KR20100017806A - 미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법 - Google Patents

미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법 Download PDF

Info

Publication number
KR20100017806A
KR20100017806A KR1020097026076A KR20097026076A KR20100017806A KR 20100017806 A KR20100017806 A KR 20100017806A KR 1020097026076 A KR1020097026076 A KR 1020097026076A KR 20097026076 A KR20097026076 A KR 20097026076A KR 20100017806 A KR20100017806 A KR 20100017806A
Authority
KR
South Korea
Prior art keywords
chamber
channels
width
microfluidic device
mixing
Prior art date
Application number
KR1020097026076A
Other languages
English (en)
Inventor
피레 월
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20100017806A publication Critical patent/KR20100017806A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/304Micromixers the mixing being performed in a mixing chamber where the products are brought into contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/00862Dimensions of the reaction cavity itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/0093Electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00932Sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00934Electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • B01J2219/00975Ultraviolet light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

본 발명에서는 자발적 제트 진동 혼합 챔버로서 사용되는 챔버(20) 및 하나 이상의 채널간 벽(25)에 의하여 나뉘어지는 둘 이상의 분리된 피드 채널(22, 24, 40)을 포함하고, 상기 둘 이상의 채널(22, 24, 40)은 상기 챔버의 공통면(18)에서 한정되고, 상기 둘 이상의 채널(22, 24, 40)은 상기 둘 이상의 채널(22, 24, 40) 및 서로 결합된 모든 채널간 벽(25)의 너비를 포함하는 전체 채널 너비(28)을 가지며, 상기 챔버(20)는 상기 채널(22, 24, 40)에 수직한 방향에서의 너비(26) 및 상기 채널에 평행한 방향에서의 길이(32)를 가지며, 상기 챔버(20)는 상기 챔버의 높이를 정의하는 두 개의 마주하는 주표면(56)을 가지며, 상기 챔버(20)는 10 cm2/cm3이상의 주표면적 대 부피의 비를 갖는 것을 특징으로 하는 미세유체 장치(10)를 개시한다.
본 발명에서는 또한 자발적 제트 진동 혼합 챔버를 이용한 미세 유체 혼합의 방법을 또한 개시한다.
혼합 챔버, 미세유체, 자발적 진동, 제트 진동

Description

미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법{MICROFLUIDIC SELF-SUSTAINING OSCILLATING MIXERS AND DEVICES AND METHODS UTILIZING SAME}
본 발명은 미세유체 장치에 관한 것이다.
본 명세서에서 이해되는 것으로서 미세유체(microfluidic) 장치는 미크론에서 수 밀리미터의 크기 범위에 걸친 유체 장치를 포함한다. 즉, 미크론에서 수밀리미터의 범위, 및 바람직하게는 약 10s 미크론으로부터 약 1± 0.5 밀리미터의 범위 의 가장 작은 치수(dimension)를 갖는 유체 채널(channels)을 구비한 장치이다. 부분적으로, 이들의 특징적인 낮은 전체 공정 유체 부피 및 특징적으로 높은 표면 대 부피 비 때문에, 미세유체 장치, 특히 미세반응기는 어렵고, 위험하거나, 또는 심지어 그렇지 않으면 불가능한 화학적 반응 및 공정을 안전하고, 효율적이며, 친환경적 방법으로 수행하는데 유용할 수 있다.
몇몇의 반응물 반응 운동 시간척도(reaction kinetics timescale)에 비하여 매우 빠르게 서로 혼합될 것이 기대되는 미세유체 혼합기를 포함하는 미세반응기에서, 바람직한 흐름속도(flowrates)는 연구실, 수행자 또는 생산과 같은 적용에 따라 분당 수 밀리미터에서 분당 수백 밀리미터의 범위이다. 이러한 혼합기의 생물학적 적용에서, 흐름속도는 단지 분당 마이크로리터일 수 있다. 이러한 넓은 범위의 흐름속도에 걸쳐 유용할 수 있는 단일 형태의 혼합기 또는 혼합기 구조(mixer geometry)를 갖는 것이 바람직하다. 주어진 혼합기에서 달성되는 혼합 품질은 가능한 흐름속도와 독립적인 것과, 상기 혼합기가 상기 혼합 유체(들)로부터 효율적으로 열을 제거하는 특성을 갖는 것이 바람직하다. 또한, 낮은 압력 강하에서 우수한 혼합 품질을 달성하는 것이 바람직하다.
호학적 또는 생물학적 반응을 수행하기 위한 미세유체 장치는 자발적 제트 진동 혼합 챔버(self-sustaining oscillating jet mixing chamber)로서 사용되는 챔버 및 하나 이상의 채널간(inter-channel) 벽에 의하여 나뉘어지는 둘 이상의 분리된 피드(feed) 채널을 포함하고, 상기 둘 이상의 채널은 상기 챔버의 공통면(common side)에서 한정되고, 상기 둘 이상의 채널은 둘 이상의 채널의 너비 및 서로 합쳐지는 모든 채널간 벽의 너비를 포함하는 전체 채널 너비를 가지며, 상기 챔버는 상기 채널에 수직한 방향에서의 너비 및 상기 채널과 평행한 방향에서의 길이를 가지고, 상기 너비는 전체 채널 너비의 두배 이상이며, 사기 채널은 상기 채널의 높이를 정의하는 두 개의 마주하는 주표면(major surfaces)을 갖고, 상기 챔버는 10 cm2/cm3 이상의 주표면적 대 부피 비를 갖는다.
자발적 제트 진동을 이용한 미세유체 유체 혼합의 방법은 하나 이상의 분리된 피드 채널 및 챔버를 제공하는 단계를 포함하고, 여기서 상기 하나 이상의 채널(22, 24, 40) 각각은 상기 챔버(20)의 공통벽(18)에서 상기 챔버(20)로 도입되고, 상기 하나 이상의 분리된 채널(22, 24, 40)은 하나 이상의 분리된 채널(22, 24, 40)의 너비 및 만일 있다면 서로 합쳐진 모든 채널간 벽(25)의 너비를 포함하는 전체 채널 너비(28)를 갖고, 상기 챔버(20)는 하나 이상의 출구 채널을 가지며, 상기 챔버(20)는 상기 전체 채널 너비(28)의 두 배 이상의 상기 하나 이상의 채널(22, 24, 40)에 수직한 방향에서의 너비(26)를 가진다. 상기 방법은 상기 챔버(20)에서 자발적 제트 진동을 유도하기에 충분한 속도에서 상기 챔버(20)으로 상기 피드 채널(22, 24, 40)을 통하여 하나 이상의 유체 흐름을 흐르게 하는 단계를 더 포함한다. 상기 챔버는 바람직하게는 10 cm2/cm3 이상의 주표면적 대 부피 비를 갖는다.
본 발명의 추가적인 특징 및 장점이 이어지는 상세한 설명에서 설명될 것이고, 일부는 이어지는 상세한 설명, 청구항 뿐만 아니라 첨부된 도면을 포함하는 상세한 설명으로부터 또는 본 명세서에서 설명된 본 발명의 실시에 의하여 인식됨으로써 당업자에게 명백할 것이다.
상기 일반적인 설명 및 이어지는 상세한 설명은 본 발명의 구체예를 나타내고, 청구된 것으로서 본 발명의 특성 및 특징을 이해하기 위한 개관 및 개요를 제공하는 것임이 이해되어야 한다. 첨부된 도면은 본 발명의 추가적인 이해를 제공하기 위하여 포함되고, 본 명세서에 포함되며 그 일부를 이룬다. 상기 도면은 본 발명의 다양한 구체예를 도시하며, 상세한 설명과 함께 본 발명의 원리 및 작동을 설명하기 위하여 제공된다.
첨부된 도면에서 도시된 실시예에서 본 발명의 현재의 바람직한 구체예가 설명될 것이다. 가능한 한, 동일한 참고 번호가 동일 또는 유사한 부분을 언급하도록 도면에 걸쳐 사용될 것이다.
본 발명의 미세유체 혼합기(10)의 일구체예가 도 1 및 2에서 도시된다. 상기 혼합기(10)는 일반적으로 도 1의 평면에서 벽(12) 및 도 2에서 볼수 있는 층(14) 및 천장(16)에 의하여 정의되는 평면이다. (비록 본 발명의 혼합기(10)가 편의를 위하여 이러한 방식(orientation)으로 설명될 것이나, 본 발명의 실시가 일정 바람직한 방식을 가질 수 있고, "층(floor)", "천장(ceiling)", "높이(height)", 길이(lenght)", "너비(width)" 및 유사한 문구가 따라서 관련용어이고, 특정한 배열을 지적하거나 요구하는 것이 아님이 당업자에게 이해될 것이다.)
상기 혼합기(10)은 혼합이 요구되는 화학적 또는 생물학적 반응을 수행하기 위한 미세유체 장치(미세반응기)의 일부인 것이 바람직하다. 상기 혼합기(10)의 상기 벽(12) 및 상기 층(14) 및 천장(16)은 자발적(self-sustaining) 제트 진동 혼합 챔버(20)를 정의한다. 둘 이상의 분리된 피드 채널(22) 및 (24)는 상기 챔버(20)의 공통면(18)에서 한정(terminate)된다. 상기 채널(22) 및 (24)는 상기 챔버(20)에 다다를 때 까지 분리되고, 하나 이상의 채널간 벽에 의하여 나뉜다.
상기 챔버(20)는 바람직하게 전체 채널 너비(28)(둘 이상의 피드 채널의 너비 및 서로 합쳐지는 하나 이상의 채널간 벽(25)으로서 정의되는)의 두배 이상, 바람직하게는 4 배이상의 상기 피드 채널(22) 및 (24)에 수직한 너비(26)를 갖는다. 상기 챔버(20)의 상기 층(14) 및 천장(16)은 상기 챔버(20)의 두 개의 마주하는 주표면(56)을 형성하고 상기 챔버(20)의 높이(30)를 정의한다. 상기 챔버(20)는 바람직하게 1/10 이하의 높이(30) 대 너비(26)의 종횡비(aspect ratio)를 갖는다. 상기 챔버(20)의 상기 길이(32) 및 너비(26)는 상기 챔버(20)의 너비(26)의 방향에서 좌우로 진동하는 자발적 제트 진동을 형성하기 위하여 상기 둘 이상의 채널(22) 및 (24)를 통하여 상기 챔버(20)에 원하는 작동 유체를 흐르도록 하기에 충분하게 선택된다. 상기 챔버(20)는 바람직하게 5 cm2 /cm3 이상, 보다 바람직하게는 10cm2 /cm3 이상, 가장 바람직하게는 15 cm2 /cm3 이상의 주표면적 대 부피 비를 갖는다.
화학적 생산의 적용에서, 상기 챔버의 높이(30)는 0.1 내지 2 mm를 포함하는 범위 내인 것이 바람직하고, 보다 바람직하게는 0.5 mm 내지 1.7 mm를 포함하는 범위, 및 가장 바람직하게는 0.8 mm 내지 1.5 mm를 포함하는 범위 내인 것이 바람직하다. 길이 및 너비와 비교하여 상대적으로 작은 높이, 또는 높은 주표면적 대 부피 비는 상기 채널(20)으로부터 우수한 열 제거(또는 쉬운 가열)를 하게 한다.
도 3은 다수의 챔버(20)가 미세유체 채널(34)를 따라 연속적으로 위치한 본 발명의 다른 구체예의 평단면도이다. 단지 상기 챔버(20)의 처음에서, 도면에서 가장왼쪽의 위치에서, 둘 이상의 피드 채널(22) 및 (24)가 위치된다. 이어지는 챔버(20)는 채널(34)의 단지 하나의 피드 채널을 가지나, 상기 이어지는 챔버(20) 각각은 또한 자발적 제트 진동의 형성이 되도록 한다. 다수의 연속적으로 위치된 제트 진동 혼합 챔버(20)은 추가적인 제트 진동의 수단에 의하여 증가되거나 향상된 혼합이 되게하고, 또는 혼합할 수 없는 현택액의 우수한 유지를 가능케하고, 만일 원한다면 둘 모두를 가능케한다. 도 4에서 보이는 것처럼, 상기 연속적 혼합 챔버(20)는 상기 채널(34)를 따라 서로 가깝게 위치될 필요는 없으나, 일정 열교환 및 다음 혼합 발생 전의 일정 시간 지연을 제공할 수 있는 채널(36)의 길이에 의하여 분리될 수 있다.
도 5는 다수 채널(34)이 도면에서 점선으로 표시되는 단일층(14) 또는 더 낮은 기판 상의 벽(12)에 의하여 정의되는 본 발명의 다른 구체예의 평단면도이다. 도 5의 일정 구체예에서, 유체(들)가 챔버(20)으로 도입되는 면(18)은 상기 챔버(20)에서 한정되는 세 개의 채널을 포함하나, 도면으로부터 알 수 있는 것처럼, 채널 내부가 채널(24)에 대응되는 반면 두 채널의 외부는 이들의 헤드(head)에서 연결되고 채널(22)에 대응된다. 대안적으로, 도 5의 장치의 챔버(20D)로서, 셋 이상의 완벽하게 독립적인 채널(22, 24, 및 40)이 포함될 수 있다. 도면의 왼쪽 위의 상기 채널(22) 및 (24)은 미도시된 상기 장치의 천장에 걸쳐 포트(ports)를 통해 공급될 수 있다. 유체는 상기 층(12)s를 통하여 상기 채널(34A)을 빠져나갈 수 있고, 상기 층(14)에서 홀(38)을 통하여 상기 채널(34B)로 재도입될 수 있다. 도시된 모든 채널은 상기 작동 유체(들)이 다섯 개의 자기-진동 제트 챔버(20-20D)를 통하여 지나가도록, 또는 예를 들어 도면의 바닥에서 보이는 채널과 평행한 것처럼 도시된 일정 채널이 그들의 도입부에서 독립적으로 접근 가능하고 상기 장치의 외부로부터 빠져나올 수 있도록 선택적으로 연결된 방식일 수 있다. 관통-홀(through-hole) 유사 홀(38)이 다양한 채널을 연결하는데 사용되는 경우, 다층 구조가 도 7에서의 단면적에서 보이는 것과 같이 사용될 수 있다. 혼합 챔버(20)를 포함하는 층의 다른 면상에 상기 혼합 챔버(20)에 인접한 공간에서 열 교환 유체가 흐를 수 있도록 설계된 온도 조절 유체 챔버 또는 유체 통로(passages)(50)를 구비하는 것이 바람직할 수 있다. 체류시간 및 열 교환 통로, 및 선택적으로 광촉매 작용 통로 또는 다른 목적으로 사용되는 통로(52)는 도시된 것처럼 상기 장치의 바닥층에 위치되는 것이 바람직할 수 있다.
본 장치의 장점은 효율적 미세유체 혼합 챔버(20)이 고작 2 mm 정도의, 바람직하게는 약 1.7 mm 이하, 보다 더 바람직하게는 약 1.5 mm 이하의 매우 작은 높이를 가지고 제공된다는 것이다. 그러나, 동시에 상기 혼합 챔버의 주표면은 상기 챔버의 높이에 비하여 크다. 따라서, 광 또는 레이저 광 제공 장치, 초음파 발생기, 전자기장 발생기, 또는 다른 라디에이터와 같은 라디에이터(radiator)(42)는 상기 천장(16)(상기 챔버(20)의 두 주표면 중 하나)을 통하여 및 작동 유체(들) 자체를 통하여, 음파, 전기, 자기, 전자기, 또는 다른 에너지를 갖는 상기 챔버(20)에서의 일정 유체에 조사할 수 있도록 도 6의 단면도에서 개략적으로 보이는 것처럼 혼합 챔버(20)와 근접하여 결합될 수 있다. 두번째 라디에이터 또는 센서(44)가 또한 상기 혼합 챔버(20)와의 연결에 유리하게 사용될 수 있고, 도 6에서 보이는 것처럼 상기 챔버(20)의 층(14)의 외부에 위치될 수 있다. 라디에이터 또는 센서(44)와 같은 상기 라디에이터 또는 센서는 도 7에서의 실시예에서 보이는 것처럼 상기 장치와 직접적으로 접속될 필요는 없다.
상기 전체 장치는 바람직하게 유리, 유리-세라믹 또는 세라믹 물질이 포함된다. 이들은 뛰어난 열 및 화학적 저항 및 일정 어플리케이션에 바람직할 수 있는 가시광선 및/또는 전자기적 스펙트럼의 다른 부분에서 투명감 또는 투명성(translucence or transparency)을 제공할 수 있다. 상기 장치는 예를 들어 미국 특허 제7,007,709호의 실시예에서 개시된 본 발명자의 동료에 의하여 개발된 방법과 같은 다양한 방법 중 어느 것에 따라서 제조될 수 있다. 여기서는 두 유리 기판 사이에 성형된 프릿(frit) 구조를 위치시키고, 그 이후에 상기 기판과 상기 프릿이 상기 프릿에 의하여 정의되는 유체 챔버를 갖는 단일-판 장치로 서로 결합되도록 소결시킴에 의하여 미세유체 장치를 형성하는 것을 설명한다. 미국 특허에서 설명된 것처럼, 상기 벽(12)을 형성하는 상기 프릿 물질(46)의 층은 도 6에서 보이는 것처럼 상기 기판(상기 층(14) 및 천장(16)) 상에 박막을 형성하는데 또한 사용될 수 있다. 만일 원한다면, 대안적인 공정이 도 7에서 보이는 것처럼 박막을 가지지 않는 프릿 벽의 제조, 또는 도 2의 단면에서 대표되는 장치와 같이 이중-조성(dual-composition)을 가지지 않는 모놀리식(monolithic) 장치를 만드는 공정이 사용될 수 있다. 이러한 모놀리식 장치는 예를 들어 특허출원 EP07300835에서 개시된 방법으로, 또는 상기 채널 벽을 형성하기위하여 마스크화된(masked) 샌드-블라스팅(sand-blasting) 또는 마스크화된 에칭에 의한 것과 같이 다공성 탄소 금형 사이에서 유리 물질의 열간 프레싱, 이어지는 모닐리식 장치를 형성하기 위한 퓨전 또는 화학적 결합 또는 다른 결합 방법에 의하여 형성될 수 있다.
특히 상기 챔버의 압력 저항을 낮출 수 있는 큰 주표면적이 혼합 챔버(20)에 요구되는 경우, 또는 그렇지 않으면 최대 압력 저항이 요구되는 경우, 도 8 및 9에서 보이는 것처럼 하나 이상의 포스트(posts)(54)가 상기 챔버(20) 내의 공간에 상기 벽 물질을 형성한다. 본 발명의 다른 대안적인 구체예에서, 상기 채널(2, 24, 및 40)은 도 10의 평단면도에서 보이는 것처럼 모두 동일한 크기일 필요는 없다. 중심 채널, 채널(24)는 바깥쪽 채널들 보다 바람직하게는 더 작을 수 있고, 또는 바꾸어 말하면, 상기 채널간 벽(25)은 특히 만일 상기 중심 채널이 상기 바깥 채널들보다 적은 부피를 나를 것이거나 또는 기대된다면 서로 더 가까울 수 있다. 채널간 벽 및 채널 너비의 다른 분포가 물론 가능하다.
본 발명은 또한 혼합을 수행하기 위하여 본 명세서에서 개시된 장치의 사용의 범위를 포함하고, 상기 방법은 공통 방향으로부터 챔버로 각각 도입되는 하나 이상의 채널을 제공하는 단계, 여기서 상기 챔버는 하나 이상의 출구 채널을 가지며, 상기 챔버는 서로 결합되는 하나 이상의 피드 채널의 너비의 두 배 이상의 너비를 가짐; 및 상기 챔버 내에 자발적 제트 진동을 유도하기에 충분한 속도에서 상기 피드 채널로부터 상기 챔버로 하나 이상의 유체 흐름을 흘려보내는 단계를 포함한다. 제트 진동은 효율적(사용된 전체 에너지 및 상기 혼합기에 걸친 압력강하) 혼합 공정을 제공하고, 매우 우수한 열 제어 또는 작동 유체로의 에너지의 용이한 감지 또는 용이한 결합이 되도록 높이 치수에서 상당한 크기 감소를 가능하게 한다. 상기 챔버는 바람직하게 두 개의 마주하는 주표면 및 0.1 이하의 높이 대 너비의 종횡비를 포함한다(바람직하게는 5 cm3/cm2, 보다 바람직하게는 10 cm2/cm3, 가장 바람직하게는 15 cm2/cm3의 주표면적 대 부피비).
도 11은 혼합 챔버(20)가 채널(22) 및 (24)에 의하여 처음 도입되는 채널을 따라 배열될 수 있는 구체예의 개략적 평면도이다. 이후의 혼합 챔버는 현탁액(suspension)에서 불용성 상(immiscible phase)을 유지하도록 제공될 수 있다. 도 12의 구체예에서, 두 채널은 제1 혼합 챔버(20)으로 도입되나, 하나의 새로운 채널이 모든 혼합 챔버에서 사용되는 것이 가능하다. 따라서, 도시된 것처럼 혼합 챔버의 다운스트림(downstream)의 크기를 증가시키는 것이 바람직할 수 있다.
본 발명에 따른 혼합 챔버는 직사각형일 필요는 없다. 필요한 모든 것은 상기 혼합 챔버가 충분히 넓은 것, 및 충분히 갑자기 사기 챔버 내에서 자발적 진동을 일으키도록 하는 것이다. 대안적인 혼합 챔버의 모양이 도 13에 도시된다.
도 1은 본 발명의 일구체예의 평단면도이다;
도 2는 도 1의 A-A 선을 따라 취해진 도 1의 구조의 단면의 입면도이다.
도 3은 본 발명의 일구체예의 평단면도이다;
도 4는 본 발명의 다른 구체예의 평단면도이다;
도 5는 본 발명의 다른 구체예의 평단면도이다;
도 6은 도 1의 A-A 선을 따라 취해진 도 1의 구조의 다른 단면의 입면도이다;
도 7은 도 2 및 도 6의 본 발명의 다른 구체예에 대응하는 도 1의 A-A 선을 따라 취해진 도 1의 구조의 다른 단면 입면도이다.
도 8은 본 발명의 다른 구체예의 평단면도이다;
도 9는 본 발명의 다른 구체예의 평단면도이다;
도 10은 본 발명의 다른 구체예의 평단면도이다;
도 11은 본 발명의 구체예에 따른 다수의 미세유체 혼합기의 하나의 배열을 보여주는 개략적 다이어그램이다;
도 12는 본 발명의 구체예에 따른 다수의 미세유체 혼합기의 다른 배열을 보여주는 개략적인 다이어그램이다;
도 13은 본 발명의 다른 구체예의 평단면도이다.
도 14는 본 발명의 일정 구체예 및 비교예에 대한 분당 밀리미터 단위의 흐름속도의 함수로서의 높은 속도 혼합 성능의 그래프이다.
도 15는 본 발명의 일정 구체예 및 비교예에 대한 분당 밀리미터 단위의 흐름속도의 함수로서의 밀리바(millibar) 단위의 압력 강하의 그래프이다.
도 16은 본 발명의 구체예에 의한 테스트 반응에서 다른 흐름속도에서 제조된 미크론 단위의 로그-스케일의 입자 크기의 함수로서의 전체 부피의 퍼센트에 의한 입자 크기 분포의 그래프이다.
하기 표 1에 나열된 특성을 갖는 자발적 제트 진동 혼합 챔버 A-D가 형성되었다.
명칭 높이(mm) 주표면적 대 부피(cm2/cm3) 부피 (ml)
A 1.17 17.03 0.58
B 1.18 16.90 0.58
C 1.20 16.62 0.87
D 1.21 16.51 0.86
채널은 0.5 mm의 너비였고, 채널간 벽은 0.6 mm의 너비였으며, 상기 설명된 것처럼 도 5의 챔버(20)와 연결되어 도시된것과 유사한 채널 구조를 가졌다. 혼합 성능은 두 가지 방법으로 측정되었다. 혼합 성능을 테스트하는 첫번 째 방법으로서, Villermaux J., 등의 "미세 혼합 효율성을 특성화하기 위한 병렬 경쟁 반응의 사용(Use of paralle competing reactions to characterize micro mixing efficiency)" AlChE Symp. Ser. 88(1991) 6, 286 쪽에서 설명된 방법이 사용되었 다. 요약하자면, 상기 공정은 실온(room temperature)에서, 산 염화물(acid chloride)의 용액 및 KI(Potassium Iodide)와 혼합된 아세트산 칼륨(potassium acetate)의 용액이 준비되었다. 이들 용액 또는 반응물 모두는 그 이후에 주사기 또는 연동 펌프의 수단에 의하여 테스트되기 위하여 미세혼합기로 연속적으로 주입되었다. 상기 결과 테스트 반응은 다른 속도의 두가지 경쟁적 반응을 야기하였다- UV를 흡수하는 최종 생성물을 생산하는 "빠른" 반응, 및 투명한 용액을 생성하는 초고속 혼합 조건 하에서 지배되는 "초고속" 반응. 혼합 성능은 그러므로 이론적으로 완벽한 또는 100 % 빠른 혼합 수율은 결과 생성물에서 100% UV 투과를 보이는 것과 같이 혼합된 유체를 통한 UV 투과(transmission)와 관련된다. 도 14는 상기 방법으로 측정된 장치 C에서 3가지 실시예 및 장치 D에서 3가지 실시에의 분당 밀리미터 단위의 흐름 속도에 걸쳐 퍼센트 투과도로서 주어진 혼합 성능을 보여준다. 예를 들어 EP 01604733 및 EP1679115에서 개시된 혼합 통로의 형태와 유사한 각각 삼차원적으로 비틀린(tortuous) 통로의 형태인 하나 이상의 연속한 혼합 통로를 갖는 장치에 의하여 제조된비교 테스트가 또한 별표("*")로 표시된 자취에 의하여 보여진다. 비교로부터 볼 수 있는 것처럼, 본 발명의 혼합기의 성능이 높은 흐름 속도, 특히 약 100 ml/min 내지220 ml/min 및 그 이상에서 훨씬 뛰어나다.
이러한 우수한 혼합은 분당 밀리미터의 단위의 흐름 속도의 함수로서의 밀리바(millibar) 단위의 압력 강하를 보여주는 도 15에서 보이는 것처럼 비교예와 비교하여 상대적으로 낮은 압력 강하를 달성한다. 알 수 있는 것처럼, 흐름을 분당 100밀리미터로부터 200 밀리미터로 두배로 하는 경우 비교 장치에 비하여 전체 압력 강하의 절반 미만을 생성하고, 그러나 도 14에서 보이는 것처럼 동등 또는 그 이상의 혼합을 달성한다.
비혼합 액체의 혼합 및 고체 입자의 취급(dealing)에 대한 테스트로서, 두 반응물이 비혼합 액체이고 형성된 생성물이 콜로이드형(colloidal) 입자, 즉 폴리스티렌 구(spheres)인 반응이 수행되었다.
상기 반응에서, 다음 반응식이 사용되었다:
Figure 112009077128109-PCT00001
용매로서 THF를 갖는 폴리스티렌이 하나의 피드에 제공되었고(0.5wt%), 계면활성제 AOT를 포함하는 수용액이 제2 피드에 제공되었다(0.05wt%). 상기 결과가 미크론에서 로그(logarithmic) 입자 크기의 함수로서의 부피 퍼센트로서 PSD(Particle Size Distribution)의 그래프인 도 16에 나타나있다. 상기 도면으로부터 알 수 있는 것처럼, 약 0.10 미크론의 균일한 입자 크기를 산출하는 최적 혼합을 달성하기 위한 경계값(threshold valure)은 약 158 + 20 = 178의 전체 분당 밀리리터이다. 상기 분포는 상기 흐름속도 및 그 이상에서 거의 제2의 피크를 가지지 않는다. 상기 값은 비교예로부터 얻을 수 있는 결과와 비교할 수 있으나, 더 낮은 압력 강하를 갖는다. 그러므로 본 발명의 장치로부터 동등한 품질의 혼합이 가능하나, 동시에 더 높은 속도에서 그리고 더 낮은 압력 강하를 가질 수 있다.

Claims (12)

  1. 자립성 진동 제트 혼합 챔버(self-sustaining oscillating jet mixing chamber)로서 사용되는 챔버(20); 및
    하나 이상의 채널간(inter-channel) 벽(25)에 의하여 나뉘어지는 둘 이상의 분리된 피드 채널(22, 24, 40);
    을 포함하고, 상기 둘 이상의 채널(22, 24, 40)은 상기 챔버(20)의 공통면(common side)에서 한정되고(terminating), 상기 둘 이상의 채널(22,24,40)은 상기 둘 이상의 채널(22, 24, 40)의 채널의 너비를 포함하는 전체 채널 너비(28) 및 서로 합쳐진 모든 채널간 벽(25)을 구비하며, 상기 챔버(20)는 상기 채널(22, 24, 40)에 수직한 방향에서의 너비 및 상기 채널(22, 24, 40)에 평행한 방향에서의 길이를 가지며, 상기 너비(26)는 상기 전체 채널 너비(28)의 두 배 이상이고, 상기 챔버(20)는 상기 챔버의 높이로 정의되는 두개의 마주하는 주표면(major surfaces)(56)을 갖고, 상기 챔버(20)는 10 cm2/cm3 이상의 주표면적 대 부피의 비를 가지는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체(microfluidic) 장치(10).
  2. 청구항 1에 있어서, 상기 챔버(20)는 15 cm2/cm3 이상의 주표면적 대 부피의 비를 갖는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  3. 청구항 1 또는 2에 있어서, 상기 챔버(20)는 1/10 이하의 높이 대 더 긴 길이 및 너비의 종횡비(aspect ratio)를 더 가지는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서, 상기 장치는 상기 챔버(20)에 상기 챔버의 상기 주표면의 하나 이상을 통하여 음파, 전기, 자기, 전자기, 또는 다른 에너지를 조사하기 위하여 구성되고, 배열된 방사선조사장치(irradiator)(42)를 더 포함하는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서, 상기 장치는 상기 챔버(20) 내에서 물질의 하나 이상의 특성을 검출하기 위하여 구조되고, 배열된 검출 장치(44)를 더 포함하는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서, 상기 챔버(20)의 주표면 하나 또는 둘 모두는 투명한 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위 한 미세유체 장치.
  7. 청구항 1 내지 6 중 어느 한 항에 있어서, 상기 장치(10)는 유리, 유리-세라믹 또는 세라믹으로 형성된 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서, 상기 챔버(20)는 상기 마주하는 두 주표면 사이에서 연장되는 하나 이상의 포스트(post)(54)를 더 포함하는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  9. 청구항 1 내지 8 중 어느 한 항에 있어서, 상기 챔버(20)는 상기 마주하는 두 주표면 사이에서 연장되는 단일 포스트(54)를 더 포함하는 것을 특징으로 하는 화학적 또는 생물학적 반응의 수행을 위한 미세유체 장치.
  10. 하나 이상의 분리된 피드 채널(22, 24, 40) 및 챔버(20)를 제공하는 단계, 여기서 상기 하나 이상의 채널(22, 24, 40) 각각은 상기 챔버(20)의 공통벽(18)에서 상기 챔버(20)로 도입되고, 상기 하나 이상의 분리된 채널(22, 24, 40)은 하나 이상의 분리된 채널(22, 24, 40)의 너비 및 만일 있다면 서로 합쳐진 모든 채널간 벽(25)의 너비를 포함하는 전체 채널 너비(28)를 갖고, 상기 챔버(20)는 하나 이상의 출구 채널을 가지며, 상기 챔버(20)는 상기 전체 채널 너비(28)의 두 배 이상의 상기 하나 이상의 채널(22, 24, 40)에 수직한 방향에서의 너비(26)를 가짐;
    상기 챔버(20)에서 자발적 제트 진동을 유도하기에 충분한 속도에서 상기 챔버(20)으로 상기 피드 채널(22, 24, 40)을 통하여 하나 이상의 유체 흐름을 흐르게 하는 단계;
    를 포함하는 화학적 또는 생물학적 사용을 위한 미세유체 장치에서 하나 이상의 유체의 혼합 또는 교반을 수행하기 위한 방법.
  11. 청구항 10에 있어서, 하나 이상의 분리된 피드 채널(22, 24, 40) 및 상기 챔버(20)을 제공하는 단계는 상기 채널(22, 24, 40)에 평행한 방향에서의 길이(32)를 가지며 상기 길이 및 너비에 수직한 방향에서의 상기 챔버(20)의 높이를 정의하는 두 개의 마주하는 주표면을 구비한 챔버(20)를 더 포함하고, 상기 챔버(20)는 이상의 주표면적 대 부피의 비를 갖는 것을 특징으로 하는 화학적 또는 생물학적 사용을 위한 미세유체 장치에서 하나 이상의 유체의 혼합 또는 교반을 수행하기 위한 방법.
  12. 청구항 11에 있어서, 하나 이상의 분리된 피드 채널(22, 24, 40) 및 상기 챔버(20)을 제공하는 단계는 1/10 이하의 높이 대 길이 및 너비중 더 긴 것과의 종횡비를 갖는 챔버(20)을 더 포함하는 것을 특징으로 하는 화학적 또는 생물학적 사용을 위한 미세유체 장치에서 하나 이상의 유체의 혼합 또는 교반을 수행하기 위한 방법.
KR1020097026076A 2007-05-15 2008-05-15 미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법 KR20100017806A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07301042.3 2007-05-15
EP07301042A EP1992403B1 (en) 2007-05-15 2007-05-15 Microfluidic self-sustaining oscillating mixers and devices and methods utilizing same

Publications (1)

Publication Number Publication Date
KR20100017806A true KR20100017806A (ko) 2010-02-16

Family

ID=38537743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097026076A KR20100017806A (ko) 2007-05-15 2008-05-15 미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법

Country Status (9)

Country Link
US (1) US20100182868A1 (ko)
EP (1) EP1992403B1 (ko)
JP (1) JP2011504221A (ko)
KR (1) KR20100017806A (ko)
CN (1) CN101678293B (ko)
AT (2) ATE500884T1 (ko)
DE (2) DE602007013010D1 (ko)
TW (1) TW200946217A (ko)
WO (1) WO2008143923A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955508B1 (fr) * 2010-01-25 2012-03-30 Corning Inc Microreacteurs avec dispositif microfluidique plan et systeme d'application d'ultrasons ; mise en oeuvre de reactions chimiques en leur sein
US8475738B2 (en) * 2010-05-04 2013-07-02 Electronics And Telecommunications Research Institute Photocatalytic apparatus and method for injecting microfluidic volumes
JP5637300B2 (ja) * 2011-03-28 2014-12-10 学校法人加計学園 試料溶液濃度測定方法及び試料溶液濃度測定装置
US9138714B2 (en) 2011-10-31 2015-09-22 General Electric Company Microfluidic chip and a related method thereof
TWI426951B (zh) * 2011-11-07 2014-02-21 Univ Nat Pingtung Sci & Tech 流體混合裝置
EP3439773B1 (en) * 2016-04-08 2022-11-09 Universidade do Minho Modular oscillatory flow plate reactor
CN108636308A (zh) * 2018-05-02 2018-10-12 侯建华 一种管式通用型氯化微反应器
BE1026312B1 (nl) * 2018-05-25 2019-12-23 Ajinomoto Omnichem Doorstroomreactor en gebruik ervan
EP3890873A2 (en) 2018-12-06 2021-10-13 GlaxoSmithKline Biologicals S.A. Microfluidic devices
CN109531851B (zh) * 2019-01-16 2023-08-01 浙江富士特硅橡胶材料有限公司 一种婴童用品用加成型液体硅橡胶混料装置
KR102699794B1 (ko) * 2019-12-23 2024-08-29 넛크래커 테라퓨틱스 인코포레이티드 미세유체 장치 및 이의 사용 방법
CN111939856B (zh) * 2020-07-02 2022-12-30 山东豪迈机械制造有限公司 一种振动反应器及板式反应器
CN114471217A (zh) * 2022-04-02 2022-05-13 深圳市瑞吉生物科技有限公司 一种用于脂质体合成的对冲流混合装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926373A (en) * 1974-07-26 1975-12-16 Us Air Force Thrust augmentation system with oscillating jet nozzles
KR100745517B1 (ko) 2001-09-10 2007-08-03 인터내셔널 비지네스 머신즈 코포레이션 자동화 데이터 저장 라이브러리 내의 데이터 저장 드라이브
SE0103110D0 (sv) * 2001-09-18 2001-09-18 Aamic Ab Microscale fluid handling system
FR2830206B1 (fr) 2001-09-28 2004-07-23 Corning Inc Dispositif microfluidique et sa fabrication
US20050129580A1 (en) * 2003-02-26 2005-06-16 Swinehart Philip R. Microfluidic chemical reactor for the manufacture of chemically-produced nanoparticles
US7435391B2 (en) * 2003-05-23 2008-10-14 Lucent Technologies Inc. Light-mediated micro-chemical reactors
EP1604733A1 (en) 2004-06-11 2005-12-14 Corning Incorporated Microstructure designs for optimizing mixing and pressure drop
CN100427194C (zh) * 2004-08-27 2008-10-22 中国科学院长春光学精密机械与物理研究所 芯片内微流体动态混合器、混合池模具及其驱动方法
KR100634525B1 (ko) * 2004-11-23 2006-10-16 삼성전자주식회사 복수 개의 전자석이 배치되어 있는 마이크로채널을포함하는 미세유동 장치, 그를 이용하여 시료를 혼합하는방법 및 세포를 용해하는 방법
EP1679115A1 (en) 2005-01-07 2006-07-12 Corning Incorporated High performance microreactor
EP1964817B1 (en) 2007-02-28 2010-08-11 Corning Incorporated Method for making microfluidic devices

Also Published As

Publication number Publication date
DE602007013010D1 (de) 2011-04-21
WO2008143923A1 (en) 2008-11-27
ATE500884T1 (de) 2011-03-15
ATE502692T1 (de) 2011-04-15
US20100182868A1 (en) 2010-07-22
CN101678293B (zh) 2012-11-07
CN101678293A (zh) 2010-03-24
EP1992403A1 (en) 2008-11-19
JP2011504221A (ja) 2011-02-03
DE602007013365D1 (de) 2011-05-05
EP1992403B1 (en) 2011-03-09
TW200946217A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
KR20100017806A (ko) 미세유체 자발적 진동 혼합기 및 장치 및 이를 이용하는 방법
US7939033B2 (en) Process intensified microfluidic devices
KR101787764B1 (ko) 복수의 유동 경로를 갖는 마이크로반응기
US8476382B2 (en) Multiple continuous microfluidic reactors for the scaled up synthesis of gel or polymer particles
CN101102835B (zh) 微型反应器
JP2005512760A (ja) 少なくとも2つの流体を混合及び反応させるための装置
JP2009262106A (ja) マイクロリアクタ
KR20140082377A (ko) 원반형의 혼합부와 교차되는 혼합채널을 가진 미세혼합기
JP2004016870A (ja) マイクロリアクター及びそれを用いた化学反応方法
US9358512B2 (en) Fluid control device and fluid mixer
JP4356312B2 (ja) 微小流路構造体
JP2015000375A (ja) 流体制御デバイス、及び流体混合器
JP4306243B2 (ja) 粒子製造方法
CN116272735B (zh) 单层阶梯型混合反应通道板、微通道反应器
WO2008085430A1 (en) High throughput pressure resistant microfluidic devices
US20100104486A1 (en) High Throughput Pressure Resistant Microfluidic Devices
JP2015013265A (ja) 流体混合器
CN117960078A (zh) 一种用于快速化学反应的微液滴反应器

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid