2 (n−1), VGL2n, and VGL2 (n + 1) are the second gate bus lines GL2 (n−) of the (n−1) th row, the nth row, and the (n + 1) th row, respectively. 1), the second gate signal (second scanning signal) supplied to GL2n, GL2 (n + 1), and VGL1 (n−1), VGL1n, VGL1 (n + 1) are respectively in the (n−1) th row, Indicates the first gate signal (first scanning signal) supplied to the first gate bus lines GL1 (n−1), GL1n, GL1 (n + 1) of the nth row and the (n + 1) th row, and VSEL indicates image data selection Image supplied to line SEL Indicates a data selection signal, VMR1 (n−1), VMR1n, VMR1 (n + 1) respectively indicate the potential of the first pixel memory MR1 in the (n−1) th row, the nth row, and the (n + 1) th row, VMR2 (n−1), VMR2n, VMR2 (n + 1) respectively indicate the potentials of the second pixel memory MR2 in the (n−1) th row, the nth row, and the (n + 1) th row, and VP (n−1) , VPn, VP (n + 1) respectively indicate the potentials (pixel potentials) of the pixel electrodes PIX in the (n−1) th row, the nth row, and the (n + 1) th row. As described above, the display image is switched between the first image data and the second image data, and this switching is performed based on the image data selection signal VSEL sent from the outside to the display control circuit 200. Hereinafter, the image data. Driving method for writing period 4 will be described in order, and in FIG.4, the first image displayed by the first image data is a white solid image, and the second image displayed by the second image data is A case of a black solid image is shown.
 (画像データ書き込み期間の駆動方法)
 図15において、時点t1から時点t2までは画像データが書き込まれる。画像データ書き込み期間では、各ゲートバスラインGL2(n-1)、GL1(n-1)、GL2n、GL1n、GL2(n+1)、GL1(n+1)に順に所定の期間ずつアクティブな信号が供給される。画像データ選択ラインSELにはハイ(H)レベルあるいはロー(L)レベルの画像データ選択信号VSELが供給されるが、ここでは、Hレベルの画像データ選択信号VSELが供給されるとする。
(Driving method for image data writing period)
In FIG. 15, image data is written from time t1 to time t2. In the image data writing period, active signals are sequentially supplied to the gate bus lines GL2 (n−1), GL1 (n−1), GL2n, GL1n, GL2 (n + 1), and GL1 (n + 1) in order for a predetermined period. . A high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL. Here, it is assumed that an H level image data selection signal VSEL is supplied.
 ここで、n行目の画素Pnに着目すると、画素Pnに対応して設けられている第2ゲートバスラインGL2nにアクティブな信号(Hレベル)が印加されると、スイッチSW21がオン状態になる。同時に、Hレベルの信号がインバータ回路INV21に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW22に与えられるため、スイッチSW22もオン状態になる。 Here, focusing on the pixel Pn in the n-th row, when an active signal (H level) is applied to the second gate bus line GL2n provided corresponding to the pixel Pn, the switch SW21 is turned on. . At the same time, the H level signal is input to the inverter circuit INV21, and the output signal of the inverted level (L level) is applied to the switch SW22, so that the switch SW22 is also turned on.
 これにより、ソースバスラインSLに供給されている第2画像データ(黒色に対応する画像データ:Lレベル(「0」))が、スイッチSW12を介して記憶部51の第2画素メモリMR2に入力される。 Thus, the second image data (image data corresponding to black: L level (“0”)) supplied to the source bus line SL is input to the second pixel memory MR2 of the storage unit 51 via the switch SW12. Is done.
 第2画素メモリMR2では、インバータ回路INV22にLレベルの信号が入力されることにより、Hレベルの信号がインバータ回路INV23に入力され、これにより再びインバータ回路INV22にLレベルの信号が入力される。このようにして、第2画素メモリMR2にLレベルの信号が保持される(図15の「VMR2n」)。また、インバータ回路INV22から出力されたHレベルの信号が第2画素メモリMR2の出力として、データ選択部52のスイッチSW23、SW24に与えられる。 In the second pixel memory MR2, when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, the L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 15). The H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
 データ選択部52には、Hレベルの画像データ選択信号VSELが入力されるため、スイッチSW24がオフ状態になる。また、インバータ回路INV14を介してLレベルの信号がSW23に与えられるため、スイッチSW23がオフ状態になる。これにより、データ選択部52から第2画素メモリMR2のHレベルの信号は出力されない。 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW24 is turned off. Further, since the L level signal is supplied to the SW 23 via the inverter circuit INV14, the switch SW23 is turned off. Thereby, the H level signal of the second pixel memory MR2 is not output from the data selection unit 52.
 次に、画素Pnに対応して設けられている第1ゲートバスラインGLn1にアクティブな信号(Hレベル)が印加されると、スイッチSW11がオン状態になる。同時に、Hレベルの信号がインバータ回路INV11に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW12に与えられるため、スイッチSW12もオン状態になる。 Next, when an active signal (H level) is applied to the first gate bus line GLn1 provided corresponding to the pixel Pn, the switch SW11 is turned on. At the same time, an H level signal is input to the inverter circuit INV11, and an output signal of the inverted level (L level) is applied to the switch SW12, so that the switch SW12 is also turned on.
 これにより、ソースバスラインSLに供給されている第1画像データ(白色に対応する画像データ:Hレベル(「1」))が、スイッチSW11を介して記憶部51の第1画素メモリMR1に入力される。 As a result, the first image data (image data corresponding to white: H level (“1”)) supplied to the source bus line SL is input to the first pixel memory MR1 of the storage unit 51 via the switch SW11. Is done.
 第1画素メモリMR1では、インバータ回路INV12にHレベルの信号が入力されることにより、Lレベルの信号がインバータ回路INV13に入力され、これにより再びインバータ回路INV12にHレベルの信号が入力される。このようにして、第1画素メモリMR1にHレベルの信号が保持される(図15の「VMR1n」)。また、インバータ回路INV12から出力されたLレベルの信号が第1画素メモリMR1の出力として、データ選択部52のスイッチSW13、SW14に与えられる。 In the first pixel memory MR1, when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 15). The L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
 データ選択部52には、Hレベルの画像データ選択信号VSELが入力されるため、スイッチSW13がオン状態になり、スイッチSW24はオフ状態を維持する。また、インバータ回路INV14を介してLレベルの信号が、スイッチSW14、SW23に与えられるため、スイッチSW14がオン状態になり、スイッチSW23はオフ状態を維持する。これにより、データ選択部52から第1画素メモリMR1のLレベルの信号が出力され、表示エレメント部53に入力される。 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is kept off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is kept off. As a result, an L level signal of the first pixel memory MR <b> 1 is output from the data selection unit 52 and input to the display element unit 53.
 表示エレメント部53では、Lレベルの信号がスイッチSW15、SW26に与えられ、インバータINV15を介してHレベルの信号がスイッチSW16、SW25に与えられる。そのため、スイッチSW15、SW16はオフ状態になり、スイッチSW25、SW26はオン状態になる。これにより、高電位側電源ラインVHLの電圧(Hレベル)が画素電極PIXに印加され、画素Pnにおいて白が表示される(図15の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像が表示される。 In the display element section 53, an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. As a result, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 15). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
 (画像データ保持期間の駆動方法)
 画像データ保持期間では、図4に示した実施の形態1と同一の動作を行う。すなわち、時点t2から時点t3の期間では、画像データ選択ラインSELに、Hレベルの画像データ選択信号VSELが供給されることにより、データ選択部52から第1画素メモリMR1の出力信号(Lレベル)が出力される。これにより、引き続き、高電位側電源ラインVHLの電圧(Hレベル)が画素電極PIXに印加され、画素Pnにおいて白表示が維持される(図15の「VPn」)。一方、時点2以降では、画像データ選択ラインSELに、Lレベルの画像データ選択信号VSELが供給されることにより、データ選択部52から第2画素メモリMR2の出力信号(Hレベル)が出力される。これにより、低電位側電源ラインVLLの電圧(Lレベル)が画素電極PIXに印加され、画素Pnにおいて黒表示に切り替わる(図15の「VPn」)。
(Driving method for image data retention period)
In the image data holding period, the same operation as that of the first embodiment shown in FIG. 4 is performed. That is, during the period from time t2 to time t3, the H level image data selection signal VSEL is supplied to the image data selection line SEL, whereby the output signal (L level) of the first pixel memory MR1 from the data selection unit 52. Is output. Thereby, the voltage (H level) of the high potential side power supply line VHL is continuously applied to the pixel electrode PIX, and white display is maintained in the pixel Pn (“VPn” in FIG. 15). On the other hand, after time point 2, the L-level image data selection signal VSEL is supplied to the image data selection line SEL, so that the output signal (H level) of the second pixel memory MR 2 is output from the data selection unit 52. . As a result, the voltage (L level) of the low potential side power supply line VLL is applied to the pixel electrode PIX, and the pixel Pn switches to black display (“VPn” in FIG. 15).
 以上のように、画像データ保持期間では、記憶部51に保持された画像データにより表示が行われるとともに、画像データ選択信号VSELに基づいて、第1画素メモリMR1に保持された第1画像データおよび第2画素メモリMR2に保持された第2画像データを切り替えて表示することができる。 As described above, in the image data holding period, display is performed using the image data held in the storage unit 51, and the first image data held in the first pixel memory MR1 and the first image data based on the image data selection signal VSEL The second image data held in the second pixel memory MR2 can be switched and displayed.
 なお、図5、図6に示した駆動方法、および図7に示した変形例の構成は、本実施の形態にも適用可能であることは言うまでもない。 Needless to say, the driving method shown in FIGS. 5 and 6 and the configuration of the modified example shown in FIG. 7 are also applicable to this embodiment.
 〔実施の形態4〕
 本実施の形態に係る液晶表示装置では、実施の形態3に係る液晶表示装置において3つの画素メモリMRを備えた構成を有し、3つの画像を保持するとともに相互に切り替えて表示を行うものである。
[Embodiment 4]
In the liquid crystal display device according to the present embodiment, the liquid crystal display device according to the third embodiment has a configuration including three pixel memories MR, holds three images, and performs display by switching between them. is there.
 本実施の形態に係る液晶表示装置の概略構成は、図2に示した実施の形態1と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The schematic configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200 as in the first embodiment shown in FIG. 2, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、実施の形態3とは異なり、ソースバスライン(データ信号線)SL、第1ゲートバスライン(第1走査信号線)GL1、第2ゲートバスライン(第2走査信号線)GL2、第3ゲートバスライン(第3走査信号線)GL3、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、および低電位側電源ラインVLLが含まれている。なお、ソースバスラインSLはソースドライバ300に接続され、第1ゲートバスラインGL1、第2ゲートバスラインGL2、および第3ゲートバスラインGL3はゲートドライバ400に接続され、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、および低電位側電源ラインVLLはメモリ駆動用ドライバ600に接続されている。 Unlike the third embodiment, the display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, and a second gate bus line (second scanning signal line). GL2, a third gate bus line (third scanning signal line) GL3, a first image data selection line SEL1, a second image data selection line SEL2, a high potential side power supply line VHL, and a low potential side power supply line VLL are included. Yes. The source bus line SL is connected to the source driver 300, and the first gate bus line GL1, the second gate bus line GL2, and the third gate bus line GL3 are connected to the gate driver 400, and the first image data selection line SEL1. The second image data selection line SEL2, the high potential side power supply line VHL, and the low potential side power supply line VLL are connected to the memory driving driver 600.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、3本のゲートバスライン(第1ゲートバスラインGL1、第2ゲートバスラインGL2、第3ゲートバスラインGL3)と1本のソースバスラインと、2本の画像データ選択ライン(第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2)と、高電位側電源ラインVHLと、低電位側電源ラインVLLとが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなる。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が3つずつ(第1メモリ回路、第2メモリ回路、第3メモリ回路)設けられている。以下では、第1メモリ回路を第1画素メモリMR1、第2メモリ回路を第2画素メモリMR2、第3メモリ回路を第3画素メモリMR3と示す。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, three gate bus lines (first gate bus line GL1, second gate bus line GL2, third gate bus line GL3) and 1 There are provided one source bus line, two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), a high potential side power supply line VHL, and a low potential side power supply line VLL. It has been. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. In addition, a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit). Hereinafter, the first memory circuit is referred to as a first pixel memory MR1, the second memory circuit is referred to as a second pixel memory MR2, and the third memory circuit is referred to as a third pixel memory MR3.
 本実施の形態に係る液晶表示装置10は、画素Pに書き込まれた画像データを画素P内の第1画素メモリMR1、第2画素メモリMR2および第3画素メモリMR3に保持して表示を行う。より詳細には、液晶表示装置10は、画像データを書き込む画像データ書き込み期間と、書き込まれた画像データを保持しつつ表示を行う画像データ保持期間とを有し、画像データ書き込み期間では、3つの画像データ(便宜上、第1画像に対応する第1画像データ、第2画像に対応する第2画像データ、第3画像に対応する第3画像データとする)について、第1画像データを第1画素メモリMR1に書き込み、第2画像データを第2画素メモリMR2に書き込み、第3画像データを第3画素メモリMR3に書き込み、画像データ保持期間では、第1画像を表示する際には、第1画素メモリMR1に保持されている第1画像データにより表示を行い、第2画像を表示する際には、第2画素メモリMR2に保持されている第2画像データに切り替えて表示を行い、第3画像を表示する際には、第3画素メモリMR3に保持されている第3画像データに切り替えて表示を行う。 The liquid crystal display device 10 according to the present embodiment performs display by holding the image data written in the pixel P in the first pixel memory MR1, the second pixel memory MR2, and the third pixel memory MR3 in the pixel P. More specifically, the liquid crystal display device 10 has an image data writing period in which image data is written, and an image data holding period in which display is performed while holding the written image data. For image data (for convenience, the first image data corresponding to the first image, the second image data corresponding to the second image, and the third image data corresponding to the third image), the first image data is the first pixel. In the memory MR1, the second image data is written in the second pixel memory MR2, the third image data is written in the third pixel memory MR3, and the first pixel is displayed when the first image is displayed in the image data holding period. When displaying with the first image data held in the memory MR1 and displaying the second image, the second image data held in the second pixel memory MR2 is switched to the second image data. Instead it is used to display, when displaying the third image performs display is switched to the third image data stored in the third pixel memory MR3.
 表示制御回路200は、外部から送られるデータ信号DATと第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2とを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1画像、第2画像、第3画像)を選択するための第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2を出力する。 The display control circuit 200 receives the data signal DAT, the first image data selection signal VSEL1 and the second image data selection signal VSEL2 sent from the outside, and displays the digital video signal DV (image data) and the image display on the display unit 500. A source start pulse signal SSP, a source clock signal SCK, a latch strobe signal LS, a gate start pulse signal GSP, and a gate clock signal GCK for controlling, and images to be displayed on the display unit 500 (first image, second image, first image) The first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting (three images) are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスラインSLに駆動用の映像信号(画像データ)を印加する。なお、各ソースバスラインSLには、第1画像に対応する映像信号(第1画像データ)、第2画像に対応する映像信号(第2画像データ)、および、第3画像に対応する映像信号(第3画像データ)が、順に供給される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data). Each source bus line SL has a video signal corresponding to the first image (first image data), a video signal corresponding to the second image (second image data), and a video signal corresponding to the third image. (Third image data) are supplied in order.
 ゲートドライバ400は、画像データ(第1画像データ、第2画像データ、第3画像データ)を書き込む際(画像データ書き込み期間)に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。詳細には、各画素において、まず第3ゲートバスラインGL3が選択されることにより第3画素メモリMR3に第3画像データが書き込まれ、次に第2ゲートバスラインGL2が選択されることにより第2画素メモリMR2に第2画像データが書き込まれ、次に第1ゲートバスラインGL1が選択されることにより第1画素メモリMR1に第1画像データが書き込まれる。画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 The gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period when writing image data (first image data, second image data, third image data) (image data writing period). In addition, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in each pixel, the third image data is written in the third pixel memory MR3 by first selecting the third gate bus line GL3, and then the second gate bus line GL2 is selected to select the second image data. Second image data is written to the two-pixel memory MR2, and then the first image data is written to the first pixel memory MR1 by selecting the first gate bus line GL1. In the image data holding period, the gate driver 400 stops applying the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図16は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図17は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、および表示エレメント部53を備えている。
(Pixel circuit configuration)
FIG. 16 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n−1) row, the n row, and the (n + 1) row. FIG. 17 is an equivalent circuit diagram showing the configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, and a display element unit 53.
 スイッチ部50は、第1スイッチ部SW10、第2スイッチ部SW20、および第3スイッチ部SW30を備え、第1スイッチ部SW10および第2スイッチ部SW20は、図14の構成と同一である。第3スイッチ部SW30は、N型スイッチSW31、P型スイッチSW32、およびインバータ回路INV31を含んでいる。 The switch unit 50 includes a first switch unit SW10, a second switch unit SW20, and a third switch unit SW30. The first switch unit SW10 and the second switch unit SW20 have the same configuration as that shown in FIG. The third switch unit SW30 includes an N-type switch SW31, a P-type switch SW32, and an inverter circuit INV31.
 スイッチSW31は、制御端子が第3ゲートバスラインGL3に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第3スイッチ部SW30の出力端子swout3に接続されている。スイッチSW32は、制御端子がインバータ回路INV31の出力端子に接続され、一方の導通端子がソースバスラインSLに接続され、他方の導通端子が第3スイッチ部SW30の出力端子swout3に接続されている。インバータ回路INV31の入力端子は第3ゲートバスラインGL3に接続されている。 The switch SW31 has a control terminal connected to the third gate bus line GL3, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30. The switch SW32 has a control terminal connected to the output terminal of the inverter circuit INV31, one conduction terminal connected to the source bus line SL, and the other conduction terminal connected to the output terminal swout3 of the third switch unit SW30. The input terminal of the inverter circuit INV31 is connected to the third gate bus line GL3.
 記憶部51は、第1画素メモリMR1、第2画素メモリMR2および第3画素メモリMR3を備え、第1画素メモリMR1および第2画素メモリMR2は、図14の構成と同一である。第3画素メモリMR3は、2つのインバータ回路INV32、INV33を含んでいる。 The storage unit 51 includes a first pixel memory MR1, a second pixel memory MR2, and a third pixel memory MR3. The first pixel memory MR1 and the second pixel memory MR2 have the same configuration as that shown in FIG. The third pixel memory MR3 includes two inverter circuits INV32 and INV33.
 インバータ回路INV32は、入力端子が第3スイッチ部SW30の出力端子swout3に接続され、インバータ回路INV32の出力端子が、第3画素メモリMR3の出力端子mout3に接続されている。インバータ回路INV33は、入力端子がインバータ回路INV32の出力端子に接続され、出力端子がインバータ回路INV32の入力端子に接続されている。 The inverter circuit INV32 has an input terminal connected to the output terminal swout3 of the third switch unit SW30, and an output terminal of the inverter circuit INV32 connected to the output terminal mout3 of the third pixel memory MR3. The inverter circuit INV33 has an input terminal connected to the output terminal of the inverter circuit INV32, and an output terminal connected to the input terminal of the inverter circuit INV32.
 データ選択部52は、N型スイッチSW13、SW23、SW33、P型スイッチSW14、SW24、SW34、インバータ回路INV16、INV26、INV36、デコーダ5を含んでいる。 The data selection unit 52 includes N-type switches SW13, SW23, SW33, P-type switches SW14, SW24, SW34, inverter circuits INV16, INV26, INV36, and a decoder 5.
 デコーダ5は、3つのNOR回路5a、5b、5cと、2つのインバータ回路INVb、INVcを備え、第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2が入力される。NOR回路5aは、一方の入力端子が第1画像データ選択ラインSEL1に接続され、他方の入力端子が第2画像データ選択ラインSEL2に接続され、出力端子がデコーダ5の出力端子dcout1に接続されている。インバータ回路INVbの入力端子は第2画像データ選択ラインSEL2に接続され、インバータ回路INVcの入力端子は第1画像データ選択ラインSEL1に接続されている。NOR回路5bは、一方の入力端子が第1画像データ選択ラインSEL1に接続され、他方の入力端子がインバータ回路INVbの出力端子に接続され、出力端子がデコーダ5の出力端子dcout2に接続されている。NOR回路5cは、一方の入力端子がインバータ回路INVcの出力端子に接続され、他方の入力端子が第2画像データ選択ラインSEL2に接続され、出力端子がデコーダ5の出力端子dcout3に接続されている。 The decoder 5 includes three NOR circuits 5a, 5b, and 5c and two inverter circuits INVb and INVc, and receives the first image data selection signal VSEL1 and the second image data selection signal VSEL2. The NOR circuit 5a has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the second image data selection line SEL2, and an output terminal connected to the output terminal dcout1 of the decoder 5. Yes. The input terminal of the inverter circuit INVb is connected to the second image data selection line SEL2, and the input terminal of the inverter circuit INVc is connected to the first image data selection line SEL1. The NOR circuit 5b has one input terminal connected to the first image data selection line SEL1, the other input terminal connected to the output terminal of the inverter circuit INVb, and the output terminal connected to the output terminal dcout2 of the decoder 5. . The NOR circuit 5c has one input terminal connected to the output terminal of the inverter circuit INVc, the other input terminal connected to the second image data selection line SEL2, and the output terminal connected to the output terminal dcout3 of the decoder 5. .
 スイッチSW13は、制御端子がデコーダ5の出力端子dcout1に接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW14は、制御端子がインバータ回路INV16の出力端子に接続され、一方の導通端子が第1画素メモリMR1の出力端子mout1に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV16の入力端子は、デコーダ5の出力端子dcout1に接続されている。 The switch SW13 has a control terminal connected to the output terminal dcout1 of the decoder 5, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW14 has a control terminal connected to the output terminal of the inverter circuit INV16, one conduction terminal connected to the output terminal mout1 of the first pixel memory MR1, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV16 is connected to the output terminal dcout1 of the decoder 5.
 スイッチSW23は、制御端子がデコーダ5の出力端子dcout2に接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW24は、制御端子がインバータ回路INV26の出力端子に接続され、一方の導通端子が第2画素メモリMR2の出力端子mout2に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV26の入力端子は、デコーダ5の出力端子dcout2に接続されている。 The switch SW23 has a control terminal connected to the output terminal dcout2 of the decoder 5, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW24 has a control terminal connected to the output terminal of the inverter circuit INV26, one conduction terminal connected to the output terminal mout2 of the second pixel memory MR2, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV26 is connected to the output terminal dcout2 of the decoder 5.
 スイッチSW33は、制御端子がデコーダ5の出力端子dcout3に接続され、一方の導通端子が第3画素メモリMR3の出力端子mout3に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。スイッチSW34は、制御端子がインバータ回路INV36の出力端子に接続され、一方の導通端子が第3画素メモリMR3の出力端子mout3に接続され、他方の導通端子がデータ選択部52の出力端子seloutに接続されている。インバータ回路INV36の入力端子は、デコーダ5の出力端子dcout3に接続されている。 The switch SW33 has a control terminal connected to the output terminal dcout3 of the decoder 5, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The switch SW34 has a control terminal connected to the output terminal of the inverter circuit INV36, one conduction terminal connected to the output terminal mout3 of the third pixel memory MR3, and the other conduction terminal connected to the output terminal selout of the data selection unit 52. Has been. The input terminal of the inverter circuit INV36 is connected to the output terminal dcout3 of the decoder 5.
 表示エレメント部53は、図1の構成と同一であり、上記のデータ選択部52の出力信号に基づいて、画像表示が行われる。 The display element unit 53 has the same configuration as that of FIG. 1, and image display is performed based on the output signal of the data selection unit 52 described above.
 デコーダ5は、図10と同一の構成である。よって、第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2の組み合わせと、デコーダ5の出力信号a、b、cと、記憶部51から選択される画素メモリMR(MR1、MR2、MR3)との関係は、図11の表に示したとおりである。 The decoder 5 has the same configuration as in FIG. Therefore, the combination of the first image data selection signal VSEL1 and the second image data selection signal VSEL2, the output signals a, b, c of the decoder 5, and the pixel memory MR (MR1, MR2, MR3) selected from the storage unit 51. Is as shown in the table of FIG.
 以上の構成により、3つの画像を切り替えて表示を行うことが可能となる。ここで、4つ以上の画像を切り替えて表示を行う場合にも同様の構成により実現可能であり、具体的には、n個の画像を切り替えて表示を行う場合には、各画素に対応して、n個の画素メモリMRと、n本のゲートバスラインGLとを設け、画像データ選択信号VSELを周知の論理回路の組み合わせにより生成することによって実現可能である。 With the above configuration, it is possible to switch and display three images. Here, even when four or more images are switched and displayed, the same configuration can be realized. Specifically, when n images are switched and displayed, each pixel corresponds to each pixel. This can be realized by providing n pixel memories MR and n gate bus lines GL and generating the image data selection signal VSEL by a combination of known logic circuits.
 ここで、図17に示す画素Pでは、デコーダ5がデータ選択部52に含まれているが、本液晶表示装置10はこれに限定されず、以下の構成としても良い。図18は、図17に示す画素Pの変形例を示す等価回路図である。図18に示すように、デコーダ5は各画素Pには設けられず、1つのデコーダ5がメモリ駆動用ドライバ600(図2参照)内に設けられている。デコーダ5とデータ選択部52との接続関係は、図12に示した構成と同一であるため、ここでは説明を省略する。図18の構成によれば、デコーダ5を各画素Pの設ける必要がないため、回路構成を簡略化できるという効果も得られる。 Here, in the pixel P shown in FIG. 17, the decoder 5 is included in the data selection unit 52, but the present liquid crystal display device 10 is not limited to this, and may have the following configuration. FIG. 18 is an equivalent circuit diagram showing a modification of the pixel P shown in FIG. As shown in FIG. 18, the decoder 5 is not provided in each pixel P, and one decoder 5 is provided in the memory driving driver 600 (see FIG. 2). Since the connection relationship between the decoder 5 and the data selection unit 52 is the same as that shown in FIG. 12, the description thereof is omitted here. According to the configuration of FIG. 18, it is not necessary to provide each pixel P with the decoder 5, so that the circuit configuration can be simplified.
 〔実施の形態5〕
 本実施の形態に係る液晶表示装置10では、実施の形態1に示した静止画表示を行う機能(メモリ動作モード)に加えて、通常の動画(階調)表示を行う機能(通常動作モード)を有し、通常動作モードおよびメモリ動作モードを相互に切り替えて表示を行う構成を有する。
[Embodiment 5]
In the liquid crystal display device 10 according to the present embodiment, in addition to the function for performing still image display (memory operation mode) shown in Embodiment 1, the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
 図19は、本実施の形態に係る液晶表示装置の全体構成を示すブロック図である。本液晶表示装置10は、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 FIG. 19 is a block diagram showing an overall configuration of the liquid crystal display device according to the present embodiment. The liquid crystal display device 10 includes a liquid crystal display panel 100 and a display control circuit 200. The liquid crystal display panel 100 includes a source driver 300, a gate driver 400, a display unit 500, and a memory operation driver 600. . The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、第1ソースバスライン(第1データ信号線)SL1、第2ソースバスライン(第2データ信号線)、ゲートバスラインGL、画像データ選択ラインSEL、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2が含まれている。なお、第1ソースバスラインSL1、および第2ソースバスラインSL2はソースドライバ300に接続され、ゲートバスラインGLはゲートドライバ400に接続され、画像データ選択ラインSEL、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2は、メモリ駆動用ドライバ600に接続されている。 The display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), a gate bus line GL, an image data selection line SEL, and a high-potential-side power supply line VHL. , A low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2. The first source bus line SL1 and the second source bus line SL2 are connected to the source driver 300, the gate bus line GL is connected to the gate driver 400, the image data selection line SEL, the high potential side power supply line VHL, the low The potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、1本のゲートバスラインGLと2本のソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2)と、画像データ選択ラインSELと、高電位側電源ラインVHLと、低電位側電源ラインVLLと、第1動作モード切替ラインMSL1と、第2動作モード切替ラインMSL2とが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなり、必要に応じて、画素電極PIXと共通電極COMとによって形成される液晶容量Clcに並列に保持容量(補助容量ともいう)が付加される。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が2つずつ(第1メモリ回路、第2メモリ回路)設けられている。以下では、第1メモリ回路を第1画素メモリMR1、第2メモリ回路を第2画素メモリMR2と示す。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and two source bus lines (first source bus line SL1, second source bus line SL2), An image data selection line SEL, a high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. If necessary, a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added). In addition, a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes. Hereinafter, the first memory circuit is referred to as a first pixel memory MR1, and the second memory circuit is referred to as a second pixel memory MR2.
 表示制御回路200は、外部から送られるデータ信号DATと画像データ選択信号VSELと動作モード切替信号VMSLを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1静止画、第2静止画)を選択するための画像データ選択信号VSELと、通常動作モードおよびメモリ動作モードを切り替えるための動作モード切替信号VMSLとを出力する。 The display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500. To select the start pulse signal SSP, the source clock signal SCK, the latch strobe signal LS, the gate start pulse signal GSP, and the gate clock signal GCK and an image (first still image and second still image) to be displayed on the display unit 500. Image data selection signal VSEL and an operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2)に駆動用の映像信号(画像データ)を印加する。具体的には、第1ソースバスラインSL1に、動画用の画像データ(動画像データ)および静止画用の画像データ(第1静止画像データ)を印加し、第2ソースバスラインSL2に、静止画用の画像データ(第2静止画像データ)を印加する。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1). A driving video signal (image data) is applied to the 2-source bus line SL2). Specifically, moving image data (moving image data) and still image data (first still image data) are applied to the first source bus line SL1, and the second source bus line SL2 is stationary. Image image data (second still image data) is applied.
 ゲートドライバ400は、画像データ(動画像データ、第1静止画像データ、第2静止画像データ)を書き込む際に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。これにより、同一行(水平ライン)の各画素Pにおいて、通常動作モードでは、画素電極に直接に動画像データ(階調データ)が書き込まれ、メモリ動作モードでは、第1画素メモリMR1に第1静止画像データが書き込まれるとともに、第2画素メモリMR2に第2静止画像データが書き込まれる。メモリ動作モードの画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 When the gate driver 400 writes image data (moving image data, first still image data, and second still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Thereby, in each pixel P in the same row (horizontal line), in the normal operation mode, moving image data (gradation data) is directly written to the pixel electrode, and in the memory operation mode, the first pixel memory MR1 has the first data. Still image data is written, and second still image data is written in the second pixel memory MR2. In the image data holding period in the memory operation mode, the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図20は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図21は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、表示エレメント部53、および表示モード切替部54を備えている。
(Pixel circuit configuration)
FIG. 20 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n−1) row, the n row, and the (n + 1) row. FIG. 21 is an equivalent circuit diagram showing a configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
 スイッチ部50、記憶部51、およびデータ選択部52は、図1の画素Pと同一の構成である。 The switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
 表示モード切替部54は、N型スイッチSW1、SW3、およびP型スイッチSW2、SW4を含んでいる。スイッチSW1は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が第1画素メモリMR1のインバータ回路INV12の入力端子に接続される。スイッチSW2は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が第1画素メモリMR1のインバータ回路INV12の入力端子に接続される。スイッチSW3は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が画素電極PIXに接続される。スイッチSW4は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が画素電極PIXに接続される。 The display mode switching unit 54 includes N-type switches SW1 and SW3 and P-type switches SW2 and SW4. The switch SW1 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal. The switch SW2 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal. The switch SW3 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX. The switch SW4 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
 表示エレメント部53は、N型スイッチSW15、SW25およびSW5、P型スイッチSW16、SW26およびSW6、インバータ回路INV15、画素電極PIX、対向電極COM、液晶容量Clc、保持容量Chを含んでいる。スイッチSW15は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が低電位側電源ラインVLLに接続されている。スイッチSW16は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が低電位側電源ラインVLLに接続されている。スイッチSW25は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が高電位側電源ラインVHLに接続されている。スイッチSW26は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が高電位側電源ラインVHLに接続されている。スイッチSW5は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子がスイッチSW15、SW16、SW25、SW26それぞれの他方の導通端子に接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW6は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子がスイッチSW15、SW16、SW25、SW26それぞれの他方の導通端子に接続され、他方の導通端子が画素電極PIXに接続されている。画素電極PIXと対向電極COMとの間に液晶容量Clcが形成されており、液晶容量Clcに並列に保持容量Ch(補助容量ともいう)が形成されている。 The display element unit 53 includes N-type switches SW15, SW25 and SW5, P-type switches SW16, SW26 and SW6, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, a liquid crystal capacitor Clc, and a holding capacitor Ch. The switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the low-potential side power supply line VLL. The switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the low-potential-side power line VLL. The switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the high potential side power supply line VHL. The switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the high potential side power supply line VHL. The switch SW5 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected. The switch SW6 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected. A liquid crystal capacitor Clc is formed between the pixel electrode PIX and the counter electrode COM, and a holding capacitor Ch (also referred to as an auxiliary capacitor) is formed in parallel with the liquid crystal capacitor Clc.
 (駆動方法)
 次に、図20~図22を参照しつつ、本実施の形態における駆動方法について説明する。図22は、本液晶表示装置10の駆動方法(ノーマリブラックモード)を示すタイミングチャートである。なお、VSL1は、第1ソースバスラインSL1に供給される動画像データ(階調データ)および第1静止画像データ、VSL2は、第2ソースバスラインSL2に供給される第2静止画像データの信号を示し、VGL(n-1)、VGLn、VGL(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目のゲートバスラインGL(n-1)、GLn、GL(n+1)に供給されるゲート信号(走査信号)を示し、VMSL1は第1動作モード切替ラインMSL1に供給される第1動作モード切替信号を示し、VMSL2は第2動作モード切替ラインMSL2に供給される第2動作モード切替信号(VMSL1の反転信号)を示し、VSELは画像データ選択ラインSELに供給される画像データ選択信号を示し、VMR1(n-1)、VMR1n、VMR1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1画素メモリMR1の電位を示し、VMR2(n-1)、VMR2n、VMR2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2画素メモリMR2の電位を示し、VP(n-1)、VPn、VP(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の画素電極PIXの電位(画素電位)を示している。
(Driving method)
Next, a driving method in the present embodiment will be described with reference to FIGS. FIG. 22 is a timing chart showing a driving method (normally black mode) of the present liquid crystal display device 10. VSL1 is moving image data (gradation data) and first still image data supplied to the first source bus line SL1, and VSL2 is a signal of second still image data supplied to the second source bus line SL2. VGL (n−1), VGLn, and VGL (n + 1) are the gate bus lines GL (n−1), GLn, GL of the (n−1) th row, the nth row, and the (n + 1) th row, respectively. (N + 1) indicates a gate signal (scanning signal) supplied, VMSL1 indicates a first operation mode switching signal supplied to the first operation mode switching line MSL1, and VMSL2 is supplied to the second operation mode switching line MSL2 A second operation mode switching signal (inverted signal of VMSL1), VSEL indicates an image data selection signal supplied to the image data selection line SEL, and VMR1 (n− ), VMR1n, VMR1 (n + 1) indicate the potentials of the first pixel memory MR1 in the (n-1) th row, the nth row, and the (n + 1) th row, respectively. VMR2 (n-1), VMR2n, VMR2 ( n + 1) indicates the potential of the second pixel memory MR2 in the (n−1) th row, the nth row, and the (n + 1) th row, respectively, and VP (n−1), VPn, and VP (n + 1) are respectively ( The potential (pixel potential) of the pixel electrode PIX in the (n-1) th row, the nth row, and the (n + 1) th row is shown.
 本実施の形態では、上述のとおり、通常動作モードにおいて動画(階調)表示が行われ、メモリ動作モードにおいて、第1静止画像と第2静止画像とが所望のタイミングで切り替えられて表示される。動作モードの切り替え、および、第1静止画像と第2静止画像との切り替えは、外部から表示制御回路200に送られる、動作モード切替信号VMSL1、VMSL2、および、画像データ選択信号VSELに基づいて行われる。以下、通常動作モードの駆動方法、メモリ動作モードにおける画像データ書き込み期間の駆動方法および画像データ保持期間の駆動方法について順に説明する。また、図22では、メモリ動作モードにおいて、第1静止画像データにより表示される第1静止画像は白のベタ画像であり、第2静止画像データにより表示される第2静止画像は黒のベタ画像である場合を示している。 In the present embodiment, as described above, moving image (gradation) display is performed in the normal operation mode, and the first still image and the second still image are switched and displayed at a desired timing in the memory operation mode. . The switching of the operation mode and the switching between the first still image and the second still image are performed based on the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL sent from the outside to the display control circuit 200. Is called. Hereinafter, the driving method in the normal operation mode, the driving method in the image data writing period and the driving method in the image data holding period in the memory operation mode will be described in order. In FIG. 22, in the memory operation mode, the first still image displayed by the first still image data is a white solid image, and the second still image displayed by the second still image data is a black solid image. The case is shown.
 (通常動作モードの駆動方法)
 図22において、時点t0から時点t1までは通常の階調表示の動作が行われる。各ゲートバスラインGL(n-1)、GLn、GL(n+1)に順に所定の期間ずつアクティブな信号が供給される。画像データ選択ラインSELにはハイ(H)レベルあるいはロー(L)レベルの画像データ選択信号VSELが供給されるが、ここでは、Hレベルの画像データ選択信号VSELが供給されるとする。
(Driving method in normal operation mode)
In FIG. 22, a normal gradation display operation is performed from time t0 to time t1. An active signal is supplied to each gate bus line GL (n−1), GLn, GL (n + 1) in order for a predetermined period. A high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL. Here, it is assumed that an H level image data selection signal VSEL is supplied.
 ここで、n行目の画素Pnに着目すると、画素Pnに対応して設けられているゲートバスラインGLnにアクティブな信号(Hレベル)が印加されると、スイッチSW11、SW21がオン状態になる。同時に、Hレベルの信号がインバータ回路INV11、INV21に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW12、SW22に与えられるため、スイッチSW12、SW22もオン状態になる。 Here, focusing on the pixel Pn in the n-th row, when an active signal (H level) is applied to the gate bus line GLn provided corresponding to the pixel Pn, the switches SW11 and SW21 are turned on. . At the same time, the H level signal is input to the inverter circuits INV11 and INV21, and the inverted level (L level) output signal is applied to the switches SW12 and SW22, so that the switches SW12 and SW22 are also turned on.
 また、第1動作モード切替ラインMSL1にはハイ(H)レベルの第1動作モード切替信号VMSL1が供給され、第2動作モード切替ラインMSL2にはロー(L)レベルの第2動作モード切替信号VMSL2が供給される。これにより、スイッチSW1、SW2、SW5、SW6がオフ状態になり、スイッチSW3、SW4がオン状態になる。 The first operation mode switching line MSL1 is supplied with a first (H) level first operation mode switching signal VMSL1, and the second operation mode switching line MSL2 is supplied with a second (L) level second operation mode switching signal VMSL2. Is supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned off, and the switches SW3 and SW4 are turned on.
 これにより、第1ソースバスラインSL1に供給されている階調データ(白色に対応する画像データ)が、スイッチSW11、SW12、SW3、SW4を介して画素電極PIXに印加され、画素Pnにおいて白階調が表示される(図22の「VPn」)。なお、通常動作モードでは、第2ソースバスラインSL2への画像データの供給は停止される。 As a result, the gradation data (image data corresponding to white) supplied to the first source bus line SL1 is applied to the pixel electrode PIX via the switches SW11, SW12, SW3, and SW4, and the white level is generated in the pixel Pn. Key is displayed ("VPn" in FIG. 22). In the normal operation mode, the supply of image data to the second source bus line SL2 is stopped.
 (メモリ動作モード;画像データ書き込み期間の駆動方法)
 図22において、時点t1になると、第1動作モード切替ラインMSL1にLレベルの第1動作モード切替信号VMSL1が供給され、第2動作モード切替ラインMSL2にHレベルの第2動作モード切替信号VMSL2が供給される。これにより、スイッチSW1、SW2、SW5、SW6がオン状態になり、スイッチSW3、SW4がオフ状態になる。そして、各ゲートバスラインGL(n-1)、GLn、GL(n+1)に順に所定の期間ずつアクティブな信号が供給される。
(Memory operation mode; image data writing period driving method)
In FIG. 22, at time t1, the first operation mode switching signal VMSL1 at L level is supplied to the first operation mode switching line MSL1, and the second operation mode switching signal VMSL2 at H level is supplied to the second operation mode switching line MSL2. Supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned on, and the switches SW3 and SW4 are turned off. Then, an active signal is supplied to each gate bus line GL (n−1), GLn, GL (n + 1) in order for a predetermined period.
 n行目の画素Pnに着目すると、画素Pnに対応して設けられているゲートバスラインGLnにアクティブな信号(Hレベル)が印加されると、スイッチSW11、SW21がオン状態になる。同時に、Hレベルの信号がインバータ回路INV11、INV21に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW12、SW22に与えられるため、スイッチSW12、SW22もオン状態になる。 Focusing on the pixel Pn in the n-th row, when an active signal (H level) is applied to the gate bus line GLn provided corresponding to the pixel Pn, the switches SW11 and SW21 are turned on. At the same time, the H level signal is input to the inverter circuits INV11 and INV21, and the inverted level (L level) output signal is applied to the switches SW12 and SW22, so that the switches SW12 and SW22 are also turned on.
 これにより、第1ソースバスラインSL1に供給されている第1静止画像データ(白色に対応する画像データ:Hレベル(「1」))が、スイッチSW11、SW12、SW1、SW2を介して記憶部51の第1画素メモリMR1に入力され、第2ソースバスラインSL2に供給されている第2静止画像データ(黒色に対応する画像データ:Lレベル(「0」))が、スイッチSW21、SW22を介して記憶部51の第2画素メモリMR2に入力される。 Accordingly, the first still image data (image data corresponding to white: H level (“1”)) supplied to the first source bus line SL1 is stored in the storage unit via the switches SW11, SW12, SW1, and SW2. The second still image data (image data corresponding to black: L level (“0”)) input to the first pixel memory MR1 of 51 and supplied to the second source bus line SL2 is supplied to the switches SW21 and SW22. To the second pixel memory MR2 of the storage unit 51.
 第1画素メモリMR1では、インバータ回路INV12にHレベルの信号が入力されることにより、Lレベルの信号がインバータ回路INV13に入力され、これにより再びインバータ回路INV12にHレベルの信号が入力される。このようにして、第1画素メモリMR1にHレベルの信号が保持される(図22の「VMR1n」)。また、インバータ回路INV12から出力されたLレベルの信号が第1画素メモリMR1の出力として、データ選択部52のスイッチSW13、SW14に与えられる。 In the first pixel memory MR1, when an H level signal is input to the inverter circuit INV12, an L level signal is input to the inverter circuit INV13, whereby an H level signal is input to the inverter circuit INV12 again. In this way, an H level signal is held in the first pixel memory MR1 (“VMR1n” in FIG. 22). The L level signal output from the inverter circuit INV12 is provided to the switches SW13 and SW14 of the data selection unit 52 as the output of the first pixel memory MR1.
 第2画素メモリMR2では、インバータ回路INV22にLレベルの信号が入力されることにより、Hレベルの信号がインバータ回路INV23に入力され、これにより再びインバータ回路INV22にLレベルの信号が入力される。このようにして、第2画素メモリMR2にLレベルの信号が保持される(図22の「VMR2n」)。また、インバータ回路INV22から出力されたHレベルの信号が第2画素メモリMR2の出力として、データ選択部52のスイッチSW23、SW24に与えられる。 In the second pixel memory MR2, when an L level signal is input to the inverter circuit INV22, an H level signal is input to the inverter circuit INV23, whereby an L level signal is input to the inverter circuit INV22 again. In this way, the L level signal is held in the second pixel memory MR2 (“VMR2n” in FIG. 22). The H level signal output from the inverter circuit INV22 is provided to the switches SW23 and SW24 of the data selection unit 52 as the output of the second pixel memory MR2.
 データ選択部52には、Hレベルの画像データ選択信号VSELが入力されるため、スイッチSW13がオン状態になり、スイッチSW24がオフ状態になる。また、インバータ回路INV14を介してLレベルの信号が、スイッチSW14、SW23に与えられるため、スイッチSW14がオン状態になり、スイッチSW23がオフ状態になる。これにより、データ選択部52から第1画素メモリMR1のLレベルの信号が出力され、表示エレメント部53に入力される。 Since the H-level image data selection signal VSEL is input to the data selection unit 52, the switch SW13 is turned on and the switch SW24 is turned off. Further, since the L level signal is supplied to the switches SW14 and SW23 via the inverter circuit INV14, the switch SW14 is turned on and the switch SW23 is turned off. As a result, an L level signal of the first pixel memory MR <b> 1 is output from the data selection unit 52 and input to the display element unit 53.
 表示エレメント部53では、Lレベルの信号がスイッチSW15、SW26に与えられ、インバータINV15を介してHレベルの信号がスイッチSW16、SW25に与えられる。そのため、スイッチSW15、SW16はオフ状態になり、スイッチSW25、SW26はオン状態になる。これにより、高電位側電源ラインVHLの電圧(Hレベル)が画素電極PIXに印加され、画素Pnにおいて白が表示される(図22の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像が表示される。 In the display element section 53, an L level signal is applied to the switches SW15 and SW26, and an H level signal is applied to the switches SW16 and SW25 via the inverter INV15. Therefore, the switches SW15 and SW16 are turned off, and the switches SW25 and SW26 are turned on. Thereby, the voltage (H level) of the high potential side power supply line VHL is applied to the pixel electrode PIX, and white is displayed in the pixel Pn (“VPn” in FIG. 22). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
 (メモリ動作モード;画像データ保持期間の駆動方法)
 画像データ保持期間は、図4に示した動作と同一である。これにより、時点t2から時点t3までは第1画素メモリMR1に記憶された第1画像データ(白)により表示が行われ(図22の「VPn」)、時点t3以降では第2画素メモリMR2に記憶された第2画像データ(黒)により表示が行われる(図22の「VPn」)。すなわち、画像データ保持期間では、記憶部51に保持された静止画像データにより表示が行われるとともに、画像データ選択信号VSELに基づいて、第1画素メモリMR1に保持された第1静止画像データに対応する第1静止画像、および、第2画素メモリMR2に保持された第2静止画像データに対応する第2静止画像を切り替えて表示することができる。
(Memory operation mode; image data retention period driving method)
The image data holding period is the same as that shown in FIG. Thus, the display is performed by the first image data (white) stored in the first pixel memory MR1 from the time point t2 to the time point t3 (“VPn” in FIG. 22), and in the second pixel memory MR2 after the time point t3. Display is performed using the stored second image data (black) (“VPn” in FIG. 22). In other words, in the image data holding period, display is performed using still image data held in the storage unit 51, and the first still image data held in the first pixel memory MR1 is supported based on the image data selection signal VSEL. The first still image and the second still image corresponding to the second still image data held in the second pixel memory MR2 can be switched and displayed.
 (変形例)
 図23は、図21の画素Pの変形例を示す等価回路図である。図23の画素Pでは、概略的には、図21の画素Pにおける、スイッチSW12、SW22、SW2、SW3、SW6、インバータ回路INV11、INV21、第1動作モード切替ラインMSL1が省略されている。
(Modification)
FIG. 23 is an equivalent circuit diagram showing a modification of the pixel P in FIG. In the pixel P of FIG. 23, the switches SW12, SW22, SW2, SW3, SW6, the inverter circuits INV11, INV21, and the first operation mode switching line MSL1 in the pixel P of FIG. 21 are schematically omitted.
 この構成によれば、第2動作モード切替ラインMSL2にLレベルの第2動作モード切替信号VMSL2が供給されると(通常動作モード)、スイッチSW1、SW5はオフ状態になり、スイッチSW4はオン状態なる。これにより、第1ソースバスラインSL1に供給されている階調データ(白色に対応する画像データ)が、スイッチSW11、SW4を介して画素電極PIXに印加され、画素Pnにおいて白階調が表示される。 According to this configuration, when the L-level second operation mode switching signal VMSL2 is supplied to the second operation mode switching line MSL2 (normal operation mode), the switches SW1 and SW5 are turned off and the switch SW4 is turned on. Become. Thereby, the gradation data (image data corresponding to white) supplied to the first source bus line SL1 is applied to the pixel electrode PIX via the switches SW11 and SW4, and the white gradation is displayed in the pixel Pn. The
 また、第2動作モード切替ラインMSL2にHレベルの第2動作モード切替信号VMSL2が供給されると、スイッチSW1、SW5はオン状態になり、スイッチSW4はオフ状態なり、メモリ動作モードに移行する。以降の動作は、図22に示した動作と同一であるため、その説明を省略する。 Further, when the H-level second operation mode switching signal VMSL2 is supplied to the second operation mode switching line MSL2, the switches SW1 and SW5 are turned on, the switch SW4 is turned off, and the memory operation mode is entered. Subsequent operations are the same as those shown in FIG.
 〔実施の形態6〕
 本実施の形態に係る液晶表示装置10では、実施の形態2に示した静止画表示を行う機能(メモリ動作モード)に加えて、通常の動画(階調)表示を行う機能(通常動作モード)を有し、通常動作モードおよびメモリ動作モードを相互に切り替えて表示を行う構成を有する。
[Embodiment 6]
In the liquid crystal display device 10 according to the present embodiment, in addition to the function of performing still image display (memory operation mode) described in the second embodiment, a function of performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
 本実施の形態に係る液晶表示装置の概略構成は、図19に示した実施の形態5と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The schematic configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、第1ソースバスライン(第1データ信号線)SL1、第2ソースバスライン(第2データ信号線)、第3ソースバスライン(第3データ信号線)SL3、ゲートバスラインGL、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2が含まれている。なお、第1ソースバスラインSL1、第2ソースバスラインSL2、および第3ソースバスラインSL3はソースドライバ300に接続され、ゲートバスラインGLはゲートドライバ400に接続され、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2は、メモリ駆動用ドライバ600に接続されている。 The display unit 500 includes a first source bus line (first data signal line) SL1, a second source bus line (second data signal line), a third source bus line (third data signal line) SL3, and a gate bus line. GL, first image data selection line SEL1, second image data selection line SEL2, high potential side power supply line VHL, low potential side power supply line VLL, first operation mode switching line MSL1, and second operation mode switching line MSL2 include. The first source bus line SL1, the second source bus line SL2, and the third source bus line SL3 are connected to the source driver 300, the gate bus line GL is connected to the gate driver 400, and the first image data selection line SEL1. The second image data selection line SEL2, the high potential side power supply line VHL, the low potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600. ing.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、1本のゲートバスラインGLと3本のソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2、第3ソースバスラインSL3)と、2本の画像データ選択ライン(第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2)と、高電位側電源ラインVHLと、低電位側電源ラインVLLと、第1動作モード切替ラインMSL1と、第2動作モード切替ラインMSL2とが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなり、必要に応じて、画素電極PIXと共通電極COMとによって形成される液晶容量Clcに並列に保持容量(補助容量ともいう)が付加される。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が3つずつ(第1メモリ回路、第2メモリ回路、第3メモリ回路)設けられている。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, one gate bus line GL and three source bus lines (first source bus line SL1, second source bus line SL2, 3 source bus lines SL3), two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high potential side power supply line VHL, low potential side power supply line VLL, A first operation mode switching line MSL1 and a second operation mode switching line MSL2 are provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. If necessary, a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added). In addition, a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
 表示制御回路200は、外部から送られるデータ信号DATと画像データ選択信号VSELと動作モード切替信号VMSLを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1静止画、第2静止画、第3静止画)を選択するための第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2と、通常動作モードおよびメモリ動作モードを切り替えるための動作モード切替信号VMSLとを出力する。 The display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500. Start pulse signal SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP, and gate clock signal GCK, and images to be displayed on display unit 500 (first still image, second still image, third still image) The first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting, and the operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスライン(第1ソースバスラインSL1、第2ソースバスラインSL2、第3ソースバスラインSL3)に駆動用の映像信号(画像データ)を印加する。具体的には、第1ソースバスラインSL1に、動画用の画像データ(動画像データ)および静止画用の画像データ(第1静止画像データ)を印加し、第2ソースバスラインSL2に、静止画用の画像データ(第2静止画像データ)を印加し、第3ソースバスラインSL3に、静止画用の画像データ(第3静止画像データ)を印加する。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and receives each source bus line (first source bus line SL1, first source bus line SL1). A driving video signal (image data) is applied to the two source bus lines SL2 and the third source bus lines SL3). Specifically, moving image data (moving image data) and still image data (first still image data) are applied to the first source bus line SL1, and the second source bus line SL2 is stationary. Image data for image (second still image data) is applied, and image data for still image (third still image data) is applied to the third source bus line SL3.
 ゲートドライバ400は、画像データ(動画像データ、第1静止画像データ、第2静止画像データ、第3静止画像データ)を書き込む際に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。これにより、同一行(水平ライン)の各画素Pにおいて、通常動作モードでは、画素電極に直接に動画像データ(階調データ)が書き込まれ、メモリ動作モードでは、同時に、第1画素メモリMR1に第1画像データが書き込まれ、第2画素メモリMR2に第2画像データが書き込まれ、第3画素メモリMR3に第3画像データが書き込まれる。メモリ動作モードの画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 When writing image data (moving image data, first still image data, second still image data, and third still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Therefore, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL. As a result, in each pixel P in the same row (horizontal line), in the normal operation mode, moving image data (gradation data) is directly written to the pixel electrode, and in the memory operation mode, simultaneously in the first pixel memory MR1. The first image data is written, the second image data is written to the second pixel memory MR2, and the third image data is written to the third pixel memory MR3. In the image data holding period in the memory operation mode, the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図24は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図25は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、表示エレメント部53、および表示モード切替部54を備えている。
(Pixel circuit configuration)
FIG. 24 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows. FIG. 25 is an equivalent circuit diagram showing a configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
 スイッチ部50、記憶部51、およびデータ選択部52は、図9の画素Pと同一の構成である。 The switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG.
 表示モード切替部54は、N型スイッチSW1、SW3、およびP型スイッチSW2、SW4を含んでいる。スイッチSW1は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が第1画素メモリMR1のインバータ回路INV12の入力端子に接続される。スイッチSW2は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が第1画素メモリMR1のインバータ回路INV12の入力端子に接続される。スイッチSW3は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が画素電極PIXに接続される。スイッチSW4は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子が第1スイッチ部SW10の出力端子swout1に接続され、他方の導通端子が画素電極PIXに接続される。 The display mode switching unit 54 includes N-type switches SW1 and SW3 and P-type switches SW2 and SW4. The switch SW1 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal. The switch SW2 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the inverter circuit INV12 of the first pixel memory MR1. Connected to the input terminal. The switch SW3 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX. The switch SW4 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the output terminal swout1 of the first switch unit SW10, and the other conduction terminal connected to the pixel electrode PIX.
 表示エレメント部53は、N型スイッチSW15、SW25およびSW5、P型スイッチSW16、SW26およびSW6、インバータ回路INV15、画素電極PIX、対向電極COM、液晶容量Clc、保持容量Chを含んでいる。スイッチSW15は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が低電位側電源ラインVLLに接続されている。スイッチSW16は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が低電位側電源ラインVLLに接続されている。スイッチSW25は、制御端子がインバータ回路INV15の出力端子に接続され、一方の導通端子が高電位側電源ラインVHLに接続されている。スイッチSW26は、制御端子がデータ選択部52の出力端子seloutに接続され、一方の導通端子が高電位側電源ラインVHLに接続されている。スイッチSW5は、制御端子が第2動作モード切替ラインMSL2に接続され、一方の導通端子がスイッチSW15、SW16、SW25、SW26それぞれの他方の導通端子に接続され、他方の導通端子が画素電極PIXに接続されている。スイッチSW6は、制御端子が第1動作モード切替ラインMSL1に接続され、一方の導通端子がスイッチSW15、SW16、SW25、SW26それぞれの他方の導通端子に接続され、他方の導通端子が画素電極PIXに接続されている。画素電極PIXと対向電極COMとの間に液晶容量Clcが形成されており、必要に応じて、液晶容量Clcに並列に保持容量Ch(補助容量ともいう)が付加される。 The display element unit 53 includes N-type switches SW15, SW25 and SW5, P-type switches SW16, SW26 and SW6, an inverter circuit INV15, a pixel electrode PIX, a counter electrode COM, a liquid crystal capacitor Clc, and a holding capacitor Ch. The switch SW15 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the low-potential side power supply line VLL. The switch SW16 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the low-potential-side power line VLL. The switch SW25 has a control terminal connected to the output terminal of the inverter circuit INV15, and one conduction terminal connected to the high potential side power supply line VHL. The switch SW26 has a control terminal connected to the output terminal selout of the data selection unit 52, and one conduction terminal connected to the high potential side power supply line VHL. The switch SW5 has a control terminal connected to the second operation mode switching line MSL2, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected. The switch SW6 has a control terminal connected to the first operation mode switching line MSL1, one conduction terminal connected to the other conduction terminal of each of the switches SW15, SW16, SW25, and SW26, and the other conduction terminal connected to the pixel electrode PIX. It is connected. A liquid crystal capacitor Clc is formed between the pixel electrode PIX and the counter electrode COM, and a holding capacitor Ch (also referred to as an auxiliary capacitor) is added in parallel to the liquid crystal capacitor Clc as necessary.
 (駆動方法)
 本実施の形態では、上述のとおり、通常動作モードにおいて動画(階調)表示が行われ、メモリ動作モードにおいて、第1静止画像と第2静止画像と第3静止画像とが所望のタイミングで切り替えられて表示される。動作モードの切り替え、および、第1静止画像と第2静止画像と第3静止画像の切り替えは、外部から表示制御回路200に送られる、動作モード切替信号VMSL1、VMSL2、および、画像データ選択信号VSELに基づいて行われる。通常動作モードの駆動方法は、図22に示した実施の形態5の駆動方法と同様であり、メモリ動作モードにおいて、3つの画像(第1静止画像と第2静止画像と第3静止画像)を切り替える方法は、図10および図11に示したとおりである。
(Driving method)
In the present embodiment, as described above, moving image (gradation) display is performed in the normal operation mode, and the first still image, the second still image, and the third still image are switched at a desired timing in the memory operation mode. Displayed. The operation mode switching and the first still image, the second still image, and the third still image are switched from the outside to the display control circuit 200 by the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL. Based on. The driving method in the normal operation mode is the same as the driving method of the fifth embodiment shown in FIG. 22, and three images (first still image, second still image, and third still image) are displayed in the memory operation mode. The method of switching is as shown in FIG. 10 and FIG.
 なお、デコーダ5は、図12に示したように、各画素Pには設けられず、1つのデコーダ5がメモリ駆動用ドライバ600内に設けられていてもよい。 Note that the decoder 5 is not provided in each pixel P as shown in FIG. 12, and one decoder 5 may be provided in the memory driving driver 600.
 〔実施の形態7〕
 本実施の形態に係る液晶表示装置10では、実施の形態3に示した静止画表示を行う機能(メモリ動作モード)に加えて、通常の動画(階調)表示を行う機能(通常動作モード)を有し、通常動作モードおよびメモリ動作モードを相互に切り替えて表示を行う構成を有する。
[Embodiment 7]
In the liquid crystal display device 10 according to the present embodiment, in addition to the function for performing still image display (memory operation mode) described in the third embodiment, the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
 本実施の形態に係る液晶表示装置の概略構成は、図19に示した実施の形態5と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The schematic configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、ソースバスライン(データ信号線)SL、第1ゲートバスライン(第1走査信号線)GL1、第2ゲートバスライン(第2走査信号線)GL2、画像データ選択ラインSEL、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2が含まれている。なお、ソースバスラインSLはソースドライバ300に接続され、第1ゲートバスラインGL1および第2ゲートバスラインGL2はゲートドライバ400に接続され、画像データ選択ラインSEL、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2はメモリ駆動用ドライバ600に接続されている。 The display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, an image data selection line SEL, A high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are included. The source bus line SL is connected to the source driver 300, the first gate bus line GL1 and the second gate bus line GL2 are connected to the gate driver 400, the image data selection line SEL, the high potential side power supply line VHL, the low potential The side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、2本のゲートバスライン(第1ゲートバスラインGL1、第2ゲートバスラインGL2)と1本のソースバスラインSLと、画像データ選択ラインSELと、高電位側電源ラインVHLと、低電位側電源ラインVLLと、第1動作モード切替ラインMSL1と、第2動作モード切替ラインMSL2とが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなり、必要に応じて、画素電極PIXと共通電極COMとによって形成される液晶容量Clcに並列に保持容量(補助容量ともいう)が付加される。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が2つずつ(第1メモリ回路、第2メモリ回路)設けられている。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, there are two gate bus lines (first gate bus line GL1, second gate bus line GL2) and one source bus line SL. An image data selection line SEL, a high potential side power supply line VHL, a low potential side power supply line VLL, a first operation mode switching line MSL1, and a second operation mode switching line MSL2 are provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. If necessary, a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added). In addition, a storage unit is provided for each pixel P, and the storage unit is provided with two memory circuits (first memory circuit and second memory circuit) each as a storage circuit capable of holding 1-bit data. Yes.
 表示制御回路200は、外部から送られるデータ信号DATと画像データ選択信号VSELと動作モード切替信号VMSLを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1静止画、第2静止画)を選択するための第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2と、通常動作モードおよびメモリ動作モードを切り替えるための動作モード切替信号VMSLとを出力する。 The display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500. To select the start pulse signal SSP, the source clock signal SCK, the latch strobe signal LS, the gate start pulse signal GSP, and the gate clock signal GCK and an image (first still image and second still image) to be displayed on the display unit 500. The first image data selection signal VSEL1 and the second image data selection signal VSEL2 and an operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスラインSLに駆動用の映像信号(画像データ)を印加する。なお、各ソースバスラインSLには、通常動作モードにおいて動画用の画像データ(動画像データ)が供給され、メモリ動作モードにおいて静止画用の第1静止画像データおよび静止画用の第2静止画像データが交互に供給される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data). Each source bus line SL is supplied with moving image data (moving image data) in the normal operation mode, and in the memory operation mode, the first still image data for the still image and the second still image for the still image. Data is supplied alternately.
 ゲートドライバ400は、画像データ(動画像データ、第1静止画像データ、第2静止画像データ)を書き込む際に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。詳細には、通常動作モードでは、各画素の第1ゲートバスラインGL1が順次選択されることにより動画像データに基づく表示が行われる。また、メモリ動作モードの画像データ書き込み期間では、各画素において、まず第2ゲートバスラインGL2が選択されることにより第2画素メモリMR2に第2画像データが書き込まれ、続いて第1ゲートバスラインGL1が選択されることにより第1画素メモリMR1に第1画像データが書き込まれる。メモリ動作モードの画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 When the gate driver 400 writes image data (moving image data, first still image data, and second still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Based on the gate start pulse signal GSP output from the gate 200 and the gate clock signal GCK, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in the normal operation mode, display is performed based on moving image data by sequentially selecting the first gate bus line GL1 of each pixel. Further, in the image data writing period in the memory operation mode, first, in each pixel, the second gate bus line GL2 is selected, whereby the second image data is written into the second pixel memory MR2, and then the first gate bus line. When GL1 is selected, the first image data is written in the first pixel memory MR1. In the image data holding period in the memory operation mode, the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図26は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図27は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、表示エレメント部53、および表示モード切替部54を備えている。
(Pixel circuit configuration)
FIG. 26 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n−1) row, the n row, and the (n + 1) row. FIG. 27 is an equivalent circuit diagram showing the configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
 スイッチ部50、記憶部51、およびデータ選択部52は、図14の画素Pと同一の構成である。また、表示エレメント部53および表示モード切替部54の接続関係は、図21の画素Pと同一の構成である。 The switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG. The connection relationship between the display element unit 53 and the display mode switching unit 54 is the same as that of the pixel P in FIG.
 (駆動方法)
 次に、図26~図28を参照しつつ、本実施の形態における駆動方法について説明する。図28は、図27の液晶表示装置10の駆動方法(ノーマリブラックモード)を示すタイミングチャートである。なお、VSLは、ソースバスラインSLに供給される階調データおよび第1静止画像データの信号を示し、VGL2(n-1)、VGL2n、VGL2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2ゲートバスラインGL2(n-1)、GL2n、GL2(n+1)に供給される第2ゲート信号(第2走査信号)を示し、VGL1(n-1)、VGL1n、VGL1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1ゲートバスラインGL1(n-1)、GL1n、GL1(n+1)に供給される第1ゲート信号(第1走査信号)を示し、VMSL1は第1動作モード切替ラインMSL1に供給される第1動作モード切替信号を示し、VMSL2は第2動作モード切替ラインMSL2に供給される第2動作モード切替信号を示し、VSELは画像データ選択ラインSELに供給される画像データ選択信号を示し、VMR1(n-1)、VMR1n、VMR1(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第1画素メモリMR1の電位を示し、VMR2(n-1)、VMR2n、VMR2(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の第2画素メモリMR2の電位を示し、VP(n-1)、VPn、VP(n+1)はそれぞれ、(n-1)行目、n行目、(n+1)行目の画素電極PIXの電位(画素電位)を示している。
(Driving method)
Next, the driving method in the present embodiment will be described with reference to FIGS. FIG. 28 is a timing chart showing a driving method (normally black mode) of the liquid crystal display device 10 of FIG. VSL indicates gradation data and first still image data supplied to the source bus line SL, and VGL2 (n−1), VGL2n, and VGL2 (n + 1) are respectively in the (n−1) th row. , The second gate signal (second scanning signal) supplied to the second gate bus lines GL2 (n−1), GL2n, GL2 (n + 1) in the nth row and the (n + 1) th row, and VGL1 (n− 1), VGL1n and VGL1 (n + 1) are supplied to the first gate bus lines GL1 (n−1), GL1n and GL1 (n + 1) in the (n−1) th row, the nth row and the (n + 1) th row, respectively. VMSL1 indicates a first operation mode switching signal supplied to the first operation mode switching line MSL1, and VMSL2 is supplied to the second operation mode switching line MSL2. VSEL indicates an image data selection signal supplied to the image data selection line SEL, and VMR1 (n−1), VMR1n, and VMR1 (n + 1) are (n−1) rows, respectively. The potentials of the first pixel memory MR1 in the 1st, nth and (n + 1) th rows are shown, and VMR2 (n−1), VMR2n and VMR2 (n + 1) are respectively the (n−1) th, nth, The potential of the second pixel memory MR2 in the (n + 1) th row is shown, and VP (n−1), VPn, and VP (n + 1) are the (n−1) th row, the nth row, and the (n + 1) th row, respectively. The potential of the pixel electrode PIX (pixel potential) is shown.
 本実施の形態では、上述のとおり、通常動作モードにおいて動画(階調)表示が行われ、メモリ動作モードにおいて、第1静止画像と第2静止画像とが所望のタイミングで切り替えられて表示される。動作モードの切り替え、および、第1静止画像と第2静止画像との切り替えは、外部から表示制御回路200に送られる、動作モード切替信号VMSL1、VMSL2、および、画像データ選択信号VSELに基づいて行われる。以下、通常動作モードの駆動方法、メモリ動作モードにおける画像データ書き込み期間の駆動方法および画像データ保持期間の駆動方法について順に説明する。また、図28では、メモリ動作モードにおいて、第1静止画像データにより表示される第1静止画像は白のベタ画像であり、第2静止画像データにより表示される第2静止画像は黒のベタ画像である場合を示している。 In the present embodiment, as described above, moving image (gradation) display is performed in the normal operation mode, and the first still image and the second still image are switched and displayed at a desired timing in the memory operation mode. . The switching of the operation mode and the switching between the first still image and the second still image are performed based on the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL sent from the outside to the display control circuit 200. Is called. Hereinafter, the driving method in the normal operation mode, the driving method in the image data writing period and the driving method in the image data holding period in the memory operation mode will be described in order. In FIG. 28, in the memory operation mode, the first still image displayed by the first still image data is a white solid image, and the second still image displayed by the second still image data is a black solid image. The case is shown.
 (通常動作モードの駆動方法)
 図28において、時点t0から時点t1までは通常の階調表示の動作が行われる。各ゲートバスラインGL1(n-1)、GL1n、GL1(n+1)に順に所定の期間ずつアクティブな信号が供給される。すなわち、通常動作モードでは、各画素Pに設けられた2本のゲートバスラインGLのうちの一方(第1ゲートバスライン)が順に選択される。画像データ選択ラインSELにはハイ(H)レベルあるいはロー(L)レベルの画像データ選択信号VSELが供給されるが、ここでは、Hレベルの画像データ選択信号VSELが供給されるとする。
(Driving method in normal operation mode)
In FIG. 28, a normal gradation display operation is performed from time t0 to time t1. An active signal is supplied to each gate bus line GL1 (n−1), GL1n, GL1 (n + 1) in order for a predetermined period. That is, in the normal operation mode, one (first gate bus line) of the two gate bus lines GL provided in each pixel P is selected in order. A high (H) level or low (L) level image data selection signal VSEL is supplied to the image data selection line SEL. Here, it is assumed that an H level image data selection signal VSEL is supplied.
 ここで、n行目の画素Pnに着目すると、画素Pnに対応して設けられているゲートバスラインGL1nにアクティブな信号(Hレベル)が印加されると、スイッチSW11、SW21がオン状態になる。同時に、Hレベルの信号がインバータ回路INV11に入力され、その反転レベル(Lレベル)の出力信号がスイッチSW12に与えられるため、スイッチSW12もオン状態になる。 Here, paying attention to the pixel Pn in the n-th row, when an active signal (H level) is applied to the gate bus line GL1n provided corresponding to the pixel Pn, the switches SW11 and SW21 are turned on. . At the same time, an H level signal is input to the inverter circuit INV11, and an output signal of the inverted level (L level) is applied to the switch SW12, so that the switch SW12 is also turned on.
 また、第1動作モード切替ラインMSL1にはハイ(H)レベルの第1動作モード切替信号VMSL1が供給され、第2動作モード切替ラインMSL2にはロー(L)レベルの第2動作モード切替信号VMSL2が供給される。これにより、スイッチSW1、SW2、SW5、SW6がオフ状態になり、スイッチSW3、SW4がオン状態になる。 The first operation mode switching line MSL1 is supplied with a first (H) level first operation mode switching signal VMSL1, and the second operation mode switching line MSL2 is supplied with a second (L) level second operation mode switching signal VMSL2. Is supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned off, and the switches SW3 and SW4 are turned on.
 これにより、ソースバスラインSLに供給されている階調データ(白色に対応する画像データ)が、スイッチSW11、SW12、SW3、SW4を介して画素電極PIXに印加され、画素Pnにおいて白階調が表示される(図28の「VPn」)。 Thus, the gradation data (image data corresponding to white) supplied to the source bus line SL is applied to the pixel electrode PIX via the switches SW11, SW12, SW3, and SW4, and the white gradation is generated in the pixel Pn. Is displayed ("VPn" in FIG. 28).
 (メモリ動作モード;画像データ書き込み期間の駆動方法)
 図28において、時点t1になると、第1動作モード切替ラインMSL1にLレベルの第1動作モード切替信号VMSL1が供給され、第2動作モード切替ラインMSL2にHレベルの第2動作モード切替信号VMSL2が供給される。これにより、スイッチSW1、SW2、SW5、SW6がオン状態になり、スイッチSW3、SW4がオフ状態になる。そして、各ゲートバスラインGL2(n-1)、GL1(n-1)、GL2n、GL1n、GL2(n+1)、GL1(n+1)に順に所定の期間ずつアクティブな信号が供給される。以降の動作は、図15に示した動作と同一であり、画素Pnにおいて白が表示される(図28の「VPn」)。画素Pnに隣り合う画素においても同様の動作が行われ、白のベタ画像が表示される。
(Memory operation mode; image data writing period driving method)
In FIG. 28, at time t1, the first operation mode switching signal VMSL1 at L level is supplied to the first operation mode switching line MSL1, and the second operation mode switching signal VMSL2 at H level is supplied to the second operation mode switching line MSL2. Supplied. As a result, the switches SW1, SW2, SW5, and SW6 are turned on, and the switches SW3 and SW4 are turned off. The gate bus lines GL2 (n−1), GL1 (n−1), GL2n, GL1n, GL2 (n + 1), and GL1 (n + 1) are sequentially supplied with active signals for a predetermined period. The subsequent operation is the same as the operation shown in FIG. 15, and white is displayed in the pixel Pn (“VPn” in FIG. 28). The same operation is performed on the pixels adjacent to the pixel Pn, and a white solid image is displayed.
 (メモリ動作モード;画像データ保持期間の駆動方法)
 画像データ保持期間は、図15に示した動作と同一である。これにより、時点t2から時点t3までは第1画素メモリMR1に記憶された第1画像データ(白)により表示が行われ(図28の「VPn」)、時点t3以降では第2画素メモリMR2に記憶された第2画像データ(黒)により表示が行われる(図28の「VPn」)。すなわち、画像データ保持期間では、記憶部51に保持された静止画像データにより表示が行われるとともに、画像データ選択信号VSELに基づいて、第1画素メモリMR1に保持された第1静止画像データに対応する第1静止画像、および、第2画素メモリMR2に保持された第2静止画像データに対応する第2静止画像を切り替えて表示することができる。
(Memory operation mode; image data retention period driving method)
The image data holding period is the same as that shown in FIG. Thus, the display is performed from the time t2 to the time t3 by the first image data (white) stored in the first pixel memory MR1 (“VPn” in FIG. 28), and after the time t3, the second pixel memory MR2 is displayed. Display is performed using the stored second image data (black) (“VPn” in FIG. 28). In other words, in the image data holding period, display is performed using still image data held in the storage unit 51, and the first still image data held in the first pixel memory MR1 is supported based on the image data selection signal VSEL. The first still image and the second still image corresponding to the second still image data held in the second pixel memory MR2 can be switched and displayed.
 〔実施の形態8〕
 本実施の形態に係る液晶表示装置10では、実施の形態4に示した静止画表示を行う機能(メモリ動作モード)に加えて、通常の動画(階調)表示を行う機能(通常動作モード)を有し、通常動作モードおよびメモリ動作モードを相互に切り替えて表示を行う構成を有する。
[Embodiment 8]
In the liquid crystal display device 10 according to the present embodiment, in addition to the function for performing still image display (memory operation mode) described in the fourth embodiment, the function for performing normal moving image (gradation) display (normal operation mode) And has a configuration for performing display by switching between the normal operation mode and the memory operation mode.
 本実施の形態に係る液晶表示装置の概略構成は、図19に示した実施の形態5と同様、液晶表示パネル100と表示制御回路200とを備え、液晶表示パネル100には、ソースドライバ300とゲートドライバ400と表示部500とメモリ動作用ドライバ600とが含まれている。表示制御回路200には、メモリ駆動制御部20が含まれている。 The schematic configuration of the liquid crystal display device according to the present embodiment includes a liquid crystal display panel 100 and a display control circuit 200, as in the fifth embodiment shown in FIG. 19, and the liquid crystal display panel 100 includes a source driver 300 and A gate driver 400, a display unit 500, and a memory operation driver 600 are included. The display control circuit 200 includes a memory drive control unit 20.
 表示部500には、ソースバスライン(データ信号線)SL、第1ゲートバスライン(第1走査信号線)GL1、第2ゲートバスライン(第2走査信号線)GL2、第3ゲートバスライン(第3走査信号線)GL3、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2が含まれている。なお、ソースバスラインSLはソースドライバ300に接続され、第1ゲートバスラインGL1、第2ゲートバスラインGL2、および第3ゲートバスラインGL3はゲートドライバ400に接続され、第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2、高電位側電源ラインVHL、低電位側電源ラインVLL、第1動作モード切替ラインMSL1、および、第2動作モード切替ラインMSL2はメモリ駆動用ドライバ600に接続されている。 The display unit 500 includes a source bus line (data signal line) SL, a first gate bus line (first scanning signal line) GL1, a second gate bus line (second scanning signal line) GL2, and a third gate bus line ( (Third scanning signal line) GL3, first image data selection line SEL1, second image data selection line SEL2, high potential side power supply line VHL, low potential side power supply line VLL, first operation mode switching line MSL1, and second An operation mode switching line MSL2 is included. The source bus line SL is connected to the source driver 300, and the first gate bus line GL1, the second gate bus line GL2, and the third gate bus line GL3 are connected to the gate driver 400, and the first image data selection line SEL1. The second image data selection line SEL2, the high potential side power supply line VHL, the low potential side power supply line VLL, the first operation mode switching line MSL1, and the second operation mode switching line MSL2 are connected to the memory driving driver 600. Yes.
 表示部500は、複数の画素Pを含み、各画素Pに対応して、3本のゲートバスライン(第1ゲートバスラインGL1、第2ゲートバスラインGL2、第3ゲートバスラインGL3)と1本のソースバスラインと、2本の画像データ選択ライン(第1画像データ選択ラインSEL1、第2画像データ選択ラインSEL2)と、高電位側電源ラインVHLと、低電位側電源ラインVLLと、第1動作モード切替ラインMSL1と、第2動作モード切替ラインMSL2とが設けられている。また、各画素Pは、画素電極PIXと共通電極COMと液晶層とからなり、必要に応じて、画素電極PIXと共通電極COMとによって形成される液晶容量Clcに並列に保持容量(補助容量ともいう)が付加される。また、画素Pごとに記憶部が設けられ、記憶部には、1ビットのデータの保持が可能な記憶回路としてのメモリ回路が3つずつ(第1メモリ回路、第2メモリ回路、第3メモリ回路)設けられている。 The display unit 500 includes a plurality of pixels P, and corresponding to each pixel P, three gate bus lines (first gate bus line GL1, second gate bus line GL2, third gate bus line GL3) and 1 Source bus lines, two image data selection lines (first image data selection line SEL1, second image data selection line SEL2), high-potential-side power supply line VHL, low-potential-side power supply line VLL, A first operation mode switching line MSL1 and a second operation mode switching line MSL2 are provided. Each pixel P includes a pixel electrode PIX, a common electrode COM, and a liquid crystal layer. If necessary, a storage capacitor (also referred to as an auxiliary capacitor) is provided in parallel with a liquid crystal capacitor Clc formed by the pixel electrode PIX and the common electrode COM. Is added). In addition, a storage unit is provided for each pixel P, and the storage unit includes three memory circuits as a storage circuit capable of holding 1-bit data (first memory circuit, second memory circuit, third memory). Circuit).
 表示制御回路200は、外部から送られるデータ信号DATと画像データ選択信号VSELと動作モード切替信号VMSLを受け取り、デジタル映像信号DV(画像データ)と、表示部500における画像表示を制御するためのソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、およびゲートクロック信号GCKと、表示部500に表示させる画像(第1静止画、第2静止画、第3静止画)を選択するための第1画像データ選択信号VSEL1および第2画像データ選択信号VSEL2と、通常動作モードおよびメモリ動作モードを切り替えるための動作モード切替信号VMSLとを出力する。 The display control circuit 200 receives a data signal DAT, an image data selection signal VSEL, and an operation mode switching signal VMSL sent from the outside, and controls a digital video signal DV (image data) and an image display on the display unit 500. Start pulse signal SSP, source clock signal SCK, latch strobe signal LS, gate start pulse signal GSP, and gate clock signal GCK, and images to be displayed on display unit 500 (first still image, second still image, third still image) The first image data selection signal VSEL1 and the second image data selection signal VSEL2 for selecting, and the operation mode switching signal VMSL for switching between the normal operation mode and the memory operation mode are output.
 ソースドライバ300は、表示制御回路200から出力されたデジタル映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、およびラッチストローブ信号LSを受け取り、各ソースバスラインSLに駆動用の映像信号(画像データ)を印加する。なお、各ソースバスラインSLには、通常動作モードにおいて動画用の画像データ(動画像データ)が供給され、メモリ動作モードにおいて静止画用の第1静止画像データ、第2静止画像データ、および、第3静止画像データが、順に供給される。 The source driver 300 receives the digital video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS output from the display control circuit 200, and drives the video signal (image) for each source bus line SL. Data). Each source bus line SL is supplied with moving image data (moving image data) in the normal operation mode, and in the memory operation mode, still image first still image data, second still image data, and Third still image data is sequentially supplied.
 ゲートドライバ400は、画像データ(動画像データ、第1静止画像データ、第2静止画像データ、第3静止画像データ)を書き込む際に、各ゲートバスラインGLを1水平走査期間ずつ順次に選択するために、表示制御回路200から出力されたゲートスタートパルス信号GSPとゲートクロック信号GCKとに基づいて、アクティブな走査信号を各ゲートバスラインGLに順次に印加する。詳細には、通常動作モードでは、各画素の第1ゲートバスラインGL1が順次選択されることにより動画像データに基づく表示が行われる。また、メモリ動作モードの画像データ書き込み期間では、各画素において、まず第3ゲートバスラインGL3が選択されることにより第3画素メモリMR3に第3画像データが書き込まれ、次に第2ゲートバスラインGL2が選択されることにより第2画素メモリMR2に第2画像データが書き込まれ、次に第1ゲートバスラインGL1が選択されることにより第1画素メモリMR1に第1画像データが書き込まれる。メモリ動作モードの画像データ保持期間では、ゲートドライバ400は、各ゲートバスラインGLへアクティブな走査信号の印加を停止し、全ゲートバスラインGLを非アクティブにする。 When writing image data (moving image data, first still image data, second still image data, and third still image data), the gate driver 400 sequentially selects each gate bus line GL by one horizontal scanning period. Therefore, based on the gate start pulse signal GSP and the gate clock signal GCK output from the display control circuit 200, an active scanning signal is sequentially applied to each gate bus line GL. Specifically, in the normal operation mode, display is performed based on moving image data by sequentially selecting the first gate bus line GL1 of each pixel. Further, in the image data writing period in the memory operation mode, first, in each pixel, the third gate bus line GL3 is selected, so that the third image data is written in the third pixel memory MR3, and then the second gate bus line. The second image data is written in the second pixel memory MR2 by selecting GL2, and the first image data is written in the first pixel memory MR1 by selecting the first gate bus line GL1. In the image data holding period in the memory operation mode, the gate driver 400 stops the application of the active scanning signal to each gate bus line GL and deactivates all the gate bus lines GL.
 (画素の回路構成)
 図29は、液晶表示パネル100の画素の構成を示す模式図であり、(n-1)行、n行、(n+1)行それぞれに2つずつの画素Pを示している。図30は、1つの画素Pの構成を示す等価回路図である。画素Pは、スイッチ部50、記憶部51、データ選択部52、表示エレメント部53、および表示モード切替部54を備えている。
(Pixel circuit configuration)
FIG. 29 is a schematic diagram showing the configuration of the pixels of the liquid crystal display panel 100, and shows two pixels P in each of the (n-1), n, and (n + 1) rows. FIG. 30 is an equivalent circuit diagram illustrating a configuration of one pixel P. The pixel P includes a switch unit 50, a storage unit 51, a data selection unit 52, a display element unit 53, and a display mode switching unit 54.
 スイッチ部50、記憶部51、およびデータ選択部52は、図17の画素Pと同一の構成である。また、表示エレメント部53および表示モード切替部54の接続関係は、図21の画素Pと同一の構成である。 The switch unit 50, the storage unit 51, and the data selection unit 52 have the same configuration as the pixel P in FIG. The connection relationship between the display element unit 53 and the display mode switching unit 54 is the same as that of the pixel P in FIG.
 (駆動方法)
 本実施の形態では、上述のとおり、通常動作モードにおいて動画(階調)表示が行われ、メモリ動作モードにおいて、第1静止画像と第2静止画像と第3静止画像とが所望のタイミングで切り替えられて表示される。動作モードの切り替え、および、第1静止画像と第2静止画像と第3静止画像の切り替えは、外部から表示制御回路200に送られる、動作モード切替信号VMSL1、VMSL2、および、画像データ選択信号VSELに基づいて行われる。通常動作モードの駆動方法は、図28に示した実施の形態7の駆動方法と同様であり、メモリ動作モードにおいて、3つの画像(第1静止画像と第2静止画像と第3静止画像)を切り替える方法は、図10および図11に示したとおりである。
(Driving method)
In the present embodiment, as described above, moving image (gradation) display is performed in the normal operation mode, and the first still image, the second still image, and the third still image are switched at a desired timing in the memory operation mode. Displayed. The operation mode switching and the first still image, the second still image, and the third still image are switched from the outside to the display control circuit 200 by the operation mode switching signals VMSL1, VMSL2, and the image data selection signal VSEL. Based on. The driving method in the normal operation mode is the same as that in the seventh embodiment shown in FIG. 28, and three images (first still image, second still image, and third still image) are displayed in the memory operation mode. The method of switching is as shown in FIG. 10 and FIG.
 なお、デコーダ5は、図18に示したように、各画素Pには設けられず、1つのデコーダ5がメモリ駆動用ドライバ600内に設けられていてもよい。 Note that, as shown in FIG. 18, the decoder 5 is not provided in each pixel P, and one decoder 5 may be provided in the memory driving driver 600.
 (変形例)
 図31は、図30の画素Pの変形例を示す等価回路図である。図31の画素Pでは、概略的には、図30の画素Pにおける、スイッチSW12、SW22、SW32、SW2、SW3、SW6、インバータ回路INV11、INV21、INV31、第1動作モード切替ラインMSL1が省略されている。
(Modification)
FIG. 31 is an equivalent circuit diagram showing a modification of the pixel P in FIG. In the pixel P of FIG. 31, the switches SW12, SW22, SW32, SW2, SW3, SW6, the inverter circuits INV11, INV21, INV31, and the first operation mode switching line MSL1 in the pixel P of FIG. 30 are schematically omitted. ing.
 この構成によれば、第2動作モード切替ラインMSL2にLレベルの第2動作モード切替信号VMSL2が供給されると(通常動作モード)、スイッチSW1、SW5はオフ状態になり、スイッチSW4はオン状態なる。これにより、ソースバスラインSLに供給されている階調データ(白色に対応する画像データ)が、スイッチSW11、SW4を介して画素電極PIXに印加され、画素Pnにおいて白階調が表示される。 According to this configuration, when the L-level second operation mode switching signal VMSL2 is supplied to the second operation mode switching line MSL2 (normal operation mode), the switches SW1 and SW5 are turned off and the switch SW4 is turned on. Become. As a result, the gradation data (image data corresponding to white) supplied to the source bus line SL is applied to the pixel electrode PIX via the switches SW11 and SW4, and the white gradation is displayed in the pixel Pn.
 また、第2動作モード切替ラインMSL2にHレベルの第2動作モード切替信号VMSL2が供給されると、スイッチSW1、SW5はオン状態になり、スイッチSW4はオフ状態なり、メモリ動作モードに移行する。以降の動作は、上記駆動方法に示したとおりである。 Further, when the H-level second operation mode switching signal VMSL2 is supplied to the second operation mode switching line MSL2, the switches SW1 and SW5 are turned on, the switch SW4 is turned off, and the memory operation mode is entered. Subsequent operations are as described in the above driving method.
 上記液晶表示装置では、
 各画素は、表示すべき画像を選択するための画像データ選択部をさらに備え、
 上記画像データ選択部は、外部から入力された選択信号に基づいて、対応するメモリ回路に保持された画像データを選択し、
 上記選択された画像データに基づいて表示を行う構成とすることもできる。
In the liquid crystal display device,
Each pixel further includes an image data selection unit for selecting an image to be displayed,
The image data selection unit selects image data held in a corresponding memory circuit based on a selection signal input from the outside,
A configuration may be adopted in which display is performed based on the selected image data.
 上記液晶表示装置では、
 各画素において、上記記憶部は、第1及び第2メモリ回路を含み、
 1つの画素に対応して、1本の走査信号線と、第1及び第2データ信号線とが設けられ、
 上記第1メモリ回路には、上記第1データ信号線を介して第1画像データが供給され、上記第2メモリ回路には、上記第2データ信号線を介して第2画像データが供給され、
 上記第1及び第2画像データを相互に切り替えて表示する構成とすることもできる。
In the liquid crystal display device,
In each pixel, the storage unit includes first and second memory circuits,
One scanning signal line and first and second data signal lines are provided corresponding to one pixel,
First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line,
The first image data and the second image data may be switched and displayed.
 上記液晶表示装置では、
 各画素において、上記記憶部は、第1、第2及び第3メモリ回路を含み、
 1つの画素に対応して、1本の走査信号線と、第1、第2及び第3データ信号線とが設けられ、
 上記第1メモリ回路には、上記第1データ信号線を介して第1画像データが供給され、上記第2メモリ回路には、上記第2データ信号線を介して第2画像データが供給され、上記第3メモリ回路には、上記第3データ信号線を介して第3画像データが供給され、
 上記第1、第2及び第3画像データを相互に切り替えて表示する構成とすることもできる。
In the liquid crystal display device,
In each pixel, the storage unit includes first, second, and third memory circuits,
One scanning signal line and first, second, and third data signal lines are provided corresponding to one pixel,
First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line, Third image data is supplied to the third memory circuit via the third data signal line,
The first, second and third image data may be switched and displayed.
 上記液晶表示装置では、
 各画素において、上記記憶部は、第1及び第2メモリ回路を含み、
 1つの画素に対応して、第1及び第2走査信号線と、データ信号線とが設けられ、
 上記第1メモリ回路は、上記第1走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第1画像データが供給され、
 上記第2メモリ回路は、上記第2走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第2画像データが供給され、
 上記第1及び第2画像データを相互に切り替えて表示する構成とすることもできる。
In the liquid crystal display device,
In each pixel, the storage unit includes first and second memory circuits,
Corresponding to one pixel, first and second scanning signal lines and a data signal line are provided,
The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line,
The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line.
The first image data and the second image data may be switched and displayed.
 上記液晶表示装置では、
 各画素において、上記記憶部は、第1、第2及び第3メモリ回路を含み、
 1つの画素に対応して、第1、第2及び第3走査信号線と、データ信号線とが設けられ、
 上記第1メモリ回路は、上記第1走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第1画像データが供給され、
 上記第2メモリ回路は、上記第2走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第2画像データが供給され、
 上記第3メモリ回路は、上記第3走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第3画像データが供給され、
 上記第1、第2及び第3画像データを相互に切り替えて表示する構成とすることもできる。
In the liquid crystal display device,
In each pixel, the storage unit includes first, second, and third memory circuits,
Corresponding to one pixel, first, second and third scanning signal lines and a data signal line are provided,
The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line,
The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line.
The third memory circuit is provided at an intersection of the third scanning signal line and the data signal line, and third image data is supplied through the data signal line.
The first, second and third image data may be switched and displayed.
 上記液晶表示装置では、
 データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含む構成とすることもできる。
In the liquid crystal display device,
A normal operation mode in which display is performed based on image data supplied via the data signal line and a memory operation mode in which display is performed based on the image data held in the storage unit may be included.
 上記の構成によれば、通常動作モードでは、動画表示(階調表示)を行うことができ、メモリ動作モードでは、低消費電力を図りつつ、複数の静止画像を切り替えて表示を行うことができる。 According to the above configuration, moving image display (gradation display) can be performed in the normal operation mode, and a plurality of still images can be switched and displayed in the memory operation mode while reducing power consumption. .
 上記液晶表示装置では、
 上記通常動作モードでは、上記記憶部の各メモリ回路には画像データが供給されない構成とすることもできる。
In the liquid crystal display device,
In the normal operation mode, image data may not be supplied to each memory circuit of the storage unit.
 上記の構成によれば、通常動作モードでは、上記記憶部の各メモリ回路には画像データが供給されないため、消費電力をさらに削減することができる。 According to the above configuration, in the normal operation mode, image data is not supplied to each memory circuit of the storage unit, so that power consumption can be further reduced.
 上記液晶表示装置では、
 データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
 上記通常動作モードでは、上記走査信号線がアクティブになると、上記第1データ信号線及び画素電極が電気的に接続されることにより上記第1データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
 上記メモリ動作モードでは、上記走査信号線がアクティブの期間に、上記第1データ信号線から上記第1メモリ回路に上記第1画像データが供給されるとともに、上記第2データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記走査信号線が非アクティブになると、上記第1及び第2メモリ回路それぞれに保持された上記第1及び第2画像データに基づいて表示を行う構成とすることもできる。
In the liquid crystal display device,
A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data,
In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal. Configuration in which display is performed based on the first and second image data held in the first and second memory circuits when the second image data is supplied to the memory circuit and the scanning signal line becomes inactive. It can also be.
 上記液晶表示装置では、
 データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
 上記通常動作モードでは、上記走査信号線がアクティブになると、上記第1データ信号線及び画素電極が電気的に接続されることにより上記第1データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
 上記メモリ動作モードでは、上記走査信号線がアクティブの期間に、上記第1データ信号線から上記第1メモリ回路に上記第1画像データが供給されるとともに、上記第2データ信号線から上記第2メモリ回路に上記第2画像データが供給され、かつ、上記第3データ信号線から上記第3メモリ回路に上記第3画像データが供給され、上記走査信号線が非アクティブになると、上記第1~第3メモリ回路それぞれに保持された上記第1~第3画像データに基づいて表示を行う構成とすることもできる。
In the liquid crystal display device,
A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data,
In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal. When the second image data is supplied to the memory circuit, the third image data is supplied from the third data signal line to the third memory circuit, and the scanning signal line becomes inactive, the first to A configuration may be adopted in which display is performed based on the first to third image data held in each of the third memory circuits.
 上記液晶表示装置では、
 データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
 上記通常動作モードでは、上記第1走査信号線がアクティブになると、上記データ信号線及び画素電極が電気的に接続されることにより上記データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
 上記メモリ動作モードでは、上記第1走査信号線がアクティブの期間に、上記データ信号線から上記第1メモリ回路に上記第1画像データが供給され、上記第2走査信号線がアクティブの期間に、上記データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記第1及び第2走査信号線が非アクティブになると、上記第1及び第2メモリ回路それぞれに保持された上記第1及び第2画像データに基づいて表示を行う構成とすることもできる。
In the liquid crystal display device,
A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data,
In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. When the second image data is supplied from the data signal line to the second memory circuit and the first and second scanning signal lines become inactive, the first and second memory circuits respectively hold the second image data. A configuration may be adopted in which display is performed based on the first and second image data.
 上記液晶表示装置では、
 データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
 上記通常動作モードでは、上記第1走査信号線がアクティブになると、上記データ信号線及び画素電極が電気的に接続されることにより上記データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
 上記メモリ動作モードでは、上記第1走査信号線がアクティブの期間に、上記データ信号線から上記第1メモリ回路に上記第1画像データが供給され、上記第2走査信号線がアクティブの期間に、上記データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記第3走査信号線がアクティブの期間に、上記データ信号線から上記第3メモリ回路に上記第3画像データが供給され、上記第1~第3走査信号線が非アクティブになると、上記第1~第3メモリ回路それぞれに保持された上記第1~第3画像データに基づいて表示を行う構成とすることもできる。
In the liquid crystal display device,
A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data,
In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. The second image data is supplied from the data signal line to the second memory circuit, and the third image data is supplied from the data signal line to the third memory circuit while the third scanning signal line is active. In addition, when the first to third scanning signal lines become inactive, display can be performed based on the first to third image data held in the first to third memory circuits. .
 本発明は上述した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
 本発明は、携帯電話のディスプレイなどに好適に使用することができる。 The present invention can be suitably used for a mobile phone display or the like.
10  液晶表示装置
100 液晶表示パネル
200 表示制御回路
300 ソースドライバ(データ信号線駆動回路)
400 ゲートドライバ(走査信号線駆動回路)
500 表示部
600 メモリ駆動用ドライバ
5   デコーダ
50  スイッチ部
51  記憶部
52  データ選択部
53  表示エレメント部
54  表示モード切替部
P   画素
PIX 画素電極
COM 対向電極(共通電極)
GL  ゲートライン(走査信号線)
SL  ソースライン(データ信号線)
SEL 画像データ選択ライン
VHL 高電位側電源ライン
VLL 低電位側電源ライン
SW  スイッチ(トランジスタ、TFT)
INV インバータ回路
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 100 Liquid crystal display panel 200 Display control circuit 300 Source driver (data signal line drive circuit)
400 Gate driver (scanning signal line drive circuit)
500 Display unit 600 Memory drive driver 5 Decoder 50 Switch unit 51 Storage unit 52 Data selection unit 53 Display element unit 54 Display mode switching unit P Pixel PIX Pixel electrode COM Counter electrode (common electrode)
GL gate line (scanning signal line)
SL source line (data signal line)
SEL Image data selection line VHL High potential power line VLL Low potential power line SW Switch (transistor, TFT)
INV inverter circuit

Claims (12)

  1.  各画素に、画像データを保持する記憶部が設けられた液晶表示装置であって、
     各画素において、上記記憶部は、個別の画像データをそれぞれ保持する複数のメモリ回路を含み、
     各メモリ回路に保持された画像データに基づいて表示を行うことを特徴とする液晶表示装置。
    A liquid crystal display device provided with a storage unit for holding image data in each pixel,
    In each pixel, the storage unit includes a plurality of memory circuits each holding individual image data,
    A liquid crystal display device that performs display based on image data held in each memory circuit.
  2.  各画素は、表示すべき画像を選択するための画像データ選択部をさらに備え、
     上記画像データ選択部は、外部から入力された選択信号に基づいて、対応するメモリ回路に保持された画像データを選択し、
     上記選択された画像データに基づいて表示を行うことを特徴とする請求項1に記載の液晶表示装置。
    Each pixel further includes an image data selection unit for selecting an image to be displayed,
    The image data selection unit selects image data held in a corresponding memory circuit based on a selection signal input from the outside,
    The liquid crystal display device according to claim 1, wherein display is performed based on the selected image data.
  3.  各画素において、上記記憶部は、第1及び第2メモリ回路を含み、
     1つの画素に対応して、1本の走査信号線と、第1及び第2データ信号線とが設けられ、
     上記第1メモリ回路には、上記第1データ信号線を介して第1画像データが供給され、上記第2メモリ回路には、上記第2データ信号線を介して第2画像データが供給され、
     上記第1及び第2画像データを相互に切り替えて表示することを特徴とする請求項1に記載の液晶表示装置。
    In each pixel, the storage unit includes first and second memory circuits,
    One scanning signal line and first and second data signal lines are provided corresponding to one pixel,
    First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line,
    2. The liquid crystal display device according to claim 1, wherein the first image data and the second image data are switched and displayed.
  4.  各画素において、上記記憶部は、第1、第2及び第3メモリ回路を含み、
     1つの画素に対応して、1本の走査信号線と、第1、第2及び第3データ信号線とが設けられ、
     上記第1メモリ回路には、上記第1データ信号線を介して第1画像データが供給され、上記第2メモリ回路には、上記第2データ信号線を介して第2画像データが供給され、上記第3メモリ回路には、上記第3データ信号線を介して第3画像データが供給され、
     上記第1、第2及び第3画像データを相互に切り替えて表示することを特徴とする請求項1に記載の液晶表示装置。
    In each pixel, the storage unit includes first, second, and third memory circuits,
    One scanning signal line and first, second, and third data signal lines are provided corresponding to one pixel,
    First image data is supplied to the first memory circuit via the first data signal line, and second image data is supplied to the second memory circuit via the second data signal line, Third image data is supplied to the third memory circuit via the third data signal line,
    The liquid crystal display device according to claim 1, wherein the first, second, and third image data are displayed while being switched to each other.
  5.  各画素において、上記記憶部は、第1及び第2メモリ回路を含み、
     1つの画素に対応して、第1及び第2走査信号線と、データ信号線とが設けられ、
     上記第1メモリ回路は、上記第1走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第1画像データが供給され、
     上記第2メモリ回路は、上記第2走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第2画像データが供給され、
     上記第1及び第2画像データを相互に切り替えて表示することを特徴とする請求項1に記載の液晶表示装置。
    In each pixel, the storage unit includes first and second memory circuits,
    Corresponding to one pixel, first and second scanning signal lines and a data signal line are provided,
    The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line,
    The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line.
    2. The liquid crystal display device according to claim 1, wherein the first image data and the second image data are switched and displayed.
  6.  各画素において、上記記憶部は、第1、第2及び第3メモリ回路を含み、
     1つの画素に対応して、第1、第2及び第3走査信号線と、データ信号線とが設けられ、
     上記第1メモリ回路は、上記第1走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第1画像データが供給され、
     上記第2メモリ回路は、上記第2走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第2画像データが供給され、
     上記第3メモリ回路は、上記第3走査信号線及び上記データ信号線の交差部に設けられるとともに、上記データ信号線を介して第3画像データが供給され、
     上記第1、第2及び第3画像データを相互に切り替えて表示することを特徴とする請求項1に記載の液晶表示装置。
    In each pixel, the storage unit includes first, second, and third memory circuits,
    Corresponding to one pixel, first, second and third scanning signal lines and a data signal line are provided,
    The first memory circuit is provided at an intersection of the first scanning signal line and the data signal line, and the first image data is supplied through the data signal line,
    The second memory circuit is provided at an intersection of the second scanning signal line and the data signal line, and second image data is supplied through the data signal line.
    The third memory circuit is provided at an intersection of the third scanning signal line and the data signal line, and third image data is supplied through the data signal line.
    The liquid crystal display device according to claim 1, wherein the first, second, and third image data are displayed while being switched to each other.
  7.  データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含むことを特徴とする請求項1または2に記載の液晶表示装置。 A normal operation mode in which display is performed based on image data supplied via a data signal line, and a memory operation mode in which display is performed based on image data held in the storage unit. 3. The liquid crystal display device according to 1 or 2.
  8.  上記通常動作モードでは、上記記憶部の各メモリ回路には画像データが供給されないことを特徴とする請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein no image data is supplied to each memory circuit of the storage unit in the normal operation mode.
  9.  データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
     上記通常動作モードでは、上記走査信号線がアクティブになると、上記第1データ信号線及び画素電極が電気的に接続されることにより上記第1データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
     上記メモリ動作モードでは、上記走査信号線がアクティブの期間に、上記第1データ信号線から上記第1メモリ回路に上記第1画像データが供給されるとともに、上記第2データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記走査信号線が非アクティブになると、上記第1及び第2メモリ回路それぞれに保持された上記第1及び第2画像データに基づいて表示を行うことを特徴とする請求項3に記載の液晶表示装置。
    A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
    In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data,
    In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal. When the second image data is supplied to the memory circuit and the scanning signal line becomes inactive, display is performed based on the first and second image data held in the first and second memory circuits, respectively. The liquid crystal display device according to claim 3.
  10.  データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
     上記通常動作モードでは、上記走査信号線がアクティブになると、上記第1データ信号線及び画素電極が電気的に接続されることにより上記第1データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
     上記メモリ動作モードでは、上記走査信号線がアクティブの期間に、上記第1データ信号線から上記第1メモリ回路に上記第1画像データが供給されるとともに、上記第2データ信号線から上記第2メモリ回路に上記第2画像データが供給され、かつ、上記第3データ信号線から上記第3メモリ回路に上記第3画像データが供給され、上記走査信号線が非アクティブになると、上記第1、第2及び第3メモリ回路それぞれに保持された上記第1、第2及び第3画像データに基づいて表示を行うことを特徴とする請求項4に記載の液晶表示装置。
    A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
    In the normal operation mode, when the scanning signal line becomes active, the first data signal line and the pixel electrode are electrically connected to supply image data from the first data signal line to the pixel electrode, Display based on the image data,
    In the memory operation mode, the first image data is supplied from the first data signal line to the first memory circuit while the scanning signal line is active, and the second data signal line supplies the second image signal. When the second image data is supplied to the memory circuit and the third image data is supplied from the third data signal line to the third memory circuit, and the scanning signal line becomes inactive, the first, 5. The liquid crystal display device according to claim 4, wherein display is performed based on the first, second, and third image data held in the second and third memory circuits, respectively.
  11.  データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
     上記通常動作モードでは、上記第1走査信号線がアクティブになると、上記データ信号線及び画素電極が電気的に接続されることにより上記データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
     上記メモリ動作モードでは、上記第1走査信号線がアクティブの期間に、上記データ信号線から上記第1メモリ回路に上記第1画像データが供給され、上記第2走査信号線がアクティブの期間に、上記データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記第1及び第2走査信号線が非アクティブになると、上記第1及び第2メモリ回路それぞれに保持された上記第1及び第2画像データに基づいて表示を行うことを特徴とする請求項5に記載の液晶表示装置。
    A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
    In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data,
    In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. When the second image data is supplied from the data signal line to the second memory circuit and the first and second scanning signal lines become inactive, the first and second memory circuits respectively hold the second image data. 6. The liquid crystal display device according to claim 5, wherein display is performed based on the first and second image data.
  12.  データ信号線を介して供給された画像データに基づいて表示を行う通常動作モードと、上記記憶部に保持された画像データに基づいて表示を行うメモリ動作モードとを含み、
     上記通常動作モードでは、上記第1走査信号線がアクティブになると、上記データ信号線及び画素電極が電気的に接続されることにより上記データ信号線から上記画素電極に画像データが供給され、該画像データに基づいて表示を行い、
     上記メモリ動作モードでは、上記第1走査信号線がアクティブの期間に、上記データ信号線から上記第1メモリ回路に上記第1画像データが供給され、上記第2走査信号線がアクティブの期間に、上記データ信号線から上記第2メモリ回路に上記第2画像データが供給され、上記第3走査信号線がアクティブの期間に、上記データ信号線から上記第3メモリ回路に上記第3画像データが供給され、上記第1、第2及び第3走査信号線が非アクティブになると、上記第1、第2及び第3メモリ回路それぞれに保持された上記第1、第2及び第3画像データに基づいて表示を行うことを特徴とする請求項6に記載の液晶表示装置。
    A normal operation mode for performing display based on image data supplied via a data signal line, and a memory operation mode for performing display based on image data held in the storage unit,
    In the normal operation mode, when the first scanning signal line becomes active, the data signal line and the pixel electrode are electrically connected to supply image data from the data signal line to the pixel electrode. Display based on the data,
    In the memory operation mode, the first image data is supplied from the data signal line to the first memory circuit while the first scanning signal line is active, and the second scanning signal line is active during the active period. The second image data is supplied from the data signal line to the second memory circuit, and the third image data is supplied from the data signal line to the third memory circuit while the third scanning signal line is active. When the first, second, and third scanning signal lines become inactive, based on the first, second, and third image data held in the first, second, and third memory circuits, respectively. The liquid crystal display device according to claim 6, wherein display is performed.
PCT/JP2011/079587 2010-12-28 2011-12-21 Liquid crystal display device WO2012090803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-294105 2010-12-28
JP2010294105 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090803A1 true WO2012090803A1 (en) 2012-07-05

Family

ID=46382912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079587 WO2012090803A1 (en) 2010-12-28 2011-12-21 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012090803A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130899A1 (en) * 2017-01-11 2018-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2019012262A (en) * 2017-06-29 2019-01-24 株式会社ジャパンディスプレイ Display
WO2020017259A1 (en) * 2018-07-18 2020-01-23 株式会社ジャパンディスプレイ Display device
JP2021092810A (en) * 2021-02-26 2021-06-17 株式会社ジャパンディスプレイ Display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364791A (en) * 1989-08-03 1991-03-20 Casio Comput Co Ltd Tft liquid crystal display device
JPH09212140A (en) * 1995-11-30 1997-08-15 Toshiba Corp Display device
JPH112797A (en) * 1997-06-10 1999-01-06 Hitachi Ltd Liquid crystal display device
JP2002149138A (en) * 2000-08-08 2002-05-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device and driving method therefor
JP2002311904A (en) * 2001-04-11 2002-10-25 Sanyo Electric Co Ltd Display device
JP2005531019A (en) * 2002-06-24 2005-10-13 ゲミディス・ナムローゼ・フエンノートシャップ Pixel circuit and refresh method for active matrix
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364791A (en) * 1989-08-03 1991-03-20 Casio Comput Co Ltd Tft liquid crystal display device
JPH09212140A (en) * 1995-11-30 1997-08-15 Toshiba Corp Display device
JPH112797A (en) * 1997-06-10 1999-01-06 Hitachi Ltd Liquid crystal display device
JP2002149138A (en) * 2000-08-08 2002-05-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device and driving method therefor
JP2002311904A (en) * 2001-04-11 2002-10-25 Sanyo Electric Co Ltd Display device
JP2005531019A (en) * 2002-06-24 2005-10-13 ゲミディス・ナムローゼ・フエンノートシャップ Pixel circuit and refresh method for active matrix
WO2010035548A1 (en) * 2008-09-24 2010-04-01 シャープ株式会社 Liquid crystal display device, active matrix substrate, and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130899A1 (en) * 2017-01-11 2018-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US10372004B2 (en) 2017-01-11 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device
CN110100203A (en) * 2017-01-11 2019-08-06 株式会社半导体能源研究所 Display device
US10649295B2 (en) 2017-01-11 2020-05-12 Semiconductor Energy Laboratory Co., Ltd. Display device
US11029572B2 (en) 2017-01-11 2021-06-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US11803089B2 (en) 2017-01-11 2023-10-31 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2019012262A (en) * 2017-06-29 2019-01-24 株式会社ジャパンディスプレイ Display
WO2020017259A1 (en) * 2018-07-18 2020-01-23 株式会社ジャパンディスプレイ Display device
JP2021092810A (en) * 2021-02-26 2021-06-17 株式会社ジャパンディスプレイ Display
JP7133051B2 (en) 2021-02-26 2022-09-07 株式会社ジャパンディスプレイ Display device

Similar Documents

Publication Publication Date Title
CN107533828B (en) Active matrix display device and method of driving the same
US7403185B2 (en) Liquid crystal display device and method of driving the same
KR100859467B1 (en) Liquid crystal display and driving method thereof
US8564584B2 (en) Electrophoretic display and method of driving the same
JP4680874B2 (en) Liquid crystal display device and driving method thereof
WO2004095404A2 (en) Display system with frame buffer and power saving sequence
US7079096B2 (en) Image display device and display driving method
JP2009014987A (en) Liquid crystal display device
JP5805795B2 (en) Display device and driving method thereof
JPWO2011027598A1 (en) Pixel circuit and display device
WO2014162791A1 (en) Drive device, drive method, display device and display method
JP2006154088A (en) Active matrix type liquid crystal display device
WO2012090803A1 (en) Liquid crystal display device
US8300034B2 (en) Drive circuit and liquid crystal display apparatus including the same
US9147372B2 (en) Display device
US8009155B2 (en) Output buffer of a source driver applied in a display
JP2007140192A (en) Active matrix type liquid crystal display device
WO2013129239A1 (en) Drive device and display device
KR20100069900A (en) Apparatus and method for driving liquid crystal display device
KR20030054896A (en) Gate driving circuit of liquid crystal display
JP5244352B2 (en) Display device and storage drive circuit thereof
KR20080086060A (en) Liquid crystal display and driving method of the same
JP5418388B2 (en) Liquid crystal display
JP2007140191A (en) Active matrix type liquid crystal display device
JP4175428B2 (en) Liquid crystal display device and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP