WO2012157052A1 - 光反応マイクロリアクタ - Google Patents

光反応マイクロリアクタ Download PDF

Info

Publication number
WO2012157052A1
WO2012157052A1 PCT/JP2011/061112 JP2011061112W WO2012157052A1 WO 2012157052 A1 WO2012157052 A1 WO 2012157052A1 JP 2011061112 W JP2011061112 W JP 2011061112W WO 2012157052 A1 WO2012157052 A1 WO 2012157052A1
Authority
WO
WIPO (PCT)
Prior art keywords
microreactor
photoreaction
fluid
plate
flow path
Prior art date
Application number
PCT/JP2011/061112
Other languages
English (en)
French (fr)
Inventor
由花子 浅野
富樫 盛典
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP11865894.7A priority Critical patent/EP2708280B1/en
Priority to PCT/JP2011/061112 priority patent/WO2012157052A1/ja
Priority to CN201180070787.3A priority patent/CN103517758A/zh
Priority to JP2013514875A priority patent/JP5715244B2/ja
Priority to US14/114,389 priority patent/US9370760B2/en
Publication of WO2012157052A1 publication Critical patent/WO2012157052A1/ja
Priority to US14/870,786 priority patent/US9821289B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • B01J2219/00806Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • B01J2219/00808Sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00934Electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00934Electromagnetic waves
    • B01J2219/00943Visible light, e.g. sunlight

Definitions

  • the present invention relates to a photoreaction microreactor for advancing a reaction using energy by light.
  • microreactor which is a device that mixes fluids in a minute flow path, produced by micromachining technology, to the field of biotechnology, medical treatment, or chemical reaction.
  • photoreaction photochemical reaction
  • reaction section formed by a tube-like light-transmitting flow path and a light source section including a light source that causes a photoreaction (see, for example, Patent Document 1).
  • a fourth method is to use a material having a refractive index similar to that of a fluid or to provide an antireflection film for the purpose of improving the accuracy and resolution of DNA microarray synthesis (see, for example, Patent Document 4).
  • a method is known in which an antireflection film is used or a light absorption layer coated with spray paint is provided opposite to the irradiation / detection unit (see, for example, Patent Document 5). ).
  • Non-Patent Document 1 when a microreactor on a flat substrate is used and a substrate made of SUS316 is used, reflected light is used.
  • a PTFE substrate is used, reflected light is suppressed, but there is a problem that temperature control becomes difficult because of low thermal conductivity.
  • Patent Documents 2, and 3 problems in the case where reflected light is used as in the techniques described in Non-Patent Document 1, Patent Documents 2, and 3 will be described below.
  • the wavelength of the reflected light depends on the surface condition such as the material and shape of the reflecting surface.
  • the processing error also affects the wavelength.
  • the wavelength of the light emitted from the light source and the wavelength of the reflected light are not the same, and if the light having a wavelength causing a side reaction is amplified, the yield is lowered. Also, if the flow path surface changes over time due to a cleaning method or the like, the reproducibility of the results cannot be obtained.
  • the reflected light reaches the light source, the light source is heated by the reflected light. It is known that the intensity of emitted light and the wavelength range of light change depending on the temperature of the light source.
  • the wavelength of the light used for the reaction is not constant. For this reason, reproducibility cannot be obtained particularly when an experiment is performed for a long time, leading to a decrease in yield.
  • An object of the present invention is to realize a photoreactive microreactor that can suppress reflected light without using an antireflection film, has high thermal conductivity, and can improve the reproducibility of the resulting product.
  • the present invention is configured as follows.
  • a channel plate made of a material having a high heat conductivity and suppressing light reflection is formed with a channel for passing the object to be reacted Is provided.
  • a flow path for allowing the reactant to pass through is formed, a through flow path plate made of a material that transmits light, and fixed to the through flow path plate, has high thermal conductivity, and reflects light. And a bottom plate made of a suppressing material.
  • the present invention it is possible to realize a photoreaction microreactor that can suppress reflected light without using an antireflection film, has high thermal conductivity, and can improve the reproducibility of the resulting product.
  • FIG. 1 is a transmission diagram of a photoreaction microreactor device according to a first embodiment of the present invention.
  • FIG. It is explanatory drawing of the photoreaction microreactor apparatus using the photoreaction microreactor of FIG. 2, a light source module, and a temperature control module. It is the figure which showed the photoreaction microreactor apparatus in the case of using two photoreaction microreactor units shown in FIG.
  • Example 3 is the external appearance and exploded perspective view of the photoreaction microreactor by Example 3 of this invention.
  • FIG. 1 is an external view and an exploded perspective view of a photoreaction microreactor according to Example 1 of the present invention.
  • a photoreactive microreactor 101 includes an upper housing portion 102, a lid plate 103 made of a material that transmits light, a flow path plate 104 made of a material that suppresses reflection of light and has high thermal conductivity, and a housing. And a lower portion 105.
  • the housing upper part 102 is formed with a window part at the center thereof, and has a window frame shape. Light is applied to the flow path 109 of the flow path plate 104 through the window and the lid plate 103 which is a light transmitting member.
  • Examples of dimensions of the housing upper part 102, the lid plate 103, the flow path plate 104, and the housing lower part 105 are shown below. However, the dimensions shown below can be appropriately changed in consideration of convenience of use and the like.
  • the overall dimensions of the housing upper part 102 are 80 mm long ⁇ 50 mm wide ⁇ 5 mm high, and the window is 40 mm long ⁇ 22 mm wide.
  • the overall dimensions of the lid plate 103 are 70 mm long ⁇ 28 mm wide ⁇ 1 mm high.
  • the overall dimensions of the flow path plate 104 are vertical 70 mm ⁇ width 28 mm ⁇ height 1.4 mm, and flow path depth 0.2 mm.
  • the overall size of the housing lower portion 105 is 80 mm long ⁇ 50 mm wide ⁇ 5 mm high.
  • the lid plate 103 is formed with two fluid inlets / outlets 108 penetrating up and down the plate 103.
  • the flow path plate 104 is provided with a flow path 109. Both ends of the channel 109 are a fluid inlet and a fluid outlet.
  • the lid plate 103 and the flow path plate 104 are fixed (preferably welded) to each other to form an integral plate, so that both ends of the two fluid inlet / outlet ports 108 and the flow path 109 coincide with each other and the fluid flows. It is like that.
  • the fluid that is the reaction product introduced from one fluid inlet / outlet 108 of the lid plate 103 is discharged from the other fluid inlet / outlet 108 via the flow path 109.
  • the lid plate 103 is made of a material that transmits light. For this reason, light is irradiated from the upper surface of the lid plate 103 and light is transmitted through the fluid flowing in the flow path 109, so that the fluid as the reaction object passes through the flow path 109 in the fluid. Photoreaction proceeds.
  • the lid plate 103 and the flow path plate 104 are sandwiched between the housing upper part 102 and the housing lower part 105, and pass through a screw hole 106 formed in the housing upper part 102 and a screw hole 110 formed in the housing lower part 105. It is fixed by screws (not shown).
  • a screw hole for fitting is formed in the upper portion 102 of the housing as a tube connecting portion (fluid inlet, fluid outlet) 107.
  • a flat bottom fitting (not shown), fluid of the lid plate 103 can be obtained.
  • a tube (connecting tube 405 as shown in FIG. 4) can be directly connected to the entrance 108.
  • the lid plate 103 made of a material that transmits light and the flow path plate 104 made of a material that suppresses reflection of light and has high thermal conductivity are welded and integrated with each other.
  • other configurations are also applicable.
  • a packing groove is formed in one of the plates facing each other, and the lid plate 103 and the flow path plate are sandwiched by sandwiching the lid plate 103 and the flow path plate 104 between the housing upper part 102 and the housing lower part 105 using the packing.
  • the plate 104 can be brought into close contact with each other to form a flow path.
  • screw holes are provided in the lid plate 103 and the flow path plate 104, and a packing groove is formed in one of the opposing plates 103 and 104.
  • the packing By using the packing, the housing upper part 102 and the housing lower part 105 are used. Even if it is not, it is possible to form the flow path only by the lid plate 103 and the flow path plate 104.
  • the material of the housing upper part 102 and the housing lower part 105 can be appropriately changed as long as the material does not directly contact the reaction solution.
  • stainless steel, silicon, hastelloy, silicon resin, fluorine resin, engineering plastic, or the like can be used as the material of the housing upper part 102 and the housing lower part 105.
  • the material of the housing lower part 105 is preferably metal from the viewpoint of thermal conductivity, and from the viewpoint of ensuring strength, both the material of the housing upper part 102 and the material of the housing lower part 105 are metal. Is desirable.
  • the channel depth of the channel 109 formed in the channel plate 104 is desirably several mm or less, and more preferably in the range of several tens of ⁇ m to 1 mm.
  • the light transmitted through the lid plate 103 made of a material that transmits light can reach the bottom surface of the lowermost portion of the flow path 109.
  • the channel width of the channel 109 is preferably as large as possible. This is because the light irradiation area can be ensured and the reaction time by light can be ensured.
  • the channel 109 is a channel into which one type of fluid is introduced, but two or more types of fluid are introduced, and for example, two or more types of fluids such as a Y shape and a T shape are mixed. Such a flow path shape may be provided.
  • the material of the lid plate 103 made of a material that transmits light can be appropriately changed according to the type of reaction as long as it transmits light and does not adversely affect the reaction.
  • glass, quartz glass, Pyrex (registered trademark) glass, transparent ceramics, and the like can be used.
  • the material of the flow path plate 104 made of a material that suppresses reflection of light and has high thermal conductivity can be selected according to the type of reaction as long as it reflects light and has high thermal conductivity.
  • black alumina reflectance: 5.1 to 15.3% at a wavelength of 240 to 2600 nm, thermal conductivity: 31.2 W / (m ⁇ K)
  • thermal conductivity 31.2 W / (m ⁇ K)
  • the thermal conductivity is as low as about 1 W / (m ⁇ K), and thus it is generated by reaction. The reaction heat is not released well.
  • the material of the lid plate 103 and the reaction plate 104 is a metal, that is, a material having a thermal conductivity of about 10 W / (m ⁇ K) or more.
  • the thermal conductivity of transparent ceramics is 41 W / (m ⁇ K).
  • the thermal conductivity of black alumina is known to be 12 to 31 W / (m ⁇ K), and it is expected to have a heat removal effect compared to conventional glass such as quartz glass and Pyrex (registered trademark) glass. it can.
  • the transparent sapphire lid plate 103 and the black alumina channel plate 104 are produced by placing powder (raw material) in a mold and molding it by heat treatment (sintering) at a high temperature.
  • an appropriate production method varies depending on the type of ceramic.
  • it is represented by a pressure molding method in which powder (raw material) is pressed into a mold and molded.
  • a dry molding method, a plastic molding method, a cast molding method, a tape molding method, and the like can also be used.
  • FIG. 2 is an exploded view of a photoreaction microreactor apparatus including a photoreaction microreactor unit in which the photoreaction microreactor 101, the light source module 201, and the temperature control module 202 of FIG. 1 are combined.
  • FIG. 3 shows the light shown in FIG. It is a permeation
  • a light source module 201 includes a substrate 206 on which a light source 207 and a power supply unit 204 for irradiating light to a photoreaction microreactor, a case 203 made of a heat insulating material into which the substrate 206 is placed, and a substrate A pin 205 is provided to prevent 206 from directly contacting the case 203.
  • the temperature control module 202 includes a heat transfer plate 210, a circulating fluid circulation unit 211, and a case 209 made of a heat insulating material into which these are contained. In this case 209, the photoreaction microreactor 101 can be accommodated on the heat transfer plate 210.
  • a tube outlet (fluid inlet, fluid outlet) 208 is formed in the case 209, and a tube connected to the tube connecting portion 107 of the upper portion 102 of the photoreaction microreactor 101 is taken out from the tube outlet 208. be able to. Then, a fluid 301 as a raw material (reactant) is introduced into the photoreaction microreactor 101 through a tube connected to the tube takeout port 208, and the reaction proceeds by light to become a product 302 into the tube takeout port 208. It is discharged through the connected tube.
  • a circulating fluid inlet / outlet 212 is formed in the case 209, and the circulating fluid (heat medium) 213 discharged from the outside of the circulating thermostat or the like is introduced from one circulating fluid inlet / outlet 212, and the circulating fluid circulating unit It is discharged from the other circulating fluid inlet / outlet 212 via 211.
  • the circulating fluid circulation unit 211 is maintained at a predetermined temperature by the circulating fluid (heat medium) 213, and heat is transferred to the photoreaction microreactor 101 via the heat transfer plate 210 to adjust the temperature of the photoreaction microreactor 101. It can be performed.
  • a cooling device such as a cooling fan may be attached to the light source module 201 in order to stabilize the light source 207.
  • a cooling device such as a cooling fan may be attached to the light source module 201 in order to stabilize the light source 207.
  • the reaction temperature to be used is close to room temperature, it is not always necessary to use a heat insulating material as the material of the case 203 surrounding the substrate 206.
  • the temperature control module 202 is combined with the light source module 201, the temperature of the photoreaction microreactor 101 can be adjusted effectively by using a heat insulating material as the material of the case 203.
  • the substrate 206 or the power supply unit 204 touches the case 203 it is preferable to use a non-conductive material for the case 203.
  • the type of the light source 207 can be changed as appropriate according to the wavelength and intensity of light necessary for advancing the fluid reaction in the photoreaction microreactor 101.
  • an LED lamp, a mercury lamp, an incandescent bulb, an infrared bulb, a far-infrared lamp, or the like can be used.
  • the type of circulating fluid (heat medium) 213 can be changed as appropriate according to the reaction temperature to be set.
  • water, a water-ethanol mixed solvent, ethylene glycol, or the like can be used.
  • the reaction temperature is room temperature, since the material having high thermal conductivity is used for the flow path plate 104, the circulating fluid 213 is not necessarily required depending on the heat due to light absorption and the reaction heat. There is also.
  • the heat generated by the absorption of light in the flow path plate 104 is the circulating fluid (heat medium).
  • heating is required by 213, it can be efficiently used as a heat source for heating.
  • the material of the heat transfer plate 210 can be changed as appropriate according to the thermal conductivity and the physical properties of the circulating fluid (heat medium) 213.
  • the thermal conductivity is high in order to play the role of the original heat transfer plate.
  • FIG. 4 is a photoreaction microreactor device using the photoreaction microreactor, light source module, and temperature control module of FIG. 2, and shows an example applied when two kinds of raw materials (reactants) are mixed in advance. It is.
  • a photoreaction microreactor device 401 includes a mixing microreactor 404, a light source module 201, a temperature control module 202, a photoreaction microreactor 101 disposed between the light source module 201 and the temperature control module 202, and a mixing microreactor 404. And a connection tube 405 for connecting the photoreaction microreactor 101.
  • the mixing microreactor 404 has two raw material inlets, and is configured to mix the raw materials introduced from the two raw material (reacted substances) inlets and to flow out from the outlets.
  • the first raw material (reacted material) 402 and the second raw material (reacted material) 403 are introduced into the mixing microreactor 404 and mixed by a flow path inside the mixing microreactor 404.
  • the raw materials mixed in the mixing microreactor 404 are introduced into the photoreaction microreactor 101 via the connection tube 405. Inside the photoreaction microreactor 101, the photoreaction proceeds while the raw material passes through the flow path by being irradiated with light, and a product 406 is generated.
  • the first raw material (reacted material) 402, the second raw material (reacted material) 403, and the circulating liquid (heat medium) 213 are introduced into the temperature control module 202 by some liquid feeding means.
  • the liquid feeding means for example, a syringe pump, a manual syringe, a plunger pump, a diaphragm pump, a screw pump, or the like can be used.
  • the liquid feeding means using a water head difference may be used.
  • the material of the connecting tube 405 can be changed as appropriate according to the temperature and physical properties of the solution flowing in the tube 405 as long as it does not adversely affect the reaction of the solution.
  • stainless steel, silicon, glass, hastelloy, silicon resin, fluorine resin, or the like can be used.
  • a glass lining, a surface of stainless steel, silicon, or the like coated with nickel or gold, or a silicon surface that has been improved in corrosion resistance, such as an oxidized surface can also be used.
  • the mixing microreactor 401 two types of raw materials (reacted substances) are mixed, but three or more types of raw materials may be mixed.
  • a mixing microreactor 404 having a flow path for mixing three kinds of raw materials can be provided instead of the mixing microreactor 404, or a mixing microreactor 404 for mixing two kinds of raw materials. By connecting a plurality of these in series, the raw materials can be mixed in order and the desired types (number) of raw materials can be mixed.
  • a product obtained via the photoreaction microreactor 101 can be used for the first raw material (reactant) 402, the second raw material (reactant) 403, or both.
  • the raw materials may be mixed uniformly or may not be mixed and become non-uniform (so-called emulsified state).
  • FIG. 5 is a diagram showing a photoreaction microreactor apparatus when two photoreaction microreactor units shown in FIG. 2 are used.
  • the optical microreactor 101 is disposed between the light source module 201 and the temperature control module 202.
  • the circulating fluid (heat medium) 213 flows into one temperature control module 202 and flows out, and then flows into another temperature control module 202 and flows out.
  • two photoreactive microreactor units are connected in series, and the product 501 obtained by the first photoreactive microreactor 101 is introduced into the second photoreactive microreactor 101. It is possible to lengthen the reaction time by light.
  • the flow path plate 104 can suppress light reflection and uses a material having high thermal conductivity. The reproducibility of the product obtained can be improved.
  • FIG. 6 is an external view and an exploded perspective view of the photoreaction microreactor according to Example 2 of the present invention.
  • a photoreactive microreactor 601 is made of a housing upper part 102, a lid plate 103 made of a material that transmits light, a through-flow path plate 602, and a material that suppresses reflection of light and has high thermal conductivity.
  • a bottom plate 604 and a housing lower part 105 are provided.
  • the difference between the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 6 is that, in place of the flow path plate 104 in the first embodiment, in the second embodiment, the through flow path plate 602 and the bottom surface The plate 604 is disposed.
  • the other configurations are the same as in the first and second embodiments.
  • the through flow passage plate 602 is formed with a through flow passage 603 penetrating from the upper surface to the bottom surface of the plate 602, and the lid plate 103, the through flow passage plate 602, and the bottom plate 604 are welded to each other ( Fixed).
  • the lid plate 103, the through-flow path plate 602, and the bottom plate 604 form an integral plate, and the two fluid inlets / outlets 108 and the both ends of the through-flow path 603 are aligned with each other so that fluid flows. It is like that.
  • Both end portions of the through channel 603 are a fluid inlet portion and a fluid outlet portion.
  • the fluid introduced from one fluid inlet / outlet 108 of the lid plate 103 is discharged from the other fluid inlet / outlet 108 via a passage formed by the through passage 603 and the bottom plate 604.
  • the dimension which combined the penetration flow path plate 602 and the bottom face plate 604 can be made equivalent to the flow path plate 104 in the first embodiment.
  • the material of the bottom plate 604 is the same material as that of the flow path plate 104, and is a material that suppresses reflection of light and has high thermal conductivity.
  • the bottom plate 604 is made of a material that suppresses reflection of light, so that reflected light can be suppressed and the reproducibility of the obtained product can be improved. it can.
  • a material having high thermal conductivity is used for the bottom plate 604, temperature controllability can be improved.
  • the photoreaction microreactor 601 is combined with the light source module 201 and the temperature control module 202 to form a photoreaction microreactor device. It is possible. Also in the second embodiment, as in the example shown in FIG. 5, a combination of the light reaction microreactor 601 and the light source module 201 and the temperature control module 202 can be arranged in series.
  • FIG. 7 is an external view and an exploded perspective view of the photoreaction microreactor according to Example 3 of the present invention.
  • a photoreaction microreactor 701 includes a housing upper part 102, a lid plate 702, a flow path plate 104 made of a material that suppresses light reflection and has high thermal conductivity, and a housing lower part 105. .
  • the difference between the first embodiment shown in FIG. 1 and the third embodiment shown in FIG. 7 is that, in place of the lid plate 103 in the first embodiment, the reflection of light is suppressed and heat is reduced in the second embodiment.
  • a window frame portion 703 made of a highly conductive material and a light transmitting portion 704 made of a material that transmits light are formed.
  • the other configurations are the same as in the first and third embodiments.
  • the lid plate 702 and the flow path plate 104 are welded to each other to form an integral plate, whereby the two fluid inlet / outlet ports 108 and the both ends of the flow path 109 coincide with each other so that fluid flows.
  • the fluid introduced from one fluid inlet / outlet 108 is discharged from the other fluid inlet / outlet 108 via the flow path 109.
  • the lid plate 702 includes the window frame portion 703 made of a material having high thermal conductivity and the light transmitting portion 704 made of a material that transmits light. Therefore, only the portion of the flow path 109 of the flow path plate 104 is irradiated with light, and the light to the other portions suppresses the reflection of light on the lid plate 702 and conducts heat. It absorbs in the window frame part 703 which consists of a material with high property.
  • the temperature rise due to light absorption can be dispersed by the lid plate 702 and the flow path plate 104, and the temperature controllability can be further improved.
  • the photoreaction microreactor 601 can be combined with the light source module 201 and the temperature control module 202 to form a photoreaction microreactor device. Also in the third embodiment, as in the example shown in FIG. 5, a combination of the light reaction microreactor 601 and the light source module 201 and the temperature control module 202 can be arranged in series.
  • the material of the window frame portion 703 can be the same as the material of the flow path plate 104.
  • the material that suppresses the reflection of light is used for the flow path plate 104, the reflected light can be suppressed and the reproducibility of the obtained product can be improved. Can do. Further, since a material having high thermal conductivity is used for the flow path plate 104, temperature controllability can be improved.
  • Heat insulator Case 210 210 Heat transfer plate 211 Circulating fluid circulation section 212 Circulating fluid inlet / outlet 213 Circulating fluid (heat medium) 301 Material (reacted substance) 302 ⁇ -Product, 401 ... Photoreaction microreactor system, 402 ... First raw material (reactant), 403 ... Second raw material (reactant), 404 ... Mixed microreactor, 405 ..Connecting tube, 406... Product, 501... Product, 601... Photoreaction microreactor, 602... Through channel plate, 603. Plate, 701 ... Photoreaction microreactor, 702 ... Lid plate, 703 ... Window frame, 704 ... Light transmission part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 光反応マイクロリアクタ(101)は、ハウジング上部(102)と、光を透過する材質からなるフタプレート(103)と、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート(104)と、ハウジング下部(105)とを備える。ハウジング上部(102)の窓部及びフタプレート(103)を介して光が流路プレート(104)の流路(109)に光が照射される。光を透過する材質からなるフタプレート(103)と、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート(104)とは、溶着され互いに一体となっている。

Description

光反応マイクロリアクタ
 本発明は、光によるエネルギーを利用して反応を進行させるための光反応マイクロリアクタに関する。
 近年、マイクロ加工技術などにより作製された、微細な流路内で流体を混合させる装置、いわゆるマイクロリアクタを、バイオ、医療分野、あるいは化学反応の分野に応用しようとする取り組みが盛んに行われている。化学反応の一つとして、光によるエネルギーを利用して反応を進行させる、光反応(光化学反応)が知られている。
 マイクロリアクタにおける光反応の特徴として、反応場のサイズの低下に伴い、光源からの光が流体の最下部まで到達しやすくなり、均質な光照射が可能となるため、光反応の効率が極めて向上することが知られている。
 従って、通常のバッチ法では光反応の効率が低下していた反応でも、マイクロリアクタでは容易に効率よく行うことができる可能性があると期待されている。
 光反応を進行させるマイクロリアクタに関しては、これまでいろいろな開発および検討が行われている。
 第1には、チューブ状の光透過性流路により形成される反応部と、光反応を起こさせる光源を備える光源部を備えたものが知られている(例えば、特許文献1参照)。
 また、第2には、ステンレス鋼であるSUS316製もしくはPTFE(ポリテトラフルオロエチレン)製の平面基板上に溝を設け、石英ガラス製のカバーにより流路を形成した光反応マイクロリアクタが知られている(例えば、非特許文献1参照)。
 そして、第3には、検出値の高感度化を目的として、流路構造を工夫して光を何度も反射させる方法が知られている(例えば、特許文献2、3参照)。
 一方、第4として、DNAマイクロアレイの合成の正確さや分離度の改善を目的として、流体と同様の屈折率をもつ材質を用いたり、反射防止膜を設けたりする方法(例えば、特許文献4参照)や、検出値の高感度化を目的として、反射防止膜を用いたり、照射/検出部に対向してスプレー塗料を塗布した光吸収層を設ける方法が知られている(例えば、特許文献5参照)。
特開2007-75682号公報 特開2005-91093号公報 特開2005-91169号公報 特許第4485206号公報 特開2007-71608号公報
「マイクロリアクタ光反応装置」、[online]、株式会社ワイエムシティマイクロリアクタ営業課、[平成23年2月16日検索]、インターネット<http://www.keyboardchemistry.com/pdf/lumino099281_66.pdf>
 特許文献1に記載された技術のように、チューブ状の光透過性流路を用いる場合には、光が放射状に照射されるため、安全のために周りにカバーを設置する必要がある。そのカバーの材質によっては、反射光を利用していることになる。
 また、非特許文献1に記載された技術のように、平面基板上のマイクロリアクタを用い、SUS316製の基板を用いた場合には反射光を利用していることになる。PTFE製の基板を用いた場合には反射光は抑制されるが、熱伝導性が低いため、温度制御が難しくなるという問題がある。
 ここで、非特許文献1、特許文献2、3に記載の技術のように反射光を利用した場合の問題点について、以下に説明する。
 反射光を利用した場合、反射光の波長は、反射面の材質や形状等の表面状態に依存する。流路構造を工夫することにより、特異的にある波長の光を反射させる場合には、加工誤差も波長に影響する。
 従って、光源から出た光の波長と反射光の波長とは同一にはならず、副反応を起こす波長の光が増幅されてしまった場合には、収率が低下するという結果になる。また、洗浄方法等で時間経過に伴い流路表面が変化してしまった場合は、結果の再現性が得られなくなる。
 さらに、反射光が光源に到達する場合は、反射光により光源が加熱されてしまう。光源は、その温度により、発する光の強度や光の波長範囲が変わってしまうことが知られている。
 反射光により光源が加熱された結果、反応に使われる光の波長が一定にならなくなる。このため、特に長時間で実験を行った場合に再現性が得られなくなり、収率の低下につながる。
 一方、特許文献4、5に記載の技術のように、反射防止膜等により反射光を抑制した場合、反射せずに吸収した光のエネルギーは熱に変換されてしまう。反射防止膜の熱伝導性は低いため、生じた熱が反射防止膜上に蓄積し、系の温度が変化してしまう。
 また、反射防止膜と基板との間に空気の層がある場合にも、空気の熱伝導性が低いため、放熱がうまくいかず、系の温度が上昇してしまい、副反応の反応速度の温度依存性が高い場合には、収率が低下するという問題がある。
 本発明の目的は、反射防止膜を用いることなく反射光を抑制でき、かつ、熱伝導率が高く、得られる生成物の再現性の向上が可能な光反応マイクロリアクタを実現することである。
 上記目的を達成するため、本発明は、次のように構成される。
 被反応物の光反応を進行させるための光反応マイクロリアクタにおいて、被反応物を通過させるための流路が形成され、熱伝導率が高く、かつ、光の反射を抑制する材質からなる流路プレートを備える。
 また、被反応物を通過させるための流路が形成され、光を透過させる材質からなる貫通流路プレートと、この貫通流路プレートに固着され、熱伝導率が高く、かつ、光の反射を抑制する材質からなる底面プレートとを備える。
 本発明によれば、反射防止膜を用いることなく反射光を抑制でき、かつ、熱伝導率が高く、得られる生成物の再現性の向上が可能な光反応マイクロリアクタを実現することができる。
本発明の実施例1による、光反応マイクロリアクタの外観と分解斜視図である。 本発明の実施例1による、光反応マイクロリアクタ、光源モジュールおよび温調モジュールを組み合わせた光反応マイクロリアクタユニットを備えた光反応マイクロリアクタ装置の分解図である。 本発明の第1の実施形態による、光反応マイクロリアクタ装置の透過図である。 図2の光反応マイクロリアクタ、光源モジュールおよび温調モジュールを用いた光反応マイクロリアクタ装置の説明図である。 図2に示した光反応マイクロリアクタユニットを2個用いる場合の光反応マイクロリアクタ装置を示した図である。 本発明の実施例2による光反応マイクロリアクタの外観と分解斜視図である。 本発明の実施例3による光反応マイクロリアクタの外観と分解斜視図である。
 以下、本発明の実施形態について添付図面を参照して説明する。
 図1は、本発明の実施例1による光反応マイクロリアクタの外観と分解斜視図である。
 図1において、光反応マイクロリアクタ101は、ハウジング上部102と、光を透過する材質からなるフタプレート103と、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート104と、ハウジング下部105とを備えている。ハウジング上部102には、その中央部に窓部が形成され、窓枠形状となっている。この窓部及び光透過部材であるフタプレート103を介して光が流路プレート104の流路109に光が照射される。
 ハウジング上部102、フタプレート103、流路プレート104、ハウジング下部105の寸法の一例を以下に示す。ただし、以下に示す寸法は、使用の利便性等を考慮して適宜、変更を行うことが可能である。
 ハウジング上部102の全体寸法は、縦80mm×横50mm×高さ5mmであり、窓部は、縦40mm×横22mmである。フタプレート103の全体寸法は、縦70mm×横28mm×高さ1mmである。流路プレート104の全体寸法は、縦70mm×横28mm×高さ1.4mm、流路深さ0.2mmである。また、ハウジング下部105の全体寸法は、縦80mm×横50mm×高さ5mmである。
 フタプレート103には、このプレート103の上下を貫通している流体出入口108が2箇所形成されている。また、流路プレート104には流路109が設けられている。流路109の両端部は、流体入口部と、流体出口部となっている。フタプレート103と流路プレート104とは、互いに固着され(好ましくは溶着され)、一体のプレートを形成することにより、2つの流体出入口108と流路109の両端がそれぞれ一致し、流体が流通するようになっている。
 フタプレート103の一方の流体出入口108から導入された被反応物である流体は、流路109を経て、もう一方の流体出入口108から排出される。フタプレート103は光を透過する材質からなる。このため、フタプレート103の上面から光を照射し、流路109内を流れる流体に光を透過させることにより、被反応物である流体が流路109を通過している間に、流体内で光反応が進行する。
 また、フタプレート103と流路プレート104とは、ハウジング上部102とハウジング下部105とにより挟まれ、ハウジング上部102に形成されたネジ穴106と、ハウジング下部105に形成されたネジ穴110とを通して、ネジ(図示せず)により固定される。
 また、ハウジング上部102には、チューブ接続部(流体入口、流体出口)107として、フィッティング用のネジ穴が形成されており、フラットボトムフィッティング(図示せず)を用いることにより、フタプレート103の流体出入口108に、直接チューブ(図4に示すような接続用チューブ405)を接続することができる。
 ここで、光を透過する材質からなるフタプレート103と、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート104とは、溶着され互いに一体となっているが、この構成に限らず、他の構成も適用可能である。例えば、互いに対向するプレートの片方にパッキン溝を形成し、パッキンを用いて、ハウジング上部102と、ハウジング下部105とで、フタプレート103及び流路プレート104を挟むことにより、フタプレート103と流路プレート104とを密着させ、流路を形成することもできる。
 また、フタプレート103と流路プレート104とにネジ穴を設け、かつ対向するプレート103、104のうちの片方にパッキン溝を形成し、パッキンを用いることにより、ハウジング上部102およびハウジング下部105を用いなくても、フタプレート103と流路プレート104だけで流路を形成することが可能である。
 ハウジング上部102およびハウジング下部105の材質は、反応液に直接触れることがない材質であれば、適宜変更することができる。例えば、ステンレス、シリコン、ハステロイ、シリコン樹脂、フッ素系樹脂、エンジニアリングプラスチックなどをハウジング上部102およびハウジング下部105の材質として用いることができる。
 しかしながら、特に、ハウジング下部105の材質は、熱伝導性の観点から金属とするのが望ましく、強度を確保する観点からは、ハウジング上部102の材質およびハウジング下部105の材質の両方とも、金属とするのが望ましい。
 光反応マイクロリアクタによる効果を得るためには、流路プレート104に形成された流路109の流路深さは、数mm以下が望ましく、さらに好ましくは数十μm~1mmの範囲である。このようにすることにより、光を透過する材質からなるフタプレート103を透過した光は、流路109の最下部の底面まで到達することができる。一方、流路109の流路幅は、太いほど望ましい。このようにすることにより、光照射面積を確保することができるとともに、光による反応時間も確保することができるからである。
 また、流路109は、1種類の流体が導入される流路となっているが、2種類以上の流体が導入され、例えば、Y字型やT字型などの2種類以上の流体が混合するような流路形状を備えていてもよい。
 しかしながら、2種類以上の流体を導入した場合、混合が不十分なうちに光を当てると、副反応が生じる可能性があるため、予め混合して1種類の流体にしてから光反応マイクロリアクタに導入するのが望ましい。なお、2種類以上の流体を予め混合する場合の装置構成については、図4を用いて後述する。
 光を透過する材質からなるフタプレート103の材質は、光を透過し反応に悪い影響を与えないものであれば、反応の種類に応じて適宜変更することができる。例えば、ガラス、石英ガラス、パイレックス(登録商標)ガラス、および透明セラミックスなどを用いることができる。
 また、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート104の材質は、光の反射を抑制し、かつ熱伝導性の高いものであれば、反応の種類に応じて適宜変更することができ、例えば黒色アルミナ(反射率:波長が240~2600nmにおいて、5.1~15.3%、熱伝導率:31.2W/(m・K))などを用いることができる。
 フタプレート103及び流路プレート104の材質に、石英ガラス、パイレックス(登録商標)ガラス等のガラスを用いた場合は、熱伝導率が1W/(m・K)程度と小さいため、反応により発生した反応熱がうまく放熱されない。
 また、光を透過する過程で、光を吸収し、光のエネルギーが熱に変換された場合にも、その熱はうまく放熱されない。
 したがって、熱の除去という観点から、フタプレート103及び反応プレート104の材質は、金属程度、つまり、おおよそ10W/(m・K)以上の熱伝導率をもつものが望まれる。
 一方、透明セラミックス(透明サファイア)の熱伝導率は、41W/(m・K)である。また、黒色アルミナの熱伝導率は12~31W/(m・K)であることが知られており、従来の石英ガラス、パイレックス(登録商標)ガラス等のガラスに比べて除熱の効果が期待できる。
 なお、透明サファイア製のフタプレート103及び黒色アルミナ製の流路プレート104は、粉体(原料)を金型に入れて、高温での熱処理(焼結)により成形することにより作製される。
 しかしながら、セラミックスの種類によっては適切な作製方法は異なることが知られており、上記方法のほかにも、粉体(原料)を金型に入れて加圧し、成形する加圧成形法に代表される乾式成形法、塑性成形法、鋳込み成形法、テープ成形法等を使用することもできる。
 図2は、図1の光反応マイクロリアクタ101、光源モジュール201、および温調モジュール202を組み合わせた光反応マイクロリアクタユニットを備えた光反応マイクロリアクタ装置の分解図であり、図3は図2に示した光反応マイクロリアクタ装置の透過図である。
 図2及び図3において、光源モジュール201は、光反応マイクロリアクタに光を照射するための光源207および電源供給部204が取り付けられた基板206と、基板206が入る断熱材からなるケース203と、基板206が直接ケース203に接触するのを防ぐためのピン205とを備えている。
 温調モジュール202は、熱伝達プレート210と、循環液循環部211と、これらが入る断熱材からなるケース209とを備える。このケース209には、熱伝達プレート210の上に、光反応マイクロリアクタ101を収納することができる。
 また、ケース209にはチューブ取り出し口(流体導入口、流体導出口)208が形成されており、光反応マイクロリアクタ101のハウジング上部102のチューブ接続部107に接続されたチューブをチューブ取り出し口208から取り出すことができる。そして、原料(被反応物)である流体301がチューブ取り出し口208に接続されたチューブを経て光反応マイクロリアクタ101に導入され、光によって反応が進行し、生成物302となってチューブ取り出し口208に接続されたチューブを経て排出される。
 また、ケース209には、循環液出入口212が形成されており、循環恒温槽等の外部から排出された循環液(熱媒体)213が、一方の循環液出入口212から導入され、循環液循環部211を経由して、もう一方の循環液出入口212から排出される。
 循環液(熱媒体)213により、循環液循環部211は所定の温度に保たれ、熱伝達プレート210を介して、光反応マイクロリアクタ101に対して熱の授受を行い、光反応マイクロリアクタ101の温度調節を行うことができる。
 ここで、光源モジュール201には、光源207を安定化させるために、冷却ファンなどの冷却装置を装着してもよい。また、使用する反応温度が常温に近い場合には、必ずしも基板206を囲むケース203の材質として断熱材を用いなくてもよい。しかしながら、温調モジュール202を光源モジュール201に組み合わせた場合には、ケース203の材質に断熱材を用いることにより、効果的に光反応マイクロリアクタ101の温度調節を行うことができる。
 さらに、万が一、基板206や電源供給部204がケース203に触れた場合に発生する可能性があるショートや感電等を防ぐために、ケース203には非電導性の材質を用いるのが好ましい。
 光源207の種類は、光反応マイクロリアクタ101内の流体反応を進行させるのに必要な光の波長や強度に応じて適宜変更することができる。例えば、LEDランプ、水銀ランプ、白熱電球、赤外線電球、遠赤外線ランプなどを用いることができる。
 循環液(熱媒体)213の種類は、設定したい反応温度に応じて適宜変更することができる。例えば、水、水-エタノール混合溶媒、エチレングリコールなどを用いることができる。また、反応温度が室温である場合には、流路プレート104に熱伝導性の高い材質を用いていることから、光の吸収による熱と反応熱によっては、必ずしも循環液213は必要にならないこともある。
 さらに、熱伝達プレート210を介して、光反応マイクロリアクタと循環液循環部211との間で熱の授受を行うため、流路プレート104における光の吸収により生じた熱は、循環液(熱媒体)213により加熱が必要な場合には加熱用の熱源として効率的に利用され得る。
 熱伝達プレート210の材質は、熱伝導性と循環液(熱媒体)213の物性に応じて適宜変更することができる。例えば、アルミニウム、ステンレス、シリコン、ハステロイなどを用いることができるが、本来の熱伝達プレートの役割を果たすには熱伝導性が高いほうが好ましい。
 図4は、図2の光反応マイクロリアクタ、光源モジュールおよび温調モジュールを用いた光反応マイクロリアクタ装置であり、2種類の原料(被反応物)を事前に混合させる場合に適用される例を示す図である。
 図4において、光反応マイクロリアクタ装置401は、混合マイクロリアクタ404と、光源モジュール201と、温調モジュール202と、光源モジュール201及び温調モジュール202の間に配置された光反応マイクロリアクタ101と、混合マイクロリアクタ404と光反応マイクロリアクタ101を接続する接続用チューブ405とを備える。
 混合マイクロリアクタ404は、2つの原料流入口を有し、これら2つの原料(被反応物)流入口から流入させた原料を混合し、流出口から流出させる構成となっている。
 第1の原料(被反応物)402および第2の原料(被反応物)403は、混合マイクロリアクタ404に導入され、混合マイクロリアクタ404内部の流路により混合される。そして、混合マイクロリアクタ404にて混合された原料は、接続用チューブ405を経由して、光反応マイクロリアクタ101に導入される。光反応マイクロリアクタ101の内部では、光が照射されることにより原料が流路を通過している間に光反応が進行し、生成物406が生成される。
 ここで、第1の原料(被反応物)402、第2の原料(被反応物)403および循環液(熱媒体)213は、何らかの送液手段により温調モジュール202に導入されるが、この送液手段は、例えばシリンジポンプ、手動によるシリンジ、プランジャーポンプ、ダイヤフラムポンプ、スクリューポンプなどを用いることができる。また、水頭差を用いる送液手段でもよい。
 接続用チューブ405の材質は、溶液の反応に悪い影響を与えないものであれば、チューブ405内を流れる溶液の温度や物性に応じて適宜変更することができる。例えば、ステンレス、シリコン、ガラス、ハステロイ、シリコン樹脂、およびフッ素系樹脂などを用いることができる。また、グラスライニング、ステンレスやシリコンなどの表面にニッケルや金などのコーティングをしたものや、シリコンの表面を酸化させたものなど、耐食性を向上させたものを用いることもできる。
 また、混合マイクロリアクタ401では2種類の原料(被反応物)を混合させているが、3種類以上の原料を混合させてもよい。3種類の原料を事前に混合させる場合には、混合マイクロリアクタ404の代わりに、3種類の原料を混合させる流路を有する混合マイクロリアクタを設けることもできるし、2種類の原料を混合させる混合マイクロリアクタ404を、直列に複数個接続させることにより、順番に原料を混合させて、所望の種類(数)の原料を混合させることもできる。
 また、第1の原料(被反応物)402、もしくは第2の原料(被反応物)403、あるいはその両方に、光反応マイクロリアクタ101を経由して得られた生成物を用いることもできる。さらに、原料どうしは、均一に混ざり合っても、混ざり合わなくて不均一になっても(いわゆる乳化状態になっても)よい。
 図5は、図2に示した光反応マイクロリアクタユニットを2個用いる場合の光反応マイクロリアクタ装置を示した図である。光マイクロリアクタ101は、図2及び図3に示すように、光源モジュール201と温調モジュール202との間に配置されている。循環液(熱媒体)213は、一つの温調モジュール202に流入して、流出した後に、他の一つの温調モジュール202に流入して、流出する。
 図5に示した例のように、2つの光反応マイクロリアクタユニットを直列に接続し、1つめの光反応マイクロリアクタ101で得られた生成物501を、2つめの光反応マイクロリアクタ101に導入することにより、光による反応時間を長くすることが可能である。
 以上説明したように、本発明の実施例1によれば、流路プレート104に光反射を抑制でき、かつ、熱伝導性の高い材質を用いているため、反射光を抑制して、温度制御性を向上でき、得られる生成物の再現性を向上させることができる。
 さらに、光源モジュール201と温調モジュール202と、光反応マイクロリアクタ101とを組み合わせることにより、反射光による光源の加熱や、系の加熱を抑制することができるため、副反応を抑制し、収率を向上させることができる。
 次に、本発明の実施例2による光反応マイクロリアクタについて説明する。
 図6は、本発明の実施例2による光反応マイクロリアクタの外観と分解斜視図である。
 図6において、光反応マイクロリアクタ601は、ハウジング上部102と、光を透過する材質からなるフタプレート103と、貫通流路プレート602と
、光の反射を抑制し、かつ熱伝導性の高い材質からなる底面プレート604と、ハウジング下部105とを備えている。
 図1に示した実施例1と、図6に示した実施例2との相違点は、実施例1における流路プレート104に代えて、実施例2においては、貫通流路プレート602と、底面プレート604とが配置されている点である。他の構成は、実施例1と実施例2とは同等となっている。
 貫通流路プレート602には、このプレート602の上面から底面まで貫通している貫通流路603が形成されており、フタプレート103と、貫通流路プレート602と、底面プレート604とが互いに溶着(固着)される。これにより、フタプレート103と、貫通流路プレート602と、底面プレート604とが一体のプレートを形成し、2つの流体出入口108と貫通流路603の両端とが、それぞれ一致し、流体が流通するようになっている。貫通流路603の両端部は、流体入口部、流体出口部となっている。
 フタプレート103の一方の流体出入口108から導入された流体は、貫通流路603および底面プレート604で形成される流路を経て、もう一方の流体出入口108から排出される。
 なお、貫通流路プレート602と底面プレート604とを組み合わせた寸法は、実施例1における流路プレート104と同等とすることができる。また、材質については、底面プレート604の材質は、流路プレート104と同等の材質であり、光の反射を抑制し、かつ熱伝導性の高い材質である。
 本発明の実施例2においても、実施例1と同様な効果を得ることができる。つまり、本発明の実施例2によれば、底面プレート604に光の反射を抑制する材質を用いているため、反射光を抑制することができ、得られる生成物の再現性を向上させることができる。また、底面プレート604に熱伝導性の高い材質を用いているため、温度制御性を向上させることができる。
 なお、本発明の実施例2においても、実施例1の図2、図3に示した例と同様に、光反応マイクロリアクタ601を、光源モジュール201及び温調モジュール202と組み合わせ光反応マイクロリアクタ装置とすることが可能である。また、実施例2においても、図5に示した例のように、光反応マイクロリアクタ601を、光源モジュール201及び温調モジュール202と組み合わせたものを直列に配置することもできる。
 次に、本発明の実施例3による光反応マイクロリアクタについて説明する。
 図7は、本発明の実施例3による光反応マイクロリアクタの外観と分解斜視図である。
 図7において、光反応マイクロリアクタ701は、ハウジング上部102と、フタプレート702と、光の反射を抑制し、かつ熱伝導性の高い材質からなる流路プレート104と、ハウジング下部105とを備えている。
 図1に示した実施例1と、図7に示した実施例3との相違点は、実施例1におけるフタプレート103に代えて、実施例2においては、光の反射を抑制し、かつ熱伝導性の高い材質からなる窓枠部703と、光を透過する材質からなる光透過部704が形成されている。他の構成は、実施例1と実施例3とは同等となっている。
 フタプレート702と流路プレート104とは互いに溶着され、一体のプレートを形成することにより、2つの流体出入口108と流路109の両端が、それぞれ一致し、流体が流通するようになっている。一方の流体出入口108から導入された流体は、流路109を経て、もう一方の流体出入口108から排出される。
 本発明の実施例3においても、実施例1と同様な効果を得ることができる。つまり、本発明の実施例3によれば、フタプレート702を、光の反射を抑制し、かつ熱伝導性の高い材質からなる窓枠部分703と、光を透過する材質からなる光透過部704とを有するように構成したので、流路プレート104の流路109の部分にのみ光を照射し、それ以外の部分への光は、フタプレート702上の光の反射を抑制し、かつ熱伝導性の高い材質からなる窓枠部703にて吸収してしまう。
 それにより、光の吸収による温度の上昇をフタプレート702と流路プレート104で分散させることができ、より温度制御性を向上させることができる。
 なお、本発明の実施例3においても、実施例1と同様に、光反応マイクロリアクタ601を、光源モジュール201及び温調モジュール202と組み合わせ光反応マイクロリアクタ装置とすることが可能である。また、実施例3においても、図5に示した例のように、光反応マイクロリアクタ601を、光源モジュール201及び温調モジュール202と組み合わせたものを直列に配置することもできる。
 さらに、窓枠部703の材質は流路プレート104の材質と同等とすることができる。
 以上説明したように、本実施形態によっても、流路プレート104に光の反射を抑制する材質を用いているため、反射光を抑制することができ、得られる生成物の再現性を向上させることができる。また、流路プレート104に熱伝導性の高い材質を用いているため、温度制御性を向上させることができる。
 101・・・光反応マイクロリアクタ、102・・・ハウジング上部、103・・・フタプレート、104・・・流路プレート、105・・・ハウジング下部、106・・・ネジ穴、107・・・チューブ接続部(流体入口、流体出口)、108・・・流体出入口、109・・・流路、110・・・ネジ穴、201・・・光源モジュール、202・・・温調モジュール、203・・・断熱材ケース、204・・・電源供給部、205・・・ピン、206・・・基板、207・・・光源、208・・・チューブ取り出し口(流体入口、流体出口)、209・・・断熱材ケース、210・・・熱伝達プレート、211・・・循環液循環部、212・・・循環液出入口、213・・・循環液(熱媒体)、301・・・原料(被反応物)、302・・・生成物、401・・・光反応マイクロリアクタシステム、402・・・第1の原料(被反応物)、403・・・第2の原料(被反応物)、404・・・混合マイクロリアクタ、405・・・接続用チューブ、406・・・生成物、501・・・生成物、601・・・光反応マイクロリアクタ、602・・・貫通流路プレート、603・・・貫通流路、604・・・底面プレート、701・・・光反応マイクロリアクタ、702・・・フタプレート、703・・・窓枠部、704・・・光透過部

Claims (18)

  1.  被反応物の光反応を進行させるための光反応マイクロリアクタ(101)において、
     上記被反応物を通過させるための流路(109)が形成され、熱伝導率が高く、かつ、光の反射を抑制する材質からなる流路プレート(104)を備えることを特徴とする光反応マイクロリアクタ。
  2.  請求項1に記載の光反応マイクロリアクタにおいて、
     上記流路プレート(104)の光反射率は、光の波長が240~2600nmのとき、5.1%~15.3%であることを特徴とする光反応マイクロリアクタ。
  3.  請求項2に記載の光反応マイクロリアクタにおいて、
     上記流路プレート(104)の熱伝導率は、31.2W/(m・K)であることを特徴とする光反応マイクロリアクタ。
  4.  請求項3に記載の光反応マイクロリアクタにおいて、
     上記流路プレート(104)と固着される光透過部材からなるフタプレート(103)を備え、このフタプレート(103)には、上記流路プレート(104)に形成された流路の流体入口と流体出口とのそれぞれ対応する位置に、流体入口(108)と流体出口(108)とが形成されていることを特徴とする光反応マイクロリアクタ。
  5.  請求項4に記載の光反応マイクロリアクタにおいて、
     上記フタプレート(103)及び上記流路プレート(104)を間に挟み込み固定するハウジング上部(102)及びハウジング下部(105)を備え、上記ハウジング上部(102)には、上記フタプレート(103)の上記流体入口と流体出口とそれぞれ対応する位置に、流体入口(107)と流体出口(107)とが形成されていることを特徴とする光反応マイクロリアクタ。
  6.  請求項5に記載の光反応マイクロリアクタと、
     上記光反応マイクロリアクタに光を照射する光源を有する光源モジュール(201)と、
     循環液循環部(211)と、上記光反応マイクロリアクタの上記ハウジング上部(102)に形成された流体入口(107)に流体を導入する流体導入口(208)と、上記ハウジング上部(102)に形成された流体出口(107)から流体を導出する流体導出口(208)とを有し、上記光反応マイクロリアクタを収容する温調モジュール(202)と、
     を有する光反応マイクロリアクタユニットを備えることを特徴とする光反応マイクロリアクタ装置。
  7.  請求項6に記載の光反応マイクロリアクタ装置において、
     2つの上記光反応マイクロリアクタユニットを互い直列に接続し、一方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出された流体が、他方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出されることを特徴とする光反応マイクロリアクタ装置。
  8.  請求項3に記載の光反応マイクロリアクタにおいて、
     熱伝導率が高く、かつ、光の反射を抑制する材質からなる窓枠部(703)と、光を透過する材質からなる光透過部(704)とを有し、上記流路プレート(104)と固着されるフタプレート(702)を備え、このフタプレート(702)には、上記流路プレート(104)に形成された流路(109)の流体入口と流体出口とのそれぞれ対応する位置に、流体入口(108)と流体出口(108)とが形成されていることを特徴とする光反応マイクロリアクタ。
  9.  請求項8に記載の光反応マイクロリアクタにおいて、
     上記フタプレート(702)及び上記流路プレート(104)を間に挟み込み固定するハウジング上部(102)及びハウジング下部(105)を備え、上記ハウジング上部(102)には、上記フタプレート(702)の上記流体入口(108)と流体出口(108)とそれぞれ対応する位置に、流体入口(107)と流体出口(107)とが形成されていることを特徴とする光反応マイクロリアクタ。
  10.  請求項9に記載の光反応マイクロリアクタと、
     上記光反応マイクロリアクタに光を照射する光源を有する光源モジュール(201)と、
     循環液循環部(211)と、上記光反応マイクロリアクタの上記ハウジング上部(102)に形成された流体入口(107)に流体を導入する流体導入口(208)と、上記ハウジング上部(102)に形成された流体出口(107)から流体を導出する流体導出口(208)とを有し、上記光反応マイクロリアクタを収容する温調モジュールと、
     を有する光反応マイクロリアクタユニットを備えることを特徴とする光反応マイクロリアクタ装置。
  11.  請求項10に記載の光反応マイクロリアクタ装置において、
     2つの上記光反応マイクロリアクタユニットを互い直列に接続し、一方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出された流体が、他方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出されることを特徴とする光反応マイクロリアクタ装置。
  12.  被反応物の光反応を進行させるための光反応マイクロリアクタ(601)において、
     上記被反応物を通過させるための流路(603)が形成され、光を透過させる材質からなる貫通流路プレート(602)と、
     上記貫通流路プレート(602)に固着され、熱伝導率が高く、かつ、光の反射を抑制する材質からなる底面プレート(604)と、
     を備え、上記流路(603)は、上記貫通流路プレート(602)を貫通して形成されていることを特徴とする光反応マイクロリアクタ。
  13.  請求項12記載の光反応マイクロリアクタにおいて、
     上記底面プレート(604)の光反射率は、光の波長が240~2600nmのとき、5.1%~15.3%であることを特徴とする光反応マイクロリアクタ。
  14.  請求項13に記載の光反応マイクロリアクタにおいて、
     上記底面プレート(604)の熱伝導率は、31.2W/(m・K)であることを特徴とする光反応マイクロリアクタ。
  15.  請求項14に記載の光反応マイクロリアクタにおいて、
     上記貫通流路プレート(602)と固着される光透過部材からなるフタプレート(103)を備え、このフタプレート(103)には、上記貫通流路プレート(602)に形成された流路の流体入口と流体出口とのそれぞれ対応する位置に、流体入口(108)と流体出口(108)とが形成されていることを特徴とする光反応マイクロリアクタ。
  16.  請求項15に記載の光反応マイクロリアクタにおいて、
     上記フタプレート(103)、上記貫通流路プレート(602)、及び上記底面プレート(604)を間に挟み込み固定するハウジング上部(102)及びハウジング下部(105)を備え、上記ハウジング上部(102)には、上記フタプレート(103)の上記流体入口(108)と流体出口(108)とのそれぞれ対応する位置に、流体入口(107)と流体出口(107)とが形成されていることを特徴とする光反応マイクロリアクタ。
  17.  請求項16に記載の光反応マイクロリアクタと、
     上記光反応マイクロリアクタに光を照射する光源を有する光源モジュール(201)と、
     循環液循環部(211)と、上記光反応マイクロリアクタの上記ハウジング上部(102)に形成された流体入口(107)に流体を導入する流体導入口(208)と、上記ハウジング上部(102)に形成された流体出口(107)から流体を導出する流体導出口(208)とを有し、上記光反応マイクロリアクタを収容する温調モジュール(202)と、
     を有する光反応マイクロリアクタユニットを備えることを特徴とする光反応マイクロリアクタ装置。
  18.  請求項17に記載の光反応マイクロリアクタ装置において、
     2つの上記光反応マイクロリアクタユニットを互い直列に接続し、一方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出された流体が、他方の光反応マイクロリアクタユニットの流体導入口(208)から導入され、流体導出口(208)から導出されることを特徴とする光反応マイクロリアクタ装置。
PCT/JP2011/061112 2011-05-13 2011-05-13 光反応マイクロリアクタ WO2012157052A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11865894.7A EP2708280B1 (en) 2011-05-13 2011-05-13 Photoreaction micro reactor
PCT/JP2011/061112 WO2012157052A1 (ja) 2011-05-13 2011-05-13 光反応マイクロリアクタ
CN201180070787.3A CN103517758A (zh) 2011-05-13 2011-05-13 光反应微反应器
JP2013514875A JP5715244B2 (ja) 2011-05-13 2011-05-13 光反応マイクロリアクタ
US14/114,389 US9370760B2 (en) 2011-05-13 2011-05-13 Microreactor for photoreactions
US14/870,786 US9821289B2 (en) 2011-05-13 2015-09-30 Microreactor for photoreactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061112 WO2012157052A1 (ja) 2011-05-13 2011-05-13 光反応マイクロリアクタ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/114,389 A-371-Of-International US9370760B2 (en) 2011-05-13 2011-05-13 Microreactor for photoreactions
US14/870,786 Division US9821289B2 (en) 2011-05-13 2015-09-30 Microreactor for photoreactions

Publications (1)

Publication Number Publication Date
WO2012157052A1 true WO2012157052A1 (ja) 2012-11-22

Family

ID=47176421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061112 WO2012157052A1 (ja) 2011-05-13 2011-05-13 光反応マイクロリアクタ

Country Status (5)

Country Link
US (2) US9370760B2 (ja)
EP (1) EP2708280B1 (ja)
JP (1) JP5715244B2 (ja)
CN (1) CN103517758A (ja)
WO (1) WO2012157052A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510447A (ja) * 2014-03-26 2017-04-13 コーニング インコーポレイテッド モジュール式の流通式光化学反応器システム
JP2017534840A (ja) * 2014-09-05 2017-11-24 イマジン ティーエフ,エルエルシー 微細構造分離フィルタ
JP2021529660A (ja) * 2018-05-25 2021-11-04 アジノモト オムニケム パルスフロー反応装置とその使用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
CN105396528B (zh) * 2015-12-15 2018-05-15 南京正源搪瓷设备制造有限公司 一种微反应器
CN110636898B (zh) 2017-03-05 2022-04-05 康宁股份有限公司 用于光化学反应的流反应器
EP3409352A1 (en) * 2017-05-31 2018-12-05 Fundació Institut Català D'investigació Quimica Photoreactor
CN110227397B (zh) * 2018-03-06 2024-03-29 山东豪迈化工技术有限公司 一种可视流动微反应器
CN110230938A (zh) * 2018-03-06 2019-09-13 山东豪迈化工技术有限公司 一种换热装置和微反应器
DE102018205630A1 (de) * 2018-04-13 2019-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikroreaktor für photokatalytische Reaktionen
CN110252224B (zh) * 2018-07-09 2021-11-05 黄位凤 一种连续流光化学反应器
CN109364847A (zh) * 2018-11-28 2019-02-22 内蒙古三爱富万豪氟化工有限公司 光氯化反应器及制备二氟一氯乙烷的方法
CN110614071B (zh) * 2019-10-09 2020-09-01 重庆大学 利用微气泡强化传质的具有多孔泡沫结构的三相微反应器
CN111545149B (zh) * 2020-04-27 2021-07-13 西安交通大学 一种光催化分解水反应的高聚光系统及其使用方法
JP7491136B2 (ja) 2020-08-20 2024-05-28 大日本印刷株式会社 マイクロ流路構造体、マイクロ流路構造体の製造方法及びマイクロ流路デバイス
CN113058519B (zh) * 2021-04-09 2022-09-13 杭州六堇科技有限公司 一种可用于光催化的连续化反应装置及其用途
CN113070013B (zh) * 2021-04-29 2022-08-16 大连理工大学 一种连续流光化学反应器装置
CN114288957B (zh) * 2022-01-07 2023-03-31 浙江大学 一种基于导光板的光化学连续流合成装置及方法
WO2023165849A1 (en) * 2022-03-01 2023-09-07 Signify Holding B.V. Integrated photochemical flow reactor with led light source
CN114522645A (zh) * 2022-03-15 2022-05-24 山东中教金源精密仪器有限公司 纳米材料多相光催化微通道反应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091169A (ja) 2003-09-17 2005-04-07 Sekisui Chem Co Ltd 光学測定用マイクロリアクター及びそれを用いた光学測定方法
JP2005091093A (ja) 2003-09-16 2005-04-07 Olympus Corp 吸光度測定用マイクロチップ
JP2006051409A (ja) * 2004-08-10 2006-02-23 Yokogawa Electric Corp マイクロリアクタ
JP2007038058A (ja) * 2005-08-01 2007-02-15 Dainippon Screen Mfg Co Ltd 液体処理装置および液体供給方法
JP2007071608A (ja) 2005-09-05 2007-03-22 Sharp Corp 電気泳動装置および装置構成器具
JP2007075682A (ja) 2005-09-12 2007-03-29 Osaka Prefecture Univ フロー式光化学反応装置およびそれを用いた光化学反応生成物質の製造方法
JP2008238090A (ja) * 2007-03-28 2008-10-09 Kyocera Corp マイクロ流路体
JP4485206B2 (ja) 2002-02-01 2010-06-16 ロシェ ニンブルゲン インコーポレイテッド マイクロアレイを合成するためのフローセル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209898A1 (de) * 2002-03-05 2003-09-25 Univ Schiller Jena Photoreaktor zur Durchführung von heterogen-photokatalysierten chemischen Reaktionen
EP1385006A3 (en) * 2002-07-24 2004-09-01 F. Hoffmann-La Roche Ag System and cartridge for processing a biological sample
US20050129580A1 (en) 2003-02-26 2005-06-16 Swinehart Philip R. Microfluidic chemical reactor for the manufacture of chemically-produced nanoparticles
DE102005003966A1 (de) * 2005-01-27 2006-08-10 Ehrfeld Mikrotechnik Bts Gmbh Vorrichtung zur kontinuierlichen Durchführung photochemischer Prozesse mit geringen optischen Schichtdicken, enger Verweilzeitverteilung und hohen Durchsätzen
JP5148635B2 (ja) * 2007-03-05 2013-02-20 ロディア オペレーションズ 物質の結晶化を追跡する方法と対応する微小流体装置およびスクリーニング方法
EP2168673B1 (en) * 2007-06-15 2022-04-13 HiPep Laboratories A method of producing a micro-passage chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485206B2 (ja) 2002-02-01 2010-06-16 ロシェ ニンブルゲン インコーポレイテッド マイクロアレイを合成するためのフローセル
JP2005091093A (ja) 2003-09-16 2005-04-07 Olympus Corp 吸光度測定用マイクロチップ
JP2005091169A (ja) 2003-09-17 2005-04-07 Sekisui Chem Co Ltd 光学測定用マイクロリアクター及びそれを用いた光学測定方法
JP2006051409A (ja) * 2004-08-10 2006-02-23 Yokogawa Electric Corp マイクロリアクタ
JP2007038058A (ja) * 2005-08-01 2007-02-15 Dainippon Screen Mfg Co Ltd 液体処理装置および液体供給方法
JP2007071608A (ja) 2005-09-05 2007-03-22 Sharp Corp 電気泳動装置および装置構成器具
JP2007075682A (ja) 2005-09-12 2007-03-29 Osaka Prefecture Univ フロー式光化学反応装置およびそれを用いた光化学反応生成物質の製造方法
JP2008238090A (ja) * 2007-03-28 2008-10-09 Kyocera Corp マイクロ流路体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Microreactor photoreaction device", 16 February 2012, YMC CO., LTD.
See also references of EP2708280A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510447A (ja) * 2014-03-26 2017-04-13 コーニング インコーポレイテッド モジュール式の流通式光化学反応器システム
JP2017534840A (ja) * 2014-09-05 2017-11-24 イマジン ティーエフ,エルエルシー 微細構造分離フィルタ
JP2021529660A (ja) * 2018-05-25 2021-11-04 アジノモト オムニケム パルスフロー反応装置とその使用
JP7503540B2 (ja) 2018-05-25 2024-06-20 アジノモト オムニケム パルスフロー反応装置とその使用

Also Published As

Publication number Publication date
JPWO2012157052A1 (ja) 2014-07-31
US20160016141A1 (en) 2016-01-21
US9821289B2 (en) 2017-11-21
US20140050630A1 (en) 2014-02-20
EP2708280B1 (en) 2024-02-07
US9370760B2 (en) 2016-06-21
JP5715244B2 (ja) 2015-05-07
EP2708280A1 (en) 2014-03-19
EP2708280A4 (en) 2015-01-14
CN103517758A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5715244B2 (ja) 光反応マイクロリアクタ
Su et al. A compact photomicroreactor design for kinetic studies of gas‐liquid photocatalytic transformations
Shallan et al. Cost-effective three-dimensional printing of visibly transparent microchips within minutes
Hessel et al. Gas− liquid and gas− liquid− solid microstructured reactors: contacting principles and applications
Reis et al. A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films
Guba et al. Rapid prototyping for photochemical reaction engineering
JP4922186B2 (ja) 小さい光学的層厚さ、狭い滞留時間分布および多い処理量で光化学プロセスを連続的に実施するためのデバイス
Rehm et al. Photonic contacting of gas–liquid phases in a falling film microreactor for continuous-flow photochemical catalysis with visible light
Roydhouse et al. Ozonolysis in flow using capillary reactors
JP2009542213A (ja) 高速熱サイクルのためのシステムおよび方法
EP1919623A1 (en) Chip-holder for a micro-fluidic chip
US20080193961A1 (en) Localized Control of Thermal Properties on Microdevices and Applications Thereof
Lam et al. 3D printed liquid cooling interface for a deep-UV-LED-based flow-through absorbance detector
KR20100017806A (ko) 미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법
CN104028188A (zh) 紫外光微通道反应器
US11291971B2 (en) Pulsed flow reactor and use thereof
JP4332180B2 (ja) 光化学反応を実施するマイクロフォトリアクター
EP4284758A1 (en) Photoreactor assembly
Zhang et al. Flow photochemistry—from microreactors to large-scale processing
Berry Jr et al. Thermal dynamics of plasmonic nanoparticle composites
Zhang et al. A scalable light-diffusing photochemical reactor for continuous processing of photoredox reactions
Meir et al. Principles of co‐axial illumination for photochemical reactions: Part 1. Model development
JP2009274030A (ja) マイクロリアクタ
JP2007326063A (ja) マイクロ化学反応装置
JP4347736B2 (ja) マイクロリアクタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514875

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114389

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011865894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE