WO2012153512A1 - 換気システム - Google Patents

換気システム Download PDF

Info

Publication number
WO2012153512A1
WO2012153512A1 PCT/JP2012/002990 JP2012002990W WO2012153512A1 WO 2012153512 A1 WO2012153512 A1 WO 2012153512A1 JP 2012002990 W JP2012002990 W JP 2012002990W WO 2012153512 A1 WO2012153512 A1 WO 2012153512A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
humidity control
ventilator
air
ventilation
Prior art date
Application number
PCT/JP2012/002990
Other languages
English (en)
French (fr)
Inventor
岳人 酒井
晃弘 江口
薮 知宏
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201280014376.7A priority Critical patent/CN103429963B/zh
Priority to US13/980,658 priority patent/US9228753B2/en
Priority to ES12781587T priority patent/ES2530666T3/es
Priority to EP12781587.6A priority patent/EP2662640B1/en
Publication of WO2012153512A1 publication Critical patent/WO2012153512A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilation system in which a plurality of ventilation devices are connected to a duct.
  • Patent Document 1 a ventilation system in which a plurality of connected devices are connected to a common collective duct is known.
  • the duct construction is simplified by using a duct that takes in outside air as a collective duct to which a plurality of connection devices are connected.
  • a ventilation system provided with a collective duct a system in which a ventilator such as an air conditioner, a humidity control ventilator, a blower or the like is used as a connecting device to the collective duct is known.
  • a ventilator such as an air conditioner, a humidity control ventilator, a blower or the like
  • the present invention has been made in view of such a point, and an object thereof is to automatically determine a ventilation device belonging to a specific collective duct in a ventilation system including a plurality of ventilation devices.
  • a ventilation device belonging to a specific duct is automatically determined.
  • the first invention includes a plurality of ventilators (10a to 10n) each including a specific ventilator (10a, 10b, 10c,...) Each equipped with a blower fan (25, 26) and a ventilator for determination (10n).
  • the fan control unit that controls the number of rotations of the ducts (1, 2, 3) to which the ventilation devices (10a to 10n) are connected and the blower fans (25, 26) of the ventilation devices (10a to 10n).
  • the power detection unit (5b) that detects a change in power consumption of the blower fans (25, 26) of the ventilation devices (10a to 10n), and the fan control unit (5a) While driving the blower fan (25,26) of the specific ventilator (10a, 10b, 10c, ...) connected to the duct (1,2,3), the blower fan (25,26) of the judgment ventilator (10n)
  • the power detection unit (5b) detects a change in power consumption of the blower fan (25,26) of the specific ventilation device (10a, 10b, 10c, ...)
  • Ventilation equipment (10n) and the specified ventilator (10a, 10b, 10c, ...) are determined to be connected to the same duct (1, 2, 3), while the power detection unit (5b) 10a, 10b, 10c, ...) If the change in power consumption of the blower fan (25,26) is not detected, the judgment ventilator (10n) and the specific ventilator (10a, 10b, 10c, ...) are different And a connection determination unit (5c
  • a plurality of ventilation devices (10a to 10n) having blower fans (25, 26) are connected to the ducts (1, 2, 3).
  • the fan control unit (5a) controls the rotational speed of the blower fans (25, 26) of each ventilation device (10a-10n), and the power detection unit (5b) is used for each ventilation device (10a-10n) The change in the power consumption of the blower fans (25, 26) is detected.
  • the fan control unit (5a) is used for determination while driving the blower fan (25, 26) of the specific ventilation device (10a, 10b, 10c, ...) connected to one specific duct (1, 2, 3).
  • the rotation speed of the blower fan (25, 26) of the ventilator (10n) is changed.
  • a power detection part (5b) detects the change of the power consumption of the ventilation fan (25,26) of the specific ventilation apparatus (10a, 10b, 10c, ...) to drive.
  • connection determination unit (5c) detects a change in power consumption of the specific ventilation device (10a, 10b, 10c, ...)
  • the determination ventilation device (10n) and the specific ventilation device (10a, 10b, 10c, ...) Are determined to be connected to the same duct (1,2,3), but if no change in the power consumption of the specific ventilator (10a, 10b, 10c, ...) is detected, the ventilator for determination (10n) is specified It is determined that the ventilation device (10a, 10b, 10c,...) Is connected to a different duct.
  • the connection determination unit (5c) increases the rotational speed of the blower fan (25, 26) of the determination ventilator (10n)
  • the specific ventilation is performed.
  • the ventilator for judgment (10n) becomes the same duct as the specific ventilator (10a, 10b, 10c, ...) 1, 2, 3) is determined to be connected.
  • an electric power detection part (5b) is a specific ventilation apparatus (10a). , 10b, 10c,...)
  • the connection determination unit (5c) determines that the determination ventilator (10n) is a specific ventilator (10a, 10b, 10c, It is determined that it is connected to the same duct (1,2,3) as ).
  • the fan control unit (5a) increases the rotational speed of the blower fan (25, 26) of the determination ventilator (10n)
  • the power detection unit (5b) causes the specific ventilator (10a, 10b, 10c
  • the connection determination unit (5c) is connected to the specific ventilation device (10a, 10b, 10c, . It is determined that it is connected to a different duct.
  • the connection determination unit (5c) reduces the rotational speed of the blower fan (25, 26) of the determination ventilator (10n) when the specific ventilation is performed.
  • the ventilator for judgment (10n) is the same duct as the specific ventilator (10a, 10b, 10c, ...) 1, 2, 3) is determined to be connected.
  • an electric power detection part (5b) is a specific ventilation apparatus (10a).
  • the connection determining unit (5c) determines that the determination ventilator (10n) is the specific ventilator (10a, 10b, 10c, It is determined that it is connected to the same duct (1,2,3) as ).
  • the fan control unit (5a) decreases the rotational speed of the blower fan (25, 26) of the determination ventilator (10n)
  • the power detection unit (5b) causes the specific ventilator (10a, 10b, 10c
  • the connection determination unit (5c) is connected to the specific ventilation device (10a, 10b, 10c, . It is determined that it is connected to a different duct.
  • the power consumption of the specific ventilation device (10a, 10b, 10c,...) Is changed by changing the rotation speed of the blower fan (25, 26) of the determination ventilation device (10n). Because the connection to the same duct (1,2,3) as the specific ventilator (10a, 10b, 10c, ...) of the ventilator for judgment (10n) was automatically judged in, the ventilator for judgment (10n) is connected Duct (1,2,3) can be judged automatically. As a result, the air volume adjustment in the ventilation system can be performed accurately.
  • the rotational speed of the blower fan (25, 26) of the determination ventilator (10n) is increased to reduce the power consumption of the specific ventilator (10a, 10b, 10c,). Because the connection to the same duct (1,2,3) as the specific ventilator (10a, 10b, 10c, ...) of the ventilator for judgment (10n) was automatically judged in, the ventilator for judgment (10n) is connected Duct (1,2,3) can be judged automatically. As a result, the air volume adjustment in the ventilation system can be performed accurately.
  • the rotational speed of the blower fan (25, 26) of the determination ventilator (10n) is reduced to increase the power consumption of the specific ventilator (10a, 10b, 10c,). Because the connection to the same duct (1,2,3) as the specific ventilator (10a, 10b, 10c, ...) of the ventilator for judgment (10n) was automatically judged in, the ventilator for judgment (10n) is connected Duct (1,2,3) can be judged automatically. As a result, the air volume adjustment in the ventilation system can be performed accurately.
  • FIG. 1 is a configuration diagram illustrating a ventilation system.
  • FIG. 2 is a flowchart showing the determination procedure.
  • FIG. 3 is a diagram illustrating a determination method.
  • FIG. 4 is a diagram illustrating a connection relationship between the ventilation device and the duct.
  • FIG. 5 is a perspective view showing the humidity control ventilator as viewed from the front side with the top plate of the casing omitted.
  • FIG. 6 is a perspective view showing the humidity control ventilator as viewed from the front side, omitting a part of the casing and the electrical component box.
  • FIG. 7 is a plan view showing the humidity control ventilator without the top plate of the casing.
  • FIG. 1 is a configuration diagram illustrating a ventilation system.
  • FIG. 2 is a flowchart showing the determination procedure.
  • FIG. 3 is a diagram illustrating a determination method.
  • FIG. 4 is a diagram illustrating a connection relationship between the ventilation device and the duct.
  • FIG. 5 is a perspective
  • FIG. 8 is a schematic plan view, right side view, and left side view in which a part of the humidity control ventilator is omitted.
  • FIG. 9 is a piping system diagram showing the configuration of the refrigerant circuit.
  • FIG. 5 (A) shows the first normal operation
  • FIG. 5 (B) shows the second normal operation.
  • FIG. 10 is a schematic plan view, right side view, and left side view of the humidity control ventilator showing the air flow in the first normal operation of the dehumidifying ventilation operation.
  • FIG. 11 is a schematic plan view, a right side view, and a left side view of the humidity control ventilator showing the air flow in the second normal operation of the dehumidifying ventilation operation.
  • FIG. 12 is a schematic plan view, right side view, and left side view of the humidity control ventilator showing the flow of air in the first normal operation of the humidification ventilation operation.
  • FIG. 13 is a schematic plan view, right side view, and left side view of the humidity control ventilator showing the air flow in the second normal operation of the humidification ventilation operation.
  • FIG. 14 is a schematic plan view, a right side view, and a left side view of the humidity control ventilation device showing the air flow in the simple ventilation operation.
  • FIG. 1 shows a ventilation system (S) according to an embodiment of the present invention.
  • the ventilation system (S) includes a plurality of ventilation devices (4, 10a,...) And a ventilation controller (5).
  • the ventilation devices (4, 10a,...) include a first humidity control device (10a) to an Nth humidity control device (10n) and a booster fan (4).
  • the ventilation system (S) is connected to a plurality of common ducts (1 to 3) to which a plurality of humidity control ventilation devices (10a to 10n) are connected, and connects the outdoor (9) and the indoor (8).
  • the ventilation system (S) includes a first collective duct (1), a second collective duct (2), and a third collective duct (3), each collective duct (1, 2, 3) being respectively It is connected to at least one humidity control ventilation device (10a-10n).
  • Each collective duct (1, 2, 3) constitutes a duct according to the present invention.
  • first humidity control device (10a) Connected to the first duct (1) are a first humidity control device (10a), a fourth humidity control device (10d), a fifth humidity control device (10e) and a booster fan (4). Yes.
  • a second humidity control ventilation device (10b) and a sixth humidity control ventilation device (10f) are connected to the second collective duct (2).
  • a third humidity control device (10c) is connected to the third collective duct (3).
  • Each collective duct (1, 2, 3) is composed of two ducts, an air supply side duct and an exhaust side duct.
  • the first collective duct (1) is composed of a first collective air supply duct (1a) and a first collective exhaust duct (1b).
  • the second collective duct (2) includes a second collective air supply duct (2a) and a second collective exhaust duct (2b).
  • the third collective duct (3) includes a third collective air supply duct (3a) and a third collective exhaust duct (3b).
  • the description will be made on the first humidity control ventilation device (10a) to the Nth humidity control ventilation device (10n), the booster fan (4) and the ventilation controller (5) which are the humidity control ventilation devices constituting the ventilation system (S). Then, the humidity control ventilator (10) will be specifically described.
  • the first humidity control ventilator (10a) to the Nth humidity control ventilator (10n) have the same structure and are so-called humidity control ventilators. Accordingly, each of the first humidity control ventilator (10a) to the Nth humidity control ventilator (10n) is configured as a humidity control ventilator (10).
  • This humidity control ventilator (10) constitutes a ventilator according to the present invention.
  • the humidity control ventilator (10) ventilates the room (8) as well as adjusting the humidity in the room.
  • the humidity of the outdoor air (OA) that has been taken in is adjusted and supplied to the room (8) at the same time.
  • the humidity control ventilation device (10) includes a casing (11).
  • the casing (11) includes an outdoor air inlet (24) for taking in outdoor air (OA), an air supply port (22) for supplying conditioned air (SA) to the room (8), and indoor air (RA) And an exhaust port (21) for discharging the room air to the outside as exhaust air (EA).
  • An air supply passage is formed between the outside air inlet (24) and the air inlet (22), and an exhaust passage is formed between the inside air inlet (23) and the exhaust port (21). Yes.
  • the casing (11) is provided with heat exchangers (51, 52) for exchanging heat between the supply air passing through the air supply passage and the exhaust air passing through the exhaust passage.
  • the casing (11) is formed such that the supply passage and the exhaust passage intersect at the heat exchanger (51, 52).
  • the air supply fan (26) is constituted by a DC fan (fan using a DC motor as a drive source).
  • the air supply fan (26) constitutes a blower fan according to the present invention.
  • the outdoor air inlet (24) on the upstream side (outdoor side) of the air supply passage communicates with the outdoor side air supply duct (61).
  • the outdoor air supply duct (61) communicates with the collective air supply duct (1a, 2a, 3a) at the upstream end of the air supply.
  • the collective air supply duct (1a, 2a, 3a) communicates with the outside (9) at the ventilation port on the upstream side of the supply air.
  • the air supply port (22) on the supply air downstream side (indoor side) of the supply passage communicates with the indoor air supply duct (64).
  • the indoor air supply duct (64) is connected to the room via the air supply grill (7).
  • outdoor air is taken into the collective air supply ducts (1a, 2a, 3a) from the ventilation openings, and the air supply passages of the humidity control ventilation devices (10a to 10n) via the outdoor air supply duct (61) Then, the air is taken into the room (8) from the air supply grill (7) through the indoor air supply duct (64).
  • An exhaust fan (25) is provided in the exhaust passage.
  • the exhaust fan (25) is a DC fan.
  • the exhaust fan (25) constitutes a blower fan according to the present invention.
  • An exhaust port (21) on the exhaust downstream side (outdoor side) of the exhaust passage communicates with the outdoor side exhaust duct (65).
  • the outdoor exhaust duct (65) communicates with the collective exhaust duct (1b, 2b, 3b) at the exhaust downstream side end.
  • the collective exhaust duct (1b, 2b, 3b) communicates with the outside (9) at a ventilation port on the exhaust downstream side (outside).
  • the indoor air suction port (23) on the exhaust upstream side (indoor side) of the exhaust passage communicates with the indoor side exhaust duct (68).
  • the indoor side exhaust duct (68) is connected to the room (8) through the exhaust grill (6). That is, indoor air passes from the exhaust grill (6) through the indoor exhaust duct (68) and is taken into the exhaust passage of each humidity control ventilation device (10a to 10n), and then the outdoor exhaust duct (65). The air is taken into the collective exhaust ducts (1b, 2b, 3b) through the air, and discharged from the ventilation port to the outside (9).
  • the booster fan (4) is an auxiliary fan for assisting air supply by the air supply fan (26), and constitutes a ventilation device according to the present invention.
  • the booster fan (4) is constituted by a DC fan, and is disposed on the upstream side of the air in the first collective air supply duct (1a).
  • the booster fan (4) is controlled by the ventilation controller (5).
  • the ventilation controller (5) automatically groups all humidity control ventilation devices (10a-10n) and booster fans (4) of the ventilation system (S) for each duct (1,2,3) Is.
  • the ventilation controller (5) includes a fan control unit (5a), a power detection unit (5b), and a connection determination unit (5c).
  • the fan control unit (5a) is for controlling the fans (25, 26) and the booster fan (4) of each humidity control ventilation device (10a to 10n). Specifically, the fan control unit (5a) individually controls the operation of the fan motor of each fan (4, 25, 26) and sets the rotation speed of each fan (4, 25, 26) to a predetermined rotation speed. And keep it constant. That is, the fan control unit (5a) can drive an arbitrary fan at a constant rotational speed.
  • the predetermined rotational speed is not limited to the rotational speed during normal operation.
  • the power detector (5b) detects the power consumption when driving the fans (25, 26) and the booster fan (4) of each humidity control ventilation device (10a to 10n). Specifically, the power detection unit (5b) is connected to the fan motors of the air supply fan (26) and the exhaust fan (25) of each humidity control ventilation device (10a to 10n), and detects the power consumption. . The power detection unit (5b) is connected to the fan motor of the booster fan (4) and detects its power consumption.
  • the connection determination unit (5c) determines the collective ducts (1, 2, 3) to which the humidity control ventilation devices (10a to 10n) and the booster fan (4) belong.
  • the connection determination unit (5c) receives a change in power consumption of each humidity control ventilation device (10a to 10n) or booster fan (4) detected by the power detection unit (5b).
  • the plurality of humidity control ventilation devices (10a to 10n) and the booster fan (4) are started one by one in order, and the consumption of other humidity control ventilation devices (10a, ...) at this time
  • the target humidity control ventilator for example, the Nth humidity control ventilator (10n)
  • the collective duct (2) to which the booster fan (4) belongs are determined by the change in electric power.
  • the ventilation controller (5) automatically detects a plurality of humidity control ventilation devices (10a to 10n) and booster fans (4) connected to the ventilation controller (5) (ST1). Therefore, the total number X of connected devices is N + 1.
  • connection determination unit (5c) determines that the first duct (1) is the collective duct to which the first humidity control ventilation device (10a) is connected.
  • the power detection unit (5b) detects the power consumption of the air supply fan (26) of the first humidity control ventilation device (10a), while the fan control unit (5a) detects the first humidity control ventilation device (10a).
  • the first humidity control ventilator (10a) constitutes the specific ventilator according to the present invention
  • the second humidity control ventilator (10b) constitutes the determination ventilator according to the present invention.
  • the collective air supply duct (1a) constitutes one specific duct according to the present invention.
  • connection determination unit (5c) connects the collective duct to which the second humidity control ventilation device (10b) is connected.
  • the second assembly duct (2) is determined (ST5).
  • the power detection unit (5b) continues to detect the power consumption of the air supply fans (26, 26) of the first humidity control ventilation device (10a) and the second humidity control ventilation device (10b) to control the fan.
  • the part (5a) maintains a constant rotational speed of the air supply fans (26, 26) of the first humidity control ventilator (10a) and the second humidity control ventilator (10b) while maintaining the predetermined rotational speed constant.
  • the first humidity control ventilator (10a) and the second humidity control ventilator (10b) constitute the specific ventilator according to the present invention, and the third humidity control ventilator (10c) according to the present invention. It constitutes a ventilation device for judgment.
  • connection determination unit (5c) connects the collective duct to which the third humidity control ventilation device (10c) is connected.
  • the third assembly duct (3) is determined (ST5).
  • the power detection unit (5b) continues to detect the power consumption of the air supply fans (26, 26, 26) of the first humidity control ventilation device (10a) to the third humidity control ventilation device (10c),
  • the fan controller (5a) kept the rotational speed of the air supply fans (26, 26, 26) of the first humidity control ventilation device (10a) to the third humidity control ventilation device (10c) constant at a predetermined rotational speed.
  • the air supply fan (26) of the fourth humidity control ventilation device (10d), which is the fourth unit, is driven with a certain time interval (ST3).
  • the first to third humidity control ventilators (10a to 10c) constitute the specific ventilator according to the present invention
  • the fourth humidity control ventilator (10d) includes the determination ventilator according to the present invention.
  • the first collective air supply duct (1a) constitutes one specific duct according to the present invention.
  • the power consumption of the air supply fan (26) of the first humidity control ventilator (10a) is increased by driving the air supply fan (26) of the fourth humidity control ventilator (10d). descend.
  • the connection determination unit (5c) the power consumption of the air supply fan (26) of the first humidity control ventilator (10a) is reduced by driving the air supply fan (26) of the fourth humidity control ventilator (10d). Therefore, it is determined that the collective duct to which the fourth humidity control ventilator (10d) is connected is the same first collective air supply duct (1a) as the first humidity control ventilator (10a) (ST5).
  • the power detection unit (5b) continues to detect the power consumption of the air supply fans (26, 26, 26, 26) of the first humidity control ventilation device (10a) to the fourth humidity control ventilation device (10d). Then, the fan control unit (5a) sets the number of rotations of the air supply fans (26, 26, 26, 26) of the first humidity control ventilator (10a) to the fourth humidity control ventilator (10d) to a predetermined number of rotations.
  • the air supply fan (26) of the fifth humidity control ventilator (10e), which is the fifth unit, is driven at a constant time interval while keeping constant (ST3).
  • the first to fourth humidity control ventilators (10a to 10d) constitute the specific ventilator according to the present invention
  • the fifth humidity control ventilator (10e) includes the determination ventilator according to the present invention.
  • the first collective air supply duct (1a) constitutes one specific duct according to the present invention.
  • the first humidity control ventilation device (10a) and the fourth humidity control ventilation device (10d) are driven by driving the air supply fan (26) of the fifth humidity control ventilation device (10e).
  • the power consumption of the air supply fan (26, 26) decreases.
  • the connection determination unit (5c) the air supply fan (26) of the fifth humidity control ventilator (10e) is driven to supply the first humidity control ventilator (10a) and the fourth humidity control ventilator (10d).
  • the collective duct to which the fifth humidity control ventilator (10e) is connected is connected to the first humidity control ventilator (10a) and the fourth humidity control ventilator ( It is determined as the same first collective air supply duct (1a) as 10d) (ST5).
  • the power detection unit (5b) detects the power consumption of the air supply fans (26, 26, 26, 26, 26) of the first humidity control ventilator (10a) to the fifth humidity control ventilator (10e).
  • the fan control unit (5a) adjusts the rotation speed of the air supply fans (26, 26, 26, 26, 26) of the first humidity control ventilation device (10a) to the fifth humidity control ventilation device (10e).
  • the air supply fan (26) of the sixth humidity control device (10f) serving as the sixth unit is driven at a constant time interval while keeping the predetermined rotation number constant (ST3).
  • the first to fifth humidity control ventilators (10a to 10e) constitute the specific ventilator according to the present invention
  • the sixth humidity control ventilator (10f) includes the determination ventilator according to the present invention.
  • the second collective air supply duct (2a) constitutes one specific duct according to the present invention.
  • the power consumption of the air supply fan (26) of the second humidity control ventilation device (10b) is driven by driving the air supply fan (26) of the sixth humidity control ventilation device (10f). descend.
  • the connection determination unit (5c) the power consumption of the air supply fan (26) of the second humidity control ventilation device (10b) is reduced by driving the air supply fan (26) of the sixth humidity control ventilation device (10f).
  • the collective duct to which the sixth humidity control ventilation device (10f) is connected is the same second collective air supply duct (2a) as the second humidity control ventilation device (10b) (ST5). .
  • the humidity control ventilation devices (10a to 10n) can be grouped for each collective duct (1, 2, 3) (see FIG. 4).
  • Nth humidity control ventilation device (10n) which is the Nth ventilation device, will be described.
  • the power detection unit (5b) includes the air supply fans (10n-1) of the first humidity control ventilator (10a) to the (N-1) th humidity control ventilator (10n-1). 26 to 26), the fan control unit (5a) continues to detect the power consumption, and the fan control unit (5a) supplies the air supply fans of the first humidity control ventilation device (10a) to the (N-1) humidity control ventilation device (10n-1).
  • the air supply fan (26) of the Nth humidity control ventilator (10n) which is the Nth unit, is driven at regular intervals while keeping the rotational speed of (26 to 26) constant at the predetermined rotational speed. (ST3).
  • the first to (N-1) humidity control ventilation devices (10a to 10n-1) constitute the specific ventilation device according to the present invention, and the Nth humidity control ventilation device (10n) corresponds to the present invention.
  • Such a determination ventilation device is configured, and the second collective air supply duct (2a) constitutes one specific duct according to the present invention.
  • a connection determination part (5c) a 2nd humidity control ventilator (10b), a 6th humidity control ventilator (10f), ... by drive of the air supply fan (26) of an Nth humidity control ventilator (10n).
  • the collective duct connected to the Nth humidity control ventilator (10n) is connected to the second humidity control ventilator (10b) and the sixth humidity control ventilator. It is determined that the second collective air supply duct (2a) is the same as the device (10f),... (ST5).
  • the power detection unit (5b) continues to detect the power consumption of the air supply fans (26 to 26) of the first humidity control ventilation device (10a) to the Nth humidity control ventilation device (10n) to control the fan.
  • the part (5a) maintains a constant number of rotations of the air supply fans (26 to 26) of the first humidity control ventilator (10a) to the Nth humidity control ventilator (10n) at a predetermined speed.
  • the N + 1-th booster fan (4) is driven at time intervals (ST3).
  • the first to Nth humidity control ventilators (10a to 10n) constitute the specific ventilator according to the present invention
  • the booster fan (4) constitutes the determination ventilator according to the present invention.
  • One collective air supply duct (1a) constitutes one specific duct according to the present invention.
  • the booster fan (4) is driven to drive the first humidity control device (10a), the fourth humidity control device (10d), the fifth humidity control device (10e),.
  • the power consumption of the air supply fan (26-26) decreases.
  • the connection determination unit (5c) by driving the booster fan (4), the first humidity control ventilator (10a), the fourth humidity control ventilator (10d), the fifth humidity control ventilator (10e),.
  • the collective duct to which the booster fan (4) is connected is connected to the first humidity control ventilator (10a), the fourth humidity control ventilator (10d), It is determined to be the same first collective air supply duct (1a) as the fifth humidity control ventilation device (10e),.
  • the humidity control ventilation device (10) has a casing (11).
  • a refrigerant circuit (50) is accommodated in the casing (11).
  • Connected to the refrigerant circuit (50) are a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve (55).
  • the casing (11) is slightly flat and has a rectangular parallelepiped shape.
  • the left front side ie, front side
  • the right back side side ie, back side
  • the back panel portion 13
  • the left back side is the second side panel (15).
  • the casing (11) is formed with an outside air suction port (24), an inside air suction port (23), an air supply port (22), and an exhaust port (21).
  • the outside air suction port (24) and the inside air suction port (23) are open to the back panel (13).
  • the outside air inlet (24) is disposed in the lower part of the back panel (13).
  • the inside air suction port (23) is arranged in the upper part of the back panel (13).
  • the air supply port (22) is disposed near the end of the first side panel (14) on the front panel (12) side.
  • the exhaust port (21) is disposed near the end of the second side panel (15) on the front panel (12) side.
  • the internal space of the casing (11) includes an upstream divider plate (71), a downstream divider plate (72), a central divider plate (73), a first divider plate (74), and a second divider plate ( 75).
  • These partition plates (71 to 75) are all erected on the bottom plate of the casing (11), and divide the internal space of the casing (11) from the bottom plate of the casing (11) to the top plate. .
  • the upstream divider plate (71) and the downstream divider plate (72) are parallel to the front panel portion (12) and the rear panel portion (13), and are spaced at a predetermined interval in the front-rear direction of the casing (11). Is arranged.
  • the upstream divider plate (71) is disposed closer to the rear panel portion (13).
  • the downstream partition plate (72) is disposed closer to the front panel portion (12).
  • the first partition plate (74) and the second partition plate (75) are installed in a posture parallel to the first side panel portion (14) and the second side panel portion (15).
  • the first partition plate (74) is spaced a predetermined distance from the first side panel (14) so as to close the space between the upstream partition plate (71) and the downstream partition plate (72) from the right side. Has been placed.
  • the second partition plate (75) is spaced from the second side panel (15) by a predetermined distance so as to close the space between the upstream partition plate (71) and the downstream partition plate (72) from the left side. Has been placed.
  • the central partition plate (73) is disposed between the upstream partition plate (71) and the downstream partition plate (72) in a posture orthogonal to the upstream partition plate (71) and the downstream partition plate (72). Yes.
  • the central partition plate (73) is provided from the upstream partition plate (71) to the downstream partition plate (72), and the space between the upstream partition plate (71) and the downstream partition plate (72) is left and right. It is divided into.
  • the space between the upstream partition plate (71) and the back panel (13) is divided into two upper and lower spaces, and the upper space forms the inside air passage (32).
  • the lower space constitutes the outside air passage (34).
  • the room air side passage (32) communicates with the room (8) via the room side exhaust duct (68) communicating with the room air suction port (23).
  • An inside air side filter (27), an inside air humidity sensor (96), and an inside air temperature sensor (98) are installed in the inside air passage (32).
  • the inside air temperature sensor (98) and the inside air humidity sensor (96) are upstream (primary side) air of the adsorption heat exchanger (51, 52), and the temperature and humidity of the air (RA) sucked from the room Is to measure.
  • the outside air side passage (34) communicates with the outside (9) through the outdoor air supply duct (61) communicating with the outside air suction port (24).
  • an outside air filter (28), an outside air humidity sensor (97), and an outside air temperature sensor (99) are installed in the outside air passage (34).
  • the outside air temperature sensor (99) and the outside air humidity sensor (97) are upstream (primary side) air of the adsorption heat exchanger (51, 52), and the temperature and humidity of the air (OA) sucked from the outside. Is to measure.
  • the inside air temperature sensor (98) and the outside air temperature sensor (99) are not shown except for FIG.
  • the indoor air humidity sensor (96) detects the relative humidity of the indoor air
  • the outdoor air humidity sensor (97) detects the relative humidity of the outdoor air.
  • the space between the upstream divider plate (71) and the downstream divider plate (72) in the casing (11) is divided into left and right by the central divider plate (73), and is located on the right side of the central divider plate (73).
  • the space constitutes the first heat exchanger chamber (37), and the space on the left side of the central partition plate (73) constitutes the second heat exchanger chamber (38).
  • a first adsorption heat exchanger (51) is accommodated in the first heat exchanger chamber (37).
  • the second adsorption heat exchanger (52) is accommodated in the second heat exchanger chamber (38).
  • the electric expansion valve (55) of a refrigerant circuit (50) is accommodated in the 1st heat exchanger chamber (37).
  • Each adsorption heat exchanger (51, 52) is an adsorption member for bringing the adsorbent into contact with air.
  • Each adsorption heat exchanger (51, 52) has an adsorbent supported on the surface of a so-called cross fin type fin-and-tube heat exchanger, and is a rectangular thick plate or flat rectangular parallelepiped as a whole. It is formed in a shape.
  • Each adsorption heat exchanger (51,52) is placed in the heat exchanger chamber (37,38) with its front and back surfaces parallel to the upstream partition plate (71) and downstream partition plate (72). It is erected.
  • zeolite, silica gel, or a mixture thereof is used as the adsorbent supported on the adsorption heat exchanger (51, 52).
  • the space along the front surface of the downstream partition plate (72) is partitioned vertically, and the upper portion of the vertically partitioned space is the air supply side passage ( 31), and the lower part constitutes the exhaust side passage (33).
  • the upstream partition plate (71) is provided with four open / close dampers (41-44).
  • Each of the dampers (41 to 44) is generally formed in a horizontally long rectangular shape.
  • the first room air damper (41) is attached to the right side of the central partition (73).
  • the second inside air damper (42) is attached to the left side of the central partition plate (73).
  • the 1st external air side damper (43) is attached to the right side rather than a center partition plate (73), A second outside air damper (44) is attached to the left side of the central partition plate (73).
  • the downstream partition plate (72) has four open / close dampers (45 to 48). Each of the dampers (45 to 48) is generally formed in a horizontally long rectangular shape. Specifically, in the part (upper part) facing the supply side passageway (31) in the downstream partition plate (72), the first supply side damper (45) is located on the right side of the central partition plate (73). The second air supply side damper (46) is attached to the left side of the central partition plate (73). Moreover, in the part (lower part) which faces an exhaust side channel
  • the space between the air supply side passage (31) and the exhaust side passage (33) and the front panel portion (12) is divided into left and right by the partition plate (77).
  • the space on the right side of (77) constitutes the air supply fan chamber (36), and the space on the left side of the partition plate (77) constitutes the exhaust fan chamber (35).
  • the supply fan room (36) accommodates the supply fan (26).
  • the exhaust fan chamber (35) accommodates an exhaust fan (25).
  • the supply fan (26) and the exhaust fan (25) are both configured as DC fans, and are controlled by the humidity controller (100) during normal operation.
  • these fans (25, 26) include a fan rotor, a fan casing (86), and a fan motor (89).
  • the fan rotor is formed in a cylindrical shape whose axial length is shorter than the diameter, and a large number of blades are formed on the peripheral side surface.
  • the fan rotor is accommodated in the fan casing (86).
  • an inlet (87) is opened on one of the side surfaces (the side surface orthogonal to the axial direction of the fan rotor).
  • the fan casing (86) is formed with a portion that protrudes outward from the peripheral side surface, and an outlet (88) is opened at the protruding end of the portion.
  • the fan motor (89) is attached to the side surface of the fan casing (86) opposite to the suction port (87).
  • the fan motor (89) is connected to the fan rotor and rotationally drives the fan rotor.
  • the air supply fan (26) is installed in such a posture that the inlet (87) of the fan casing (86) faces the downstream partition plate (72).
  • the air outlet (88) of the fan casing (86) of the air supply fan (26) is attached to the first side panel (14) so as to communicate with the air supply port (22).
  • the exhaust fan (25) is installed such that the inlet (87) of the fan casing (86) faces the downstream partition plate (72). Further, the air outlet (88) of the fan casing (86) of the exhaust fan (25) is attached to the second side panel (15) in a state of communicating with the exhaust port (21).
  • a compressor (53) and a four-way switching valve (54) of the refrigerant circuit (50) are accommodated in the air supply fan chamber (36).
  • the compressor (53) and the four-way switching valve (54) are disposed between the air supply fan (26) and the partition plate (77) in the air supply fan chamber (36).
  • first bypass passage (81) In the casing (11), the space between the first partition (74) and the first side panel (14) constitutes a first bypass passage (81).
  • the starting end of the first bypass passage (81) communicates only with the outside air passage (34) and is blocked from the inside air passage (32).
  • the terminal end of the first bypass passage (81) is partitioned by the partition plate (78) from the air supply side passage (31), the exhaust side passage (33), and the air supply fan chamber (36).
  • a first bypass damper (83) is provided in a portion of the partition plate (78) facing the supply fan chamber (36).
  • the space between the second partition plate (75) and the second side panel (15) constitutes a second bypass passage (82).
  • the starting end of the second bypass passage (82) communicates only with the inside air passage (32) and is blocked from the outside air passage (34).
  • the terminal end of the second bypass passage (82) is partitioned by the partition plate (79) from the air supply side passage (31), the exhaust side passage (33), and the exhaust fan chamber (35).
  • a second bypass damper (84) is provided in a portion of the partition plate (79) facing the exhaust fan chamber (35).
  • first bypass passage (81), the second bypass passage (82), the first bypass damper (83), and the second bypass damper (84) are illustrated. Omitted.
  • the electrical component box (90) is attached to the right part. 6 and 8, the electrical component box (90) is omitted.
  • the electrical component box (90) is a rectangular parallelepiped box, and the control board (91) and the power supply board (92) are accommodated therein.
  • the control board (91) and the power supply board (92) are attached to the inner side surface of the side plate of the electrical component box (90) adjacent to the front panel portion (12) (that is, the back plate).
  • a radiating fin (93) is provided in the inverter portion of the power supply substrate (92).
  • the heat dissipating fin (93) protrudes from the back of the power supply board (92) and feeds through the back plate of the electrical component box (90) and the front panel (12) of the casing (11).
  • the air fan chamber (36) is exposed (see FIG. 7).
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51), a second adsorption heat exchanger (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve. (55) is a closed circuit.
  • the refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the compressor (53) has its discharge side connected to the first port of the four-way switching valve (54) and its suction side connected to the second port of the four-way switching valve (54). .
  • the first adsorption heat exchanger (51), the electric expansion valve (55), and the second adsorption heat exchanger (52) are connected from the third port of the four-way switching valve (54). They are connected in order toward the fourth port.
  • the four-way switching valve (54) includes a first state (state shown in FIG. 9A) in which the first port and the third port communicate with each other, and the second port and the fourth port communicate with each other. These ports can be switched to the second state (the state shown in FIG. 9B) in which the second port communicates with the fourth port and the second port communicates with the third port.
  • the compressor (53) is a hermetic compressor in which a compression mechanism that compresses refrigerant and an electric motor that drives the compression mechanism are housed in one casing.
  • a compression mechanism that compresses refrigerant and an electric motor that drives the compression mechanism are housed in one casing.
  • the frequency of the alternating current supplied to the electric motor of the compressor (53) that is, the operating frequency of the compressor (53)
  • the rotational speed of the compression mechanism driven by the electric motor changes, and the compressor per unit time
  • the amount of refrigerant discharged from (53) changes. That is, the compressor (53) is configured to have a variable capacity.
  • a pipe connecting the discharge side of the compressor (53) and the first port of the four-way switching valve (54) includes a high pressure sensor (101) and a discharge pipe temperature sensor (103). It is attached.
  • the high pressure sensor (101) measures the pressure of the refrigerant discharged from the compressor (53).
  • the discharge pipe temperature sensor (103) measures the temperature of the refrigerant discharged from the compressor (53).
  • a low pressure sensor (102) and a suction pipe temperature sensor (104) are connected to a pipe connecting the suction side of the compressor (53) and the second port of the four-way switching valve (54). And are attached.
  • the low pressure sensor (102) measures the pressure of the refrigerant sucked into the compressor (53).
  • the suction pipe temperature sensor (104) measures the temperature of the refrigerant sucked into the compressor (53).
  • a pipe temperature sensor (105) is attached to a pipe connecting the third port of the four-way switching valve (54) and the first adsorption heat exchanger (51).
  • the pipe temperature sensor (105) is disposed in the vicinity of the four-way switching valve (54) in this pipe and measures the temperature of the refrigerant flowing in the pipe.
  • the humidity controller (10) is provided with a humidity controller (100) as a controller.
  • the microcomputer provided on the control board (91) constitutes the humidity control controller (100).
  • the humidity controller (100) receives the measured values of the inside air humidity sensor (96), the inside air temperature sensor (98), the outside air humidity sensor (97), and the outside air temperature sensor (99). Moreover, the measured value of each sensor (91, 92, ...) provided in the refrigerant circuit (50) is input to the humidity controller (100).
  • the humidity controller (100) controls the operation of the humidity controller (10) based on these input measurement values.
  • a dehumidification ventilation operation In the humidity control apparatus (10), a dehumidification ventilation operation, a humidification ventilation operation, and a simple ventilation operation, which will be described later, are switched by the control operation of the humidity controller (100).
  • the humidity controller (100) In addition, the humidity controller (100), during these operations, each damper (41 to 48), each fan (25, 26), compressor (53), electric expansion valve (55) and four-way switching valve (54 ) Control the operation.
  • the humidity control ventilation device (10) of the present embodiment selectively performs a dehumidification ventilation operation, a humidification ventilation operation, and a simple ventilation operation.
  • This humidity control ventilator (10) performs dehumidification ventilation operation and humidification ventilation operation as normal operation.
  • ⁇ Dehumidification ventilation operation> In the humidity control ventilator (10) during the dehumidification / ventilation operation, a first normal operation and a second normal operation, which will be described later, are alternately repeated at predetermined time intervals (for example, intervals of 3 to 4 minutes). During the dehumidifying ventilation operation, the first bypass damper (83) and the second bypass damper (84) are always closed.
  • the outdoor air is taken as the first air from the outside air inlet (24) into the casing (11), and the indoor air is taken from the inside air inlet (23) to the casing (11). ) Is taken in as second air.
  • the first normal operation of the dehumidifying ventilation operation will be described.
  • the first inside air side damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper ( 47) is opened, and the second inside air damper (42), the first outside air damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are closed.
  • the four-way switching valve (54) is set to the first state (the state shown in FIG. 9A), and the first adsorption heat exchanger (51) is set.
  • the second adsorption heat exchanger (52) serves as a condenser and serves as an evaporator.
  • the second adsorption heat exchanger (52) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the second adsorption heat exchanger (52) flows into the supply air passage (31) through the second supply air damper (46) and passes through the supply air fan chamber (36). Later, the air is supplied into the room through the air supply port (22).
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air given moisture in the first adsorption heat exchanger (51) flows into the exhaust side passage (33) through the first exhaust side damper (47) and passes through the exhaust fan chamber (35). It is discharged outside through the exhaust port (21).
  • the second normal operation of the dehumidifying ventilation operation will be described.
  • the second inside air side damper (42), the first outside air side damper (43), the first air supply side damper (45), and the second exhaust side damper ( 48) is opened, and the first inside air damper (41), second outside air damper (44), second air supply damper (46), and first exhaust damper (47) are closed.
  • the four-way switching valve (54) is set to the second state (the state shown in FIG. 9B), and the first adsorption heat exchanger (51) is The second adsorption heat exchanger (52) becomes an evaporator and becomes a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first adsorption heat exchanger (51) flows into the supply air passage (31) through the first supply air damper (45) and passes through the supply air fan chamber (36). Later, the air is supplied into the room through the air supply port (22).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air given moisture in the second adsorption heat exchanger (52) flows into the exhaust side passage (33) through the second exhaust side damper (48) and passes through the exhaust fan chamber (35). It is discharged outside through the exhaust port (21).
  • a first normal operation and a second normal operation which will be described later, are alternately repeated at predetermined time intervals (for example, at intervals of 3 to 4 minutes).
  • the first bypass damper (83) and the second bypass damper (84) are always closed.
  • the second inside air side damper (42), the first outside air side damper (43), the first air supply side damper (45), and the second exhaust side damper ( 48) is opened, and the first inside air damper (41), second outside air damper (44), second air supply damper (46), and first exhaust damper (47) are closed.
  • the four-way switching valve (54) is set to the first state (the state shown in FIG. 9A), and the first adsorption heat exchanger (51) is set.
  • the second adsorption heat exchanger (52) serves as a condenser and serves as an evaporator.
  • the second adsorption heat exchanger (52) moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture in the second adsorption heat exchanger (52) flows into the exhaust side passage (33) through the second exhaust side damper (48) and passes through the exhaust fan chamber (35). It is discharged outside through the exhaust port (21).
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the first adsorption heat exchanger (51) flows through the first air supply damper (45) into the air supply passage (31) and passes through the air supply fan chamber (36). Later, the air is supplied into the room through the air supply port (22).
  • the second normal operation of the humidified ventilation operation will be described.
  • the first inside air side damper (41), the second outside air side damper (44), the second air supply side damper (46), and the first exhaust side damper ( 47) is opened, and the second inside air damper (42), the first outside air damper (43), the first air supply side damper (45), and the second exhaust side damper (48) are closed.
  • the four-way switching valve (54) is set to the second state (the state shown in FIG. 9B), and the first adsorption heat exchanger (51) is
  • the second adsorption heat exchanger (52) becomes an evaporator and becomes a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture by the first adsorption heat exchanger (51) flows into the exhaust side passage (33) through the first exhaust side damper (47) and passes through the exhaust fan chamber (35). It is discharged outside through the exhaust port (21).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the second adsorption heat exchanger (52) flows through the second supply air damper (46) into the supply air passage (31) and passes through the supply air fan chamber (36). Later, the air is supplied into the room through the air supply port (22).
  • the humidity control ventilator (10) during the simple ventilation operation supplies the taken outdoor air (OA) to the room as supplied air (SA) as it is, and at the same time uses the taken indoor air (RA) as discharged air (EA). Drain outside.
  • OA taken outdoor air
  • RA taken indoor air
  • EA discharged air
  • the first bypass damper (83) and the second bypass damper (84) are opened, and the first room air damper (41) and the second room air damper are opened.
  • the 2nd exhaust side damper (48) will be in a closed state.
  • the compressor (53) of the refrigerant circuit (50) is stopped.
  • the indoor air is taken into the casing (11) from the inside air inlet (23).
  • the room air that has flowed into the inside air passage (32) through the inside air inlet (23) flows from the second bypass passage (82) through the second bypass damper (84) into the exhaust fan chamber (35). Then, it is discharged to the outside through the exhaust port (21).
  • the first to (N ⁇ 1) th humidity adjustments are performed by changing the rotational speed of the air supply fan (25) (or the exhaust fan (26)) of the Nth humidity control ventilation device (10n).
  • the first to (N-1) th humidity control ventilators (10a, 10b, 10c, ...) of the Nth humidity control ventilator (10n) are changed by changing the power consumption of the ventilators (10a, 10b, 10c, .
  • Automatically determines the connection to the same collective air supply duct (1a, 2a, 3a), and automatically determines the collective air supply duct (1a, 2a, 3a) to which the Nth humidity control ventilator (10n) is connected can do.
  • the air volume adjustment in the ventilation system (S) can be performed accurately.
  • the power consumption of the first to (N-1) humidity control ventilators (10a, 10b, 10c, ...) is increased by increasing the rotational speed of the air supply fan (25) of the Nth humidity control ventilator (10n).
  • the same collective air supply duct (1a, 2a, 3a) as the first to (N-1) humidity control ventilation devices (10a, 10b, 10c, ...) of the Nth humidity control ventilation device (10n) Since the connection to is automatically determined, the collective air supply duct (1a, 2a, 3a) to which the Nth humidity control ventilation device (10n) is connected can be automatically determined. As a result, the air volume adjustment in the ventilation system (S) can be performed accurately.
  • the number of ventilation devices connected to the collective duct has changed after the introduction of the ventilation system, it has been necessary to adjust the rotational speed of each fan again in order to obtain a predetermined ventilation air volume.
  • the number of fan rotations is determined in advance according to the number of connected units, or the power required to obtain a predetermined ventilation volume is calculated based on the number of fan rotations.
  • the calculated required power and the power consumption during operation A method of controlling the number of rotations of the fan based on the excess or deficiency is performed.
  • the number of connected ducts is often changed in a short period of time, and the above method may be performed at all times. Therefore, the estimated number of connected ducts and the actual number of connected ducts are different. If different, each ventilator may run out of air.
  • the ventilation device connected to the collective duct (1, 2, 3) can be automatically determined.
  • the air volume adjustment in the ventilation system (S) can be performed accurately.
  • the adsorbent is a material that mainly adsorbs water vapor, such as zeolite or silica gel, but the present invention is not limited to this, and a material that performs both adsorption and absorption of water vapor (so-called sorbent). ) May be used.
  • a hygroscopic organic polymer material is used as the adsorbent.
  • an organic polymer material used as an adsorbent a plurality of polymer main chains having hydrophilic polar groups in the molecule are cross-linked with each other, and the plurality of polymer main chains cross-linked with each other form a three-dimensional structure. Forming.
  • the adsorbent of this embodiment swells by capturing water vapor (that is, absorbing moisture).
  • the mechanism by which the adsorbent swells by absorbing moisture is presumed as follows. In other words, when this adsorbent absorbs moisture, water vapor is adsorbed around the hydrophilic polar group, and the electric force generated by the reaction between the hydrophilic polar group and water vapor acts on the polymer main chain. As a result, the polymer main chain is deformed.
  • both the phenomenon that water vapor is adsorbed by the adsorbent and the phenomenon that water vapor is absorbed by the adsorbent occur. That is, water vapor is sorbed on the adsorbent.
  • the water vapor trapped in the sorbent enters not only the surface of the three-dimensional structure composed of a plurality of polymer main chains cross-linked with each other but also into the interior thereof. As a result, a large amount of water vapor is trapped in this adsorbent as compared with zeolite that only adsorbs water vapor on the surface.
  • this adsorbent shrinks by releasing water vapor (that is, moisture release). That is, when this adsorbent dehumidifies, the amount of water trapped in the gap between the polymer main chains decreases, and the shape of the three-dimensional structure composed of a plurality of polymer main chains is reduced. The volume of the adsorbent decreases as it returns.
  • the material used as the adsorbent of the present embodiment is not limited to the above-described material as long as it swells by absorbing moisture and contracts by releasing moisture.
  • it is an ion exchange resin having hygroscopicity. May be.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the humidity control ventilator (10) and the booster fan (4) are used as the ventilator, but the present invention is not limited to these, and may be a total heat exchange type ventilator.
  • the air supply fan (26) of the Nth humidity control ventilator (10n) is driven to supply air from the first to (N-1) humidity control ventilators (10a to 10n-1).
  • the connection determination unit (5c) the second humidity control ventilation device (10b) and the sixth humidity control ventilation device (10f) are reduced by a decrease in the rotational speed of the air supply fan (26) of the Nth humidity control ventilation device (10n). ), ..., the power consumption of the air supply fans (26 to 26) is increased, so that the collective duct to which the Nth humidity control ventilation device (10n) is connected is connected to the second humidity control ventilation device (10b), It determines with the 2nd collective air supply duct (2a) same as humidity control ventilation apparatus (10f).
  • the collective exhaust ducts (1b, 2b, 3b) are the same as the collective air supply ducts (1a, 2a, 3a), and thus the description thereof is omitted.
  • the rotational speed of the air supply fan (25) of the Nth humidity control ventilator (10n) is reduced to reduce the first to (N-1) th humidity control ventilators (10a, 10b, 10c,... ) Increase in power consumption, the same collective air supply duct (1a, 10b, 10c,...)
  • the first to (N-1) th humidity control ventilation devices (10a, 10b, 10c,...) Since the connection to 2a, 3a) is automatically determined, the collective air supply duct (1a, 2a, 3a) to which the Nth humidity control ventilation device (10n) is connected can be automatically determined. As a result, the air volume adjustment in the ventilation system (S) can be performed accurately.
  • the ventilation controller (5) is provided with the one fan control part (5a) which controls the fan (25,26) and booster fan (4) of each humidity control ventilation apparatus (10a-10n).
  • the present invention is not limited to this, and the fan control unit (5a) is provided in each of the humidity control ventilation devices (10a to 10n) and the booster fan (4), and each humidity control ventilation device (10a to 10n) is provided.
  • Fans (25, 26) and booster fan (4) may be controlled.
  • the ventilation controller (5) is provided with the one fan control part (5a) which controls the fan (25,26) and booster fan (4) of each humidity control ventilation apparatus (10a-10n).
  • each of the humidity control ventilation devices (10a to 10n) and the booster fan (4) is provided with a control device for the fans themselves, and each fan is controlled individually. It may be.
  • a control device for one fan is connected to each of the humidity control ventilation devices (10a to 10n) and the booster fan (4).
  • the fan control device individually controls the operation of the fan motor of each fan (4, 25, 26) based on a signal from the fan control unit (5a), and also controls each fan (4, 25, 26). ) Is kept constant at a predetermined number of revolutions.
  • the fan control device and the fan control section (5a) constitute a fan control section according to the present invention.
  • the ventilation controller (5) is a power detection unit that detects power consumption during driving of the fans (25, 26) and the booster fan (4) of each humidity control ventilation device (10a to 10n).
  • the power detection unit (5b) is provided in each of the humidity control ventilation devices (10a to 10n) and the booster fan (4), and each drive is provided. You may make it detect the power consumption at the time.
  • the power detection unit (5b) is connected to the air supply fan (26) of the connected humidity control ventilator (10a to 10n) and the fan motor of the exhaust fan (25), and detects its power consumption. ing.
  • the power detection unit (5b) is connected to the fan motor of the booster fan (4) and detects its power consumption.
  • Each power detection unit (5b) is configured to send detected power consumption data to the ventilation controller (5).
  • the ventilation controller (5) has one connection determination unit (1) that determines the collective ducts (1, 2, 3) to which the humidity control ventilation devices (10a to 10n) and the booster fan (4) belong. 5c), but the present invention is not limited to this, and each humidity control ventilation device includes a connection determination unit (5c) in each humidity control ventilation device (10a to 10n) and booster fan (4). (10a to 10n) and the collective duct (1, 2, 3) to which the booster fan (4) belongs may be determined.
  • the present invention is useful for a ventilation system in which a plurality of ventilation devices are connected to a duct.

Abstract

 換気システム(S)は、第2および第6調湿換気装置(10b,10f)のファン(25,26)を駆動させると共に、第N調湿換気装置(10n)のファン(25,26)の回転数を変化させた際、電力検出部(5b)が第2および6調湿換気装置(10b,10f)のファン(25,26)の消費電力の変化を検出すると、第N調湿換気装置(10n)と第2および6調湿換気装置(10b,10f)とが同じ第2集合ダクト(2)に接続されていることを判定する接続判定部(5c)を備えている。

Description

換気システム
  本発明は、複数の換気装置がダクトに接続された換気システムに関するものである。
  従来より、特許文献1に示すように、複数の接続機器が共通の集合ダクトに接続された換気システムが知られている。この換気システムでは、外気を取り込むダクトを複数の接続機器が接続される集合ダクトとすることでダクトの施工を簡略化させている。
実開平06-6465号公報
  ところで、集合ダクトを備えた換気システムとしては、集合ダクトに接続機器として、例えば空気調和装置や調湿換気装置、送風機等の換気装置が用いられたものが知られている。このような換気システムでは、集合ダクトに接続された換気装置の台数に応じて該集合ダクトの仕様を設定する必要があるため、換気システムの導入時には、集合ダクトに接続された全ての換気装置を稼動させて必要な換気風量が確保されるか否かを確認している。
  しかしながら、この換気システムでは、風量調整時において該換気システムに含まれる多数の換気装置と特定の集合ダクトとの接続関係を自動的に判定することができず、想定した集合ダクトの接続台数と、実際の集合ダクトの接続台数とが異なる場合がある。
  このような場合、例えば、想定した集合ダクトの接続台数よりも実際の集合ダクトの接続台数が多くなると、通常運転時における換気風量が想定した換気風量よりも大きくなってしまうため、空圧の損失が大きくなり、各々の換気装置が風量不足になるという問題があった。
  本発明は、斯かる点に鑑みてなされたものであり、複数の換気装置を含んだ換気システムにおいて、特定の集合ダクトに所属する換気装置を自動的に判定することを目的とする。
  本発明は、特定のダクトに所属する換気装置を自動的に判定するようにしたものである。
  第1の発明は、それぞれが送風ファン(25,26)を備えた特定換気装置(10a,10b,10c,…)および判定用換気装置(10n)を含む複数の換気装置(10a~10n)と、上記各換気装置(10a~10n)が接続されるダクト(1,2,3)と、上記各換気装置(10a~10n)の送風ファン(25,26)の回転数を制御するファン制御部(5a)と、上記各換気装置(10a~10n)の送風ファン(25,26)の消費電力の変化を検出する電力検出部(5b)と、上記ファン制御部(5a)が、1つの特定ダクト(1,2,3)に接続された特定換気装置(10a,10b,10c,…)の送風ファン(25,26)を駆動させると共に、判定用換気装置(10n)の送風ファン(25,26)の回転数を変化させた際、上記電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の変化を検出すると、上記判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが同じダクト(1,2,3)に接続されていることを判定する一方、上記電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の変化を検出しないと、上記判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが異なるダクトに接続されていることを判定する接続判定部(5c)とを備えているものである。
  上記第1の発明では、送風ファン(25,26)を有する複数の換気装置(10a~10n)がダクト(1,2,3)に接続されている。ファン制御部(5a)は、各換気装置(10a~10n)の送風ファン(25,26)の回転数を制御するものであり、電力検出部(5b)は、各換気装置(10a~10n)の送風ファン(25,26)の消費電力の変化を検出するものである。
  ファン制御部(5a)は、1つの特定ダクト(1,2,3)に接続された特定換気装置(10a,10b,10c,…)の送風ファン(25,26)を駆動させつつ、判定用換気装置(10n)の送風ファン(25,26)の回転数を変化させる。このとき、電力検出部(5b)は、駆動する特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の変化を検出する。
  接続判定部(5c)は、特定換気装置(10a,10b,10c,…)の消費電力の変化を検出すると、判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが同じダクト(1,2,3)に接続されると判定する一方、特定換気装置(10a,10b,10c,…)の消費電力の変化が検出されないと、判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが異なるダクトに接続されると判定する。
  第2の発明は、上記第1の発明において、上記接続判定部(5c)が、上記判定用換気装置(10n)の送風ファン(25,26)の回転数を上昇させた際、上記特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力が低下すると、上記判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定するよう構成されているものである。
  上記第2の発明では、ファン制御部(5a)が判定用換気装置(10n)の送風ファン(25,26)の回転数を上昇させた際、電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の低下を検出すると、接続判定部(5c)は、判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定する。
  一方、ファン制御部(5a)が判定用換気装置(10n)の送風ファン(25,26)の回転数を上昇させた際、電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の低下を検出しなければ、接続判定部(5c)は、判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と異なるダクトに接続されていると判定する。
  第3の発明は、上記第1の発明において、上記接続判定部(5c)は、上記判定用換気装置(10n)の送風ファン(25,26)の回転数を低下させた際、上記特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力が上昇すると、上記判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定するよう構成されているものである。
  上記第3の発明では、ファン制御部(5a)が判定用換気装置(10n)の送風ファン(25,26)の回転数を低下させた際、電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の上昇を検出すると、接続判定部(5c)は、判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定する。
  一方、ファン制御部(5a)が判定用換気装置(10n)の送風ファン(25,26)の回転数を低下させた際、電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の上昇を検出しなければ、接続判定部(5c)は、判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と異なるダクトに接続されていると判定する。
  上記第1の発明によれば、判定用換気装置(10n)の送風ファン(25,26)の回転数を変化させて特定換気装置(10a,10b,10c,…)の消費電力が変化することで判定用換気装置(10n)の特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)への接続を自動判定したため、判定用換気装置(10n)が接続されるダクト(1,2,3)を自動で判定することができる。この結果、換気システムにおける風量調整を正確に行うことができる。
  上記第2の発明によれば、判定用換気装置(10n)の送風ファン(25,26)の回転数を上昇させて特定換気装置(10a,10b,10c,…)の消費電力が低下することで判定用換気装置(10n)の特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)への接続を自動判定したため、判定用換気装置(10n)が接続されるダクト(1,2,3)を自動で判定することができる。この結果、換気システムにおける風量調整を正確に行うことができる。
  上記第3の発明によれば、判定用換気装置(10n)の送風ファン(25,26)の回転数を低下させて特定換気装置(10a,10b,10c,…)の消費電力が上昇することで判定用換気装置(10n)の特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)への接続を自動判定したため、判定用換気装置(10n)が接続されるダクト(1,2,3)を自動で判定することができる。この結果、換気システムにおける風量調整を正確に行うことができる。
図1は、換気システムを示す構成図である。 図2は、判定手順を示すフローチャート図である。 図3は、判定方法を示す図である。 図4は、換気装置のダクトへの接続関係を示す図である。 図5は、前面側から見た調湿換気装置をケーシングの天板を省略して示す斜視図である。 図6は、前面側から見た調湿換気装置をケーシングの一部および電装品箱を省略して示す斜視図である。 図7は、調湿換気装置をケーシングの天板を省略して示す平面図である。 図8は、調湿換気装置の一部を省略して示す概略の平面図、右側面図および左側面図である。 図9は、冷媒回路の構成を示す配管系統図であって、図5(A)は第1通常動作を示すものであり、図5(B)は第2通常動作を示すものである。 図10は、除湿換気運転の第1通常動作における空気の流れを示す調湿換気装置の概略の平面図、右側面図および左側面図である。 図11は、除湿換気運転の第2通常動作における空気の流れを示す調湿換気装置の概略の平面図、右側面図および左側面図である。 図12は、加湿換気運転の第1通常動作における空気の流れを示す調湿換気装置の概略の平面図、右側面図および左側面図である。 図13は、加湿換気運転の第2通常動作における空気の流れを示す調湿換気装置の概略の平面図、右側面図および左側面図である。 図14は、単純換気運転における空気の流れを示す調湿換気装置の概略の平面図、右側面図および左側面図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。
  〈換気システムの構成〉
  図1は、本発明の実施形態に係る換気システム(S)を示している。この換気システム(S)は、複数の換気装置(4,10a,…)と換気コントローラ(5)を備えて構成されている。換気装置(4,10a,…)には、第1調湿換気装置(10a)~第N調湿換気装置(10n)とブースタファン(4)が含まれている。
  また、換気システム(S)では、複数の調湿換気装置(10a~10n)が接続される複数の共通のダクト(1~3)に接続され、室外(9)と室内(8)を繋いでいる。具体的に、換気システム(S)は、第1集合ダクト(1)と第2集合ダクト(2)と第3集合ダクト(3)とを備え、各集合ダクト(1,2,3)がそれぞれ少なくとも一台以上の調湿換気装置(10a~10n)に接続されている。各集合ダクト(1,2,3)は本発明に係るダクトを構成している。
  上記第1集合ダクト(1)には、第1調湿換気装置(10a)、第4調湿換気装置(10d)、第5調湿換気装置(10e)およびブースタファン(4)が接続されている。上記第2集合ダクト(2)には、第2調湿換気装置(10b)、第6調湿換気装置(10f)が接続されている。上記第3集合ダクト(3)には、第3調湿換気装置(10c)が接続されている。
  各集合ダクト(1,2,3)は、給気側のダクトと排気側のダクトの2系統のダクトで構成されている。具体的に第1集合ダクト(1)は、第1集合給気ダクト(1a)と第1集合排気ダクト(1b)とで構成されている。第2集合ダクト(2)は、第2集合給気ダクト(2a)と第2集合排気ダクト(2b)とで構成されている。第3集合ダクト(3)は、第3集合給気ダクト(3a)と第3集合排気ダクト(3b)とで構成されている。
  次に、換気システム(S)を構成する調湿換気装置である第1調湿換気装置(10a)~第N調湿換気装置(10n)、ブースタファン(4)および換気コントローラ(5)について説明した後、調湿換気装置(10)について具体的に説明する。
  上記第1調湿換気装置(10a)~第N調湿換気装置(10n)は、同じ構造であり、いわゆる調湿換気装置である。したがって、第1調湿換気装置(10a)~第N調湿換気装置(10n)は、それぞれが調湿換気装置(10)に構成されている。この調湿換気装置(10)は本発明に係る換気装置を構成している。
  上記調湿換気装置(10)は、室内の湿度調節と共に室内(8)の換気を行うものであり、取り込んだ室外空気(OA)を湿度調節して室内(8)へ供給すると同時に、取り込んだ室内空気(RA)を室外(9)に排出する。この調湿換気装置(10)は、ケーシング(11)を備えている。ケーシング(11)には、室外空気(OA)を取り込むための外気吸込口(24)、調湿した空気(SA)を室内(8)へ供給する給気口(22)、室内空気(RA)を取り込む内気吸込口(23)、及び室内空気を排出空気(EA)として室外へ排出する排気口(21)が形成されている。外気吸込口(24)と給気口(22)との間には、給気通路が形成され、内気吸込口(23)と排気口(21)との間には、排気通路が形成されている。ケーシング(11)には、給気通路を通過する供給空気と排気通路を通過する排出空気とを熱交換させる熱交換器(51,52)が設けられている。ケーシング(11)は、給気通路と排気通路が熱交換器(51,52)で交差するように形成されている。
  給気通路には、給気ファン(26)が設けられている。上記給気ファン(26)は、DCファン(DCモータを駆動源とするファン)により構成されている。この給気ファン(26)は、本発明に係る送風ファンを構成している。給気通路の給気上流側(室外側)の外気吸込口(24)は、室外側給気ダクト(61)に連通している。室外側給気ダクト(61)は、その給気上流側端において集合給気ダクト(1a,2a,3a)に連通している。集合給気ダクト(1a,2a,3a)は、その給気上流側の換気口において室外(9)に連通している。また、給気通路の給気下流側(室内側)の給気口(22)は、室内側給気ダクト(64)に連通している。室内側給気ダクト(64)は、給気グリル(7)を介して室内に繋がっている。つまり、室外の空気は、換気口から集合給気ダクト(1a,2a,3a)に取り込まれ、室外側給気ダクト(61)を介して各調湿換気装置(10a~10n)の給気通路に取り込まれた後、室内側給気ダクト(64)を通って給気グリル(7)から室内(8)へと取り込まれる。
  排気通路には、排気ファン(25)が設けられている。排気ファン(25)は、DCファンにより構成されている。排気ファン(25)は、本発明に係る送風ファンを構成している。排気通路の排気下流側(室外側)の排気口(21)は、室外側排気ダクト(65)に連通している。室外側排気ダクト(65)は、その排気下流側端において集合排気ダクト(1b,2b,3b)に連通している。集合排気ダクト(1b,2b,3b)は、その排気下流側(室外側)の換気口において室外(9)に連通している。また、排気通路の排気上流側(室内側)の内気吸込口(23)は、室内側排気ダクト(68)に連通している。室内側排気ダクト(68)は、排気グリル(6)を介して室内(8)と繋がっている。つまり、室内の空気は、排気グリル(6)から室内側排気ダクト(68)を通過して各調湿換気装置(10a~10n)の排気通路に取り込まれた後、室外側排気ダクト(65)を通って集合排気ダクト(1b,2b,3b)に取り込まれ、換気口から室外(9)へと排出される。
  上記ブースタファン(4)は、給気ファン(26)による給気を補助するための補助ファンであって、本発明に係る換気装置を構成している。ブースタファン(4)は、DCファンにより構成され、第1集合給気ダクト(1a)における空気の上流側に配設されている。また、ブースタファン(4)は、換気コントローラ(5)により作動制御される。
  上記換気コントローラ(5)は、換気システム(S)が有する全調湿換気装置(10a~10n)およびブースタファン(4)を各集合ダクト(1,2,3)ごとに自動的にグループ分けするものである。この換気コントローラ(5)は、ファン制御部(5a)と電力検出部(5b)と接続判定部(5c)とを備えている。
  上記ファン制御部(5a)は、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)を制御するためのものである。具体的に、ファン制御部(5a)は、各ファン(4,25,26)のファンモータをそれぞれ個別に作動制御し、且つ各ファン(4,25,26)の回転数を所定の回転数で一定に保って駆動させる。つまり、ファン制御部(5a)は、任意のファンを一定の回転数で駆動させることができる。尚、所定の回転数とは通常運転時の回転数に限られない。
  上記電力検出部(5b)は、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)の駆動時の消費電力を検出するものである。具体的に、電力検出部(5b)は、各調湿換気装置(10a~10n)の給気ファン(26)および排気ファン(25)のファンモータに接続され、その消費電力を検出している。また、電力検出部(5b)は、ブースタファン(4)のファンモータに接続され、その消費電力を検出している。
  上記接続判定部(5c)は、各調湿換気装置(10a~10n)およびブースタファン(4)の属する集合ダクト(1,2,3)を判定するものである。接続判定部(5c)には、上記電力検出部(5b)で検出した各調湿換気装置(10a~10n)又はブースタファン(4)の消費電力の変化が入力される。接続判定部(5c)では、複数の調湿換気装置(10a~10n)およびブースタファン(4)を順番に一台ずつ起動させ、このときの他の調湿換気装置(10a,…)の消費電力の変化によって対象とする調湿換気装置(例えば、第N調湿換気装置(10n))およびブースタファン(4)の属する集合ダクト(2)を判定するようにしている。
    -判定手順-
  次に、換気システム(S)における各調湿換気装置(10a~10n)を各集合ダクト(1,2,3)毎に分けるグループ分けの手順について図2に基づいて説明する。尚、本実施形態では、各調湿換気装置(10a~10n)のダクト接続について、集合給気ダクト(1a,2a,3a)とのダクト接続のみ説明する。集合排気ダクト(1b,2b,3b)については、集合給気ダクト(1a,2a,3a)と同様であるので説明を省略する。換気システム(S)は、換気コントローラ(5)にN台の接続機器である調湿換気装置(10a~10n)と1台のブースタファン(4)が接続されて構成されている。尚、本判定手順において、換気システム(S)に接続される接続機器の総数をX台(X=N+1,X≧2)として説明する。
  まず、換気コントローラ(5)では、換気コントローラ(5)に接続される複数の調湿換気装置(10a~10n)およびブースタファン(4)を自動的に検出する(ST1)。このため、接続機器の総数XはN+1台となる。
  次に、ファン制御部(5a)が一台目(N=1)となる第1調湿換気装置(10a)を選び(ST2)、該第1調湿換気装置(10a)の給気ファン(26)を所定の回転数で駆動する(ST3)。
  そして、第1調湿換気装置(10a)は、一台目(N=1)であると判定され(ST4)、ST3に移行する。
  尚、図3に示すように、接続判定部(5c)は、一台目である第1調湿換気装置(10a)が接続されている集合ダクトを第1集合ダクト(1)と判定する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)の給気ファン(26)の消費電力を検出しつつ、ファン制御部(5a)は第1調湿換気装置(10a)の給気ファン(26)の回転数を一定に保ったまま、一定の時間間隔を置いて、二台目(N=2)となる第2調湿換気装置(10b)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1調湿換気装置(10a)は本発明に係る特定換気装置を構成し、第2調湿換気装置(10b)は本発明に係る判定用換気装置を構成し、第1集合給気ダクト(1a)は本発明に係る1つの特定ダクトを構成している。
  そして、第2調湿換気装置(10b)は、二台目(N=2)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、図3に示すように、電力検出部(5b)において消費電力に変化がないため、接続判定部(5c)は、第2調湿換気装置(10b)が接続されている集合ダクトを第2集合ダクト(2)と判定する(ST5)。
  そして、第2調湿換気装置(10b)は、二台目(N=2)であるため、X>2と判定され(ST6)、ST3に移行する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)および第2調湿換気装置(10b)の給気ファン(26,26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)および第2調湿換気装置(10b)の給気ファン(26,26)の回転数を所定回転数一定に保ったまま、一定の時間間隔を置いて、三台目(N=3)となる第3調湿換気装置(10c)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1調湿換気装置(10a)および第2調湿換気装置(10b)は本発明に係る特定換気装置を構成し、第3調湿換気装置(10c)は本発明に係る判定用換気装置を構成している。
  そして、第3調湿換気装置(10c)は、三台目(N=3)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、図3に示すように、電力検出部(5b)において消費電力に変化がないため、接続判定部(5c)は、第3調湿換気装置(10c)が接続されている集合ダクトを第3集合ダクト(3)と判定する(ST5)。
  そして、第3調湿換気装置(10c)は、三台目(N=3)であるため、X>3と判定され(ST6)、ST3に移行する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)~第3調湿換気装置(10c)の給気ファン(26,26,26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)~第3調湿換気装置(10c)の給気ファン(26,26,26)の回転数を所定回転数一定に保ったまま、一定の時間間隔を置いて、四台目となる第4調湿換気装置(10d)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1~第3調湿換気装置(10a~10c)は本発明に係る特定換気装置を構成し、第4調湿換気装置(10d)は本発明に係る判定用換気装置を構成し、第1集合給気ダクト(1a)は本発明に係る1つの特定ダクトを構成している。
  そして、第4調湿換気装置(10d)は、四台目(N=3)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、電力検出部(5b)では、第4調湿換気装置(10d)の給気ファン(26)の駆動によって第1調湿換気装置(10a)の給気ファン(26)の消費電力が低下する。接続判定部(5c)では、第4調湿換気装置(10d)の給気ファン(26)の駆動によって第1調湿換気装置(10a)の給気ファン(26)の消費電力が低下したことで、この第4調湿換気装置(10d)が接続されている集合ダクトを第1調湿換気装置(10a)と同じ第1集合給気ダクト(1a)であると判定する(ST5)。
  そして、第4調湿換気装置(10d)は、四台目(N=4)であるため、X>4と判定され(ST6)、ST3に移行する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)~第4調湿換気装置(10d)の給気ファン(26,26,26,26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)~第4調湿換気装置(10d)の給気ファン(26,26,26,26)の回転数を所定回転数一定に保ったまま、一定の時間間隔を置いて、五台目となる第5調湿換気装置(10e)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1~第4調湿換気装置(10a~10d)は本発明に係る特定換気装置を構成し、第5調湿換気装置(10e)は本発明に係る判定用換気装置を構成し、第1集合給気ダクト(1a)は本発明に係る1つの特定ダクトを構成している。
  そして、第5調湿換気装置(10e)は、五台目(N=5)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、電力検出部(5b)では、第5調湿換気装置(10e)の給気ファン(26)の駆動によって第1調湿換気装置(10a)および第4調湿換気装置(10d)の給気ファン(26,26)の消費電力が低下する。そして、接続判定部(5c)では、第5調湿換気装置(10e)の給気ファン(26)の駆動によって第1調湿換気装置(10a)および第4調湿換気装置(10d)の給気ファン(26,26)の消費電力が低下したことで、第5調湿換気装置(10e)が接続されている集合ダクトを第1調湿換気装置(10a)および第4調湿換気装置(10d)と同じ第1集合給気ダクト(1a)と判定する(ST5)。
  そして、第5調湿換気装置(10e)は、五台目(N=5)であるため、X>5と判定され(ST6)、ST3に移行する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)~第5調湿換気装置(10e)の給気ファン(26,26,26,26,26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)~第5調湿換気装置(10e)の給気ファン(26,26,26,26,26)の回転数を所定回転数一定に保ったまま、一定の時間間隔を置いて、六台目となる第6調湿換気装置(10f)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1~第5調湿換気装置(10a~10e)は本発明に係る特定換気装置を構成し、第6調湿換気装置(10f)は本発明に係る判定用換気装置を構成し、第2集合給気ダクト(2a)は本発明に係る1つの特定ダクトを構成している。
  そして、第6調湿換気装置(10f)は、6台目(N=6)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、電力検出部(5b)では、第6調湿換気装置(10f)の給気ファン(26)の駆動によって第2調湿換気装置(10b)の給気ファン(26)の消費電力が低下する。そして、接続判定部(5c)では、第6調湿換気装置(10f)の給気ファン(26)の駆動によって第2調湿換気装置(10b)の給気ファン(26)の消費電力が低下したことで、この第6調湿換気装置(10f)が接続されている集合ダクトを第2調湿換気装置(10b)と同じ第2集合給気ダクト(2a)であると判定する(ST5)。
  このように、順番に判定手順を繰り返すことによって調湿換気装置(10a~10n)を集合ダクト(1,2,3)毎にグループ分けすることができる(図4参照)。
  次に、N番目の換気装置である第N調湿換気装置(10n)について説明する。
  第N調湿換気装置(10n)においては、電力検出部(5b)は、第1調湿換気装置(10a)~第(N-1)調湿換気装置(10n-1)の給気ファン(26~26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)~第(N-1)調湿換気装置(10n-1)の給気ファン(26~26)の回転数を所定回転数で一定に保ったまま、一定の時間間隔を置いて、N台目となる第N調湿換気装置(10n)の給気ファン(26)を駆動する(ST3)。尚、このとき、第1~第(N-1)調湿換気装置(10a~10n-1)は本発明に係る特定換気装置を構成し、第N調湿換気装置(10n)は本発明に係る判定用換気装置を構成し、第2集合給気ダクト(2a)は本発明に係る1つの特定ダクトを構成している。
  そして、第N調湿換気装置(10n)は、N台目(N=N)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、電力検出部(5b)では、第N調湿換気装置(10n)の給気ファン(26)の駆動によって第2調湿換気装置(10b)、第6調湿換気装置(10f)、…の給気ファン(26~26)の消費電力が低下する。そして、接続判定部(5c)では、第N調湿換気装置(10n)の給気ファン(26)の駆動によって第2調湿換気装置(10b)、第6調湿換気装置(10f)、…の給気ファン(26~26)の消費電力が低下したことで、第N調湿換気装置(10n)が接続されている集合ダクトを第2調湿換気装置(10b)、第6調湿換気装置(10f)、…と同じ第2集合給気ダクト(2a)と判定する(ST5)。
  そして、第N調湿換気装置(10n)は、N台目(N=N)であるため、X>N(X=N+1)と判定され(ST6)、ST3に移行する。
  次に、電力検出部(5b)は、第1調湿換気装置(10a)~第N調湿換気装置(10n)の給気ファン(26~26)の消費電力の検出を継続し、ファン制御部(5a)は、第1調湿換気装置(10a)~第N調湿換気装置(10n)の給気ファン(26~26)の回転数を所定回転数で一定に保ったまま、一定の時間間隔を置いて、N+1台目となるブースタファン(4)を駆動する(ST3)。尚、このとき、第1~第N調湿換気装置(10a~10n)は本発明に係る特定換気装置を構成し、ブースタファン(4)は本発明に係る判定用換気装置を構成し、第1集合給気ダクト(1a)は本発明に係る1つの特定ダクトを構成している。
  そして、ブースタファン(4)は、N+1台目(N=N+1)であるため、N>1であると判定され(ST4)、ST5に移行する。
  このとき、電力検出部(5b)では、ブースタファン(4)の駆動によって第1調湿換気装置(10a)、第4調湿換気装置(10d)、第5調湿換気装置(10e)、…の給気ファン(26~26)の消費電力が低下する。そして、接続判定部(5c)では、ブースタファン(4)の駆動によって第1調湿換気装置(10a)、第4調湿換気装置(10d)、第5調湿換気装置(10e)、…の給気ファン(26~26)の消費電力が低下したことで、ブースタファン(4)が接続されている集合ダクトを第1調湿換気装置(10a)、第4調湿換気装置(10d)、第5調湿換気装置(10e)、…と同じ第1集合給気ダクト(1a)と判定する(ST5)。
  そして、ブースタファン(4)は、N+1台目(N=N+1)であるため、X=N+1(X=N+1)と判定され(ST6)、接続機器の自動検出を終了する(ST7)。
   〈調湿換気装置の具体的な構成〉
  調湿換気装置(10)について、図5~図8を適宜参照しながら説明する。なお、ここでの説明で用いる「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、調湿換気装置(10)を前面側から見た場合の方向を意味している。
  調湿換気装置(10)は、ケーシング(11)を備えている。また、ケーシング(11)内には、冷媒回路(50)が収容されている。この冷媒回路(50)には、第1吸着熱交換器(51)、第2吸着熱交換器(52)、圧縮機(53)、四方切換弁(54)および電動膨張弁(55)が接続されている。冷媒回路(50)の詳細は後述する。
  ケーシング(11)は、やや扁平で高さが比較的低い直方体状に形成されている。図6に示すケーシング(11)では、左手前の側面(即ち、前面)が前面パネル部(12)となり、右奥の側面(即ち、背面)が背面パネル部(13)となり、右手前の側面が第1側面パネル部(14)となり、左奥の側面が第2側面パネル部(15)となっている。
  ケーシング(11)には、外気吸込口(24)と、内気吸込口(23)と、給気口(22)と、排気口(21)とが形成されている。外気吸込口(24)および内気吸込口(23)は、背面パネル部(13)に開口している。外気吸込口(24)は、背面パネル部(13)の下側部分に配置されている。内気吸込口(23)は、背面パネル部(13)の上側部分に配置されている。給気口(22)は、第1側面パネル部(14)における前面パネル部(12)側の端部付近に配置されている。排気口(21)は、第2側面パネル部(15)における前面パネル部(12)側の端部付近に配置されている。
  ケーシング(11)の内部空間には、上流側仕切板(71)と、下流側仕切板(72)と、中央仕切板(73)と、第1仕切板(74)と、第2仕切板(75)とが設けられている。これらの仕切板(71~75)は、何れもケーシング(11)の底板に立設されており、ケーシング(11)の内部空間をケーシング(11)の底板から天板に亘って区画している。
  上流側仕切板(71)および下流側仕切板(72)は、前面パネル部(12)および背面パネル部(13)と平行な姿勢で、ケーシング(11)の前後方向に所定の間隔をおいて配置されている。上流側仕切板(71)は、背面パネル部(13)寄りに配置されている。下流側仕切板(72)は、前面パネル部(12)寄りに配置されている。
  第1仕切板(74)および第2仕切板(75)は、第1側面パネル部(14)および第2側面パネル部(15)と平行な姿勢で設置されている。第1仕切板(74)は、上流側仕切板(71)と下流側仕切板(72)の間の空間を右側から塞ぐように、第1側面パネル部(14)から所定の間隔をおいて配置されている。第2仕切板(75)は、上流側仕切板(71)と下流側仕切板(72)の間の空間を左側から塞ぐように、第2側面パネル部(15)から所定の間隔をおいて配置されている。
  中央仕切板(73)は、上流側仕切板(71)および下流側仕切板(72)と直交する姿勢で、上流側仕切板(71)と下流側仕切板(72)の間に配置されている。中央仕切板(73)は、上流側仕切板(71)から下流側仕切板(72)に亘って設けられ、上流側仕切板(71)と下流側仕切板(72)の間の空間を左右に区画している。
  ケーシング(11)内において、上流側仕切板(71)と背面パネル部(13)の間の空間は、上下2つの空間に仕切られており、上側の空間が内気側通路(32)を構成し、下側の空間が外気側通路(34)を構成している。内気側通路(32)は、内気吸込口(23)に連通する室内側排気ダクト(68)を介して室内(8)と連通している。内気側通路(32)には、内気側フィルタ(27)と内気湿度センサ(96)と内気温度センサ(98)とが設置されている。内気温度センサ(98)および内気湿度センサ(96)は、吸着熱交換器(51,52)の上流(1次側)の空気であって、室内から吸入される空気(RA)の温度および湿度を計測するものである。外気側通路(34)は、外気吸込口(24)に連通する室外側給気ダクト(61)を介して室外(9)と連通している。外気側通路(34)には、外気側フィルタ(28)と外気湿度センサ(97)と外気温度センサ(99)とが設置されている。外気温度センサ(99)および外気湿度センサ(97)は、吸着熱交換器(51,52)の上流(1次側)の空気であって、室外から吸入される空気(OA)の温度および湿度を計測するものである。なお、内気温度センサ(98)および外気温度センサ(99)は、図8以外における図示は省略する。この内気湿度センサ(96)は、室内空気の相対湿度を検出し、外気湿度センサ(97)は、室外空気の相対湿度を検出する。
  ケーシング(11)内における上流側仕切板(71)と下流側仕切板(72)の間の空間は、中央仕切板(73)によって左右に区画されており、中央仕切板(73)の右側の空間が第1熱交換器室(37)を構成し、中央仕切板(73)の左側の空間が第2熱交換器室(38)を構成している。第1熱交換器室(37)には、第1吸着熱交換器(51)が収容されている。第2熱交換器室(38)には、第2吸着熱交換器(52)が収容されている。また、図示しないが、第1熱交換器室(37)には、冷媒回路(50)の電動膨張弁(55)が収容されている。
  各吸着熱交換器(51,52)は、吸着剤を空気と接触させるための吸着部材である。各吸着熱交換器(51,52)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器の表面に吸着剤を担持させたものであって、全体として長方形の厚板状あるいは扁平な直方体状に形成されている。各吸着熱交換器(51,52)は、その前面および背面が上流側仕切板(71)および下流側仕切板(72)と平行になる姿勢で、熱交換器室(37,38)内に立設されている。なお、吸着熱交換器(51,52)に担持される吸着剤としては、ゼオライトやシリカゲル等、或いはそれらの混合物が用いられる。
  ケーシング(11)の内部空間において、下流側仕切板(72)の前面に沿った空間は、上下に仕切られており、この上下に仕切られた空間のうち、上側の部分が給気側通路(31)を構成し、下側の部分が排気側通路(33)を構成している。
  上流側仕切板(71)には、開閉式のダンパ(41~44)が4つ設けられている。各ダンパ(41~44)は、概ね横長の長方形状に形成されている。具体的に、上流側仕切板(71)のうち内気側通路(32)に面する部分(上側部分)では、中央仕切板(73)よりも右側に第1内気側ダンパ(41)が取り付けられ、中央仕切板(73)よりも左側に第2内気側ダンパ(42)が取り付けられる。また、上流側仕切板(71)のうち外気側通路(34)に面する部分(下側部分)では、中央仕切板(73)よりも右側に第1外気側ダンパ(43)が取り付けられ、中央仕切板(73)よりも左側に第2外気側ダンパ(44)が取り付けられる。
  下流側仕切板(72)には、開閉式のダンパ(45~48)が4つ設けられている。各ダンパ(45~48)は、概ね横長の長方形状に形成されている。具体的に、下流側仕切板(72)のうち給気側通路(31)に面する部分(上側部分)では、中央仕切板(73)よりも右側に第1給気側ダンパ(45)が取り付けられ、中央仕切板(73)よりも左側に第2給気側ダンパ(46)が取り付けられる。また、下流側仕切板(72)のうち排気側通路(33)に面する部分(下側部分)では、中央仕切板(73)よりも右側に第1排気側ダンパ(47)が取り付けられ、中央仕切板(73)よりも左側に第2排気側ダンパ(48)が取り付けられる。
  ケーシング(11)内において、給気側通路(31)および排気側通路(33)と前面パネル部(12)との間の空間は、仕切板(77)によって左右に仕切られており、仕切板(77)の右側の空間が給気ファン室(36)を構成し、仕切板(77)の左側の空間が排気ファン室(35)を構成している。
  給気ファン室(36)には、給気ファン(26)が収容されている。また、排気ファン室(35)には排気ファン(25)が収容されている。給気ファン(26)および排気ファン(25)は、何れもDCファンに構成され、通常運転時には調湿コントローラ(100)により作動制御される。
  具体的に、これらのファン(25,26)は、ファンロータと、ファンケーシング(86)と、ファンモータ(89)とを備えている。図示しないが、ファンロータは、その軸方向の長さが直径に比べて短い円筒状に形成され、その周側面に多数の翼が形成されている。ファンロータは、ファンケーシング(86)に収容されている。ファンケーシング(86)では、その側面(ファンロータの軸方向と直交する側面)の一方に吸入口(87)が開口している。また、ファンケーシング(86)には、その周側面から外側へ突出する部分が形成されており、その部分の突端に吹出口(88)が開口している。ファンモータ(89)は、ファンケーシング(86)における吸入口(87)と反対側の側面に取り付けられている。ファンモータ(89)は、ファンロータに連結されてファンロータを回転駆動する。
  給気ファン(26)および排気ファン(25)において、ファンロータがファンモータ(89)によって回転駆動されると、吸入口(87)を通ってファンケーシング(86)内へ空気が吸い込まれ、ファンケーシング(86)内の空気が吹出口(88)から吹き出される。
  給気ファン室(36)において、給気ファン(26)は、ファンケーシング(86)の吸入口(87)が下流側仕切板(72)と対面する姿勢で設置されている。また、この給気ファン(26)のファンケーシング(86)の吹出口(88)は、給気口(22)に連通する状態で第1側面パネル部(14)に取り付けられている。
  排気ファン室(35)において、排気ファン(25)は、ファンケーシング(86)の吸入口(87)が下流側仕切板(72)と対面する姿勢で設置されている。また、この排気ファン(25)のファンケーシング(86)の吹出口(88)は、排気口(21)に連通する状態で第2側面パネル部(15)に取り付けられている。
  給気ファン室(36)には、冷媒回路(50)の圧縮機(53)と四方切換弁(54)とが収容されている。圧縮機(53)および四方切換弁(54)は、給気ファン室(36)における給気ファン(26)と仕切板(77)との間に配置されている。
  ケーシング(11)内において、第1仕切板(74)と第1側面パネル部(14)の間の空間は、第1バイパス通路(81)を構成している。第1バイパス通路(81)の始端は、外気側通路(34)だけに連通しており、内気側通路(32)からは遮断されている。第1バイパス通路(81)の終端は、仕切板(78)によって、給気側通路(31)、排気側通路(33)および給気ファン室(36)から区画されている。仕切板(78)のうち給気ファン室(36)に臨む部分には、第1バイパス用ダンパ(83)が設けられている。
  ケーシング(11)内において、第2仕切板(75)と第2側面パネル部(15)の間の空間は、第2バイパス通路(82)を構成している。第2バイパス通路(82)の始端は、内気側通路(32)だけに連通しており、外気側通路(34)からは遮断されている。第2バイパス通路(82)の終端は、仕切板(79)によって、給気側通路(31)、排気側通路(33)および排気ファン室(35)から区画されている。仕切板(79)のうち排気ファン室(35)に臨む部分には、第2バイパス用ダンパ(84)が設けられている。
  なお、図8の右側面図および左側面図では、第1バイパス通路(81)、第2バイパス通路(82)、第1バイパス用ダンパ(83)および第2バイパス用ダンパ(84)の図示を省略している。
  ケーシング(11)の前面パネル部(12)では、その右寄りの部分に電装品箱(90)が取り付けられている。なお、図6および図8において、電装品箱(90)は省略されている。電装品箱(90)は、直方体状の箱であって、その内部に制御用基板(91)と電源用基板(92)とが収容されている。制御用基板(91)および電源用基板(92)は、電装品箱(90)の側板のうち前面パネル部(12)に隣接する部分(即ち、背面板)の内側面に取り付けられている。電源用基板(92)のインバータ部には、放熱フィン(93)が設けられている。この放熱フィン(93)は、電源用基板(92)の背面に突設されており、電装品箱(90)の背面板とケーシング(11)の前面パネル部(12)とを貫通して給気ファン室(36)に露出している(図7を参照)。
   〈冷媒回路の構成〉
  図9に示すように、冷媒回路(50)は、第1吸着熱交換器(51)、第2吸着熱交換器(52)、圧縮機(53)、四方切換弁(54)および電動膨張弁(55)が設けられた閉回路である。この冷媒回路(50)は、充填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。
  冷媒回路(50)において、圧縮機(53)は、その吐出側が四方切換弁(54)の第1のポートに、その吸入側が四方切換弁(54)の第2のポートにそれぞれ接続されている。また、冷媒回路(50)では、第1吸着熱交換器(51)と電動膨張弁(55)と第2吸着熱交換器(52)とが、四方切換弁(54)の第3のポートから第4のポートへ向かって順に接続されている。
  四方切換弁(54)は、第1のポートと第3のポートが連通して第2のポートと第4のポートが連通する第1状態(図9(A)に示す状態)と、第1のポートと第4のポートが連通して第2のポートと第3のポートが連通する第2状態(図9(B)に示す状態)とに切り換え可能となっている。
  圧縮機(53)は、冷媒を圧縮する圧縮機構と、圧縮機構を駆動する電動機とが1つのケーシングに収容された全密閉型の圧縮機である。圧縮機(53)の電動機へ供給する交流の周波数(即ち、圧縮機(53)の運転周波数)を変化させると、電動機により駆動される圧縮機構の回転速度が変化し、単位時間当たりに圧縮機(53)から吐出される冷媒の量が変化する。つまり、この圧縮機(53)は容量可変に構成されている。
  冷媒回路(50)において、圧縮機(53)の吐出側と四方切換弁(54)の第1のポートとを繋ぐ配管には、高圧圧力センサ(101)と吐出管温度センサ(103)とが取り付けられている。高圧圧力センサ(101)は、圧縮機(53)から吐出された冷媒の圧力を計測する。吐出管温度センサ(103)は、圧縮機(53)から吐出された冷媒の温度を計測する。
  また、冷媒回路(50)において、圧縮機(53)の吸入側と四方切換弁(54)の第2のポートとを繋ぐ配管には、低圧圧力センサ(102)と吸入管温度センサ(104)とが取り付けられている。低圧圧力センサ(102)は、圧縮機(53)へ吸入される冷媒の圧力を計測する。吸入管温度センサ(104)は、圧縮機(53)へ吸入される冷媒の温度を計測する。
  また、冷媒回路(50)において、四方切換弁(54)の第3のポートと第1吸着熱交換器(51)とを繋ぐ配管には、配管温度センサ(105)が取り付けられている。配管温度センサ(105)は、この配管における四方切換弁(54)の近傍に配置され、配管内を流れる冷媒の温度を計測する。
   〈調湿コントローラの構成〉
  調湿換気装置(10)には、制御部としての調湿コントローラ(100)が設けられている。本実施形態の調湿換気装置(10)では、制御用基板(91)に設けられたマイコンが調湿コントローラ(100)を構成している。調湿コントローラ(100)には、内気湿度センサ(96)、内気温度センサ(98)、外気湿度センサ(97)および外気温度センサ(99)の計測値が入力されている。また、調湿コントローラ(100)には、冷媒回路(50)に設けられた各センサ(91,92,…)の計測値が入力されている。調湿コントローラ(100)は、入力されたこれらの計測値に基づいて、調湿換気装置(10)の運転制御を行う。調湿換気装置(10)では、調湿コントローラ(100)の制御動作によって、後述する除湿換気運転と加湿換気運転と単純換気運転とが切り換えられる。また、調湿コントローラ(100)は、これらの運転中において、各ダンパ(41~48)、各ファン(25,26)、圧縮機(53)、電動膨張弁(55)および四方切換弁(54)の動作を制御する。
   -運転動作-
  本実施形態の調湿換気装置(10)は、除湿換気運転と、加湿換気運転と、単純換気運転とを選択的に行う。この調湿換気装置(10)は、除湿換気運転と加湿換気運転とを通常運転として行う。
   〈除湿換気運転〉
  除湿換気運転中の調湿換気装置(10)では、後述する第1通常動作と第2通常動作が所定の時間間隔(例えば3~4分間隔)で交互に繰り返される。この除湿換気運転中において、第1バイパス用ダンパ(83)および第2バイパス用ダンパ(84)は、常に閉状態となる。
  除湿換気運転中の調湿換気装置(10)では、室外空気が外気吸込口(24)からケーシング(11)内へ第1空気として取り込まれ、室内空気が内気吸込口(23)からケーシング(11)内へ第2空気として取り込まれる。
  先ず、除湿換気運転の第1通常動作について説明する。図10に示すように、この第1通常動作中には、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)および第1排気側ダンパ(47)が開状態となり、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)および第2排気側ダンパ(48)が閉状態となる。また、この第1通常動作中の冷媒回路(50)では、四方切換弁(54)が第1状態(図9(A)に示す状態)に設定され、第1吸着熱交換器(51)が凝縮器となって第2吸着熱交換器(52)が蒸発器となる。
  外気側通路(34)へ流入して外気側フィルタ(28)を通過した第1空気は、第2外気側ダンパ(44)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第2吸着熱交換器(52)で除湿された第1空気は、第2給気側ダンパ(46)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内へ供給される。
  一方、内気側通路(32)へ流入して内気側フィルタ(27)を通過した第2空気は、第1内気側ダンパ(41)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第1吸着熱交換器(51)で水分を付与された第2空気は、第1排気側ダンパ(47)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外へ排出される。
  次に、除湿換気運転の第2通常動作について説明する。図11に示すように、この第2通常動作中には、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)および第2排気側ダンパ(48)が開状態となり、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)および第1排気側ダンパ(47)が閉状態となる。また、この第2通常動作中の冷媒回路(50)では、四方切換弁(54)が第2状態(図9(B)に示す状態)に設定され、第1吸着熱交換器(51)が蒸発器となって第2吸着熱交換器(52)が凝縮器となる。
  外気側通路(34)へ流入して外気側フィルタ(28)を通過した第1空気は、第1外気側ダンパ(43)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第1吸着熱交換器(51)で除湿された第1空気は、第1給気側ダンパ(45)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内へ供給される。
  一方、内気側通路(32)へ流入して内気側フィルタ(27)を通過した第2空気は、第2内気側ダンパ(42)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第2吸着熱交換器(52)で水分を付与された第2空気は、第2排気側ダンパ(48)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外へ排出される。
   〈加湿換気運転〉
  加湿換気運転中の調湿換気装置(10)では、後述する第1通常動作と第2通常動作が所定の時間間隔(例えば3~4分間隔)で交互に繰り返される。この加湿換気運転中において、第1バイパス用ダンパ(83)および第2バイパス用ダンパ(84)は、常に閉状態となる。
  加湿換気運転中の調湿換気装置(10)では、室外空気が外気吸込口(24)からケーシング(11)内へ第2空気として取り込まれ、室内空気が内気吸込口(23)からケーシング(11)内へ第1空気として取り込まれる。
  先ず、加湿換気運転の第1通常動作について説明する。図12に示すように、この第1通常動作中には、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)および第2排気側ダンパ(48)が開状態となり、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)および第1排気側ダンパ(47)が閉状態となる。また、この第1通常動作中の冷媒回路(50)では、四方切換弁(54)が第1状態(図9(A)に示す状態)に設定され、第1吸着熱交換器(51)が凝縮器となって第2吸着熱交換器(52)が蒸発器となる。
  内気側通路(32)へ流入して内気側フィルタ(27)を通過した第1空気は、第2内気側ダンパ(42)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第2吸着熱交換器(52)で水分を奪われた第1空気は、第2排気側ダンパ(48)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外へ排出される。
  一方、外気側通路(34)へ流入して外気側フィルタ(28)を通過した第2空気は、第1外気側ダンパ(43)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第1吸着熱交換器(51)で加湿された第2空気は、第1給気側ダンパ(45)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内へ供給される。
  次に、加湿換気運転の第2通常動作について説明する。図13に示すように、この第2通常動作中には、第1内気側ダンパ(41)、第2外気側ダンパ(44)、第2給気側ダンパ(46)および第1排気側ダンパ(47)が開状態となり、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第1給気側ダンパ(45)および第2排気側ダンパ(48)が閉状態となる。また、この第2通常動作中の冷媒回路(50)では、四方切換弁(54)が第2状態(図9(B)に示す状態)に設定され、第1吸着熱交換器(51)が蒸発器となって第2吸着熱交換器(52)が凝縮器となる。
  内気側通路(32)へ流入して内気側フィルタ(27)を通過した第1空気は、第1内気側ダンパ(41)を通って第1熱交換器室(37)へ流入し、その後に第1吸着熱交換器(51)を通過する。第1吸着熱交換器(51)では、第1空気中の水分が吸着剤に吸着され、その際に生じた吸着熱が冷媒に吸熱される。第1吸着熱交換器(51)で水分を奪われた第1空気は、第1排気側ダンパ(47)を通って排気側通路(33)へ流入し、排気ファン室(35)を通過後に排気口(21)を通って室外へ排出される。
  一方、外気側通路(34)へ流入して外気側フィルタ(28)を通過した第2空気は、第2外気側ダンパ(44)を通って第2熱交換器室(38)へ流入し、その後に第2吸着熱交換器(52)を通過する。第2吸着熱交換器(52)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が第2空気に付与される。第2吸着熱交換器(52)で加湿された第2空気は、第2給気側ダンパ(46)を通って給気側通路(31)へ流入し、給気ファン室(36)を通過後に給気口(22)を通って室内へ供給される。
   〈単純換気運転〉
  単純換気運転中の調湿換気装置(10)は、取り込んだ室外空気(OA)をそのまま供給空気(SA)として室内へ供給すると同時に、取り込んだ室内空気(RA)をそのまま排出空気(EA)として室外へ排出する。ここでは、単純換気運転中の調湿換気装置(10)の動作について、図14を参照しながら説明する。
  単純換気運転中の調湿換気装置(10)では、第1バイパス用ダンパ(83)および第2バイパス用ダンパ(84)が開状態となり、第1内気側ダンパ(41)、第2内気側ダンパ(42)、第1外気側ダンパ(43)、第2外気側ダンパ(44)、第1給気側ダンパ(45)、第2給気側ダンパ(46)、第1排気側ダンパ(47)および第2排気側ダンパ(48)が閉状態となる。また、単純換気運転中において、冷媒回路(50)の圧縮機(53)は停止状態となる。
  単純換気運転中の調湿換気装置(10)では、室外空気が外気吸込口(24)からケーシング(11)内へ取り込まれる。外気吸込口(24)を通って外気側通路(34)へ流入した室外空気は、第1バイパス通路(81)から第1バイパス用ダンパ(83)を通って給気ファン室(36)へ流入し、その後に給気口(22)を通って室内へ供給される。
 また、単純換気運転中の調湿換気装置(10)では、室内空気が内気吸込口(23)からケーシング(11)内へ取り込まれる。内気吸込口(23)を通って内気側通路(32)へ流入した室内空気は、第2バイパス通路(82)から第2バイパス用ダンパ(84)を通って排気ファン室(35)へ流入し、その後に排気口(21)を通って室外へ排出される。
    -実施形態の効果-
  上記本実施形態によれば、第N調湿換気装置(10n)の給気ファン(25)(又は排気ファン(26))の回転数を変化させて第1~第(N-1)調湿換気装置(10a,10b,10c,…)の消費電力が変化することで第N調湿換気装置(10n)の第1~第(N-1)調湿換気装置(10a,10b,10c,…)と同じ集合給気ダクト(1a,2a,3a)への接続を自動判定したため、第N調湿換気装置(10n)が接続される集合給気ダクト(1a,2a,3a)を自動で判定することができる。この結果、換気システム(S)における風量調整を正確に行うことができる。
  また、第N調湿換気装置(10n)の給気ファン(25)の回転数を上昇させて第1~第(N-1)調湿換気装置(10a,10b,10c,…)の消費電力が低下することで第N調湿換気装置(10n)の第1~第(N-1)調湿換気装置(10a,10b,10c,…)と同じ集合給気ダクト(1a,2a,3a)への接続を自動判定したため、第N調湿換気装置(10n)が接続される集合給気ダクト(1a,2a,3a)を自動で判定することができる。この結果、換気システム(S)における風量調整を正確に行うことができる。
  また、従来より、換気システムの導入後に集合ダクトへの換気装置の接続台数が変化した場合、所定の換気風量とすべく、再度、各ファンの回転数を調整する必要があった。具体的には、接続台数に応じて予めファンの回転数を決定する方法や、ファンの回転数によって所定換気風量を得るために必要な電力を算出し、算出した必要電力と運転中の消費電力との過不足とに基づいてファンの回転数を制御する方法が行われる。
  特に、集合ダクトへの接続台数は、短期間のうちに変化することが多く、常時、上記方法を行う場合もあるため、想定した集合ダクトの接続台数と、実際の集合ダクトの接続台数とが異なると、各々の換気装置が風量不足になる場合がある。
  ところが、本実施形態では、集合ダクト(1,2,3)に接続される換気装置を自動で判定することができる。この結果、換気システム(S)における風量調整を正確に行うことができる。
  また、第1~第(N-1)調湿換気装置(10a,10b,10c,…)の消費電力の変化をモニターしたため、例えば、集合ダクト(1~3)内に異物の詰まり等の異常が発生した場合、何れの集合ダクト(1,2,3)に異常が発生したのか、又はその他のダクトに異常が発生したのか否かについて確実に見極めることができる。
    -実施形態の変形例-
  次に、本実施形態の変形例について説明する。上記実施形態では、吸着剤として、ゼオライトやシリカゲル等の主に水蒸気の吸着を行う材料と用いたが、本発明はこれに限られず、水蒸気の吸着と吸収の両方を行う材料(いわゆる収着剤)を用いてもよい。
  具体的には、本変形例では、吸湿性を有する有機高分子材料が吸着剤として用いられている。吸着剤として用いられる有機高分子材料では、分子中に親水性の極性基を有する複数の高分子主鎖が互いに架橋されており、互いに架橋された複数の高分子主鎖が三次元構造体を形成している。
  本形態の吸着剤は、水蒸気を捕捉(即ち、吸湿)することによって膨潤する。この吸着剤が吸湿することによって膨潤するメカニズムは、以下のようなものと推測される。つまり、この吸着剤が吸湿する際には、親水性の極性基の周りに水蒸気が吸着され、親水性の極性基と水蒸気が反応することで生じた電気的な力が高分子主鎖に作用し、その結果、高分子主鎖が変形する。そして、変形した高分子主鎖同士の隙間へ水蒸気が毛細管力によって取り込まれ、水蒸気が入り込むことによって複数の高分子主鎖からなる三次元構造体が膨らみ、その結果、吸着剤の体積が増加する。
  このように、本実施形態の吸着剤では、水蒸気が吸着剤に吸着される現象と、水蒸気が吸着剤に吸収される現象の両方が起こる。つまり、この吸着剤には、水蒸気が収着される。また、この収着剤に捕捉された水蒸気は、互いに架橋された複数の高分子主鎖からなる三次元構造体の表面だけでなく、その内部にまで入り込む。その結果、この吸着剤には、表面に水蒸気を吸着するだけのゼオライト等に比べ、多量の水蒸気が捕捉される。
  また、この吸着剤は、水蒸気を放出(即ち、放湿)することによって収縮する。つまり、この吸着剤が放湿する際には、高分子主鎖同士の隙間に捕捉された水の量が減少してゆき、複数の高分子主鎖で構成された三次元構造体の形状が元に戻ってゆくため、吸着剤の体積が減少する。
  尚、本実施形態の吸着剤として用いられる材料は、吸湿することによって膨潤して放湿することによって収縮するものであれば上述した材料に限定されず、例えば吸湿性を有するイオン交換樹脂であってもよい。
  〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
  上記実施形態では、調湿換気装置(10)およびブースタファン(4)を換気装置として用いたが、本発明はこれらに限られず、全熱交型の換気装置としてもよい。
  また、上記実施形態では、第N調湿換気装置(10n)の給気ファン(26)を駆動させ、第1~第(N-1)調湿換気装置(10a~10n-1)の給気ファン(26~26)の消費電力の低下したことによって第N調湿換気装置(10n)が接続されている集合ダクトを第2調湿換気装置(10b)、第6調湿換気装置(10f)、…と同じ第2集合給気ダクト(2a)と判定するようにしたが、本発明はこれに限られず、第N調湿換気装置(10n)の給気ファン(26)を所定の回転数で駆動させた状態で、第1~第(N-1)調湿換気装置(10a~10n-1)の給気ファン(26~26)を所定回転数で一定に保ったまま、上記第N調湿換気装置(10n)の給気ファン(26)の回転数を低下させるようにしてもよい。このとき、電力検出部(5b)では、第N調湿換気装置(10n)の給気ファン(26)の回転数の低下によって第2調湿換気装置(10b)、第6調湿換気装置(10f)、…の給気ファン(26~26)の消費電力が上昇する。そして、接続判定部(5c)では、第N調湿換気装置(10n)の給気ファン(26)の回転数の低下によって第2調湿換気装置(10b)、第6調湿換気装置(10f)、…の給気ファン(26~26)の消費電力が上昇したことで、第N調湿換気装置(10n)が接続されている集合ダクトを第2調湿換気装置(10b)、第6調湿換気装置(10f)、…と同じ第2集合給気ダクト(2a)と判定する。尚、集合排気ダクト(1b,2b,3b)については、集合給気ダクト(1a,2a,3a)と同様であるので説明を省略する。
  本形態によれば、第N調湿換気装置(10n)の給気ファン(25)の回転数を低下させて第1~第(N-1)調湿換気装置(10a,10b,10c,…)の消費電力が上昇することで第N調湿換気装置(10n)の第1~第(N-1)調湿換気装置(10a,10b,10c,…)と同じ集合給気ダクト(1a,2a,3a)への接続を自動判定したため、第N調湿換気装置(10n)が接続される集合給気ダクト(1a,2a,3a)を自動で判定することができる。この結果、換気システム(S)における風量調整を正確に行うことができる。
  また、上記実施形態では、換気コントローラ(5)は、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)を制御する一のファン制御部(5a)を備えるようにしたが、本発明はこれに限られず、ファン制御部(5a)を各調湿換気装置(10a~10n)およびブースタファン(4)のそれぞれに備え、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)を制御するようにしてもよい。
  また、上記実施形態では、換気コントローラ(5)は、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)を制御する一のファン制御部(5a)を備えるようにしたが、本発明はこれに限られず、ファン自体の制御装置を各調湿換気装置(10a~10n)およびブースタファン(4)のそれぞれに備え、それぞれのファンの制御を個別に行うようにしてもよい。具体的には、各調湿換気装置(10a~10n)およびブースタファン(4)には、それぞれに一のファンの制御装置が接続されている。そして、各ファンの制御装置は、ファン制御部(5a)からの信号に基づき、各ファン(4,25,26)のファンモータをそれぞれ個別に作動制御し、且つ各ファン(4,25,26)の回転数を所定の回転数で一定に保って駆動させる。尚、ファンの制御装置およびファン制御部(5a)は、本発明に係るファン制御部を構成している。
  また、上記実施形態では、換気コントローラ(5)は、各調湿換気装置(10a~10n)のファン(25,26)およびブースタファン(4)の駆動時の消費電力を検出する一の電力検出部(5b)を備えるようにしたが、本発明はこれに限られず、電力検出部(5b)を各調湿換気装置(10a~10n)およびブースタファン(4)のそれぞれに備え、それぞれの駆動時の消費電力を検出するようにしてもよい。具体的に、電力検出部(5b)は、接続された調湿換気装置(10a~10n)の給気ファン(26)および排気ファン(25)のファンモータに接続され、その消費電力を検出している。また、電力検出部(5b)は、ブースタファン(4)のファンモータに接続され、その消費電力を検出している。そして、各電力検出部(5b)は、検出した消費電力のデータを換気コントローラ(5)に送るように構成されている。
  また、上記実施形態では、換気コントローラ(5)は、各調湿換気装置(10a~10n)およびブースタファン(4)の属する集合ダクト(1,2,3)を判定する一の接続判定部(5c)を備えるようにしたが、本発明はこれに限られず、接続判定部(5c)を各調湿換気装置(10a~10n)およびブースタファン(4)のそれぞれに備え、各調湿換気装置(10a~10n)およびブースタファン(4)の属する集合ダクト(1,2,3)を判定するようにしてもよい。
  尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  以上説明したように、本発明は、複数の換気装置がダクトに接続された換気システムについて有用である。
1      第1集合ダクト
1a     第1集合給気ダクト
1b     第1集合排気ダクト
2      第2集合ダクト
2a     第2集合給気ダクト
2b     第2集合排気ダクト
3      第3集合ダクト
3a     第3集合給気ダクト
3b     第3集合排気ダクト
4      ブースタファン
5a     ファン制御部
5b     電力検出部
5c     接続判定部
10     調湿換気装置
25     排気ファン
26     給気ファン

Claims (3)

  1.   それぞれが送風ファン(25,26)を備えた特定換気装置(10a,10b,10c,…)および判定用換気装置(10n)を含む複数の換気装置(10a~10n)と、
      上記各換気装置(10a~10n)が接続されるダクト(1,2,3)と、
      上記各換気装置(10a~10n)の送風ファン(25,26)の回転数を制御するファン制御部(5a)と、
      上記各換気装置(10a~10n)の送風ファン(25,26)の消費電力の変化を検出する電力検出部(5b)と、
      上記ファン制御部(5a)が、1つの特定ダクト(1,2,3)に接続された特定換気装置(10a,10b,10c,…)の送風ファン(25,26)を駆動させると共に、判定用換気装置(10n)の送風ファン(25,26)の回転数を変化させた際、上記電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の変化を検出すると、上記判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが同じダクト(1,2,3)に接続されていることを判定する一方、上記電力検出部(5b)が特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力の変化を検出しないと、上記判定用換気装置(10n)と特定換気装置(10a,10b,10c,…)とが異なるダクトに接続されていることを判定する接続判定部(5c)とを備えている
    ことを特徴とする換気システム。
  2.   請求項1において、
      上記接続判定部(5c)は、上記判定用換気装置(10n)の送風ファン(25,26)の回転数を上昇させた際、上記特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力が低下すると、上記判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定するよう構成されている
    ことを特徴とする換気システム。
  3.   請求項1において、
      上記接続判定部(5c)は、上記判定用換気装置(10n)の送風ファン(25,26)の回転数を低下させた際、上記特定換気装置(10a,10b,10c,…)の送風ファン(25,26)の消費電力が上昇すると、上記判定用換気装置(10n)が特定換気装置(10a,10b,10c,…)と同じダクト(1,2,3)に接続されていると判定するよう構成されている
    ことを特徴とする換気システム。
PCT/JP2012/002990 2011-05-12 2012-05-07 換気システム WO2012153512A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280014376.7A CN103429963B (zh) 2011-05-12 2012-05-07 换气系统
US13/980,658 US9228753B2 (en) 2011-05-12 2012-05-07 Ventilation system
ES12781587T ES2530666T3 (es) 2011-05-12 2012-05-07 Sistema de ventilación
EP12781587.6A EP2662640B1 (en) 2011-05-12 2012-05-07 Ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107085A JP5093378B2 (ja) 2011-05-12 2011-05-12 換気システム
JP2011-107085 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153512A1 true WO2012153512A1 (ja) 2012-11-15

Family

ID=47139000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002990 WO2012153512A1 (ja) 2011-05-12 2012-05-07 換気システム

Country Status (6)

Country Link
US (1) US9228753B2 (ja)
EP (1) EP2662640B1 (ja)
JP (1) JP5093378B2 (ja)
CN (1) CN103429963B (ja)
ES (1) ES2530666T3 (ja)
WO (1) WO2012153512A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633888B (zh) * 2013-11-08 2019-11-19 美国阿尔德斯通风设备公司 用于被动控制空气流的方法和设备
US10337758B2 (en) * 2014-09-25 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger ventilator
CN106123192A (zh) * 2016-07-12 2016-11-16 青岛海信日立空调系统有限公司 一种恒温风机控制方法及恒温风机
CN110506184B (zh) * 2017-03-31 2021-07-06 松下知识产权经营株式会社 换气系统、热交换型换气装置
US11460202B2 (en) 2019-04-30 2022-10-04 Gary Gerard Powers Roof mounted ventilation assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322679A (ja) * 1991-04-20 1992-11-12 Shinpo Kk 遊戯場における排気システム
JPH066465U (ja) 1990-12-26 1994-01-28 村田機械株式会社 風綿集中処理装置
JP2005024216A (ja) * 2003-07-02 2005-01-27 Rinnai Corp 換気装置
JP2010203736A (ja) * 2009-03-05 2010-09-16 Seiko Epson Corp 排気装置

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181099A (en) * 1978-04-06 1980-01-01 Westinghouse Electric Corp. Coordinated control for power plant forced and induced draft fans during startup and fan speed changes
US4308911A (en) * 1979-11-13 1982-01-05 Mandl William J Residential monitoring and control system
US4731547A (en) * 1986-12-12 1988-03-15 Caterpillar Inc. Peak power shaving apparatus and method
FR2664024B1 (fr) * 1990-07-02 1993-07-09 Cogema Procede et installation de reglage du debit d'air dans un reseau de conduites.
US5170673A (en) * 1990-09-28 1992-12-15 Landis & Gyr Powers, Inc. Method and apparatus for determining the uncovered size of an opening adapted to be covered by multiple moveable doors
JP3085737B2 (ja) * 1991-07-17 2000-09-11 ダイキン工業株式会社 空気調和機
US5292280A (en) * 1992-02-14 1994-03-08 Johnson Service Co. Method and apparatus for controlling ventilation rates and indoor air quality in an HVAC system
FI92868C (fi) * 1993-07-07 1996-02-06 Abb Installaatiot Oy Menetelmä ja järjestelmä lämmönsiirron säätämiseksi ilmanvaihto- tai ilmastointilaitoksessa
US5417077A (en) * 1994-03-04 1995-05-23 Carrier Corporation Leaving air temperature control of cooling system
US5540619A (en) * 1995-01-06 1996-07-30 Landis & Gyr Powers, Inc. Control of prime mover in HVAC distribution system
US5705734A (en) * 1996-07-17 1998-01-06 Landis & Staefa, Inc. Automated branch flow calibration in a HVAC distribution system
US5944098A (en) * 1997-07-17 1999-08-31 Jackson; Ronald E. Zone control for HVAC system
JPH1172262A (ja) 1997-08-29 1999-03-16 Daikin Ind Ltd 空気調和装置
US5862982A (en) * 1997-09-24 1999-01-26 Johnson Service Company Optimal ventilation control strategy
US6134511A (en) * 1998-04-15 2000-10-17 Subbarao; Krishnappa Method and apparatus for improving building energy simulations
AU4733601A (en) * 2000-03-10 2001-09-24 Cyrano Sciences Inc Control for an industrial process using one or more multidimensional variables
US6719625B2 (en) * 2001-09-26 2004-04-13 Clifford Conrad Federspiel Method and apparatus for controlling variable air volume supply fans in heating, ventilating, and air-conditioning systems
US7024258B2 (en) * 2003-03-17 2006-04-04 Siemens Building Technologies, Inc. System and method for model-based control of a building fluid distribution system
US20040239494A1 (en) * 2003-05-14 2004-12-02 Kennedy John F. Systems and methods for automatic energy analysis of buildings
JP4226983B2 (ja) * 2003-09-25 2009-02-18 株式会社東芝 電子機器
US7274973B2 (en) * 2003-12-08 2007-09-25 Invisible Service Technicians, Llc HVAC/R monitoring apparatus and method
US20050224069A1 (en) * 2004-03-29 2005-10-13 Patil Mahendra M System and method for managing air from a cooktop
WO2006004649A2 (en) * 2004-06-28 2006-01-12 Siemens Building Technologies, Inc. Method and apparatus for representing a building system enabling facility viewing for maintenance purposes
WO2006085406A1 (ja) * 2005-02-08 2006-08-17 Kazuo Miwa 建物のエネルギー管理システム
KR100688202B1 (ko) 2005-02-25 2007-03-02 엘지전자 주식회사 멀티 에어컨의 피크전력 제어 시스템 및 그 제어방법
DE602006000840T2 (de) * 2005-03-30 2009-04-09 Lg Electronics Inc. Kühlvorrichtung und Steuerverfahren dafür
US7894943B2 (en) * 2005-06-30 2011-02-22 Sloup Charles J Real-time global optimization of building setpoints and sequence of operation
US7766734B2 (en) * 2005-12-27 2010-08-03 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
MY167120A (en) * 2006-11-10 2018-08-10 Oyl Res & Development Centre Sdn Bhd An apparatus for controlling an air distribution system
US7827813B2 (en) * 2007-01-30 2010-11-09 Johnson Controls Technology Company Adaptive real-time optimization control
CA2581241C (en) * 2007-03-07 2014-04-29 North America Range Hoods Inc. Airflow boosting assembly for a forced air circulation and delivery system
CA2599471A1 (en) * 2007-08-31 2009-02-28 Alexandre Cervinka Underground communication network system for personal tracking and hvac control
KR100946719B1 (ko) 2007-11-28 2010-03-12 영 춘 정 멀티프로그램이 가능한 가변속 무정류자 모터의 정풍량제어장치
US20100082162A1 (en) * 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
JP4667496B2 (ja) * 2008-11-17 2011-04-13 三菱電機株式会社 空気調和装置
US8209056B2 (en) * 2008-11-25 2012-06-26 American Power Conversion Corporation System and method for assessing and managing data center airflow and energy usage
US20100217550A1 (en) * 2009-02-26 2010-08-26 Jason Crabtree System and method for electric grid utilization and optimization
CN102365601B (zh) * 2009-03-27 2015-04-22 Abb研究有限公司 用于控制周围空气参数的系统
JP4697341B2 (ja) * 2009-07-08 2011-06-08 ダイキン工業株式会社 換気システム
CN101667042B (zh) * 2009-09-29 2011-07-13 中兴通讯股份有限公司 一种风扇型温控方法及装置
US8606554B2 (en) * 2009-10-19 2013-12-10 Siemens Aktiengesellschaft Heat flow model for building fault detection and diagnosis
EP2513568A4 (en) * 2009-12-16 2013-09-18 Commw Scient Ind Res Org HVAC CONTROL SYSTEM AND METHOD
NO2537071T3 (ja) * 2010-02-15 2018-10-20
US8364318B2 (en) * 2010-04-21 2013-01-29 Honeywell International Inc. Demand control ventilation with fan speed control
US8423192B2 (en) * 2010-05-10 2013-04-16 Mingsheng Liu Fresh air control device and algorithm for air handling units and terminal boxes
US8442694B2 (en) * 2010-07-23 2013-05-14 Lg Electronics Inc. Distribution of airflow in an HVAC system to optimize energy efficiency and temperature differentials
US8352083B2 (en) * 2010-08-26 2013-01-08 Comverge, Inc. System and method for establishing local control of a space conditioning load during a direct load control event
CN201772574U (zh) * 2010-09-02 2011-03-23 上海盈蓝环境科技有限公司 节能热回收高换气恒温恒湿实验室
US9046898B2 (en) * 2011-02-24 2015-06-02 Google Inc. Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
JP5085751B2 (ja) * 2011-02-28 2012-11-28 株式会社東芝 電子機器及び情報出力方法
GB2479060B (en) * 2011-03-24 2012-05-02 Reactive Technologies Ltd Energy consumption management
US9494952B2 (en) * 2011-03-31 2016-11-15 Trane International Inc. Systems and methods for controlling multiple HVAC systems
RU2568325C2 (ru) * 2011-06-16 2015-11-20 Абб Рисерч Лтд Способ и система для управления потоком текучей среды в системе сети для текучей среды
US20130035794A1 (en) * 2011-08-03 2013-02-07 Behzad Imani Method and system for controlling building energy use
US20130037620A1 (en) * 2011-08-12 2013-02-14 Qualcomm Incorporated Controlling air movers based on acoustic signature
WO2013090146A1 (en) * 2011-12-12 2013-06-20 Vigilent Corporation Controlling air temperatures of hvac units
CN104272034B (zh) * 2012-02-28 2017-05-24 艾默生电气公司 Hvac系统远程监视和诊断

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066465U (ja) 1990-12-26 1994-01-28 村田機械株式会社 風綿集中処理装置
JPH04322679A (ja) * 1991-04-20 1992-11-12 Shinpo Kk 遊戯場における排気システム
JP2005024216A (ja) * 2003-07-02 2005-01-27 Rinnai Corp 換気装置
JP2010203736A (ja) * 2009-03-05 2010-09-16 Seiko Epson Corp 排気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662640A4

Also Published As

Publication number Publication date
ES2530666T3 (es) 2015-03-04
JP2012237513A (ja) 2012-12-06
US9228753B2 (en) 2016-01-05
CN103429963B (zh) 2014-07-30
JP5093378B2 (ja) 2012-12-12
CN103429963A (zh) 2013-12-04
US20130303074A1 (en) 2013-11-14
EP2662640A1 (en) 2013-11-13
EP2662640B1 (en) 2014-12-03
EP2662640A4 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
AU2008263370B2 (en) Humidity controller
EP2767772B1 (en) Humidity control device
JP2010151337A (ja) 空調システム
JP2007010216A (ja) 換気装置
EP2224181A1 (en) Humidity adjustment device
WO2014057617A1 (ja) 調湿換気装置
AU2008263367A1 (en) Humidity controller
JP5093378B2 (ja) 換気システム
WO2012132478A1 (ja) 調湿換気装置
JP4341373B2 (ja) 調湿装置
JP6252703B1 (ja) 調湿装置
JP2009109124A (ja) 調湿装置
JP2010133612A (ja) 空調システム
JP2010078245A (ja) 調湿システム
JP2010145024A (ja) 空調システム
JP2011002132A (ja) 調湿システム
JP5082775B2 (ja) 換気装置
JP2010286197A (ja) 調湿装置
JP2011002131A (ja) 調湿装置
JP6443402B2 (ja) 調湿装置
JP2009109145A (ja) 空調システム
JP2010085034A (ja) 調湿装置
JP2005140420A (ja) 調湿装置
WO2012114669A1 (ja) 調湿装置
JP2011007436A (ja) 調湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012781587

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE